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ABSTRACT

The research accomplished in the area of rotor loads over the last 13 to

14 years is reviewed. The start of the period examined is defined by the 1973 AGARD

Milan conference and the 1974 hypothetical rotor comparison. The major emphasis of

the review is research performed by the U.S. Army and NASA at their laboratories,

and/or by the industry under government contract. Important independent work is

included in the review to keep an appropriate perspective on the field. For the

purpose of this review, two main topics are addressed: rotor loads prediction and

means of rotor loads reduction. A limited discussion of research in gust loads and

maneuver loads is included. In the area of rotor loads predictions, the major

problem areas are reviewed including dynamic stall, wake induced flows, blade tip

effects, fuselage induced effects, blade structural modeling, hub impedance, and

solution methods. It is concluded that the capability to predict rotor loads has

not significantly improved in the time frame of the paper. Future progress will

require more extensive correlation of measurements and predictions to better under-

stand the causes of the problems, and a recognition that differences between theory

and measurement have multiple sources, yet must be treated as a whole.

The development of comprehensive models for rotor loads must be the first

priority of the government, but this development should be the responsibility of the

government laboratories instead of their contractors. There is a need for high-

quality data to support future research in rotor loads, but the resulting data base

must not be seen as an end it Ltself. It will be useful only if it .s integrated

into firm long-range plans for use of the data.

Research in reducing rotor ]oads has sometimes been successful in the time

frame of this paper, but the reasons have not always been understood. This research

area should be productive in the future The major emphasis should be placed on

understanding the fundamental mechan]sms of vibration, and this should be accompa-

nied by careful experimentation.

Presented at NASA/Army Rotorcraft Technology Conference, March 14-16, 1987,
NASA Ames Research Center.
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INTRODUCTION

"Instead of running into unexpectedly high loads almost every-

where the first time the full flight envelope is explored, we

now only run into them occasionally, at some extreme flight

condition." - Loewy, 1973

Rotor Loads Problem

The rotor of a vehicle in trimmed flight provides the necessary lift and pro-

pulsive force to sustain flight. The aerodynamic loads on the rotor will cause the

blade to deform which will induce additional aeroelastic loads and deflections, and

will affect the trim of the rotorcraft. The motions and deformations of the indi-

vidual rotor blades will combine to impart shears and moments at the rotor hub. In

turn, the fuselage will respond to these shears and moments, and modify the blade

airloads and stresses. The complete problem of the loads and stresses on a helicop-

ter is very complex; however, substantial progress has been made in the past by

reducing the problem into smaller pieces. The aerodynamics of the rotor and its

associated performance in forward flight can be understood to a substantial degree

without considering the elastic deformation of the blades. In turn, the distribu-

tion of moments and stresses in the rotor blade and control system can normally be

treated without considering the impedance of the rotor hub. And, lastly, the prob-

lem of the treatment of vibration within the fuselage can be approached even when

the vibratory source in the rotor is not well understood. These three divisions--

aerodynamics, rotor loads, and fuselage vibration--are useful in the design and

analysis of a flight vehicle, but, to a degree, such divisions remain arbitrary.

The scope of the present paper is the second division, rotor loads. For the purpose

of this paper, rotor loads is meant to include both the aerodynamic loading of the

rotor and its structural response.

The loads on a rotor include both a steady component and an oscillatory compo-

nent that appears at harmonics of the rotor rotational frequency; that is, I/rev,

2/rev, and so forth. The oscillatory component is sometimes referred to in the

literature as the alternating load or half peak-to-peak load, but for this paper,

the term oscillatory will be used to describe loads that have had the steady or mean

value removed. In general, the rotor loads are dominated by the steady component

and the first one or two harmonics. These are the loads that generally determine

the fatigue life of the blade and controls, and are the primary interest of the

rotor designer. At harmonics above the second, the loads become progressively

smaller and often have little influence on the rotor structural design. However, it

is these higher harmonic loads that are the source of vibration in the fuselage and

their understanding is fundamental for progress in rotor loads predictive capabil-

ity. For the purposes of this paper, the loads at the third harmonic and above will

be termed the vibratory loads.
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The characteristic behavior of rotor loads with increasing harmonic is illus-

trated in figure I using data obtained on a CH-34 rotor tested in the Ames 40-

by 80-Foot Wind Tunnel (ref. I). In this example, the airload at r/R = 0.85 is

largest in the first and second harmonics and decreases quite rapidly as the har-

monic number is increased. The flap and chord bending moments measured at

r/R = 0.375 also decrease with the harmonic number, but show the influence of the

blade elastic modes. This is particularly clear in this example for the chord

bending moment, where the second chord mode is between 3 and 4/rev and the third

chord mode is near 8/rev. In terms of blade design, what is of most interest is the

fatigue loading and this is a function of the steady loads (which are not shown

here) and the oscillatory loads, which in this case, are largely dominated by the

first and second harmonics. In terms of vibratory loading, what is of most interest

is the 3, 4, and 5/rev shears at the hub for this four-bladed rotor. The size of

the steady component and first two harmonics of the rotor loads is such that it

generally masks the behavior of the vibratory loads. Unfortunately, the vibratory

loads are rarely shown by themselves and this has acted as an impediment to improved

understanding.

Status of Technology in 1970s

The status of rotor loads prediction methodology in the early 1970s is best

evaluated through two significant events. In March 1973 a "Specialists Meeting on

Helicopter Rotor Loads Prediction Methods" was held in Milan under AGARD sponsorship

(AGARD CP 122} and was attended by most of the major helicopter manufacturers who

presented examples of correlation between their flight test data and their analyti-

cal methods. These same prediction methods were used again in February 1974 to

predict the loads of a hypothetical helicopter rotor at the Specialists' Meeting on

Rotorcraft Dynamics sponsored by NASA Ames Research Center and the American Helicop-

ter Society (ref. 2).

Examples of correlation with flight test data from the Milan AGARD meeting are

shown in figures 2 to 4 (refs. 3, 4, and 5, respectively}. The predictions of the

Boeing Vertol C-60 analysis (ref. 3) show quite good agreement for the pitch link

waveform for the aft rotor of a CH-47C aircraft under stall conditions. The agree-

ment for the oscillatory flap bending moment is not as good and it is not clear that

the nonuniform downwash model is better than the uniform downwash model. Calcula-

tions using the Sikorsky Normal Modes Analysis, Y200, for an articulated single

rotor show that a constant inflow model gives nearly the same results for oscilla-

tory loads as the variable inflow model. However, when compared on a time-history

basis, the variable inflow model shows better agreement with higher harmonics. On

the basis of oscillatory loads, correlation of C81 with data from UH-ID flight test

is quite good.

In his assessment of the prediction technology shown at the Milan meeting,

Piziali expressed his belief that advances in the previous decade had been primarily

in the scope of predictive capability and not accuracy (ref. 6}. He felt that the

structural problem was in hand, but that the analyses were limited by the
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aerodynamic model. This view was not shared by other observers at the Milan meet-

ing. Loewy, in his meeting summary (ref. 7), said that the major development prob-

lems of the previous decade had been in the area of structural dynamics. He also

felt that major progress had been made in the predictive analyses, particularly in

reducing the potential for surprises in new designs.

The importance of the 1974 hypothetical rotor comparison of Ormiston (ref. 2)

was that it provided a test of the various comprehensive models for one hypothetical

rotor configuration. Figure 5 shows that even for identical blade properties, the

rotating natural frequencies calculated in a vacuum with the different math models

showed significant differences. The range of variation for the oscillatory blade

moments is shown in figure 6 (taken from ref. 8) and shows that the various analyses

disagreed widely, especially for the torsional behavior. As a result of the compar-

ison, it was apparent that there were significant problems in one or more of the

competing analyses, but as there was no experimental data with which to compare,

there was no obvious "right" or "wrong" answer. Ormiston's recommendations for

future research were:

I. Continue to make standardized comparisons.

2. Assess in detail the assumptions and semi-empirical factors used in the

analyses.

3. Perform fundamental experimental research in the areas of dynamic stall,

blade/vortex interaction, and three-dimensional flow effects.

4. Compare the prediction methods (after some progress with items 2 and 3

above) with experimental data from the test of a full-scale rotor in a wind tunnel.

Survey Articles

In the years since the Milan AGARD meeting and the hypothetical rotor compari-

son of Ormiston, there have been a number of assessments of rotor loads prediction

methodology. Arcidiacono and Sopher examined the United States progress in rotor

loads predictive capabilities at the AGARD conference on the "Prediction of Aerody-

namic Loads on Rotorcraft" held in London in 1982 (ref. 8). They concluded that a

good deal of fundamental work had been done with regard to dynamic stall, blade/

vortex interaction, and three-dimensional flow effects. In addition, they felt that

the modeling of the structure had improved, both in terms of the physics of repre-

senting the rotor blade and in the design of structured computer programs. However,

it was unclear at what point these analytical advances would be integrated into

analyses. They noted that the older analyses were not easily modifiable without a

substantial investment of time and money. They expressed optimism that with the

development of the Second Generation Comprehensive Helicopter Analysis System

(2GCHAS), these advances could be introduced in a controlled and efficient manner.

Johnson assessed the state of rotor loads prediction in a survey paper that

covered the entire area of rotorcraft dynamics (ref. 9). He compared predictions
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made at the 1973 Milan meeting with more recent calculations shown in the litera-

ture, and pointed out that, in general, the analyses are able to calculate the mean

and oscillatory loads; but, that an examination of the time histories reveals that

the fundamental phenomena are not being modeled correctly.

Friedmann addressed advances in rotorcraft aeroelasticity in a number of survey

articles (refs. 10 and 11) and, although these do not deal with the predictive

capabilties of the rotor loads analyses, they do provide useful summaries of

advances in structural modeling and dynamic stall.

Johnson also provides a detailed survey of recent developments in rotary-wing

aerodynamic theory (ref. 12). The survey pays particular attention to efforts in

lifting surface theory, panel methods, transonic theory, and transonic blade-vortex

interaction analyses. In his treatment, he makes a number of useful comparisons to

the equivalent fixed-wing formulations. He concludes that lifting-line theory will

remain the basis for rotor-aerodynamic calculations as long as it is the only theory

that can accurately include viscous effects. He feels that work should continue

toward the goal of turbulent Navier-Stokes calculations for the entire aircraft

although there is no immediate expectation of success in this area.

A restricted class of survey articles (nonetheless very useful), are papers

that summarize the application of rotor loads technology within a company. Gabel

(ref. 3) has provided a useful discussion of how the rotor loads analyses are used

at Boeing Vertol, and Yen and Glass (ref. 13) have done the same for Bell Helicopter

Textron and included a historical perspective as well. Dadone (ref. 14) has dis-

cussed the application of the aerodynamics technology to the rotor design and has

shown how it has evolved over the years at Boeing Vertol. Landgrebe (ref. 15) has

discussed the evolution of the rotor-wake geometry representation at the United

Technologies Research Center (UTRC) and at Sikorsky.

Organization of Paper

This review of rotor loads research is divided into two main sections:

research into understanding and improving the capability to predict rotor loads, and

research into means of reducing rotor loads. Within the first section, the discus-

sion is organized by breaking the loads problem into the aerodynamics model, the

structural model, and solution methods. Within the section on rotor loads reduction,

the major topics are investigations into effects of blade tailoring, control of

blade loads through kinematic coupling or control system design, and aerodynamic

tuning devices. Following these main sections, rotor loads in the presence of gusts

and maneuvers is discussed. In the concluding part of the paper, an assessment is

made of the progress that has occurred in the rotor loads area in the last 15 years.

The role of the U.S. Army and NASA in this process is discussed and some conclusions

and recommendations are made as to the major emphasis that should be taken in the

years to come.
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Two Themes

Two themes will appear and reappear in this paper. The first of these themes

deals with the balance between analysis and synthesis, and the second deals with the

question of whether progress in controlling rotor loads can be made without under-

standing the basic mechanisms. The place of analysis in rotor loads research is

well established, especially in the goverment laboratories and academia. This

process of analysis, the breaking down of a problem into its constituent parts,

examining each part in detail, and performing theoretical work and experiment to

obtain improved understanding, has often been repeated. But, the process of putting

the various pieces together again (which is referred to here as synthesis}, is not

so easy. To take the improved understanding, and to put the constituent parts back

together again and understand their interrelationships, is not done well nor is it

done often. When it is done, it is usually within the industry where the need is

imperative. The balance between analysis and synthesis is the first of these

themes.

The ultimate objective of research in rotor loads is not just the understanding

of the fundamental mechanisms involved, but rather to be able to design improved

rotor systems. The problem of rotor loads prediction is so intractable that to

progress in this area, it is necessary to pursue not just the basic research into

rotor loads, but to also pursue research in loads reduction even if the mechanisms

to be used are only guessed at. A great deal of effort has been placed on experi-

mentation in recent years--to parametrically vary major rotor properties and to

measure the resulting improvement. This research has often been guided by a sub-

stantial amount of careful thought and the results have provided insight into the

rotor loads mechanisms. The reduction of rotor loads through feedback control is

the ultimate extension of this approach. But it must be recognized that the control

of rotor loads, either through empiricism or feedback, is a complementary approach;

it is not a substitute for research into the mechanisms of rotor loads. This is the

second theme, the balance between reducing the rotor loads and understanding the

physics.
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ROTOR LOADS PREDICTION

"For a good prediction of loads it is necessary to do everything

right, all of the time. With current technology it is possible

to do some of the things right, some of the time." - Johnson,

1985

Comparisons of measured rotor loads and prediction methods normally show both

areas of agreement and places where things are not right. A number of approaches

are made to understand the sources of disagreement and these can be generally cate-

gorized as: (I) fundamental investigations of the physics, (2) theoretical and

experimental tests of simplified models, and (3) theoretical and experimental tests

of the complete model, that is, of the rotor itself. Examples of all three of these

approaches will be shown in this section.

