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ABSTRACT 

Genetic algorithms (CA's) are used to search the 
synaptic weight space of artificial neural systems (ANS) 
for weight vectors that optimize some network 
performance function. GA's d o  not suffer from some of 
the architectural constraints involved with other 
techniques and it is straightforward to incorporate 
terms into the performance function concerning the 
metastructure of the ANS. Hence GA's offer a 
remarkably general approach to calibrating ANS. GA's 
are applied to  the problem of calibrating an ANS that 
finds optimal paths over a given surface. This problem 
involves training an ANS on a relatively small set of 
paths and then examining whether the calibrated ANS is 
able to find good paths between arbitrary start and end 
points on the surface. 

1. INTRODUCTION AND PROBLEM STATEMENT 

Massively parallel computing devices composed of 
many elementary processing elements (PE's). connected 
in a simple and local manner, offer the posslbillty of 
computing complex lnput-output relationships rela- 
tively quickly. One approach to achieving massive 
parallelism involves the use of many identical and sim- 
ple processing elements (PES) and relatively local com- 
munication links between PES. The artificial neural sys- 
tem (ANS) represents one class of such systems that are 
currently the object of much investigation. Each PE of 
an ANS produces as its output a single, bounded, real- 
valued number. An ANS Is a collection of PES, each of 
which takes as input the weighted outputs of other PES. 
The ANS architectures considered in this paper consist 
of networks of synchronous, binary threshold units 
(BTU's, see Egecioglu, Smith and Moody, 1987). 
The behaviour of the ANS (Le.. the mapping it is able to  
compute) is largely determined by the set  of weights by 
which the output of a given PE is multiplied before 
being taken as input to another PE. A major problem in 
ANS design Involves the determination of an appropri- 
a te  set of connection weights between the PE's for com- 
puting a given mapping. 
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In this paper, our primary focus of attention concerns 
an essentially unexplored technique for programming 
ANS's, namely genetic algorithms (GA's). A secondary 
focus of attention concerns the construction of an ANS 
that is able to  compute "good" paths over some surface, 
using GA's and a set  of  input-output exemplars to  pro- 
gram the system. In particular, we are interested in the 
ability of this programming technique to  construct an 
ANS that significantly generalizes over the set  of input- 
output pairs. 

1.1. Research Reported In this  Paper 

The research reported In this paper is of an exploratory 
and empirical nature, since the behaviour of both ANS's 
and GA's are currently difficult to  analyse In a formal 
manner. Our basic approach to  the problem Involves: 

construction of a surface over which "good" paths 
are to  be  computed and computation of globally 
optimal paths between all given pairs of points on 
the surface (using the Dijkstra algorithm) to  pro- 
duce a training set of input-output patterns (start- 
end points, optimal paths) 
establishment of a prior1 constraints on the archi- 
tecture of the ANS 
choice of which variant of GA to employ in call- 
brating the ANS 
a set  of training runs in which a subset of input- 
output patterns are used to  program the connec- 
tion weights 
tests of the ANS on the remaining input-output 
patterns to  determine how well the GA performs In 
generalizing over its training set. 

The main purpose of the experiments reported here 
was to  provide intuition into the application of GA's for 
Calibrating ANS's, particularly In relation to  the path 
planning problem. More systematic investigations of 
the problem are now In progress. 

2. NEURAL NETWORK PROGRAMMING METHODS 
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Two main problems in ANS design are 1) findlng a suit- 
able network architecture, in terms of connection topol- 
ogy and type of PE's, and 2) determining the weights of 
the ANS. To date, no automatic procedure for designing 
a network architecture for a given inputloutput 
behaviour exists, although as discussed later, GA's may 
be applied to solve this problem (we apply intuition as 
a guide to designing the architecture). The main pur- 
pose of this paper is to propose a relatively new soiu- 
tion to the second problem. 
We define the programming of an ANS as adJusting the 
weights such that the network can compute a desired 
input to output mapping. There are numerous tech- 
niques for programmlng an ANS, many of which are 
best suited for partlcular problem domains, or limited 
to specific network architectures. These techniques 
may be currently classified into two groups, the first of 
whlch is based on finding connection weights in terms 
of predetermined functions of the problem parameters 
and the second of whlch is based on some form of 
search over the space of weights. 
The first class includes assoclative memory techniques 
(Hopfield. 1982) and techniques based on finding qua- 
dratic forms that express a problem in terms of a set of 
constraints (Hopfield and Tank, 1985). 
Concerning the second class, one may classify the tech- 
niques according to the degree of "iocainess" of the 
search procedure. Most learnlng procedures perform a 
search over the weight space to minimize some perfor- 
mance criterion of the network. The search techniques 
include gradient descent, gradient descent with anneal- 
ing, and guided random search, Examples of such tech- 
nlques include, respectively, back propagation 
(Rumelhardt and McClelland. 1986); the master/slave 
formalism (see Lapedes and Farber, 1986); and guided 
accelerated random search (GARS, Mucciardi, 1972). 
In this paper, we propose the genetic algorithm as a 
neural network programming procedure. 
2.1. Genetic Algorithms 

