|2
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk
provided by NASA Technical Reports Server

N88-17223

DEVELOPMENT OF A COUPLED EXPERT SYSTEM FOR THE SPACECRAFT
ATTITUDE CONTROL PROBLEM

K. Kawamura, G. Beale, J. Schaffer, B.-J. Hsieh, S. Padalkar
and J. Rodriguez-Moscoso
Center for Intelligent Systems
Vanderbilt University
Nashville, TN 37235

F. Vinz and K. Fernandez
National Aeronautics and Space Administration
Huntsville, Alabama 35812

Abstract

A majority of the current expert
systems focus on the symbolic-oriented
logic and inference mechanisms of

artificial intelligence (AI). Common rule-
based systems employ empirical
associations and are not well suited to
deal with problems often arising in
engineering. This paper describes a
prototype expert system which combines
both symbolic and numeric computing. The
expert system's configuration is described
and its application to a space craft
attitude control problem is presented.

Introduction

Current NASA planning to develop a
low earth-orbit Space Station poses a
unique opportunity for the development of
an expert system for coupling symbolic
processing and numerical computations.

Computer simulations are used
extensively by NASA to verify systen
design. These simulations are developed by
highly skilled simulation specialists and
the complexity of these simulations
require that the specialist be involved in
the operational phase as well as in
development. This results in a poor
utilization of personnel. An expert system
coupling symbolic processing and numerical
computations may solve this problem by
permitting detailed experiments and
studies to be performed without the
investigator's need to have a detailed
knowledge of the model implementation.

Development of the Space Station will
also require <close coordination among
system designers from NASA, the aerospace
industry and other participants. An
intelligent system with enough knowledge
of system design may be able to assist in
this coordination. Such a system could
interact with each system designer in an
intelligent way, allowing for the
exploration of alternative designs,

125

pointing out potential problems, catching
forgotten details, etc. (De Jong (1983)).

This system could also inform the other
members of the design team of critical
decisions made.

Most current expert systems focus on
symbolic reasoning and inference
mechanisms and traditionally have not been
concerned with the numerical processes
trequently used on engineering problems
(e.g., the simulation of dynamic systems)
(Kawamura (1985a)). However, the

intelligent use of these numerical methods
involves the kinds of expertise with which
Al has dealt, and which is frequently in
short supply.

Recognizing such a need, NASA's
George C. Marshall Space Flight Center
awarded a contract to the Vanderbilt

University Center for Intelligent Systems
to develop an expert system to run a class
of spacecraft simulation programs. This
contract had the following long-range
objectives:

1.) To create an expert system that
can assist the user in running a variety
of simulation programs employed in the
development of the Space Station.

2.) To create an expert system that
understands the usage of a NASA-supplied
simulation and that can assist the user in
the operation of various features of this
simulation.

As an initial step toward development
of such an intelligent system, an expert
system called NESS (NASA Expert Simulation
System) was developed, which understands
the wusage of a «class of spacecraft
attitude control simulation software and

can assist the wuser in running the
software. NESS was build using a
knowledge-engineering tool called GENIE
(GENeric Inference Engine) (Sandell
(1984)), developed at Vanderbilt
University. The simulation software

https://core.ac.uk/display/42833485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

represents a simplified model of a typical

spacecraft. It has many of the same
functions which appear in the simulation
software of an actual spacecraft. The

purpose of the generic simulation model is
to serve as a test-bed simulation during
the development of NESS. Since it was
developed at Vanderbilt, the generic
simulation model is well understood and is
easily modified. Its use made the
understanding of how to interface expert
systems to simulation programs much easier
than if an actual simulation program had
been used.

COUPLED EXPERT SYSTEM

Design Principle

One of the major design decisions of

this project was to maintain a clear
separation between the generic simulation
model, which performs the numeric

computations, and the expert system, which

performs symbolic processing. This
parallels the situation in which a human
expert sets out to perform a numerical

simulation experiment. The human expert,
using his or her knowledge of the system
to be modeled and the characteristics of
the simulation software, makes decisions
about how to run the experiment. These
decisions are then frequently implemented
by creating an input file to be read by
the general purpose simulation software.
This file contains parameters describing
the simulation model and switches which
inform the program of the options selected
by the wuser. The wuser then issues a
command to the operating system to run the
simulation program. If it vuns without
error, the user then examines the output
files and interprets the results.

Following this approach, the expert
system (NESS) was designed as a software

system separate from the generic
simulation model. Figure 1 shows the
interaction of these two systems
schematically. Each system was written in
the language most natural to 1it. The
generic simulation model was written in
FORTRAN following years of traditional

engineering practice, and NESS was build
using a general inference engine (GENIE)
written in FRANZ LISP, following current
Al practice.