For the purposes of this review, research into rotor loads prediction will be

broken down into the aerodynamics model, the structural model, and solution meth-

ods. The aerodynamics model will be further broken down into dynamic stall, the

wake-induced flow, blade-tip effects, and fuselage effects. The structural model

discussion will include topics involving the blade structural properties and the

influence of the fuselage impedance.

Dynamic Stall

The work of McCroskey and Fisher (ref. 16) with a model rotor that had pressure

transducers installed at r/R = 0.75 and skin friction gages to characterize the

boundary layer behavior, provided a clear description of the sequence of events

involved in the dynamic stall of a rotor over the inboard section of the blade. To

properly model the dynamic stall process, it is necessary to account for the lift

overshoot and the large pitching moment changes that are related to the vortex that

is shed from the blade leading edge. Johnson (ref. 17) used the Sikorsky Y2OO

analysis to test three of the early empirical models: the _, A, B Method developed

at UTRC (refs. 18 and 19); the MIT Method (refs. 20 and 21), and the Boeing Vertol

Method (ref. 22). The elastic torsion angle for a highly loaded rotor at

= 0.333 calculated with these models is shown in figure 7. As only one torsion

mode was used, the blade-torsion moment is directly proportional to the elastic

deflection. Even though the blade dynamics are identical for the three models, the

predicted torsion behavior shows significant differences, particularly in the third

and fourth quadrants of the rotor.

Sikorsky derived a simplified dynamic-stall model based on a universal nondi-

mensional time constant, • = UoAt/c, where At describes the start of a stall event

determined from two-dimensional (2-D) measurements, Uo is the free-stream velocity,

and c the chord length (ref. 23). They tested the predictive capability of this

time delay model and the _, A, B Method by comparing first with a simplified

experiment, and second with flight-test data (refs. 23 and 24). The simplified
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experiment was a test of a 2-D airfoil mounted on a torsion spring and oscillated in

and out of stall at I/rev. The torsion spring was sized to provide an appropriate

torsional natural frequency with respect to the I/rev of the primary oscillation and

in this way to simulate stall flutter. These 2-D model tests were representative of

full-scale, 3-D tests in ways that were not anticipated, including considerable

cycle-to-cycle variation and unresolved ambiguities when the measurements were com-

pared to theory. The time delay method tended to overpredict the 2-D test results

and underpredict the 3-D, full-scale test results. Pitch-link loads predicted with

the Y200 analysis using the two methods are compared with flight-test data in fig-

ure 8. The test data show that the blade stalls at an azimuth of about 190 ° , and

this is not shown by the calculation. The _, A, B Method predicts some stall on

the second stall cycle at about 250 ° while both methods show substantial stall on

the third stall cycle. The _, A, B Method shows better agreement in terms of

amplitude of the pitch link oscillation.

All of the dynamic stall models are empirically derived from experimental data,

normally 2-D wind tunnel tests of oscillating airfoils. McCroskey (ref. 25) used

data from an NACA 0012 airfoil tested in the U.S. Army's 7- by 10-Foot Wind Tunnel

at Ames (ref. 26) to test the predictions of five empirical dynamic stall models.

In addition to the three models that had been examined previously by Johnson, he

also included two time delay methods (refs. 23 and 27) and a method derived by

Lockheed (ref. 28). The methods were evaluated for their ability to predict the

phase angles of lift and moment stall, and maximum values of the normal force and

pitching moment coefficients. No single method was notably better than the others,

and each was deficient in some area of prediction.

A new empirical model for dynamic stall that has been developed and integrated

into the Sikorsky analyses is reported by Gangwani (refs. 29-31). As in the _, A, B

Method, this model uses the angle of attack and pitch rate as major parameters, but

the angle of attack acceleration term, B, is replaced with a parameter that accounts

for the time-history effects of changes in angle of attack and is based on the

Wagner function. Lift, pitching moment, and drag are all determined as functions of

these parameters where the functional behavior is determined from a least squares

fit of 2-D oscillating airfoil data. The comparison of this empirical model and

available 2-D oscillating airfoil data (ref. 30) is more extensive than for any of

the other dynamic stall models. However, only limited comparisons with flight test

data are shown. Gangwani (ref. 32) has also integrated this empirical model into a

rotor loads analysis based on a model developed at Rochester Applied Science Associ-

ates (RASA) and described in reference 33, and has compared the results with data

obtained from flight test of an AH-IG (ref. 34). The use of the synthesized-stall

data does not improve the flap or chord bending moment correlation, but does show an

improvement in the modeling of the torsion moment.

There have been no direct comparisons of the various dynamic stall models since

Johnson (ref. 17), nor are there any extensive comparisons between any of these

models and flight test data published in the literature. Future comparisons should

include the ONERA dynamic stall model (ref. 35) with the extensions recommended by

Peters (ref. 36). Any extensive correlation with flight test data may have to model
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the fuselage induced flow as well. As shown by Wilby et al. (ref. 37) the upwash

from the fuselage may increase the blade angle of attack sufficiently to cause stall

over the nose of the aircraft. The stall-induced pitch-link load that is seen in

figure 8 at a blade azimuth of about 190 ° for the CH-53A may be a result of this

phenomenon.

The dynamic stall models in use today are empirically based on 2-D airfoil

data. Near the blade tip, the blade stalling process will be 3-D and in some situa-

tions, the interaction of a previous blade's vortex will also induce a 3-D form of

stall. Brotherhood and Riley (ref. 38) show the rotor blade of a Wessex helicopter

in two different kinds of stall as visualized by pressure transducers mounted in the

blade's leading edge. The pressure time histories are shown in figure 9 as a func-

tion of the blade azimuth. The first stall event appears at r/R = 0.90 and is

seen to move outboard. This event corresponds to the passage of the previous

blade's vortex across the tip of the blade. The flow reattaches after the passage

of the vortex, and then a second stall event is seen on the three outer blade sta-

tions, but this time the stall is simultaneous. How such complicated events can be

modeled (or even if they need to be) is unclear. One useful approach has been taken

by Costes (ref. 39) who has made experimental measurements on an oscillating half-

span airfoil and compared the unsteady pressure measurements to calculations which

were based on an extension of the ONERA dynamic stall model to three-dimensions. It

appears that the blade lift can be estimated satisfactorily with this model, but the

pitching moment cannot. This problem will become more important as variation in tip

planform is used more frequently in the design of new rotors.

Wake-lnduced Flow

In his seminal paper (ref. 40) Hooper has examined seven sets of airload mea-

surements made on full-scale rotors using Cartesian, 3-D plots to visualize the data

obtained in flight or wind tunnel tests. He has demonstrated that the low-speed (or

transition) flight regime vibratory airloading is dominated by the interaction of

the blade and the preceding blade's tip vortex first on the advancing side of the

disk and then on the retreating side. This behavior is seen regardless of rotor

type or blade number. At higher speeds, it appears that the greatest part of the

vibratory airloads is caused by events on the advancing side of the disk, but in

this case, there appear to be substantial differences which are due to rotor type or

blade number. The low-speed or transition case will be discussed first as this has

drawn the most attention of investigators in the past. The high-speed vibratory

loading will be discussed at the end of this section on wake-induced flow.

An example of the low-speed vibratory loading is shown in figure 10 in the

manner of Hooper using the data of reference 41. On the advancing side of the disk,

there is a down-up pulse in the airload as the blade passes first through the down-

wash, and then the upwash, of the preceding blade's tip vortex as that vortex moves

inward on the blade. On the retreating side, there is an up-down pulse as that same

vortex moves radially outward on the blade. To properly calculate the wake induced
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airload, it is necessary to correctly model the wake geometry, the vortex strength,

and the blade-vortex interaction.

The advent of the digital computer has made feasible the calculation of the

induced flow including the effects of a realistic wake representation. By the start

of the time period covered in this paper, the use of a prescribed wake, that is, a

wake where the tip and root vortices are assumed to follow a prescribed helical

pattern, was well established. In addition, calculations using a free wake, where

the wake geometry is modified by self-induced effects, had been developed and

applied to a number of problems (refs. 15 and 42).

The free-wake calculations have shown that distortions of the wake geometry are

primarily in the vertical or axial direction. In the plane of the rotor disk, the

wake geometry lies very close to the cycloidal pattern of the prescribed wake. This

has been shown from flight testing of pressure-instrumented rotors where the vortex

passage can be identified from the characteristic up-down or down-up pulse in the

measured pressure. Measurements obtained using a Puma helicopter (ref. 43) are

compared with the cycloidal geometry in figure 11 and show little distortion in the

disk plane from advance ratios of O.11 to 0.35. Landgrebe and Bellinger (ref. 44)

have compared their free-wake calculation to the measured axial geometries obtained

by Lehman in a water tunnel (ref. 45) and have achieved good results. Johnson

(ref. 46) has compared a free-wake analysis to the laser-velocimeter measurements of

the wake geometry of a two-bladed rotor in a wind tunnel which were obtained by

Biggers et al. (ref. 47) and has also demonstrated good agreement. However, he

notes that in this case, the tip-path plane angle of attack was sufficiently large

so that the difference in axial-wake position predicted with either the prescribed

or free wake had no effect on the blade loading.

The predictions of wake geometry using free-wake analyses appear good in those

cases where data are available, but the predictions of the airloads and blade bend-

ing moments have not been done as well. Egolf and Landgrebe (ref. 48, summarized in

ref. 49) and Yamauchi et al. (ref. 50) have compared the analytical predictions of a

rotor loads analysis that includes a free-wake model with measurements of blade

airloads and structural loads obtained in flight. Figure 12 compares the blade

airloads measured on the CH-34 rotor at the 0.90R radial station (the same case as

was shown in fig. I0} with predictions using both prescribed and free-wake analyses

(ref. 48). The data show the influence of the blade-vortex intersections on the

advancing and retreating sides of the disk. The prescribed-wake calculation shows

similar behavior, but the load is much reduced in strength. The free-wake calcula-

tion shows multiple tip-vortex intersections (that is, intersections with two or

more tip vortices from the preceding blades), but these are not apparent in the test

data. The analysis predicts very high blade airloads due to the initial intersec-

tion, much higher than those measured in the test, as these calculations show a

direct intersection of the tip vortex and the blade. The resulting blade flap

bending moments using the free-wake analysis, coupled to the Sikorsky Y200 rotor

loads program, are shown in figure 13. The airload peak seen in figure 12 is highly

localized so its impact on blade loading is not severe. Both the theoretical pre-

diction and the measured loads are rich in higher harmonics, but except for the
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loading at about 270 ° azimuth, the agreement in amplitude and phase is not particu-

larly good.

Yamauchi et al. (ref. 50) compare predictions using the prescribed and free-

wake analyses of CAMRAD with flight-test data for the Aerospatiale SA 349-2. Air-

loads data for this test program were obtained at r/R = 0.75, 0.88, and 0.97. The

CAMRAD predictions for lift coefficient are compared in figure 14 with the measure-

ments _de at 0.88R and an advance ratio of 0.14. As with the CH-34 results, the

data show loads caused by the blade vortex interaction on both the advancing and

retreating sides of the disk and the free wake provides a better prediction of the

loading induced by the vortex wake. Again, as with the CH-34 case, the theoretical

predictions show multiple vortex intersections that are not apparent in the data.

The core size used in the CAMRAD free-wake prediction shown here has been determined

after an a posteriori fitting of the data. Calculation of the flap bending moments

for the SA 349-2 using the free-wake analysis show mixed results with good agreement

at the blade midspan, but poor agreement elsewhere.

The influence of blade vortices at high speed is not as clear as for the low-

speed transition case. Figure 15 shows the vibratory loading measured on the CH-34

rotor in the 40- by 80-Foot Wind Tunnel at an advance ratio of 0.39 (refs. I

and 51). A strong, impulsive loading is seen on the advancing side of the disk, but

unlike the low-speed case, the load is an up-down pulse, suggesting that the blade

is encountering first an upwash and then a downwash. Miller (ref. 52) has proposed

that, because the outer portion of the blade is negatively loaded for this case,

that two vortices of opposite sign are trailed from the blade as shown in figure 16.

An analysis of this case made using a number of simplifying assumptions, including

fixing the position of the midspan or inboard vortex, shows good agreement with the

measurements as shown in figure 17. This progress is encouraging, as Hooper has

shown in reference 40 that neither the Boeing Vertol C-60 analysis nor CAMRAD show

satisfactory agreement for this case. (However, note that Phelan and Tarzanin,

ref. 53, have reported corre@ting a programming error in C-60 and now show much

better agreement for the airloads in this case.)