The GA can be viewed as a relatively global search pro- 
cedure based upon population genetics (Holland, 1975). 
We apply the CA as a function optimizer to the weight 
space of an ANS to maximize some performance func- 
tion of the network. The mqjor strengths of the GA as a 
function optimizer are its ability to search efficiently 
and effectively high dimenslonai, multimodal, noisy, and 
discontinuous surfaces. Since the GA is being used 
purely to search the weight space, there are no restric- 
tions on network architecture. There are also no res- 
trictions on the terms of the performance function. 
The basic GA maintains a population of individuals. In 
the case of the function optimization problem, each 
individual represents a point in the parameter space of 
the performance function, and is represented by a 
binary string encoding of the parameter vector. Each 
individual is evaluated, and a new generation is pro- 
duced by selecting individuals on the basis of their per- 
formances for reproduction. Because higher perform- 
ing individuals are -selected more often for reproduc- 
tion, and due to the recombination effects of the cross- 
over operator, there is a pressure towards higher per- 
forming individuals being accepted into the population. 

The basic algorithm is: 
1. Randomly generate a population, Po. of N 

members. Set t-0. 
2. For all I-l..N, compute and save the perfor- 

mance measure P(P$ 

3. If converged, then STOP. Best Individual of 
last population is solution. 

4. Compute selection probabilities 
J - N  

P: = P(P:)/ c P ( P f )  
I-1 

5. Generate next generation, P'+', by chooslng 
Individuals via selection probabilities for 
reproduction using genetic operators. Set 
t-t+l. Goto 2. 

The genetic operators used in this paper are crossover 
and mutation. Crossover recdmblnes two parent vec- 
tors to produce an offsprlng vector by concatenating 
the segment to the left of a random crossover point in 
the first parent with the segment to the right of the 
same crossover point in the second parent. The muta- 
tion operator, with a low probability, alters bits in the 
offspring. The combined effect of crossover, mutation 
and selection allows genetic algorithms to search very 
high dimensional spaces efficiently. 
One of the most challenging problems In ANS learning 
procedure design is the assignment of credit to pro- 
cesslng elements which are responsible for a system's 
high performance, especially when those elements are 
only active early in a long chain of actions which even- 
tually leads to reward from the environment. The GA 
solves the credit assignment problem by selection. 
Indivlduals which contain good weight vectors are 
rewarded by a higher probability of recombination and 
reproduction. Thus the weights are held accountable for 
network performance. 

3. THE APPLICABILITY OF THE ANS AND ITS AQSO- 
CIATED PROGRAMMING METHODS TO THE PATH 
PLANNING PROBLEM 

A secondary goal of this investigation is to program an 
ANS in such a manner that it contalns an efficient, Inter- 
nal representation of a "cost" surface characterized in 
terms of some set of efficient paths over the surface. 
This representation should permit the network to com- 
pute a "good" path between two arbitrary points on the 
surface, given only those two points. Since only a sub- 
set of the precomputed optimal paths over the surface 
are presented to the network during the learning phase, 
the network must be able to generallze. 
In most of the work to date on the programming of 
ANS's to compute specific functions, researchers have 
employed the stable states of the ANS as a basis for 
representation. For any ANS. there is a fixed number of 
such states. Hence the ability of an ANS to compute a 
given function is ultimately limited by this capacity 
constraint. However, different approaches to represent- 
ing a given computation may result in more or less 
efficient ANS. Hence part of our research has concen- 
trated on different approaches to network representa- 
tions and their relative efllciencies. 