The knowledge-base of NESS contains

three types of knowledge: general
knowledge about spacecraft attitude
control simulation experiments; specific
knowledge of the input parameters and
their formats required by the generic
simulation program; and self-knowledge

which is used to prevent foolish behavior,
such as attempting to examine results
before a simulation run has been executed.

126

The user-interaction scenario is
envisioned as follows. The users invokes
NESS which queries him or her about the
system to be modeled and the experiment to
be performed. This interaction should
avoid requiring the user to specify all
the 1low-level parameters. Rather, it
should concentrate on the major
engineering decisions required to get an
answer to your questions. The setting of
the low-level parameters should be
inferred and performed by NESS, using its

knowledge. After gaining sufficient
information to specify a complete
experiment, NESS runs the simulation and
checks for run-time error messages from

the operating system.

NESS should then examines the output
files created by the simulation model and
intecrpret them for the user in light of
his or her major questions. This involves
exhibiting plots of model responses and
comments on the stability of the proposed
system design.

System Architecture

NESS was designed using frames,
agendas, menu-inputs and rule-bases, all
of which ar facilities provided by GENIE.
Frames are one of the basic data
structures currently used in AI. Agendas
provide the control information necessary
for running an expert system. A menu-input
stage is used to gather information from
the user. Rule-bases containing individual
rules store knowledge obtained from a
domain expert. The architecture of NESS is
illustrated in Figure 2.

As can be seen from Figure 2, NESS
consists of five specific functional
modules controlled by a top-level Manager.

The Model Instantiator obtains initial
parameter values from the |user, the
Simulation Executor runs the simulation
model, the Librarian stores and retrieves

parameter values from disk files, the
Parameter Editor allows the user to edit
parameter values, and the Graphics module
displays the simulation results. The top-
level Manager controls the firing of each
of the five modules by means of a forward-
chained rule-base. This architecture along

with the rule-base control results in a
modular, flexible and expandable expert
system.

System Implementation

FRANZ LISP provides a number of ways
in which a LISP process such as NESS can
effect operating system calls. These calls
allow NESS to do things like write a disk

file containing the parameters that the
simulation program needs, cause its
execution and read the output files it

creates (as illustrated in Figure 1).

ORIGINAL PAGE IS
OF POOR QUALITY

The most straightforward utilization
of a system call is simply to include a

FRANZ LISP function "exec" (Foderaro
(1983)) to cause the execution of a
standard UNIX commands, directly in a rule
clause, For example,
output_display rb_ruleb checks the
precondition that insures that the
simulation program has run (self
knowledge) and that the user wants to see
a plot of theta, which the simulation

disk
' then'

program would have deposited in a
file called "thetaOplt.stp." The
side of the rule looks as follows:

(Sthen (exec cat thetalplt.stp)).
command to

named
user's

This causes the UNIX "cat"
execute, which simply copies the
file (thetaOplt.stp) to the
terminal.

A slightly more involved method is to

write a demon (i.e., a special purpose
LISP function) to perform some specific
operation which may involve one or more
calls to UNIX system* functions. For
example, a Jemon named
"setup_init wval in simula.inp™ calls the
system function "fileopen," "close," and
"cprintf," which performs formatted file

write operations. This demon is called by

run_rb_rulel.

This rule also calls the demon
"start sim," which wuses the FRANZ LISP
function "process” to fork a child
process, which is the actual execution of
the simulation.

NESS and the generic
reside on a VAX 11/785
VMS/EUNICE operating

Currently
simulation model
running under the
system.

GENERIC SIMULATION MODEL

Spacecraft Attitude Control Problem

The function of a spacecraft attitude
control system is to maneuver a space
vehicle into a certain orientation defined
by a reference vector, and to maintain
that orientation over an extended period
of time. As an example of attitude
control, consider the pointing control
system for the Space Telescope (Dougherty
(1982)). The control system must maneuver
the telescope through a 90 degree arc in
less than 20 minutes, and then maintain a
stable line-of-site to within 0.007 arc-
seconds for 24 hours. Thus, the control
system must be designed to maneuver
through a large change in direction and
then track the vehicles's position about a
constant direction. The vehicle's dynamics
could be represented by nonlinear

127

differential equation during the
maneuvering mode; in the tracking mode,
the equation could bhe linearized about the
desired operating point. In the initial
phase of our project, only the simulation
of the vehicle and control system during
the tracking mode was considered.