The importance of the blade-vortex interaction studied in the CH-34 high-speed

case is not entirely clear since it appears to be strongly related to the amount of

negative lift on the advancing side of the disk. The CH-34 which was studied in the

40- by 80-Foot Wind Tunnel was operated at reduced lift (about 60-70% of the lift

for normal flight), and data on the XH-51A and NH-3A compound aircraft studied by

Hooper were obtained with some of the lift provided by the aircraft wing. Unfortu-

nately, there are few high-speed data available for conventional rotors. The

maximum speed case studied for the CH-53A aircraft was an advance ratio of 0.32 and

the vibratory loading is quite different from that seen in figure 15. Measurements

made on the outer blade stations of the SA 349-2 at an advance ratio of 0.38 do not

show any clear evidence of vortex-induced loads (ref. 54). However, model-scale

data acquired on the Boeing Vertol Model 360 rotor (ref. 55), show airloads that are

remarkably similar to the CH-34 airloads as shown in figure 18.

Application of free-wake calculation techniques to rotor loads requires first,

that the physics of the phenomena be correctly modeled and second, that the wake



calculations be efficiently integrated into the rotor loads calculation. It seems
evident from the research with the free-wake models that the first step has not yet
been achieved. It is not possible at this time to accurately model the free wake.
However, someprogress has been made in making the calculation more efficient.
Egolf and Landgrebe (ref. 48} have approached this problem for their free-wake
calculations by constructing an approximate or generalized model of the wake, and in
this fashion, reduced the computational time by a factor of a thousand.

Young(ref. 56) has taken a different approach to the problem of an efficient
wake calculation by starting with a simplified wake model that is very efficient and
then modifying it step-by-step to see how much improvement is obtained and at what
cost in computation time. Youngmodels the near wake with rigid semicircles of
constant vorticity whoseradius varies as the blade movesaround the azimuth, and
the far wake as a series of yortex rings. As vortex rings will not give the same
blade vortex intersection as a cycloidal path, the actual intersection geometry is
used to fix the outer position of the wake vortex rings. Figure 19 compares the
flap bending momentsmeasuredon a Pumawith the original vortex ring model, and the
vortex ring model with the improvements discussed by Young in reference 56. The
representation of the higher harmonic loads appears reasonably accurate in both
amplitude and phase.

Alternative approaches to the calculation of aerodynamic loading have been
devised using the acceleration potential. Costes has demonstrated the feasibility
of this method and comparedhis results to rotor measurementsobtained in a wind
tunnel (ref. 57). Runyanand Tai (ref. 58) have developed a similar approach and
madelimited comparisons with model rotor loads measurements. Pierce and
Vaidyanathan (ref. 59) have applied the method of Van Holten (ref. 60) to the pre-
diction of the airloads measuredon the CH-34 in flight and in the wind tunnel. In
general, the prediction of the oscillatory loads is good, but the prediction of
harmonics beyond two is difficult to judge as they are masked by the first and
second harmonics.

Blade-Tip Effects

The calculation of rotor loads based on lifting-line theory normally accounts
for the reduction of lift at the blade tip by introducing a tip-loss factor for the
blade normal force, but the chordwise force is assumedto extend to the blade tip.
Whenthe wake-induced flow is calculated by a prescribed or free wake then the
radial distribution of bound vorticity is determined as part of the solution.
Johnson (ref. 46} has compared the calculated bound vorticity using a free-wake
analysis to measurementsobtained with a laser velocimeter on a model rotor in a
wind tunnel (ref. 47) and these show fairly good agreement, particularly near the
tip. This comparison was madeat an advance ratio of O.18 and it is expected that
the calculation problem will becomemore difficult at higher speeds as transonic
effects begin to dominate the loading.

A great deal of progress has been madein recent years in developing finite
difference codes to analyse the flow over an advancing blade including the effects
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of shocks and unsteadiness. Caradonna and Tung (ref. 61) have provided a comprehen-

sive discussion of the present status of these codes and have compared a number of

the code predictions with surface pressures measured in nonlifting and lifting rotor

experiments. At the present time, the codes are being integrated into comprehensive

analyses either in a partially coupled manner (ref. 62) or as a post-processor

(ref. 55). In the former case, the comprehensive analysis (CAMRAD in ref. 62) is

used to obtain the trim solution and then to provide the finite-difference code with

a partial inflow distribution along the blade. The calculated inflow from the

comprehensive analysis excludes the influence of the trailing vortex sheet that is

calculated as a part of the finite difference grid. The finite difference program,

in turn, provides the comprehensive analysis with an improved estimat e of the blade

lift. The solutions are matched when there is no change in lift from one iteration

to the next. The blade pitching moment and drag are not coupled in this manner, and

spanwise discontinuities in calculated properties are allowed at the grid inner

boundary. There is great optimism as to the utility of these new methods, but the

applications are in their infancy.

Fuselage Flow Effects

The U.S. Army developed four prototype aircraft in the early 197Os to meet the

needs of their utility and attack helicopter missions. All of these prototypes

encountered severe vibration problems, and in each case, the rotor shaft was

extended; as a consequence, the vibration was reduced. There was a great deal of

intense activity at that time to understand the problem, but because of the competi-

tive aspects of the developments little information was published. (An account of

some of these problems was given by Gabel in a panel at the 2nd Decennial Special-

ists' Meeting on Rotorcraft Dynamics held at Ames in 1984, ref. 63.)

The effect of a fuselage on the air flow during flight will be to cause an

upwash on the forward side of the disk and a downwash on the rearward side. This

will cause a I/rev variation in the induced flow at the rotor disk and will affect

the rotor loads. The rotor wake may also impinge on the fuselage and cause vibra-

tory excitations. Wilby et al. (ref. 37) have presented results from model tests

with and without a fuselage. The flap bending moments measured at an advance ratio

of 0.3 are shown in figure 20 for this model. Although the fuselage causes a I/rev

variation in the induced flow, the effect on the blade is to cause an increase in

the 5/rev moments at 400 rpm and 4/rev moments at 600 rpm. In both cases, the

increased loading corresponds to the second flap mode frequency. Similar effects

are seen in experimental measurements reported by Freeman and Wilson (ref. 64).

Huber and Polz (ref. 65) have used an analytical model to examine the effect of

the fuselage aerodynamics on the blade loads. Figure 21 shows that the calculated

effect of the fuselage is to cause an upwash over the nose of the aircraft and a

downwash over the tail. The greatest effect is seen in the 2 and 3/rev loads.

Huber and Polz note that the upwash is a maximum at about 0.4R and that this corre-

sponds to the antinode of the second flapping mode and explains why the second flap

mode responds so strongly to the fuselage induced flow.
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The effect of the fuselage on full-scale rotor loads has been studied by Jepson

et al. (ref. 66} using flight test data, wind tunnel data, and calculation. Figure

22(a) shows flap bending moments measured at 0.70R on an S-76 rotor in flight and in

the Ames 40- by 80-Foot Wind Tunnel (ref. 67). Figure 22(b) shows calculations

using Y201 for the S-76 rotor alone and for the rotor with the aircraft fuselage.

The calculations show that the effect of the fuselage is to cause a significant

increase in the 3/rev flap bending moments. This same sort of increase is seen in

comparing the flight-test results with the wind tunnel measurements. In the wind

tunnel, the rotor was mounted on the Ames Rotor Test Apparatus (RTA). Calculations

in reference 66 show that the S-76 fuselage increases the angle of attack about I°

over the fuselage nose compared to the predicted effect of the RTA.

The theoretical calculations discussed above have all represented the fuselage

using potential flow-panel methods. Johnson and Yamauchi (ref. 68) have used a

modification to slender body theory to represent the fuselage and have shown that

this approach gives the same results as did a panel method for axisymmetric bodies

at zero angle of attack, but at a much lower computational cost. Typically, the use

of the modified slender body theory increases the computational run time (including

a prescribed wake) by only 10-20% with respect to an isolated rotor calculation.

Using this approach, the influence of the RTA on rotor loads has been estimated

(ref. 69) and it was shown that the flap bending moments increase by 5-10% and the

chord bending by 10-15%. The effect on pitch-link loads is negligible. The mea-

surement of rotor loads on the RTA, therefore, is a reasonable approximation of

isolated rotor conditions.

The measurements and calculations made in the last decade examining the effects

of the flow induced by the fuselage have all shown a significant effect on higher

harmonic loads. It seems clear from this perspective that testing future improve-

ments to rotor loads prediction methods will be fruitless unless the effect of the

fuselage induced flow is accounted for.

Blade Response

A substantial amount of research has been performed in the last 10-15 years to

understand the influence of the blade structural, inertial, and kinematic properties

of the rotor loads. A great deal of this research has been directed toward loads

reduction and this will be discussed in more detail below in the Rotor Loads Reduc-

tion section. The emphasis of the material covered here under the Blade Response

heading is the improved understanding of how the rotor responds to the aerodynamic

loading.

The understanding of rotor loads is greatly enhanced when the source of the

blade loads can be identified by harmonic and blade mode. In the 1973 Milan AGARD

meeting, McKenzie and Howell (ref. 70) compared the Westland rotor loads analysis

with flight-test data from the Lynx; examples are shown in figures 23 and 24. In

figure 23, the 4/rev rotor hub pitch and rolling moments are broken out by the

proportion of the moment that occurs in the first three flapping modes. As the

4/rev hub moments are the primary source of vibratory loads on the Lynx, this
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technique is valuable; first, in identifying which blade modes are most important

for vibration reduction, and second, to judge how well these loads can be predicted.

(Note that the modal contributions cannot be directly measured from flight test, but

are obtained by using the blade-bending moment data to estimate the amplitudes of

the modes as generalized coordinates. This technique has been used by other inves-

tigators (refs. 71 and 72), but none of these references discuss the technique or

its limitations in any detail. It appears that the method is similar to the formal-

ism of the Strain Pattern Analysis Method (refs. 73 and 74).) Figure 23 shows that

the second-flap mode contribution is most important for the Lynx as determined from

flight measurement, but that the theory predicts approximately equal effects from

both the second- and third-flap modes. Figure 24 compares the theory and flight-

test estimates for the second mode deflection for three harmonics of blade loading.

The I/rev deflection is overpredicted, while the 2 and 3/rev deflections are under-

predicted. This approach to comparing measurement and prediction provides a better

assessment of the rotor behavior and the validity of the prediction model than more

typical approaches that are based on the comparison of oscillatory loads or azi-

muthal waveforms.

Blackwell and Commerford (ref. 24, summarized in ref. 75) have made an exten-

sive theoretical investigation of the means of reducing stall-induced loads. One of

the advantages of the theoretical approach is that it is relatively straightforward

to break down the various components of a load to understand what is the primary

cause and what can be done to reduce its influence. In that study they calculated

that a reduction in torsion frequency would reduce the stall-induced pitch link

loads. Figure 25 shows the torsion moment at the root caused by the aerodynamic

pitch moment; the moment caused by the inertial loads; the moment caused by deflec-

tion and shear of the blade, and their sum. The plot shows one rotor revolution

starting at 180 ° to better illustrate the stall-flutter behavior. For this articu-

lated rotor, the effect of blade deflections in combination with shears has only a

small effect; the largest effect is caused by the aerodynamic pitching moment and

the inertial moment which are of opposite phase. The change in torsional frequency

does not change the aerodynamic pitching moment very much, but does reduce the

inertial load and this accounts for the calculated reduction in the root moment. It

is expected that shear/deflection loading will be much more important for hingeless

and bearingless rotor designs.

Extensive data have been obtained in the Langley Transonic Dynamics Tunnel

(TDT) on the conformable model rotors and the data show that the tip design, blade

camber, and torsional stiffness all have a substantial influence on the rotor loads

(refs. 76 and 77). These data are discussed in detail in the Rotor Loads Reduction

section, but mention is made here because the data have stimulated additional work

by Blackwell and Kottapalli to understand the reasons for the observed changes in

rotor loads.

Blackwell (ref. 72) has re-examined the data obtained in the TDT and has fitted

the measured blade bending moments with calculated modal moments to identify the

generalized coordinates. He states that the hub shears calculated in this fashion

"trended directly" with the loads measured on the rotor balance, although no results
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are shown. The major differences seen in comparing the rectangular- and swept-tip

configurations are the reductions in the 3/rev vertical shears at the hinge, and the

3 and 5/rev inplane shears at the hinge for the swept tip. The generalized coordi-

nate amplitudes show that most of this reduction is in the second flap mode.

Kottapalli (ref. 78) has taken a purely theoretical approach to better under-

stand the changes in rotor loads that were seen as the model blade-tab deflection

was changed in the TDT tests. Using the Sikorsky Y201/F389 family of programs he

shows that the reduction in 4/rev vertical root shears is related to reductions in

the blades' 4/rev angle of attack distribution. The angle of attack reduction is

calculated to be due to reductions in elastic torsion (42%), elastic flapping (39%),

and inflow (19%).

The complementary approaches of Blackwell and Kottapalli are useful in provid-

ing an improved understanding of rotor loads behavior, but both approaches have

substantial limitations. The experimental approach of Blackwell can break the

problem down to a certain level, but not to the individual terms of the equations of

motion. Relationships between different properties can be demonstrated experimen-

tally, but the cause and effect cannot necessarily be derived. The theoretical

approach, however, can break the problem down to the level of the individual terms

of the equations of motion and, in some cases, clearly demonstrate cause and effect.

However, the inability of the analysis to predict rotor loads as measured in flight

test makes the analysis untrustworthy.