520 



4. A PRELIMINARY INVESTIGATION OF GA’S FOR 

NING PROBLEM 
PROGRAMMING ANS’S TO SOLVE THE PATH PLAN- 

CA’s may be used to  modify the synaptic weights of the 
ANS In order to  maxlmlze the net’s performance in 
finding optimal paths. The resultlng network Ideally 
accepts an input pattern representing start and end 
positlons on  a given surface, and produces an output 
pattern representing a least cost path from the given 
start and end points. 

4.1. A Priori Hypotheses  Concerning the  Topology 
of the Connection Weights 

As noted above, the topology of the connection weights 
may be an important factor in determining the 
efficlency of a network with a given number of PE’s. 
Hence we explored four alternative topologies, while 
keeping the number of “hidden” PE’s constant a t  20. 
A quad tree structure was suggested by prior experi- 
ence with computational architectures for solvlng path 
planning problems (Smith and Parker, 1987). Thls archi- 
tecture embodies the hypothesis that the pertinent 
features of the landscape required for the ANS to 
predict optlmal paths can be best represented in a 
hierarchical fashlon. with the more abstract, higher 
order features of the surface encoded at  the top of the 
hierarchy. It presumes that computation proceeds from 
the top downward, with higher levels guiding (con- 
straining) the computation at  lower levels of the tree. 
We examlned three such architectures: 
a) FFQ Is a feed-forward quad tree structure with 4 

layers (see Flgure 1) 
b) RQ (see Flgure 2) is a modification of FFQ with 

recurrent connections between layers 
c) RQNNN is the same as RQ, except for the addition 

of next nearest neighbor connections between 
units on a layer (see Flgure 5)  
FIH (see Figure 3) involves 20 fully-connected hid- 
den units. 

d) 

Quad tree topology I s  shown In Flgure 4. 

4.2. The Landscape 

The surface investigated is derived from a topological 
map of a 40 square kilometer area of the Sierra Madre 
Mountains In Californla mapped onto an 8x8 square 
grid of pixels. Each pixel is represented as  a node in a 
four-connected transition cost graph, in which each link 
represents a bidirectional, symmetric cost. The derived 
cost graph is then used as input to  Dijkstra’s algorithm 
to compute optimal paths, and to the CA’s obJective 
functlon in order to  gauge the performance of each 
ANS. 

4.3. Objective Functions 

The CA uses an obJective functlon to  evaluate the per- 
formance of each member of the populatlon. In thls 
case, the lndivldual Is an ANS. and the task is to predict 
the optimal path over a surface between two points. 

After presentation of the input pattern to the ANS. and 
after the network relaxes, the obJectlve function com- 
putes an error measure between the optimal path 
predlcted by the network and the true optimal path. 
The network predicts a path by turning on those neu- 
rons in the output layer which correspond to nodes In 
the transition graph, which in turn correspond to points 
on the surface. 
It Is helpful to choose a performance measure whlch 
facilitates the genetic search. The objective functlon is 
a mapping from the weight space of the ANS to a single 
performance value. As a general rule, the objectlve 
function should posses some degree of ’smoothness’ in 
the region about the solutlon point In the weight space. 
Thls means that any change In the weights in the direc- 
tion of the optimum should yield a higher performance 
value. For a discusslon of how various types of objec- 
tive functlon surfaces affect search procedures, see Ack- 
ley (1987). 
Two basic performance functions are used in these 
slmulatlons. The first function, P1, incorporates three 
terms: 1) an incorrect link cost, 2) an incorrect pixel 
cost, and 3) convergence time, as  defined below: 

x = C[obs(llOp‘ - l;’r)(l,””tcost(/,”’‘) +  COS^(^;"^))] 
J 

+ 20C[abs(ioP‘ - si)] + T 
1 

P, = 100/(1+x) (4) 

Where, all references to llnks and neurons refer to  the 
output layer, and 

lop‘ = { 1 if link is between adjacent neurons on 
the optimal path; 0 otherwise). 