The commanded inputs to the control
system would generally be angular
position. Both angular position and
angular rate would be measured by star
trackers and rate gyros, and these
measurements would be available to the
control system. The torque required to
accomplish the maneuvers would be provided
by a set of control moment gyros (CMGs).
Generally, redundancy in sensors and
actuators could be a design feature of the
control system. For example, four sensors

could be positioned to measure the
variable in three-dimensional space such
that any three of the sensors would

provide linearly independent measurement.
With this type of configuration, all four
sensors could be used and consistency
checks made on the measurements. If any
one sensor failed, the remaining three
could provide complete coverage of the

desired variable. Figure 3. is a
simplified 1illustration of the pointing
control system for the Space Telescope.

The controller, reaction wheel assemblies,
and rate and position sensors mentioned
above can easily be 1identified in the
figure. The Fine Guidance Sensor block is
used in different ways for the different
modes of searching for a new targer,
course tracking of the target, and finally
maintaining an attitude locked onto the
target.

One factor which makes the control of
a space vehicle more involved than the
traditional position control problem is
the need to use several coordinate frames
in defining the vehicles's Llocation and
orientation. It is common practice for the
vehicles's attitude to be specified by a
series of transformations from an inertial
frame to frames that are geocentric,
defined in the orbital plane, and
dependent on orbital shape. In addition,
the wvehicle's orientation is defined
relative to a local vertical frame defined
at the wvehicle's center of mass and
oriented with respect to the orbit normal
and local wvertical directions. Other
reference frames are defined fixed within
the vehicle at the location of sensors,

actuators and bending modes ; these
internal frames relate sensor data,
generalized forces, and bending
deformations, respectively, to the

vehicle's dynamic equations.

Transformations are possible between
those wvarious coordinate frames (Brady
(1982) and Paul (1981)). A matrix can be

defined which can multiply a vector in one
coordinate frame to convert it into the
equivalent vector in a second coordinate
trame. Transformation matrices can be
defined in terms of roll-pitch-yaw angles
between the coordinate frames or in terms

applied to spacecraft attitude control
problems through the concept of
Quaternions (Ickes (1970) and Grubin

(1970)). A Quaternion is a four parameter
system composed of a wvector about which
the rotation is to be made and a scalar
which is a measure of the angle of
rotation.

Model Overview

The generic simulation model shown in
Figure 4 represents the simulation of the
spacecraft and contrel system during the
tracking mode.

A simple spacecraft attitude control
system would have a minimum number of
three (3) coordinate frames. These
coordinate frames would represent the
inertial coordinate system, the actual
vehicle orientation, and the target
reference direction. Zero position error
is achieved when the reference and vehicle
coordinate frames are identical to each
other. These three frames are used in the
generic simulation for this research
project. The function of the attitude
control spacecraft wuntil 1its coordinate
frame becomes identical to the reverence
coordinate frame, and then to maintain
that orientation until new reference
direction commands are given. The
Jdifferences between actual and commanded
angular positions and actual and commanded
angular rates would be used by the control
system as the error signals wused to
compute command signals for the actuators.
These signals would command torque from
the actuators about, an axis defined by the
Quaternion Transformation to force the
Qrrors to zero. This amounts to
determining the transformation matrix
between the current vehicle orientation
and that of the reference vector, and
determining the control signals necessary
to physically implement that
transformation matrix.

Implementation Status

Currently we are running NESS with a
simplified simulation model, i.e., there
are no bending modes, the inertia matrix
is diagonal, and the controller is of the
PLD (proportional-integral-differential)
type. The input command is angular
attitude. Runge-Kutta and linear multistep
integration algorithms are available for
performing the numerical integration of
the equations of motion. The simplified
model (Prototype I) is shown in Figure 5.

128

SAMPLE SESSION WITH NESS

The
concerned with gathering
the simulation experiment. NESS asks the
user to provide initial values of some
parameters and obtains other by asking
questions from which it can infer them.
This is done in a systematic manner as
follows:

primary knowledge in NESS is
input data for

a) NESS gathers all the data required to
define the system to be simulated.

This includes getting values for the

inertial and controller matrices,
initializing the Quaternion module
and selecting a method of

integration.

b) NESS asks for the type of response to
be obtained from the system. A choice
of STEP or FREQUENCY response |is
offered.

c) NESS then completes the set of
parameters vrequired to run the

simulation experiment.

CONCLUSIONS AND FURTHER WORK

This paper has illustrated an expert
system that can assist the user in running

a class of spacecraft attitude control
simulations. Although the knowledge-base
and the simulation model are relatively

simple and limited, we have demonstrated
the coupling of symbolic processing and

numerical computation. That was the
purpose of Phase I of this research
(Kawamura (1985b)).

