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ABSTRACT
A Poisson equation on a rectangular domain is solved by coupling two
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1. TINTRODUCTION

To approximate the solutions of partial differential equations, a number
of methods can be successfully applied: among them, spectral type methods, in
which the discrete solution is a polynomial of high degree, are known to be
very accurate when the solution approximated is very smooth (see [GO][CHQZ]
for a general description of these methods). Their main drawback lies in the
difficulty to take into account the singularities of the function approximat-
ed, as well as the difficulty in handling domains with a complicated bound-
ary. This last problem is usually solved by decomposition into subdomains
and/or transformation of coordinates. On the other hand, the finite element
method, where the discrete solution, restricted to very small domains called

"elements,"

is a polynomial of low degree, is well suited to problems with
complex geometries, but its accuracy 1s limited by the degree of the polynomi-
als (general properties of finite elements are analyzed in [C]). Several at-
tempts have been made to set the two methods in a unified framework and obtain
the advantages of each one. The spectral element method [P], which consists
of using a spectral algorithm on a fixed number of subdomains, 1is presently
developed for a growing number of problems (see, for instance, [F], [KP], and
[MP]); on the opposite side, the so-called p-version of the finite element
method, where the discrete functions are polynomials of fixed high degree on
each element, is studied by several authors ([BSK], [SV], [V] for instance).
The idea of this paper is very different: as previously presented by
K. Z. Korszak and A. T. Patera [KP], it consists of dividing the domain where
the problem must be solved in two parts; then, the problem will be approxi-
mated by a finite element method on the first part and by a spectral method on

the second. Consequently, the discrete space will consist of functions which

are plecewise polynomial on one part and a restriction of a high degree poly-



nomial on the other with a matching condition on the interface. Here, we pre-—
sent and compare two kinds of matching conditions: the first kind is a ponc-
tual one, i.e., we bias the functions to be continuous at the nodes of the
finite elements on the interface; the second kind is an integral one, since we
require the trace of the finite element function on the interface to be the
Lz—projection of the trace of the polynomial onto the finite element space.
Of course, both algorithms will be nonconforming in the general case, since it
is impossible to match a high-degree polynomial and a piecewise polynomial
function on the interface in a continuous way. However, in a finite element
context, nonconforming methods have proved themselves to be as efficient as
the conforming ones (see for instance [CR] or [RT]). Moreover, numerical ex—
periments1 [KP] already show the interest of the coupling technique, which
turns out to be easy to implement and very flexible to fit both the problem
and the domain.

In this paper, we analyze the coupling method on a test problem and in a

model domain. The domain is simply the rectangle Q= (-1,1)x(0,1), which

we divide in two parts, § = (-1,0)x(0,1) and ot = (0,1)x(0,1); we de-

note by Y the interface {0}x(0,1), and by m the unit vector which is
orthogonal to Y and directed from Q to at. For a given function
f on 2, the Poisson problem we want to approximate is the following one:

Find a function u on Q such that

(1.1)

1N. Debit, Thesis in preparation.
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Figure 1.1. Decomposition of the domain.

An outline of the paper is as follows. 1In Section I1I, we introduce the
discrete spaces and state the discrete problems. Sections III and IV are de-
voted respectively to the analysis of the consistency error and of the approx-—
imation error. The final error estimates, together with concluding remarks,
are given in Section V.

The main results of this paper were first presented in [BDM].

Notation: Let A denote any open interval of the real line or any domain in
R with a polygonal boundary. For any real number s, we consider the
classical Hilbert Sobolev spaces HS(A), provided with the usual norm

For

H.Hs A? and also, when s 1is an integer, with the semi-norm
b

s,A"

any real number s> 0 and any p, 1 {p < +», we also use the Sobolev

spaces wSsP(A), oprovided with the norm i1 Finally, for any real

p,A°

7y



number s >0, HS(A) stands for the closure in HS (a) of the space of
indefinitely differentiable functions with a compact support in A,
Throughout this paper, with any function v defined on 2, we associ-
+

ate the pair v¥ = (v~,v"), where v~ (resp. v') denotes the restriction of

v to @ (resp. 9+). The following scalar product on LZ(Q_)XL2(9+)

(1.2) (u*,v*) = [ u (v (x)dx + [+ u (x)vH(x)dx
Y/ Q

coincides with the usual one on LZ(Q). We also provide the product

al @ yul(@") with the norm
(1.3) Hv*n = [(v*,v*) + (Vv*,Vv*)]l/z;

the space of pairs v¥  in HI(Q—)XHI(Q+) with v continuous through vy,
is isomorphic to HI(Q). Finally, we define on HI(Q—)XHI(Q+) the bi-

linear form
(1.4) ¥ (o v e mayalam?, aw*,v") = (wt,w.