Inat = ( 1 if llnk Is between adlacent neurons 
turned on  by the network; 0 otherwise]. 

cost(l) - cost of traversing llnk 1. 
- - I 1 If the Ith pixel lles on the optimal path; 

0 otherwlse). 
s, = state of neuron 1. 
T - relaxation time of the network. 
J - index over all llnks in output layer. 

The Incorrect llnk cost term penallzes the network for 
predicting paths which either 1) contain a linkage 
between two adjacent neurons whlch does not exist In 
the optimal path, or 2) lack a llnkage which does occur 
in the optimal path. The amount of penalization Is Just 
the sum of the costs of traversing such linkages. The 
incorrect pixel count term penallzes the network for 
predicted paths which elther 1) contain points which d o  
not appear in the optimal path, or 2) lack points which 
d o  appear In the optimal path. The amount of penallza- 
tion is proportlonal to  the number of such Incorrect 
pixels. The third term is the number of time constants 
the net takes to  relax. The network Is said to have 
relaxed when the activity pattern of the output layer 
has remalned constant for seven time constants. 
The second performance function, P2, is designed to 
overcome the apparent deficiencies in P1, and also to  
stress to the network the importance of well-formed 
paths. Note that the second term in P1 enforces the 
constraint that pixels predicted by the network lie on 
the optlmal path. However, It will also penalize a 
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predicted path of near optimal cost if that path does 
not geographically coincide with the optimal path. This, 
to some degree, violates the smoothness criterion for 
good objectlve functions. Thus, the second term in P1 
is replaced by two terms whlch Impose the constralnt 
that the output pixels be on a well formed path, not 
necessarily the optimal. The first term Is  modified 
to  some degree. violates the smoothness criterion for 
good objective functions. Thus, the second term In P1 
is replaced by two terms which impose the constraint 
that the output pixels be on a well formed path, not 
necessarily the optimal. The first term is modified 
slightly from P1, but still enforces the optimal path con- 
strain t: 

X = 2o[cIsk(l - n ~ o u n t ( k ) ) ~ ]  + c [ S h ( 2  - n c o ~ n t ( h ) ) ~ ] ]  

+ obs(C-Ccost(l;.')) + 7' 
k h 

J 

P, = 100/(1+x) (5) 
Where 

ncount(1) - number of neighborlng neurons 
of i whlch are on. 

C - the cost of traversing the optimal path. 
k - index over both path endpoints. 
h - index over all other points. 

Note that in P, the terms enforclng well-formed paths 
are welghted most heavily. 

4.4. Representation of the Weight Vector 

Generally, the ordering of gene values in the CA control 
strlng can strongly affect convergence, especially in the 
absence of an inversion operator. The control string is a 
binary strlng encodlng of the welght vector. Each 
welght is encoded In 8 bits in two's complement binary, 
and ranges in value from -128 to  127. The weights are 
then concatenated to  make up  the control string. 
Two ordering schemes are used. in the first, called LR, 
the weights ordered from left to  right correspond to a 
top down ordering in the network. For example, weights 
on connectlons to  the 2x2 hldden layer In the FFQ net- 
work are encoded at  the leftmost end of the control 
string. The second scheme, called Q distributes the 
welghts over the control strlng In quad tree order. 
Thus, weights on connections to  the top of the network 
hierarchy are not grouped together, but are distributed 
throughout the corresponding sectors over the length 
of the binary string. 
In the GA used in this study, crossover is the main 
operator for generating new weight vectors for evalua- 
tion. Since It Is assumed that the abstract features of 
the landscape allowing the ANS to generalize will be 
encoded In the hidden unit weights, It Is expected that 
encodlng scheme Q will facllitate search more than 
scheme LR by allowlng crossover to  generate offsprlng 
with a greater variety of hidden weights. Scheme Q can 
only be applied to  the quad tree networks. 

4.5. Reproductive Plan 4 (R4) 

The variant of GA used In these slmulatlons Is the ell- 

tist expected value model (Reproductive Plan - R4) dis- 
cussed in De Jong (1975). Two genetic operators are 
used in this model: mutation and crossover. A n  elitist 
model transfers the best performing lndlvidual of the 
current population intact Into the next generatlon. Thls 
pollcy slightly favours local search, and is found to  
speed convergence. The expected value model drasti- 
cally reduces stochastic errors by replacing the use of 
the random varlable in the selectlon process by a count- 
ing scheme based upon the expected value of the selec- 
tion probabllity. Thls prevents any statistlcai fluctua- 
tion which might, for example, cause a high-performing 
member of the population to  be overlooked during 
reproduction. 