Blackwell has also looked at the effects of spanwise mass distribution on

vibratory loads in reference 72. Based on a simple analytical representation, he

suggests that the distribution of spanwise mass should modify the blade-root shears

which depend upon the product of the airload distribution and the mode shape.

Taylor (ref. 79) has pursued this approach and examined the sum of the modal root

shear contributions for all blades and derived a Modal Shaping Parameter which is

defined as

MSP = (Modal Shear Integral) × (Generalized Force)
(Generalized Mass)

Taylor assumes the airload can be represented as a polynomial in the radial coordi-

nate and, once the loading is defined, that the modal shaping parameter provides a

design method to seek a reduced vibratory load. Taylor extends this approach in

reference 80. In this study he uses the G400 analysis to calculate the rotor loads

and breaks down each component into essentially the terms of the equations of

motion. Figure 26 shows an example of the calculation of 3/rev lateral shears where

each component of shear is identified in terms of amplitude and phase. As changes

are made to the blade design based on the modal shaping parameter, then the behavior

of each component of the vibratory shear can be observed, and insight into the loads

behavior obtained. This approach holds great promise once more reliable analyses

are developed as the reduction in rotor loads will be accompanied by an understand-

ing of the system behavior. This must be contrasted with the formal optimization
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approach where an understanding of the physics is not necessary to the achievement
of loads reduction.

Another approach to understanding the blade response problem has been taken by

Esculier and Bousman (ref. 81) who have calculated the blade response for the CH-34

using measured airloads. This approach avoids the question of the adequacy of the

aerodynamic model by substituting measurements, and in this way, the adequacy of the

structural model can be evaluated. Figure 27 compares the measured moments from

reference I with calculations for the first harmonic of blade loads. Two calcula-

tions are shown for the flap and chord bending moments: an uncoupled calculation

and a coupled calculation assuming the flap and chord motions are coupled through

the local pitch angle. The comparison of the flap bending moments show very good

agreement between the measurements and the calculations based on measured airloads.

This good agreement is, in general, obtained through the ninth harmonic. This means

that for relatively simple rotors such as the CH-34, the flap bending loads can be

calculated quite precisely if the aerodynamic model is correct.

This is not the case for the chord loads as neither the coupled or uncoupled

calculations accurately predict the blade chord bending moments. Two reasons for

this were identified in reference 81. First, the chord airloads are not measured

directly, but are obtained from the flap airloads, and second, the CH-34 hydraulic

damper is represented as a linear viscous damper, but the data suggest that it also

acts as a relatively strong spring. The blade torsional moments appear fairly well

predicted using the measured pitching moments, especially in phase, but as pointed

out in reference 81 the calculation of torsional moments is sensitive to the control

system stiffness and that was not measured in reference I.

The adequacy of blade structural modeling has also been assessed by testing of

rotors in a vacuum. Lee (ref. 82) measured modal frequencies and displacements of a

rotating, cantilevered UH-ID blade in a vacuum chamber and obtained good agreement

with prediction for the lower frequency modes as long as they were not strongly

coupled. The mode shape prediction was not as good for the higher frequency and

more strongly coupled modes. Srinivasan et al. (ref. 83) have made frequency and

modal strain measurements of a torsionally soft model rotor spinning in a vacuum

chamber. These measurements may become useful for validating the prediction of

structural models because of the extensive model properties documentation that have

been obtained for these blades (ref. 84).

Fuselage Impedance

Rotor loads predictions are normally made assuming the rotor is mounted to an

infinitely stiff structure. One exception to this is that Bell Helicopter Textron

models the pylon flexibility in calculating the rotor natural frequencies and mode

shapes used by the C81 analysis for their two-bladed rotor designs. Yen and McLarty

(ref. 85) have shown the importance of modeling the pylon impedance for the calcula-

tion of rotor loads, and an example for the OH-58A is shown in figure 28. The

effect of the pylon impedance on the oscillatory loads is clearly shown here and it

has also been shown by measurements in wind tunnel tests (ref. 86).
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Sopher et al. (refs. 87 and 88) have reported on the development of an analysis

that couples the Sikorsky G4OO rotor loads analysis to a fuselage model and allows

the calculation of rotor loads and vibration. These calculations showed that the

hub impedance has a large effect on the rotor loads when a rotor frequency is close

to an N/rev. However, the predicted effect was very sensitive to the fuselage

representation used and the reasons for this were not determined.

Gabel and Sankewitsch (ref. 89) have reported the development of a method to

couple the Boeing Vertol C-60 rotor loads analysis to a fuselage representation

through an impedance-matching technique. The fuselage impedance is shown to have a

significant effect on the hub vibratory loads, but the effect on blade loads is not

discussed.

Solution Methods

The modal blade representation used for the solution of the rotor equations is

usually based on a set of uncoupled or coupled rotating modes (ref. 2). In the case

of coupled modes, the calculation is made for a representative blade pitch angle and

the effects of variation in the geometric pitch angle around the azimuth are assumed

negligible. Harvey (ref. 90) has examined this assumption using a rotor model that

represents the actual pitch angle of each blade. He applied this analysis to a

simplified model of a two-bladed rotor and compared the results of calculations with

and without the cyclic variation. The effect on the blade harmonic loads is small

when the pitch bearing is at 0.25R, but large when it is located at the rotor

centerline.

Hansford (ref. 91) has also addressed this problem and has derived correction

terms for the coupled modes that depend upon the cyclic pitch. Comparison with

model and flight-test data show that the correction terms are not important for the

calculation of the flap bending moments, but are important in some cases for the

chord bending moments. Figure 29 compares flight-test measurements from the Lynx to

rotor load predictions using the conventional modal representation and a modified

theory that uses the cyclic correction terms. The modification does not appear

important at the inboard station, but does have a significant effect outboard. For

this case, it appears that the modified theory provides a better representation of

the blade loads than does the conventional modal representation.

Once the modal solution is obtained, there are alternative approaches to the

calculation of the rotor-bending moments. The normal approach is to sum the contri-

bution of all of the modes. However, where there is a discontinuity in the loading,

such as a load path split on a bearingless rotor design, then the modal-summation

approach will not accurately model the load distribution at the discontinuity.

Bielawa has examined this problem in reference 92 by comparing the modal-summation

method with a force-integration technique where the bending moment at any location

is obtained by calculating the balance of forces out to the blade tip. He shows

that the force-integration method can properly represent the rotor loading at dis-

continuities, but the method is computationally more expensive, llansford (ref. 93)

has devised a method of unifying the two approaches by deriving correction terms to
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the modal-summation method based on the force-integration expression. This unified

method is applied to the Sea King where the lag damper causes a discontinuity in the

load at the inboard end of the blade. The modal-summation method and the unified

method are compared to Sea King flight-test data in figure 30. The unified formula-

tion shows much better agreement with the data.

A related problem in obtaining a modal solution for rotor loads prediction is

knowing how many modes are needed for accurate prediction. Yamauchi et al.

(ref. 50) have examined the effect of the number of modes used in comparing CAMRAD

with the SA 349-2 flight-test data. The analysis uses up to eight coupled flap and

chord modes, and up to four torsion modes. A comparison with the flight-test data

shows there is little effect on the flap bending moment correlation beyond the use

of five coupled modes, and for the chord bending moment correlation little change is

seen after seven coupled modes. For the blade torsional moment, it appears that two

torsion modes are sufficient.
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ROTOR LOADS REDUCTION

"Compared to the volume of literature available concerning

various devices which can reduce unacceptable vibration

(absorbers, isolators, higher harmonic control systems, etc.)

there appears to be a decided lack of information describing the

origin of the vibratory loading and how the loads may be

affected (reduced} through blade design. There may well be

design procedures which will substantially reduce or eliminate

the need for other vibration control treatment." - Blackwell,

1981

The aeroelastic environment of the rotor blade has several natural divisions

used by researchers to modify blade loads. First, one may define a series of loads

reduction concepts where the blade is aeroelastically tuned to avoid critical driv-

ing mechanisms such as severe aerodynamic loadings or frequency coalescence. A

second classification of research reduces the loads through blade and control system

coupling. Third, a substantial effort has been made to modify the blade's aerody-

namics to provide less excitation to the aeroelastic response of the rotor. The

following sections will address these three research areas through examples of

research and design concepts.

Blade Tailoring

Tuning the rotor blade to avoid critical driving mechanisms, both elastic and

aerodynamic, has involved several different approaches. These have included non-

structural mass placement, stiffness and mass distributions, and aeroelastic cou-

pling parameters. An example of the latter is the aeroelastically conformable rotor

(ACR) concept.

Conformable Rotor Research- Studies of conformable rotors at the beginning of

the review period examined the effects of blade properties on stall-induced control

loads. Blackwell and Commerford (ref. 24, summarized in ref. 75) examined the

effects of a number of blade parameters on control loads and concluded that tor-

sional frequency and inertia had a major influence on the loads (see fig. 25 and

discussion in Rotor Loads Prediction section). A similar effort by Tarzanin and

Ranieri (ref. 94, summarized in ref. 95) based on limited model test data and theo-

retical studies using C-60, also concluded that the torsion degree of freedom had a

significant influence on control loads, showing substantial reductions on the

retreating side as torsional frequency was reduced. However, they predicted that

further reductions in torsional frequency would show increased loads on the advanc-

ing side.

Later studies suggested that careful attention to the blade design could reduce

all blade vibratory loads and this has become known as the conformable rotor con-

cept. Reference 96 included a study of airload and vibratory loads from flight
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data. According to that reference, for three different rotor types " the phase

angles and spanwise distributions of the principal harmonics of airloads were

remarkably similar and the bending load distributions and phases were predict-

ably related to the hub configurations and to the modal natural frequencies." This

revealed a constancy in character for the forcing function and some hope of tailor-

ing the blade to redistribute the loads. It was suggested that vibratory flap

bending and lift deficiency be attacked using elastic twist distribution with such

design parameters as camber, chordwise c.g. position, and blade sweep. Test results

from a Mach-scaled hingeless rotor indicated that for a representative high speed

cruise condition, introducing a nose-up pitching moment reduced mid-span flap bend-

ing (I and 2/rev) by 40%. Furthermore, a I0° sweepback of the outer 35% of the

rotor radius reduced midspan flap loads by 10% in I/rev and by 30% in 2/rev. It was

noted, however, that phasing of flap loading harmonics with blade sweep prevented

unloading of the retreating blade and further inertial tuning would be required.

Studies such as the above encouraged a series of NASA/Army sponsored analyses

and tests of the ACR concept. Blackwell and Merkley (ref. 97) analytically investi-

gated time-varying elastic twist to improve performance and reduce loads, and then

provided design guidelines for elastic twist by qualifying the potential of several

blade parameters for producing favorable elastic twist. The impetus for this study

was a maximum rotor efficiency for a given rotor class. The Y200 analysis with two

inflow models was used to define the improvements possible with airload redistribu-

tion as shown in figure 31 using the elastic twist distribution shown in fig-

ure 32. Parametric sensitivity to rotor-design variables was investigated for a

torsionally soft rotor during the study with encouraging results (figure 33). Rec-

ommendations for model designs were made which emphasized the predicted tradeoff

between performance and blade loads for the ranges of conformable rotor design vari-

ables employed.

Testing of candidate ACR designs has included work in the Langley Transonic

Dynamics Tunnel (TDT). Weller (ref. 98) tested a four-bladed articulated rotor with

four different tip shapes. The blades had a high torsional stiffness (m 8 ~ 11/rev).
It was found that aft sweep of the blade tip by itself decreased flap and chord

oscillatory loads with respect to a rectangular tip as shown in figures 34(a)

and 34(b). The addition of tip anhedral, however, increased these loads. Both

sweep and anhedral in the tip region reduced torsional and control loads as shown in

figure 34(c).

The above analytical and experimental results encouraged more comprehensive

model testing of conformable concepts including that reported by Blackwell et al.

(refs. 76 and 77). In that research effort two blade sets of different torsional

stiffness were tested in the Langley TDT at four advance ratios and several hover

tip Mach numbers. Three tip shapes were used as well as trailing-edge tab deflec-

tion variations. It is noted that in the search for load alleviation, several

design parameters were incorporated for each model configuration. The elastic twist

differences caused by configuration changes shown in figure 35 were significant, and

an analysis of the resulting loads and blade response yielded several useful design

guides. For example, for the configurations tested that reduced advancing blade
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twist, blade loads were generally reduced as is shown in figure 36. It is of inter-

est to note that the torsionally soft configurations provided both the best and the

worst vibration environments with the highest vibratory loads on the rectangular ACR

and the lowest on the ACR with sweep and camber change. The camber changes also

generated the highest torsion moments at high blade loading.

Performance and rotor control sensitivity were evaluated for several configura-

tions. A correlation study using the Y200 code resulted in good trend agreement for

the elastic twist resulting from camber changes. However, the effects of sweep on

steady and I/rev elastic twist were overpredicted by the analysis. Wave form cor-

relation was poor as is shown in figure 37, but the trend of oscillatory loads with

rotor task was described as fairly good. The effect of configuration changes on

performance and loads for the rotor tasks shown was predicted fairly well as is

shown in figure 38. It should be noted that performance "rankings" changed signifi-

cantly with rotor task. Several conclusions from this study are useful to loads

reduction tailoring. The paper cites that a pitching moment coefficient change of

+0.03 effected a much larger dynamic twist than did 20 ° of tip sweep, and that both

sweep and camber reduced vibratory loads for the torsionally soft blade. However,

the torsionally soft blade generated loads as high or higher than the baseline

rotor.