Clearly, for any function f in LZ(Q), problem (1.1) is equivalent to the

following one: Find u in Hé(ﬂ) such that

(1.5) ¥ve Hg(n), atu™,v®) = (£%,v9).

This variational form is precisely the one which will be used in order to

define the discrete problems.
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In all that follows, ¢, ¢, ¢ ,..., are generic positive constants,

independent of the discretization parameters.

2. THE DISCRETE SPACES AND PROBLEMS

2.1, Definition of the discrete spaces.

We have to define a discrete space on each subdomain 'l and Q,
and then we must match conditions on the interface.

Let h ©be a real parameter, 0 < h {1, which will tend to 0. With
each value of h, we associate a triangulation T, of the domain Q, 1l.e.,
a finite set of triangles such that the intersection of two triangles is

either empty or a vertex or an edge and such that

h is the upper bound of the diameters of the triangles of Tp- We denote

by hy, the diameter of any triangle K in Ty, and by P the diameter of
the inscribed circle in K. Next, we assume that the family (Ty)y, 1is

regular in the following sense (ef. [C, Section 3.1] or [B, Def. 3.1]: there

exists a constant T >0 such that, for any h, and for any K in Ty, the

following inequality holds

(2.2) pk'z Thk.



let k be a fixed integer > 1. For any closed subset A of R

(resp. Rz), we denote by P, (A) the set of the restriction to A of
polynomials of one variable (resp. two variables) with total degree < k. 1

With any triangulation T., we have the associated finite dimensional X,

defined by

(2.3) X = {v, ¢ @) W e Tyr Vpjg € B and v =0 on 30 \v}.

We also need the finite dimensional trace space
(2.4) X, = {vle, vy € xh}.

In order to build an appropriate basis of Xh and x,, we consider each
triangle K as the support of a Lagrange finite element (X, Pk(K),'-T ),
where EK is the set of all points in K with barycentric coordinates
i/k, j/k, and (k-i-3)/k, 0 <1, j <k, 1+ j < k; it is well-known [C, Thm.

2.2.1] that this set of points is Pp(K)-unisolvent. Next, we set

(2.5) E1'1 = “KeT EI(’
h
and also
(2.6) £, = {lae g My}.

To each point a in Ehm(Q_UY), we associate its Lagrange interpolant,

i.e., the unique gq, of X, which is equal to 1 in a and vanishes at any



other point of Then, the set {a,a ¢ Ehm(Q-UY)} is a basis of

Eh.
the space ¥ and the set {anY,a € Eh} is a basis of the space x.
Next, let N be an integer > 1, which will tend to +oo, For any
—F
integer n > 0, we denote by Qn(_$i+) the set of the restrictions to Q

of polynomials of two variables with degree < n with respect to each vari-

able. For each integer N, we consider the finite dimensional space ¥y

defined by
+
(2.7) X = {vg € Q@); vy =0 on 3g'\v}.
Let (Ln)nel\l be the family of Legendre polynomials on [0,1], i.e., of or-

thogonal polynomials on [0,1], such that L, ne N is of degree n and
satisfies L (0) = 1. We recall that the set {Lm®Ln’ 0 <mn <N} 1is a
basis of QN(§+). However, we shall also characterize the polynomials of

EN by ponctual values: let Cj’ 0<j<N, be the roots of the polynomi-
al  t(l - gL (@), with 0=1¢,< g < ... < gy =1; we set

(2.8) EN = {(;i’cj)’ 0_< i,] _<_ N}’
and

(2.9) Ey = B = 10,5, 1< 3 <N



Q- Q*

Figure 2.2. The triangulation 7T, and the set Eqe

Finally, with each value of h and N, we assoclate the discretization
parameter § = (h,N-l). The pair u*, where wu 1is the solution of problem
(1.1), will be approximated in a subspace of thXN, made of all pairs which
satisfy a matching condition on the interface Y. More precisely, we are
going to consider two kinds of matching conditions, with which we associate
two kinds of discrete spaces, both denoted by V_:

S

1) ponctual matching condition: the space Vg is defined by

(2.10) Vg = {vz = (vh,vN) € Xh x XN; ¥a ¢ Eh’ vh(a) = vN(a)};



..

2) integral matching condition: the space Vé is defined by

(2.11) vé = {v; = (vp,vy) € X x X5 ¥ e x, [ (v - v)(0,¥)q,(y)dy = O}.
Y

The space Vg has already been used in [KP]. Here, we compare the two

kinds of spaces, and the integral matching condition will turn out to be

better.