In the subsequent phase, the

capabilities of both the simulation model
and the expert system will be extended.
The simulation model will be extended to
include actuator and steering distribution
equations. Bending modes are being added
in the body dynamic equations since they
represented a significant concern to the
control system designer. The expert system

is being extended to assist the user in
running a wide variety of simulation
models. It will interpret the output data

to determine system characteristics such
as percent overshoot, settling time, gain
margin and phase margin. Ness will also be
extended to recommend a suitable series
compensator to be added to the simulation
model that 1s required to achieve the
desired frequency or time response e.g.,
achieve a specified overshoot or phase and
gain margins.

REFERENCES
(1]

De Jong, K., Intelligent Control:

(2]

(3]

[4]

(51

(6]

[7]

[8]

Al and Control Theory,
1983,
(1983)

Integrating
Proc. Trends and Applications
National Bureau of Standards
158-161

Kawamura, K., Coupling Symbolic and
Numerical Computations, Proc. 1985
IEEE International Conference on

Systems, Man and Cybernetics (1985a)
507-510.

Sandell, H., Bourne, J. and Shiavi,
R., GENIE: A Generic Inference Engine
for Medical Applications, Proc. Sixth

Annl, Conf. [EEE Engr. Med. Biol.
(1984) 66-69.

DeCeraro, J.K. (ed.), et al., The
FRANZ LISP Manual (University of
California, Berkely, 1983).
Dougherty, H., et al., Space
Telescope Pointing Control System,
Journal of Guidance, Control, and
Dynamics 5(4) (1982) 403-409.

Brady, M. (ed.), et al., Robo t
Motion: Planning and Control (MIT
Press, Cambridge, 1982).

Paul , R.P., Robot Manipulators:
Mathematics, Programming and Control
(MIT Press, 1981).

Ickes, B.P., A New Method for
Performing Digital Control System
Attitude Computation using

Quaternions, AIAA Journal 8(1) (1970)
13-17.

129

[9] Grubin, c., Derivation of the
Quaternion Scheme via the Euler Axis
and Angle, Journal of Spacecraft
7(10) (1970) 1261-1263.

[10] Kawamura, K., Beale, G., Schaffer,
J., Hsieh, B,-J., Padalkar, S., and

Rodriguez-Moscoso, J., Research on an
Expert System for Database Operation
of Simulation/Emulation Math Models,
NASA Phase 1 Final Report Vol. I and
IT Contract #NAS8-36285, Center for
Intelligent Systems, Vanderbilt
University. (August, 1985b).

NOTE:

This edited paper describing NESS
Phase 1 appears in its complete form as a
chapter in Coupling Symbolic and Numerical
Computing 1in Expert Systems edited by
Janusz Kowalik and published by the North-
Holland Company in 1986. Phase I1 of NESS
was completed in May of 1986, and it
resulted in the development of more
general interface specifications allowing
NESS to interact with a wider range of
digital simulations. Emphasis was also
placed on incorporating knowledge specific
to the design of series control systenm
compensation yielding a system that
assists the control system designer in
achieving desired system performance. The
results of Phase II are documented in the
Final Report to MSFC on Contract #NASS-
36285, Center for Intelligent Systems,
Vanderbilt University (May 1986).

SIMULATION
DESIGNER

create ORIGINAL PAGE IS
OE POOR QUALITY

SIMULATION
MODEL

Instantiate
)

Execute

Performance

Glossary
Read Specifications

NESS
(Expert Subsystem)

USER

Analysis
]

Compensator-
Display results recommendations

rigure 1 User Interaction with the Coupled Expert System

EXPERT SUBSYSTEM

Performance
Procedural Specifications
Knowledge
(Demons) USER
Analysis &
Compensator recom, '

~

display results

Simulation
Results

NUMERIC SUBSYSTEM

Figure 2 NESS Architecture

130

+ Reaction .
Whee! Torguet o . (7,u)| % og

Command P1D
Controller [+ Assembly

Commands —— Generator

Rate
Gyro
Assembly

RGA/FGS
Switch

Fine
Guidance
Sensor

Rate Command

Comparator

T

Figure 3 Simplified Attitude Control System

-]
actual ATTITUDE
SENSORS
CONTROLLER
0. O——=
-]
BODY
ACTUATORS DYNAMICS q [
+)
: RATOR|
8. O— t QUATERNION INTEGRATO
COMMAND
GENERATOR
RATE
SENSORS

8actual

Figure 4 Block Diagram of the Generic Simulation Model

ORIGINAL PAGE I§
131 OE POOR QUALITY,

VR Transformation

Oy

Q
(VR)
CONTROLLER
. Te BODY &y
8¢ O 3 Kp DYNAMICS
B¢ +
I
8¢ + q I ﬁ
X
Xp QUATERNION __l INTEGRATOR
COMMAND r
GENERATOR [@
8y (wy)

Figure 5 Simplified Diagram of the Generic Simulation Model

132

8y (wy)