The extensive work of reference 77 showed the potential of several design

variables for loads reduction when used in several combinations, but the isolated

sensitivity of each parameter and the effectiveness of each when used in combina-

tions remained elusive.

In an effort to understand and explore the relationship between torsional

loading and rotor performance, Yeager and Mantay (ref. 99) did an expanded test and

analysis of the configurations tested by Weller (ref. 98) including additional tip

configurations. For the baseline torsionally stiff (m e ~ 11/rev) model rotor used
in that test, the parametric variations of tip sweep, taper, and anhedral measurably

changed the elastic twist and integrated performance, but there did not appear to be

a strong connection between the two phenomena. The oscillatory and mean torsional

moment data of references 98 and 99 agreed with respect to configuration trends.

Yeager and Mantay (ref. 100) reported additional tests of the rotor originally

used in references 76 and 77, but with extended tips. This reference presents data

in tabular and graphic formats. Performance, harmonic blade and fixed system loads,

and torsional deflection data were offered to the analyst for correlation purposes.

The Army contractual effort which initiated much of the above ACR analysis and

testing also provided the impetus for the work described by Sutton et al.

{ref. I01). In that study, a selection of primary ACR parameters was made. A

series of codes providing predictions for performance, forced response, and stabil-

ity were used to parametrically vary key aeroelastic parameters for a four-bladed

rotor. The relative performance benefits of each parameter combination were

assessed, with torsional stiffness and tip sweep being found to be the most effec-

tive. A model rotor was constructed and tested in the Langley TDT for four config-

urations. Figure 39 shows the measured variation in the flap bending moment for the
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three four-bladed rotor models that were tested. A conclusion to this effort cited

the potential of the ACR concept if the cause and effect relationships of the design

variables could be well understood.

The ACR research effort reported on in references 76 and 77 was expanded in

order to understand the effects of aeroelastic couplings on loads and performance.

Mantay and Yeager have reported the results of a first stage of testing in refer-

ence 102 and the complete results in reference 103. Although the earlier work had

demonstrated the importance of tab deflection on vibratory loads, the primary

research emphasis of the new experiments was on the blade tip. Seven tips, incorpo-

rating single and combined sweep, taper, and anhedral, were tested for two different

blade torsional stiffnesses at several advance ratios in the TDT. Twist and iner-

tial properties were held to known values. Rotor loads were correlated with elastic

twist magnitude and azimuthal activity while explanations were offered for the

resulting rotor-control phenomena and substantial performance variations effected by

the simple and controlled combinations of ACR tip parameters. The practical aspects

of ACR track sensitivity were also addressed with significant differences in tor-

sional loads and response characteristics for the ACR maverick blade. The conclu-

sions offered in these references included the existence of a strong correlation

between azimuthal variation of elastic twist and rotor performance and loads. The

oscillatory flap bending moments are shown relative to performance rank in fig-

ure 40. The elastic twist variation with azimuth is shown in figure 41 for three

configurations as the performance rank decreases from I to 5 to 13. In addition,

there did not exist a strong correlation of elastic twist magnitude with performance

as is shown in figure 42. Finally, fixed system and blade loads as well as rotor

track for potential ACR candidates appeared very sensitive to parametric rotor

changes as shown in figure 43.

A similar parametric effort was analytically accomplished by Tarzanin and

Vlaminck (ref. 104). The goal of that study was to evaluate the effect of sweep

parameters on vibratory hub, blade, and control system loads. Furthermore, the

relative importance of flapwise and torsional stiffness was evaluated along with the

aeroelastic mechanism which produces the reductions in loads. An analytical invest-

igation was performed on a reference blade for which aft sweep was generally benefi-

cial to oscillatory loading. The C-60 was used, which included coupled torsion and

flap, planform sweep variations, shear center, neutral axis, chordwise c.g. and

pitch axis location variations. Airloads were modeled using compressibility, stall,

3-D flow, unsteady aerodynamics, and nonuniform downwash. The reference rotor in

this study was predicted to have its 4/rev loads significantly reduced by tip sweep

over a wide range of airspeeds. It was found that although the blade torsional

stiffness must not be too high and, thus, obviate the tip sweep effectiveness,

specific blade frequency placement and flap/pitch coupling were not necessary for

hub load reductions with sweep for the reference rotor. Reductions in 4/rev hub

loads were predicted for forward mass and aft aerodynamic center configurations with

respect to the blade's elastic axis. Elastic twist via c.g./ac distributions was

quantified and the correlation between 4/rev elastic twist and vibratory loads

strengthened. Several nonreferenced blade designs exhibited detrimental qualities

with aft tip sweep, but could be further altered with the predicted parameter
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sensitivities acquired in this study. The.understanding of the hub load reduction

method is illustrated in figure 44.

Modal Tailoring- The review of rotorcraft applications for design optimization

by Miura (ref. 105) included an overview of government and industry research in

loads reduction using new design methodologies. Several studies in loads tailoring

have been undertaken using empirical modal techniques and automated design analyses.

During these studies requirements to understand rotor loading mechanisms and design

parameter sensitivity were addressed.

Peters et al. (ref. 106) have presented the results of a grant effort to inves-

tigate the potential of tailoring blade properties to achieve weight, inertia, and

dynamic goals. A finite element model was used with the CONMIN code to solve 21

design problems. Simple beams as well as teetering and articulated rotor blades

were tailored for frequency placement. Reference 106 states that the frequency

placement formulation is a useful approach to vibration reduction for a prescribed

airload distribution. Numerical procedures and preferred operation of the design

method were defined. The achievement possible in the modal optimization process was

defined in large part by the rotor's rotational speed.

Prescribed airloads were also used by Pritchard et al. (ref. 107) for a sensi-

tivity analysis and optimization of nodal point locations for reduced vibratory

loads. Lumped masses were chosen as the design variables to move a node where

either low response is required, or to a point which makes a mode shape orthogonal

to the force distribution while minimizing the total amount of added mass. Direct

comparison with an optimization scheme that minimizes the generalized force indi-

cated that nodal placement has essentially the same success.

Friedmann and Shanthakumaran (ref. 108) have used optimization techniques to

directly minimize oscillatory vertical shears or roll moments at a specified advance

ratio. Frequency placements and hover stability margins were used as constraints.

Instead of prescribed airloads, a fully coupled flap-lag-torsion analysis was used.

The example chosen was a soft inplane hingeless rotor which, when optimized, exhib-

ited a 15-40% reduction in vibration, and was 20% lighter than the initial design

(though mass was not an objective function). At a cruise condition (u = 0.30) use

of linear hub shears as an objective function produced both shear reductions at all

advance ratios below 0.30 and hub rolling moment reductions. Nonstructural mass,

used for blade tailoring, was best placed along the elastic axis for the outboard

blade sections, since its impact on hub rolling moments and stability was not detri-

mental. The use of roll moment as the objective function with vibratory shear as

the constraint proved less efficient and the optimization technique of this work

offered little for a stiff inplane design in the proximity of an aeroelastic stabil-

ity margin.

Empirical methods for modal tailoring have been advocated by several research

organizations. Taylor (ref. 79) has presented a theoretical formulation which shows

that consideration of blade mode shapes can be as important as frequency placement

for vibration control. A modal shaping parameter (MSP) is derived that is a measure

of blade modal vibration severity (as was discussed in the Rotor Loads Prediction
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section above). When blade variables such as stiffness, mass, and mass distribution

are changed to drive MSPs to low values for a prescribed loading, Taylor predicts

that a lower vibration blade design will result. The Sikorsky analysis G4OO was

used to predict the effects of modifications to a baseline blade and calculated

reductions in the root shears and the blade loads as shown in figures 45 and 46,

respectively.

During a recent test of a Growth Black Hawk Rotor candidate in the Langley TDT,

modal-shaping techniques were attempted on the model blade. This was done with

nonstructural mass placement in an attempt to control the blade's second and third

flap modes. Two independent analyses were used to alter the modal properties based

on the predicted airload distributions and the predicted shears are shown in fig-

ure 47. The two analyses predict different locations for optimal mass placement and

each analysis indicates that the other's prediction will be nonoptimal. An experi-

mental program has been initiated at the U.S. Army Aerostructures Directorate and

NASA Langley which will provide for parametric modal shaping tests to evaluate this

passive technique further and provide a means for analysis verification.

A more complex approach to modal tailoring is presented by Yen (ref. 109) that

stresses that the interaction of structural properties of a rotor with airloads

distribution is a powerful tool for vibration reduction. In this approach, blade

stiffnesses, as well as radial and chordwise mass distributions, are design varia-

bles. For a four-bladed hingeless rotor, for example, the primary blade modes for

tailoring are cited as the second cyclic flap bending mode, which dominates the

3/rev blade root flap bending moment; the third collective flap bending mode, which

drives the 4/rev blade root vertical shear; and the second cyclic chord bending

mode, which influences the 5/rev blade root flap bending moment. Several design

methodologies are advocated. One uses assumed airload harmonic distributions and a

modal participation factor to lower the vibration contributions of offending modes.

An optimum design approach is also offered with constraints on blade weight, rota-

tional inertia, and bounds on stiffness and weight distribution. The objective

function includes 4/rev shears and moments. A comparison of the reduction in root

shear and moment obtained from prediction and a model test in a wind tunnel is shown

in figure 48.

The feasibility of using this tailoring technique for advanced blade geome-

tries, especially with unknown airload harmonics, provided the impetus for the

Tailored Bearingless Rotor Program. This program provides for the design and fabri-

cation of aeroelastically tailored model rotor blades for testing in the Langley

TDT. The five sets of blades include two baseline rotors, one with government-

designed advanced aerodynamic characteristics in terms of planform, airfoil selec-

tion, and twist. The three remaining rotors will have improved blade dynamics using

the Bell "nodalization" method. One of the three "nodalized" blade sets will also

have Bell-designed advanced aerodynamics characteristics. The primary purpose of

this effort is to determine what effects, if any, the "nodalization" method has on

rotor blades with advanced aerodynamic design. All five blade sets will be tested

on the ARES model in the TDT using a Bell model bearingless rotor hub. Rotor
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performance, as well as rotor and fixed-system loads, will be measured for all

rotors over a wide range of test conditions.

Taylor (ref. 80) has conducted an analytical investigation to understand the

importance of certain blade-design parameters on rotor response. Blade modal shap-

ing, frequency placement, aerodynamic, structural, and intermodal couplings were

examined systematically to identify vibratory sensitivity to these techniques. An

example of how the various components of vibration combine has already been shown in

figure 26. Taylor states several "obvious" and "nonobvious" results from his study.

For example, the role of the lag mode in the 3/rev inplane shears and the canceling

of the applied forcing by the inertial response is listed as an obvious result. The

role of the flapping motion in forcing the example rotor's 3/rev edgewise mode is

cited as a "nonobvious" result of the research effort. In looking for a consistent

method to predict vibratory loads in rotor blades, Taylor concludes that nonuniform

inflow is not needed in cruise to produce vibration; the rotor operating in uniform

inflow is sufficient to induce vibratory loads.

Blade/Control Coupling for Loads Modification

Several research activities in the rotorcraft community have explored concepts

which modify blade loads through direct couplings in the rotor system or decoupling

devices in the rotating system. These concepts rely on prescribed blade motions

effected by control designs or load alleviation attained by rotor load non-

transmittal along the blade. An example of the first system, strongly supported by

Army/NASA rotorcraft research, is higher harmonic control (HHC).

HHC Blade Loading- The results of wind tunnel testing of an HHC concept are

described by Hammond (ref. 110). A dynamically scaled four-bladed model, incorpo-

rating harmonic pitch control, used an adaptive control system in a test in the

Langley TDT. Reduced vibratory loads in the fixed system were sought by altering

the loads at their source (the blade's aeroelastic environment). The vibratory

forces and moments to be minimized provided inputs to the HHC algorithms being

evaluated. The particular series of tests described by Hammond used the fixed-

system model strain gage balance as the vibratory load sensor. The model was tested

at advance ratios above 0.2, simulating Ig level flight, with the rotor trimmed to

the shaft. Blade loads data obtained for _ = 0.3 were fairly consistent with

previous open-loop testing in the TDT. Figure 49 shows a small reduction in the

flap bending moment, a large increase in the oscillatory chord bending, and a moder-

ate increase in the torsional moment. A possible explanation of the increase in the

chord-bending moment was the close proximity of the chord-elastic mode to 6/rev

which may have been aggravated by impurities in the 3/rev control inputs. Pitch

link loads increased with HHC because of the 3, 4, and 5/rev input requirements as

is shown in figure 50.

The goals of the wind tunnel program (reduced fixed-system vibratory loads)

were largely met. This provided impetus for an HHC flight program on an OH-6A

(ref. 111). In this test series, the HHC system was flown open and closed loop.

addition to the flight proof-of-concept program goals, the test scrutinized the

In
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rotating system loads. An example is shown in figure 51 for a 70-knot level flight

condition with ±0.33 ° lateral blade pitch in the open-loop HHC mode. The flapwise

harmonics follow the same trend with controller phase as the fixed-system vibratory

loads. The chord 3 and 4/rev do also, but the 5/rev harmonic is above the baseline

value, independent of controller phase.