4.6. Training Methods 

Two different tralning modes were used during the pro- 
gramming of the network. In the first, T1. the same 
tralnlng set of data Is shown to the networks over all 
generations. In T2. a t  each generatlon the networks are 
evaluated on unlque and disjoint subsets of the training 
set. Thus, In training mode T2, the total number of data 
points in the tralning set is the product of the constant 
size of the tralning subset per generation times the 
number of generations. 

5. SIMULATIONS AND RESULTS 

Table I summarizes the GA parameters used in the 
simulations. The parameters of the nlne separate 
experiments are summarized in table 11. The experlmen- 
tal procedure used to train and evaluate each network 
is discussed below. 

5.1. Experimental Procedure 

First, the training and test data sets  were prepared. 
Dijkstra's algorithm was applied to  the cost graph 
representing the landscape to find the optimal path 
between all pairs of points on the surface. Each data 
point is a tuple consistlng of an Input pattern encoding 
the start and end points, and an output pattern encod- 
ing the optimal path from the start to the end point. 
Subsets of the data were allocated to  a training set and 
a test set. 
The experiment proceeded in two phases. During the 
learning phase, the training set data was used by the 
CA's performance function to search the weight space 
of a partlcular ANS. After learning, the capability of the 
network to  generalize was measured on the test data 
set. 

5.1.1. Learning Phase 

Before any particular run. the network architecture was 
speclfied. An Initial populatlon of welght vectors was 
randomly generated. Each member was evaluated by 
simulating the equatlons governing the correspondlng 
ANS and measuring Its performance in a series of trials 
In whlch the net attempts to  complete the correct out- 
put pattern for  a given correspondlng Input pattern. 
After the net relaxed, or when the maximum time allot- 
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ted for the network to relax was exceeded (50 cycles in 
our simulations), the oblective function was applied to  
the output layer. The average over all trials was taken 
as the performance of that particular net. This perfor- 
mance value was then used by the GA to  assign selec- 
tion probabilitles to individuals for reproduction. The 
learning phase ends when the genetic search converges. 

5.1.2. Test Phase 

In the test phase, the best performing member of the 
last generation was evaluated on the test data set. TO 
allow comparisons, the performance function used in 
the test phase, P3, was the same for all runs: 

X = c[S,(l - n c o ~ n t ( k ) ) ~ ]  + c[sh(2 - ncount(h))2] 
k h 

+ abs(C-Ccost(/;”)) 
J 

P, = 100 - x/2 (6) 
P3 is a variant of P2. with equal emphasis on cost and 
path terms, without the convergence time term, and 
linear in x. 

5.2. Description of Results. 

The results of the nine runs are displayed in tables 111, 
IV, and V. 
Table V shows the number of generations each run took 
to converge, as well as  the total number of paths in the 
training set. When training method T1 was used, the 
performance vs. generations curve was monotonically 
non-decreasing, and the GA was considered to converge 
when no improvement had been made in the perfor- 
mance value of the best network over 12 generations. 
With training method T2, since the training data was 
different for each generation, the performance vs. gen- 
erations curve was not monotonic, and the GA was con- 
sidered converged when no improvement could be seen 
in the average performance of the best network over 
about 20 generations. Run 6 took a long time to  con- 
verge, and was stopped at 288 generations. It should 
be noted that run 6 converged with respect to perfor- 
mance on long length paths. Before it was stopped, It 
was continuing to  increase in the performance on short 
to medium length paths. 
Table 111 shows the value of the performance (P3) of the 
best network of the last generation of each run on the 
training data. Entries marked by a dash in the table s i g  
nify that no paths of length Indicated by the column 
heading were contained in the training set. Perfor- 
mance values are  sorted by path length, and are aver- 
aged over the number of paths of that length in the 
training set, which varied from run to  run. A perfor- 
mance of 100 is a perfect score, indicating that the net- 
work correctly predicted the optimal path. 
The main results of this work are given in table IV. The 
performance (P3) Is calculated a s  In table 111, but using 
the data In the test set, and averaged over a constant 
number of trials per path length, as  Indicated in the last 
row of the table. 