Controllable Twist Rotor Loads- The controllable twist rotor (CTR) concept has

been studied for multicyclic operation by McCloud (ref. 112). The required tor-

sional deflections of the blade were driven by a servo flap as shown in figure 52.

This theoretical work used a transfer-matrix technique with a general rotor-control

code to explore the potential for altering loads. McCloud predicted that substan-

tial reductions in fixed-system vibration could be achieved with four harmonics of

servo flap control, with 2/rev controls providing most of the advantage. Adding

4/rev (instead of 3/rev excitation) reduced vibration at the expense of blade oscil-

latory bending loads.

Decoupler Concepts- Blade designs which prevent transmission of vibratory loads

across blade stations have provided loads data for unconventional boundary condi-

tions. An example of such a concept was tested in the Langley TDT by Hammond and

Weller (ref. 113) as part of a teetering rotor, scale model investigation of stall

flutter phenomena. Two sets of wide chord, I/5 scale, teetering rotors were tested;

one set had a midspan flapping hinge. As shown in figure 53 the hinge was effective

in reducing the flapwise loads. This was accomplished without the blades exhibiting

instability or excessive motion.

Aerodynamic Tuning Devices

Modifying the relationship between blade aerodynamics and blade motion has been

suggested as a means of altering loading mechanisms on the rotor. Several concepts

have been advocated such as blade-tip shapes, vortex alleviation devices, prescribed

tip motion, and blade/wake geometry variations. The vibratory loads which are

impacted by such concepts are of research interest because of the (usually) con-

trolled manner in which aerodynamic-design parameters are used.

Variable Geometry Rotor- A systematic design program was undertaken (as

reported by Mantay and Rorke, ref. 114) to study the phenomena associated with

blade/wake geometry, and to design a rotor which takes advantage of common aerody-

namic and geometric relationships. The resulting design was the variable geometry

rotor (VGR). Maneuver flight loads observed during vortex/blade interaction pro-

vided the motivation for a rotor-system design which could effect changes in the

geometric relationship between a rotor and its wake. The test plan for the VGR

included theoretical studies with a free wake (ref. 115), flow visualization, and

model scale hover, and forward-flight wind tunnel tests (ref. 116). Further analy-

ses simulating maneuvers (ref. 117) and a full-scale hover program (ref. 118) con-

tributed to the design's ability to alter blade loads and performance. Parameters

of interest in the above investigations are shown in figure 54.
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Initial studies (ref. 115) on the VGR indicated that changes in azimuthal

geometry and vertical spacing caused less excursions in harmonic loading between

rotors than did other key aerodynamic parameters. Radii and collective pitch

changes between rotors resulted in larger harmonic changes in certain rotor loads.

These initial efforts provided the impetus for a model rotor experiment, though the

driver was rotor performance, not the loads. Figure 55 shows a photograph of the

VGR model in the UTRC wind tunnel. Inertial scaling for the model configurations was

not matched to a representative full-scale rotor. In addition, forward-flight

configurations were chosen based on hover-performance results. The measured vibra-

tion for the VGR configurations tested did not vary with A_, Az, or with differ-

ences in blade pitch angle, and hence, provided no conclusive load-tailoring infor-

mation to support the predictions made in reference 115.

When full-scale VGR hover tests (ref. 118) were conducted, no vibration or

loads conclusions were drawn because of the hover mode. However, blade-tracking

phenomena were observed for the configurations tested. Loads information for the

VGR needed to be obtained while in forward flight on a dynamically scaled model. To

prepare for this, a comprehensive analysis was conducted (ref. 117) at several

advance ratios and for a symmetrical pullup condition. Blade shears, bending

moments, and pitching moments were calculated using analytical tools similar to the

reference 113 work.

An example of the predicted effect of VGR configuration on upper rotor-flap

shear harmonics is shown in figure 56. The loading harmonics on the lower rotor

were affected mainly by A_ variations. Reference 117 provided numerous examples

of harmonic loadings for geometric parameter variations between the rotors and their

wakes. In general, for a six-bladed VGR in a cruise condition, the lowest harmonic

loads occurred for two rotors vertically separated by Az = I chord and azimuthally

symmetric. In a pullup maneuver, the lowest flap shears were predicted to occur

for A_ = 90 ° for the same six-bladed rotor system.

Tip Planform- The rotor-tip region has long been recognized as critical for

performance and acoustics phenomena. Many researchers have explored the effect of

the blade tip's elastic, inertial, and aerodynamic characteristics on blade loads.

The effects of four different tips on the performance and loads of a full-scale

rotor have been studied in the Ames 40- by 80-Foot Wind Tunnel (refs. 67 and 119).

The tip geometries used are shown in figure 57, and the blade layout and instrumen-

tation are shown in figure 58. Performance and the first 10 harmonics of loads data

are tabulated in reference 67. In studying the effects of the different blade tips,

Rabbott and Niebanck (ref. 119) have concentrated on the control-loads information

and observed that significant variations in the loads were caused by tip-planform

changes. Major reductions in control-load harmonics were seen for one of the con-

figurations (swept-tapered). In figure 59, the data show high-frequency content

that was not predicted by the pretest aeroelastic analysis. Time histories of

control and flap-bending moments are given in figure 60 and show that tip shape

alters the advancing blade pitch-down moment and its effects on vibratory loads.

Prescribed Aerodynamic Devices- Imposing an aerodynamic loading at critical

blade stations has been the impetus for several rotor designs. The free-tip rotor
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is described in reference 120 and uses a tip-moment controller that applies a pre-

scribed moment, driving the tip to a nearly constant lift. (A schematic is shown in

fig. 61.) The concept was tested small scale (5.1 m diam) with interesting power

and loads results. An example of inboard flap-bending moment is shown in figure 62.

Harmonic analysis of these data cite I and 2/rev load reductions as the main cause

for oscillatory load reductions, at the values of advance ratio where reductions

occur. Figure 63, however, shows a substantial increase in inboard oscillatory

chord moment. The free-tip concept prescribes a weathervane effect, which seems to

generate lower control loads than does a fixed tip of the same (swept) planform as

shown in figure 64.

Another prescribed aerodynamic concept tested for loads alleviation is the

multicyclic jet-flap rotor (ref. 121). This 12 m diam, two-bladed teetering jet-

flap rotor was subjected to experimental transfer functions in forward flight in the

Ames 40- by 80-Foot Wind Tunnel. This was done to minimize either specific harmonic

bending stresses, rms levels of those stresses, or to lower fixed-system vertical

vibratory loads. It was shown that three harmonic controls could greatly reduce

specific components of loads.
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GUST LOADING

Dave Brandt: " to the best of your knowlege, has this

analysis [for gust loading] or any analysis that's

similar to this, ever designed so much as one rivet

on any piece of flightworthy hardware in the heli-

copter industry?"

Peter Arcidiacono: "To the best of my knowledge, I think the

answer is no."

- NASA SP-352, 1974

For design purposes, the effects of gusts are modeled by calculating an incre-

mental load factor using a simplified quasi-steady theory and multiplying this

incremental load factor by a gust-alleviation factor. For military aircraft, this

gust-alleviation factor is specified in the helicopter structural-design specifica-

tion, MIL-S-8698. The adequacy of this gust alleviation factor has been examined by

comparing the predictions of the Bell Helicopter Textron analysis C81 (ref. 122) and

the Sikorsky analysis Y200 (refs. 123 and 124) to simplified theory. Both the Bell

and Sikorsky studies concluded that the structural specification was too conserva-

tive and that the gust-alleviation factor should be reduced. The Sikorsky study did

note, however, that if blade stall was encountered, the appropriate gust-alleviation

factor was increased, but the requirements of MIL-S-8698 were still considered

unrealistic.

Arcidiacono et al. (ref. 124) have also summarized extensive measurements

obtained on aircraft during military operations. These measurements included load

factor and control positions. From the measurements it was possible to determine

load factors induced by maneuvers, and load factors induced by turbulence. A com-

parison showed that incremental load factors caused by gusts were much less than

those induced by maneuver, and the gust-induced loads represented only a small

percentage of the flight experience. This is summarized in figure 65 which shows

the frequency of occurence for both gusts and maneuvers. This figure clearly shows

that the rotor-design problem for military aircraft is one of specifying the maneu-

ver loading, not the gust loading.

The emphasis of the research in gust loading over the period covered by this

paper has been towards the development of calculation methods. Gaonkar (ref. 125)

provides an extensive review of the gust response of helicopters and relates this to

parallel work with fixed-wing models. Bir and Chopra (refs. 126 and 127) have

developed a math model to represent the response of a helicopter to a deterministic

gust field, and in their analysis, have included blade flap, chord, and torsional

flexibility; fuselage degrees of freedom; and a dynamic inflow representation of the

wake. They show that the rotor and fuselage response is sensitive to all of these

parameters as well as the assumed gust field. Prussing, Lin, and their colleagues
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have used a simplified rotor representation to examine the blade response to a gust

where the equations are derived in stochastic form (refs. 128 and 129). This for-

mulation, which is a more accurate representation of the physics, does not change

the blade-gust response significantly.

Recent experimental research on gust loading has been limited to examining the

response of a teetering helicopter to the vortex wake trailed from a fixed-wing

aircraft (refs. 130 and 131). Limited correlation with the Bell C81 analysis shows

fair agreement with the measurements. The analysis of Bir and Chopra (ref. 127) has

been extended to treat this case as well in reference 132. The methods of extending

rotor loads analyses to treat gust loads appear to be well in hand. However, the

significant problems that remain in calculating rotor loads accurately under

trimmed-flight conditions have prevented their extension to the problems of predict-

ing loads or ride quality in the forward flight gust environment. It does not

appear that gust loading is important in defining the vehicle load capacity. How-

ever, gust-induced loads may be important for some rotor components, especially when

the rotor is stalled. Tarzanin (ref. 133) has pointed out that flight-test data

used to compare with predictions are normally selected from smooth air tests and

carefully checked for repeatability. If, however, data are used from flights which

include turbulence, substantial load variations can be encountered. Figure 66 shows

the scatter band of measured CH-47C pitch-link loads for five test flights. This is

a case where the pitch-link loads are rising rapidly because of blade stall and

represent a critical loading condition. Although there is no information on the

actual flight conditions, the wide variation in loading suggests that the pitch link

load is very sensitive to gust loading under stalled conditions.
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MANEUVER LOADING

"In the future, it may be possible to predict envelope loads

completely by analytical means." - Gabel, 1973

The structural envelope for a new aircraft in terms of load factor and airspeed

will look something like the sketch in figure 67. The problem of loads prediction

discussed in this paper so far deals only with the loads on the rotor in trimmed,

I g flight. In the figure, this is represented by the long dash line that extends

from the maximum rearward flight speed to the forward speed at the 30-min rating of

the engine, VH. If a maneuver requirement is imposed, it might be something like

maintaining a specified load factor for a specified number of seconds without losing

too much airspeed. This is shown schematically in figure 67 by the heavy bar. The

periphery of the envelope represents structural limits. There are other limits as

well such as the engine power limit, and rotor aerodynamic limits. The power limit,

which is not shown here, may be thought of as the additional load factor that could

be obtained from excess power. For the case shown here, there is no excess power

available at either VH or hover; but in between, there is excess power, and the

peak in excess power will correspond to the speed for minimum power. The rotor

aerodynamic limit can be estimated from model tests reported by McHugh (refs. 134

and 135) where the blade lift was increased until it reversed sign and thus repre-

sents an aerodynamic limit, not a structural or actuator limit. Scaled to the V-n

diagram of figure 67 the rotor lift limit is represented by the short dashed line.

Operation of the rotor at any point outside these performance limits can only occur

for short periods of time. For some aircraft, it may be possible to demonstrate

compliance with the structural boundary only with the most extreme maneuvers. To

calculate the loads for these conditions requires not only solving all the rotor

load prediction problems that have been discussed previously in this paper, but also

solving the transient problem, as opposed to the trimmed problem.

A number of the comprehensive analysis programs solve the equations of motions

by time integration (ref. 2). Using these analyses, it is relatively straightfor-

ward to perform a transient-maneuver calculation starting from a trimmed steady

state condition. Van Gaasbeek (ref. 136) has compared the C81 analysis with mea-

surements made on an AH-IG during flight maneuvers. An example for a 2 g pull-up

from autorotation is shown in figure 68. The C81 calculation shows good agreement

in terms of the maximum level reached; however, there is some oscillatory behavior

that is not seen in the flight-test data.

Despite the capability that exists in a number of the comprehensive analyses

for calculation of maneuver loads, the normal procedure in the industry is to scale

maneuver loads on the basis of previous flight-test experience (refs. 3 and 12).

Gabel describes this process in considerable detail in reference 3.

The critical steps in rotor-blade design are the calculation of loads in

trimmed, unaccelerated flight to insure that all loads are within material allow-

ables for infinite fatigue life, and the assumed operational fatigue spectrum to
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define what the fatigue life will be. Considering the uncertainty that remains in

both of these critical areas, it is understandable that that the calculation of

maneuver and gust loads has not received a great deal of attention.
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ASSESSMENT

"In fact, it can be argued that government and the helicopter

industry have not optimized the basic helicopter blade design

before resorting to exotic and sophisticated approaches and

devices. The fundamentals of vibration have not been

understood, and before radical planform changes, elastic

couplings, and active control are implemented, there must be

a basis of fundamental understanding based on analysis and

experiment." - Taylor, 1984

This paper has reviewed the research performed in the last 13 to 14 years in

the areas of rotor loads prediction and reduction. The assessment in this section

seeks to put this research into perspective by addressing three topics: (I) how

good are the present analyses in predicting rotor loads, (2) to what extent can

rotor loads be reduced through design practice, and (3) what has the government

contribution been in these areas. Inherent in this assessment is the identification

of areas that require new or increased research effort.

The question of how good the present analyses are for predicting rotor loads is

addressed below by examining the present predictive capability of the major rotor

loads analyses as reported in the literature. In addition, the analyses are exam-

ined to identify where advances from rotor loads research have been incorporated or

synthesized in the analyses. The question of the extent to which advances in rotor

loads reduction have been transferred to design practice is addressed by summarizing

the most productive research areas and discussing a limited number of applications

that have been reviewed in the literature. Lastly, the contribution of the govern-

ment is assessed indirectly in two ways. First, government support of research is

estimated by tracing the number of papers and reports published. Secondly, the

government development of public data bases is assessed by examining the use of

these data bases.

Rotor Loads Prediction

The 1973 AGARD meeting in Milan and the hypothetical rotor comparison of 1974

(ref. 2} provided a basis for assessing the capabilities of the rotor loads analyses

of the early 197Os. The present assessment is made substantially more difficult as

there has been no equivalent demonstration of the industry methods since that time.

For that reason, the present judgments are based upon incidental results that have

been published in the open literature. In some cases, there have been no calcula-

tions published since either the Milan meeting or the hypothetical rotor comparison.

The characteristics of present rotor loads analyses are shown in Table I

(refs. 137-142) and this provides a useful framework for subsequent discussion.

format for the table is similar to that used in reference 2 although some of the

The
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analyses shown in that reference are no longer in use and are not included here.

The table is believed to be current as of 1986.

The history of the development of the Bell Helicopter Textron analysis C81 is

covered by Bennett (ref. 5). Subsequent modification and documentation as of 1974

have been provided by Davis (ref. 143). The Army evaluated the capability of C81 to

predict rotor loads for aircraft other than teetering rotors by contracting correla-

tion studies for a hingeless rotor (ref. 144) and for articulated rotors (ref. 145}.

These studies revealed a number of significant limitations with C81, some of which

were addressed by McLarty in the 1977 version of the analysis (ref. 146). Further

modifications were made by Van Gaasbeek et al. (ref. 147} in 1979 including an

option to provide the inflow distribution from a free-wake calculation as an input

table. The inflow distribution is based on the free-wake analysis of Crimi

(ref. 139). In reference 148 Van Gaasbeek has updated the analysis to provide an

interface with DATAMAP.

Extensive comparisons have been made between the OLS measurements obtained on

the AH-IG helicopter (ref. 34) and C81 (refs. 34, 149-153). In general, these show

good prediction of the oscillatory loads; but the blade higher harmonics are not

well-predicted, even using the free-wake analysis. Correlation with flight-test

data for a prototype Model 222 with a teetering rotor (ref. 13) is shown in fig-

ures 69 and 70. The prediction of the distribution of the oscillatory flap-bending

moments is good, but the oscillatory chord-bending moments are overpredicted.

Figure 70 shows that the waveform behavior is not well predicted either with or

without unsteady aerodynamics. This lack of C81 waveform correlation is typical for

the OLS data for all blade loads (ref. 151).

The predictive capability of the C81 analysis for the four-bladed Model 412

rotor is shown in figures 71 and 72 (ref. 154). The comparison includes a configur-

ation where a tab on the outer portion of the blade is used to provide a nose-up

pitching moment. The prediction of the oscillatory blade bending moments is fairly

good, although the flap-bending moments are over predicted over the middle of the

span. Figure 72 shows that, although the analysis shows similar peak-to-peak levels

in the pitch link load, the waveforms are different, especially in terms of higher

harmonic content.

The Boeing Vertol analysis C-60 is not documented in the literature as the

government has directly funded only a small part of its development. A good

description of the program as it was used through the mid-1980s is given in refer-

ence 104. Recently the program has undergone two significant changes. First, it

has been restructured to take advantage of current programming techniques and to

make it more flexible for future use (ref. 53). Second, the blade representation is

now fully coupled in flap, lag, and pitch where previously the lag degree of freedom

was treated as uncoupled.

Correlation using the modified C-60 has not been published. Correlation using

the older version is shown in reference 155 using data obtained during lift-limit

tests of an articulated model rotor (refs. 134 and 135). Midspan flap bending and

torsion moment data are compared with C-60 in figure 73. The oscillatory loads are
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reasonably well predicted for both flap bending and torsion. For flap bending there

is good agreement in the first harmonic, but surprisingly, the theory shows higher

harmonic content that is not seen in the measurements. The torsion moment data show

reasonable agreement on the advancing side of the disk in terms of amplitude and

phase, but not on the retreating side.

The Kaman Aircraft Corporation presently uses three analyses: 6F, which was

developed to model torsionally soft rotors with servo flaps; DYSCO, which has been

designed using current structured software methods; and a version of C81 that has

been modified to incorporate a servo flap (without a degree of freedom}. The 6F

analysis is described in reference 156. (There is no recent correlation published.}

The DYSCO analysis (ref. 157) is designed as a general method to couple and analyse

the dynamic behavior of individual components. No rotor loads correlation has been

published.

McDonnell Douglas Helicopter Company has used three analyses in recent years:

DART, which has evolved from the SADSAM analysis; RAVIB, which has evolved from

analyses developed at Rochester Applied Science Associates (RASA} in the mid-1970s;

and RACAP, which is an entirely new development. The DART analysis is not described

in the literature, nor are there any recent published comparisons of DART predic-

tions and measured rotor loads. RACAP is expected to become the primary loads

analysis for McDonnell Douglas, but as of yet details of its development and compar-

isons with rotor loads measurements have not been published.

The RAVIB analysis has been described by Gangwani in reference 32 and correla-

tion with the AH-IG OLS data (ref. 34} is shown in figure 74. For the correlation

shown here the model uses a free-wake analysis based on Sadler (ref. 115). In the

figure, the flight-test data are compared with a conventional aerodynamics model

without dynamic stall and Gangwani's synthesized stall model (ref. 30). The flap-

bending moment comparison shows good agreement with the I/rev load, but does not

show good agreement at the higher harmonics. The strong 3/rev loading seen in the

chord bending is fairly well predicted regardless of the aerodynamic model used. The

blade-torsion moments are only poorly predicted with the conventional aerodynamic

model, but the dynamic stall results show much better agreement. Calculations with

C81 for similar flight cases (ref. 151) show chord bending and torsion moment wave-

forms that bear little relationship to the measurements shown here.

Sikorsky Aircraft currently uses three analyses for rotor loads: the Normal

Modes Analysis, Y201; G4OO as part of the SIMVIB package; and RDYNE, which is a

recent development. The Y201 analysis was used for the calculations at the 1973

Milan meeting and for the hypothetical rotor comparison. Modifications have since

been made to the aerodynamic model to correct for yawed flow and swept tips. A

panel method can be used to represent the fuselage and calculate inflow at the rotor

disk which is induced by the fuselage. A new analysis, G400, was developed at the

United Technology Research Center in the mid-1970s under government funding. This

analysis was designed to model bearingless rotors and is described in refer-

ences 158-160. It is now incorporated in the SIMVIB executive and can be used for

the prediction of vibration as well as rotor loads (ref. 88}. Although G400 uses

numerical integration to solve the equations of motion, only the harmonic response
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is used in the SIMVIB computations. The newest analysis at Sikorsky is RDYNE

(ref. 161). It uses a component coupling structure that is the same as SIMVIB, but

uses numerical integration to solve the equations. It appears that RDYNE will soon

become the primary-loads analysis tool at Sikorsky, and Y201 and G400 will no longer

be supported.

The Y201 analysis has been compared with flight-test data and wind tunnel data

by Jepson et al. (ref. 66). The wind tunnel data are reported in reference 67. The

flight-test and wind tunnel data are quite similar, although the higher harmonic

loads are greater for the flight vehicle as was shown in figure 22. Figure 75

compares the radial distribution of the oscillatory flap and chord bending moments

as measured in flight and as calculated with the Y201 analysis. The prediction

using constant inflow is quite close to the measurements outboard of 0.30R for the

flap-bending moment, but neither inflow model gives good results for the chord-

bending moments. The variable inflow model is based on a prescribed wake and pre-

dicts the oscillatory bending moments quite poorly. It is both surprising and

disappointing that increasing sophistication in the inflow model causes the correla-

tion to degrade. The azimuthal time history for these moments, plus the pitch link

load, is shown in figure 76. Even if the amplitude were to increase to match the

flight test data, the harmonic character would not be matched.

The analysis G400 has been compared with model bearingless rotor data in ref-

erence 158. Limited comparisons of oscillatory bending moments have been made in

reference 88 using G400 as a part of SIMVIB. However, there is no recent correla-

tion that allows the azimuthal behavior of the analysis to be judged. No correla-

tion has been published for rotor loads using RDYNE.

Johnson has described the development of a comprehensive rotorcraft analysis in

references 162-164. The predictions of this analysis, now referred to as CAMRAD,

are compared with flight test data obtained on the SA 349-2 in reference 50. Fig-

ure 77 compares the lift coefficient obtained from pressure measurements at 0.75R

with the prediction of CAMRAD for a high-speed case. The predictions show good

agreement with the measurements, except for some high frequency oscillations that

are seen on the retreating side of the disk where the velocity is low. The calcula-

tions shown here were made with a prescribed wake. Calculation with a free wake

showed little difference, but both gave better results than calculation using uni-

form inflow. The correlation for rotor loads is shown in figure 78 for this case.

The predicted flap bending shows good agreement with the measurements for this

station, but the chord bending shows a great deal of 5/rev response that is not seen

in the data. The oscillatory pitch-link loads are overpredicted by CAMRAD, and the

agreement in waveform is not particularly good.

The results presented in the 1973 Milan AGARD meeting and in the 1974 hypothet-

ical rotor comparison indicated that the available rotor loads analyses could make

reasonable predictions of oscillatory rotor-blade loads. These loads are important

for the fatigue design of the rotor blade and control system. It seems to be gener-

ally accepted that the scatter in predictions that was calculated for the hypotheti-

cal rotor and is shown in figure 6 represents a worst case (or outer bound} on the

prediction methods. Within each company, it is felt that the oscillatory loads can
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be predicted with better accuracy if a new design does not differ too much from

previous designs. However, the results shown here suggest that even for the predic-

tion of oscillatory loads significant differences do occur and are not understood.

It does not appear that oscillatory loads can be predicted with any more confidence

now than in 1973.

An examination of the correlation for rotor load waveforms or time histories

suggests that the basic physics of the problem are not accurately modeled by any of

the rotor loads analyses. Even when the amplitude of the first harmonic load is

reasonably well-predicted, the phase is not. The correlation for higher harmonics

appears worse, but here it is difficult to make judgments as the waveform behavior

is normally dominated by the first and second harmonics, and this obscures the

higher harmonic behavior. There appears to have been some progress in the analysis

of separate parts of the problem; a great deal has been learned about dynamic stall

and wake induced velocities. But the various pieces of the problem have not gone

back together correctly; there has been no improvement in the synthesis.

The major features of the present rotor loads analyses came into place in the

early 1970s with the incorporation of dynamic stall and unsteady aerodynamics in

most of the analyses. Since then, there have been minor improvements and upgrades

to most of these analyses, but with the exception of the addition of the calculation

of fuselage induced inflow to Y201 and CAMRAD, there has been no change to these

analyses to improve their ability to represent the physics of the rotor loads

problem.

Computation speed has increased by at least a factor of 50 over this time

period and available computational capability does not appear to have hindered

development of improved analyses. What does appear to have limited advances in the

prediction of rotor loads is the twofold perception that, first, the prediction of

oscillatory loads is adequate, and, second, vibratory loads cannot be predicted by

anyone for the foreseeable future. That perception will not change until the accu-

rate prediction of vibratory loads is demonstrated.

Rotor Loads Reduction

The application of the conformable or compliant rotor has, to a degree, pre-

ceded the research into the ACR concept. The tip shape of the S-76 which first flew

in March 1977, was selected in part to reduce the control loads (ref. 165). The

S-76 swept/tapered tip does show a reduction in control loads for most thrust and

airspeed conditions when compared to other blade tips, as was shown in tests in the

40- by 80-Foot Wind Tunnel (refs. 119 and 67). The research efforts that followed

and that have been reviewed in this paper, examined blades that are, in general,

much softer in torsion than the S-76. As yet, the best combination of tip design

and torsional stiffness for reduced loads is unclear; what is necessary here are

further experimental and theoretical efforts.

The ACR research has demonstrated that pitching-moment changes induced by a tab

deflection can have a significant effect on the rotor loads and this approach has
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been used during a number of recent development programs after high vibratory loads

were encountered in initial flight tests. Yen and Weller (ref. 154) report the

application of negative camber to reduce steady and oscillatory rotor loads encoun-

tered in the development of the Bell Model 412 rotor. During development flight

testing, it was determined that the steady pitch-link loads were higher than pre-

dicted and this limited maximum up collective during boost-off operation. In addi-

tion, the oscillatory flap bending and torsion moments were higher than predicted.