5.3. Discussion of Results 

Although none of the ANS’s did a perfect Job of con- 
sistently predicting optimal paths during the test phase, 
we gained some Insight Into the problems of training a 
network to generalize. of weight vector representation 
In the GA and of network architectures for this prob- 
lem. 

5.3.1. Performance on the Training Data 

Referring to  table 111. performances using the training 
data In runs 1, 3, 4, and 5 show the ability of the best 
network to correctly predict the single training path of 
length 15 pixels. Only one pixel was missing from the 
middle of the predicted path in run 3, giving that net- 
work a suboptimal score of 98. Run 2 shows the per- 
formance on 5 training paths of lengths ranging from 
11 to  15 points. In this run. one path was predicted 
correctly, one had a few extra pixels In the output layer 
turned on, and 3 paths were halfway complete. 
The networks of runs 1 through 3 did not use their hid- 
den units in predicting the optimal path. Only when 
the architecture was changed from FFQ to RQ and FIH in 
runs 4 and 5, respectively. that is. when bottom up con- 
nections were added, did any hidden units come into 

Runs 6 through 9 were trained using one or five 
different paths per generation. This training method 
always caused the best network to use its hlddens in 
the computation, and led to  better generalization capa- 
bilities on the test data. Because of the training method 
used, the total training set  sizes in runs 6 through 9 
were much larger. as  shown in table V. There are no 
significant differences between the performances of the 
nets in runs 6 to  9 on the training and test data. These 
networks made greater use of their hidden units, and 
learned early in the training phase to  generalize. This 
was expected, since the T2 training method does not 
allow any one path to  be seen by a network for more 
than one generation, thus discouraging the ’memoriza- 
tion’ of a specific pattern. 

5.3.2. Performance on the Test Data 

play. 

The measures of performance of the best networks on 
the test data give some indication of their ability to 
generalize (see table IV). 

5.3.2.1. Best Networks 

The network which had the most consistently high aver- 
age performance over ail path lengths was that of run 8 
(RQ,P2,T2.5.4). Given any two points as  Input. the net- 
work often made a reasonable approximation to a path 
between them, keeping disconnected pixels to  a 
minimum. Short to  medium length paths would some- 
times complete correctly. but the network had trouble 
with longer paths. 
The next best network, in terms of generalization capa- 
bility, was that of run 6 (FiH,Pl.TZ,l,LR), which per- 
formed very well on short to  medium length paths, but 
did much more poorly on longer paths. 
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Though the network of run 5 (FiH.Pl,Tl.l,LR) shows 
high performance values for  medium to long length 
paths, its ability to generalize was nil. No matter what 
the input pattern to this network, the output pattern 
would usually be the same path used in the training 
phase. P3 would score the pattern highest for long 
optimal path lengths because the path was connected, 
and usually had a traversal cost similar to the optimal 
path of the given inputs. The only cost penalty was in 
the lack of connections to the true path endpoints, 
which Is small. 

5.3.2.2. Comparisons Between R u n s  

Despite the paucity of runs, a comparison of simulation 
results in table IV suggests some interesting, though 
inconclusive, results. 
Comparing runs 1 through 5 with runs 6 through 9 indi- 
cates that the training method T2. Le., showing each 
generation a different training set. is sufficient to pro- 
duce generalization capability in the networks. It is not 
known whether TI. with a much larger training set slze. 
would also induce generalization. 
A comparison of the results of runs 1 and 3 show that 
the quad tree ordering of welghts in the genetic control 
string gave a slight improvement in performance over a 
simple top down encoding. 
Comparing runs 1 and 4 suggests that bottom up  con- 
nections increased performance. 
Run 7 was somewhat of an anomaly, in that it should 
not have differed much from run 6. We believe that, for  
the number of alleles in the chromosome, the popula- 
tion size was too small, and the GA had insufficient 
gene variability to sustain a global search, and thus 
found a local minimum. 
Comparing runs 8 and 9 indicate that adding next 
nearest neighbor connections within layers actually 
decreased generalization capabillty. In fact, a con- 
sideration of the qualitative observations on the data of 
runs 1, 4 and 5, which were all trained with T1 and one 
training pattern, shows that the addition of feedback 
connections widens the basin of attraction about the 
single learned memory vector. Thus, the networks with 
more feedback connections, and trained under T1, more 
often produced the same training pattern as  output 
independent of the input pattern. 