They examined the effects of negative camber on rotor loads using th C81 analysis

based on the test experience with conformable rotors reported by Blackwell et al.

(ref. 77). This work suggested that the loads could be reduced for the Model 412

rotor, and as a consequence, they added a 1.25 in. tab between 0.80 and O.87R with

the tab set to -12 ° (trailing edge up). This resulted in approximately a 40% reduc-

tion in the steady pitch link loads, a 40% reduction in the oscillatory blade tor-

sion loads, and a 15% reduction in the oscillatory flap-bending loads.

Gupta (ref. 166) has reported on vibration and loads problems that were encoun-

tered during the testing of a Composite Main Rotor Blade (CMRB) for the McDonnell

Douglas AH-64. Unlike the Model 412 rotor, there was a steady positive torsion

moment on the blade, and positive camber was used to reduce the steady torsion load,

and this also reduced the vibration. It was also determined that the vibration

could be reduced by reducing the tip thickness. Although it is stated that the DART

analysis was used during this investigation, no examples of its predictive capabil-

ity are given.

Yen and Tanner (ref. 167) discussed development tests of a Composite Main Rotor

Blade (CMRB) for the UH-I aircraft. The design goal was to significantly improve

the performance of the blade without changing the dynamics. Design calculations

using C81 showed that the CMRB 2/rev hub shears were substantially higher than on

the metal blade. A number of design changes were examined and two were selected: a

chordwise c.g. shift and a reduction in nonlinear twist. Calculation showed that

this reduced the hub shears, but they were still higher than for the metal blade.

When the CMRB was flight tested, the predictions of C81 were borne out as the cock-

pit vibration was significantly higher. To reduce the vibratory shears, a tab was

added outboard and this was able to reduce the vibratory loads back to the level of

the metal blades. It is not clear at this time whether the original performance

goals of this rotor can be met following the modifications that have been made

necessary by the high vibratory loads.

Research into the potential for loads reduction through mass and stiffness

distribution changes has shown great promise. Yen (ref. IO9) has described a number

of approaches used at Bell including the classical frequency-separation approach, a

preliminary design method that calculates root shears based on assumed airloads, and

a formal optimization approach. The newer approaches have shown considerable prom-

ise for model-scale data (fig. 48) and these techniques will be applied on the next

generation of rotors at Bell. Similar techniques have also been applied at Westland

for the British Experimental Rotor Program (B_RP) rotor as described by Hansford

(ref. 168) and have shown a substantial reduction in vibratory loads. These
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successes suggest that the design for vibratory load reduction will become more

important in the preliminary and detail design process for new rotor developments.

The research into loads reduction using mechanical or electrical feedback has

been relatively inconsequential over the last decade with the exception of higher

harmonic control (HHC). The demonstration programs to date have shown that HHC is a

very powerful means of loads control, but any future applications will be directed

toward vibration reduction in the cockpit.

Recent research into new rotor configurations that include loads reductions as

a benefit has been done in the period covered by this paper. This includes the

jet-flap rotor, the variable geometry rotor, and the free-tip rotor. However, at

this time only the latter concept is being pursued.

Government Support of Rotor Loads Research

The government support of rotor loads research is assessed in two ways. First,

research funding is examined in terms of its output; that is, published papers and

reports. Second, the value of government-supported data bases is assessed by exam-

ining their use in research. Neither of these measures is comprehensive nor exact;

such a metric does not exist. However, they do provide a useful framework for a

discussion of the government role in rotor loads research.

The results of government research funding can be assessed by tracking the

number of research reports and papers published each year that were funded under

government contract or grant. All papers examined as part of this review are

included (not all cited) with the exception of survey or summary papers. The data

are filtered using a 3-year running average and are shown in figure 79. The number

of papers published tends to be cyclical depending on the technical meetings being

held each year. In general, the number of papers or reports being published each

year is holding constant and, hence, the funding for rotor loads is assumed to have

been holding relatively constant. Research into load-reduction methods appears to

use a quarter to a third of the resources applying the measure used here.

The government contribution to rotor loads research appears to have held fairly

constant over the last decade. A major transition that has occurred, however, is

that the government investment in comprehensive analyses is now largely restricted

to programs that have been (or are being} developed internally, that is, CAMRAD and

the Second Generation Comprehensive Helicopter Analysis System (2GCHAS). The gov-

ernment has made a major contribution in the past to the development of a number of

the comprehensive models used by industryand has attempted to transform some of

these analyses into well-documented, general-purpose analyses that could be used by

both industry and the government. This effort to develop a public domain, compre-

hensive model based on an industry code has not been successful. As a consequence,

the government is proceeding with the development of 2GCHAS with industry participa-

tion. Although CAMRAD was developed more by individual initiative than government

plan, its continued development represents an essential part of research in the
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rotor loads area at least until 2GCHAS is operational and has demonstrated that it

can support future progress in this area.

The second measure that is used to gauge government support of rotor loads

research is the development of rotor loads data bases. Research in rotor loads and

a means of reducing rotor loads has been continuously guided by experimentation.

Data obtained in flight tests or wind tunnel tests have been used to improve the

capability to predict rotor loads and to find methods to reduce rotor loads. The

effort and expense of obtaining a set of data may be justified by the immediate

answers that are provided by the data, or in some cases, the major justification for

the data is its long-term value in the form of a data base.

The government makes a major contribution to research in rotor loads either by

funding or performing the experiments that lead to the development of data bases.

The experimental data and data bases may be used in many ways and this use is some-

times published and sometimes kept proprietary. For this assessment, it is only

possible to examine the published uses of data. Although the limitations of this

approach are recognized, the approach is still considered useful.

The experimental data obtained over the period covered by this paper were

examined, and if the data were provided either in tabulated form or on a formatted

tape, then the data were considered to constitute a data base. Nine data bases were

found and these are listed in Table 2 (refs. 169-175). Most of these data bases

were used by the original investigators, at least to a limited extent, and this use

is referred to as a "primary reference." If the data base was subsequently used by

another investigator, then that use is referred to as a "secondary reference." Of

the nine data bases, only one has been used regularly by subsequent investigators

and that is the AH-IG OLS flight-test data base.

All of the data bases in Table 2 were funded by the government except for the

SA 349-2 flight-test data base. The use of the AH-IG OLS flight test-data by subse-

quent users is clearly a success, but the lack of use of the other data bases is

discouraging. It is recognized, as noted above, that the published use of a data

base is not its only justification. Unpublished use of a data base to guide propri-

etary design or aircraft development may justify the expense of developing that data

base. In addition, a well-documented data base may prove valuable for many years,

and the lack of initial use does not mean that the data base may not become very

useful. No better example of this facet of data base use can be seen than in

Hooper's comparison of data bases many years after they were obtained (ref. _O).

However, it is unclear whether the use of the government-developed data bases justi-

fies the expense in creating them. Certainly the development of new data bases

should not be undertaken without a substantial expectation of their future use.

Table 2 evaluates only the use of data bases developed during the time frame of

this paper. A related question is what has been the use of all data bases during

the past 13-14 years, not just the recently developed ones. This question is exam-

ined by looking only at a subset of available data bases, those that include both

surface-pressure measurements and blade-moment measurements. The nine data bases

that fall into this category are shown in Table 3 (refs. 176-180). First, all use
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of these data bases in the time frame of the paper are categorized as "references."

Secondly, when the data base was used by an organization other than the test air-

craft manufacturers, then this is referred to as a "non-self reference." Of the

nine major data bases, two have never been used. These are the CH-47A and AH-IG

TAAT data bases for which tabulated data were never provided and the data on tape

have been too difficult of access to encourage use. The UH-I and XH-51A aircraft

data bases have had only limited use in recent years. The NH-3A and CH-53A data

bases have had fairly extensive use, but only by the aircraft manufacturer. Of the

nine data bases, only three appear to be in widespread use--the CH-34 flight test,

the CH-34 wind tunnel test, and the AH-IG OLS flight test. The development of a

major rotor loads data base is clearly expensive, but the use that these data bases

will be put to is never so clear.

An alternative approach of assessing the use of data bases is to compare the

use of proprietary data bases with those that have been developed and supported by

the government. Again, the basis for comparison is imperfect as only the published

literature is used to judge comparative use. Sixty-five references to full-scale,

flight-test data were noted in preparing this paper. Of these 60% referenced a

government-developed data base, while the other 40% referenced company proprietary

data bases. The use of proprietary data bases is, of course, much more significant

for unpublished work. What governs the choice of a data base is not completely

clear. However, it does appear that there are at least three primary factors:

(I) ease of access to the data base, (2) test documentation, and (3) validation of

the data. These factors are more easily accommodated in the development of a pro-

prietary data base than a public one.
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CONCLUSIONS

The present paper has reviewed the research that has been performed in the area

of rotor loads in the 13 to 14 year period since the 1973 AGARD Milan meeting and

the 1974 hypothetical rotor comparison. The conclusions of this review are::

I. The detailed predictive capability of the present rotor loads analyses is

barely satisfactory for the prediction of oscillatory loads. It is not satJ.sfactory

for the prediction of vibratory loads.

2. There is a pressing need for an improved rotor loads predictive capability

within the government. At the present time, there is no clear evidence of what the

major limitations are of the current rotor loads analyses for the prediction of

vibratory loads. This information cannot be obtained without a systematic compari-

son of prediction and measurement using CAMRAD now, and 2GCHAS when it becomes

available.

3. There is a significant need for quality data including blade-pressure

measurements and extensive and complete structural measurments. Maximum efforts

should be made to insure that the data are valid during both the experiment and the

data-reduction process. In the case of aircraft flight test, there must be a com-

mitment of open test time for subsequent tests. Development of data bases should

proceed only if there is a firm, long-range program to use the data within the

government.

4. The research in rotor loads reduction has demonstrated that there is a

substantial potential for reduced vibratory loads in new rotor design. However,

clear design guidelines have not been developed from research performed to date.

Additional theoretical and experimental work is needed to understand the sources and

mechanisms of vibration.
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RECOMMENDATIONS

As a result of this survey it is recommendedthat:

I. The government should continue the development of its own comprehensive
rotor analyses, specifically CAMRAD,which is operational, and 2GCHAS,which is
under development. It is important that this work be done by the government using
their best analysts.

2. Systematic comparisons of theory and experiment for rotor loads should be
expanded. These comparisons should specifically examine the behavior of the vibra-
tory loads for harmonies three and higher.

3. A program of theoretical model testing should be started using CAMRAD.The
objective of this testing should be to compare the relative merits of alternative

theoretical models using experimental data where possible to discriminate between

approaches.

4. The government should initiate a program of full-scale rotor testing with

limited blade surface pressure instrumentation to support the development of rotor

loads analyses and theoretical-model testing. This program should be considered

complementary to the fully-instrumented rotor tests that are presently being

planned.
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TABLE 2.- USE OF RECENT ROTOR LOADS DATA BASES.

Data base Source Type

Primary Secondary

references references

CH-34 model rotor

wind tunnel test

AH-IG OLS flight test

AH-IG/NLR-IT flight

test

AH-1G/10-64C flight

test

AH-IG/RC-SC2 flight

test

S-76 rotor wind

tunnel test

ACR model rotor

wind tunnel test

AH-IG/tip aeroaeoustic

test

SA 349-2 flight test

Niebanck, 1974 Tape

(ref. 169)

Shockey et al., 1977

(ref. 36)

Morris et al., 1979

(refs. 170 and 171)

Morris et al., 1980

(refs. 172 and 173)

Morris et al., 1980

(refs. 174 and 175)

Johnson, 1980

(ref. 67)

Yeager and Mantay, 1983

(ref. 100)

Heffernan and Gaubert,

1986 (ref. 54)

I I

Tape 2 8

Tabulated I 0

Tabulated I 0

Tabulated I 0

Tabulated 2 2

Tabulated I 0

Tape 0 0

Tabulated/

tape

I 0
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TABLE 3.- USE OF MAJOR ROTOR LOADS DATA BASES.

Data base Source Type

Non-self

References references

UH-I flight test

CH-34 flight test

CH-34 wind tunnel test

CH-47A flight test

XH-51A flight test

NH-3A flight test

CH-53A flight test

AH-IG/OLS flight test

AH-IG/TAAT flight test

Burpo, 1962

(ref. 176)

Scheiman, 1964

(ref. 41)

Rabbott et al., 1966

(refs. I and 51)

Pruyn, 1968

(ref. 177)

Bartsch, 1968

(ref. 170)

Fenaughty and Beno,

1970 (ref. 179)

Beno, 1970

(ref. 180)

Shockey et al., 1977

(ref. 34)

Tabulated 2 I

Tabulated 10 8

Tabulated 7 5

Tape 0 0

Tabulated 2 I

Tabulated 4 I

Tabulated 6 I

Tape 10 5

Tape 0 0
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Figure 76.- Comparison of Y201 with flap and chord bending moment and pitch link

load waveforms for S-76; _ = 0.338, GW = 8,200 ib (ref. 66). (a) Flap bending

moment. (b) Chord bending moment. (c) Pitch link load.
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CT/C = 0.071 (ref. 50).
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Figure 78.- Comparison of CAMRAD with SA 349-2 blade bending moments and pitch link

load; _ = 0.36, CT/O = O.071 (ref. 50). (a) Flap bending moment; r/R = 0.54.

(b) Chord bending moment; r/R = 0.54. (c) Pitch link load.
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