6. CONCLUSIONS 

We have proposed a general technique for programming 
ANS's using GA's. Unlike most techniques, the GA 
imposes no constraints on network architecture or per- 
formance function. As a result, novel terms, relating not 
only to  the network's performance In the particular task 
environment, but also to meta variables of the network, 
may be Incorporated. For example, our  objective func- 
tions P1 and P2 included the network convergence time 
as a term to be  minimized. in run 5, on the training set, 
the GA found a weight vector capable of perfectly 
predicting the optimal path after 73 generations, with a 
network convergence time of 14 time constants. After 
20 more generations, the GA had decreased the conver- 
gence t h e  to 12, then finally to 10 t h e  constants. 

Such a criterion as  speed of computation would be 
difficult t o  incorporate into most other network pro- 
gramming procedures. 
Concerning the solution to the optimal path planning 
problem, it is apparent to us that 20 hidden BTU's is 
Insufficlent to solve the problem as posed. A major Iimi- 
tation is the number of stable states that are feasible 
using a n  ANS with only 20 hidden units. The path 
planning problem is hard for the network to solve 
because of the minimum of input information, and 
because it convolves two problems, namely finding 
well-formed paths and finding optimal paths. The fact 
that the GA could not find a weight vector to  solve the 
problem was because of architectural constraints. We 
doubt that any other Iearnlng procedure could have 
solved this problem with the given number and type of 
neurons. 
Even though the networks were not able to always 
predict optimal paths, the simulations showed us  the 
importance of knowledge guided search through the 
experimental parameter space. 
This work suggests two directions for future research. 
First, for the short term, a more rigorous experimental 
approach is needed to explore network architectures 
for solving the path planning problem. it appears that 
a hierarchical network architecture, with bottom up 
feedback, is the most promising structure. The number 
of hidden units and the power of the PE's should also 
be increased. 
The second and more fundamental area of research 
involves the first problem of ANS design: finding a suit- 
able network architecture for a particular problem. 
This includes number and type of PE's. and connec- 
tivity. Here especially the GA appears to be a natural 
candidate solution, because of its role in the evolution 
of the human nervous system. 
The solution would involve finding a good encoding of 
an ANS architecture in terms of a representation suit- 
able for manipulation by the GA. and a developmental 
plan to translate that encoded representation (geno- 
type) into the corresponding network (phenotype). 
Such a plan may be a set  of growth rules, of the type 
discussed in Lindenmayer (1976) or proposed recently 
by Wilson (1987). The performance of each network can 
then be evaluated in the given task environment. Furth- 
ermore, if the network is able to learn during its evalua- 
tlon phase, that is, if the connection strengths are not 
solely determined by evolution, Hinton and Nowlan 
(1987) argue that the learning capability would provide 
an easier 'evolutionary path' toward the optimal net- 
work archltecture. 
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Figure 1 - Feed Forward Quad Architecture 
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Figure 5 - Next Nearest Neighbor Connectivity 

9. TABLES 

Table I 
Genetic Algorithm Parameters 

Parameter Value 
Model 
Populatlons Size 
Crossover Rate 
Mutation Rate 
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Table I1 - Simulation Parameters 

5 
6 
7 

1 LR 
1 LR 2nd 
5 LR 

No. of 
Trials 

.Averaged 83 44 55 32 35 19 17 

Table 111 - Performance on Tralning 
Data Paths 

Optimal Path Length 

3 

5 1  73 

3 I I -  I - I - I - I - 1 - 
4 1 1 - 1 - 1 - 1 - 1 - 1 -  
F 

1 

Table IV - Performance on Test Data 
Paths 

I Optimal Path Length I 1 1 2  3 4 5 6 7 

]Averaged 1 1  32 I 71 1 79 I 6 1 1  9 8 1  

Table V - Convergence Times 
and Total Training Set Size 

To Conver e Set Size 

~1 
63 

7 1  40 I 200 
8 1  100 500 
9 1  199 1 995 

*Thls run was stopped before 
convergence; see text. 
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