Remark 2.1: We immediately notice that both methods are nonconforming since

*
the functions Ve associated with a pair Vs of V%, are generally
discontinuous through Y and consequently do not belong to Hé(ﬂ). In-

*
deed, for N >k, a function Vo with the pair Vs in thxN,

belongs to Hé(n) if and only if it is a polynomial of Pk(ﬁ)rWHé(Q).

Remark 2.2: From a numerical point of view, to enforce the ponctual matching

condition, one has to interpolate polynomials of Xﬁ at every point of Eh

and hence must store the values Ln(a), 0<{n<N, ac Eh' On the other

hand, to enforce the integral matching condition, one needs to store the

integrals f Ln(y)qa(O,y)dy, 0<{n<N, ac Eh. Consequently, the cost of
Y

the two methods is of the same order.

However, when k 1s equal to 1, for a given value of N, it is possible

to choose the triangulation Th such that the sets gh and En
coincide. Then, since the polynomials of Xy are characterized by their

values at the points of enforcing the ponctual matching condition would

EN,

be less expensive. But this would require very strong restrictions on the

triangulation Th; in particular, the parameters h and N would be linked
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by a relation of the type h Z_cN_l. Moreover, the triangulation could not

be uniformly regular since it is well-known (see [S, Thm. 6.21.3]) that the

2

cj’ 1 {j<N-1, satisfy: Cj = gin ei, with (2§ - 1)n/4N < 6, < ( +

Dw/2(N + 1); hence the points of £

3

N are not all equally distributed

(they cluster to #1). That is why we would not recommend such a choice.

2.2, Definition of the discrete problems.

We are now in a position to define the discrete problems. We recall (see

[DR, Section 2.7] or [H, Chapter 25]) that there exist positive weights

p.» 0 < j <N, such that the Gauss-Lobatto quadrature formula

j’

1 N
(2.12) [ e(xddar = §  e(z,)e
=0

0 i

is exact on all polynomials with degree < 2N - 1.

) in we associate the weight

With each point a = (;i,;j Ex»
pa = pipj. We now introduce the following discrete bilinear form on
- —+
L2 yxeo@h)
* Ok - - + +
(2.13) (w',v ) = zKeTﬁ IK u (x)v (x)dx + EaeEN u (a)v (a)pa,

which coincides with the usual scalar product on LZ(Q_)th_1(§+). Finally,

we define on HI(Q_)XCI(Q*) the bilinear form

(2.14) ¥y (v e mla)xctehH?, aG(u*,v*) - (Vu*,Vv*)G.
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Then, for any pair £* given in Lz(ﬂ_)XC°(§+), for each kind of match-
*
ing condition, the discrete problem is the following: Find Ugs with us

in v such that

6’
* * % x
(2.15) ¥ v € Vs, aa(ua,v6) = (f ’v6)6'

Remark 2.3: Of course, in definition (2.13), one could, by using a quadrature
formula, replace each integral fKu_(x)v_(x)dx by its approximation. The

resulting algorithm will be thoroughly analyzed.2

We recall [CQ, Lemma 3.2] the property

1
= @+8 Y [ oLeha.

N 2
(2.16) L 1y, !

3
Since the quadrature formula (2.12) is exact on all polynomials of degree
< 2N-1, the discrete scalar product ("°)6 is uniformly equivalent to

(eys) on LZ(Q_)XQN(Q*). Consequently, the form ag satisfies the

following properties of continuity
* % - + .2 * % * %
(2.17) ¥ (u,v) e [HI(Q )xQN(ﬁ e, |aG(u wv )| < clu Hiv ,

and of ellipticity

2y. Debit, Thesis in preparation.
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(2.18) vt e mlaxq @),  awt e > b,

Now, since both an~Mag and 89+(\89 have a positive measure, it
follows from the Poincaré-Friedrichs inequality that the semi-norm:
1/2

* * _ *
v +» (Vv ,W) is a norm equivalent to (] on the space

* -
{v eHl(ﬂ )XHI(Q+); v=0 on 3R}, which yields in our particular case
* - * % *
(2.19) ¥u € HI(Q )xQN(§+), aa(u ,u ) > clu “2.
Thus we have proved the following result.

Proposition 2.4: 1In both cases of ponctual and integral matching conditions,

problem (2.15) has a unique solution s with uz in VG'
The purpose of what follows is to give an error estimate between the
solutions u and ug of problems (l.1) and (2.15) respectively. We begin

with a classical bound (see [C, Thm. 4.2.2]).

Proposition 2.5: 1In both cases of ponctual or integral matching conditions,

the solutions u and ug of problems (1.1) and (2.15) satisfy

* * * *
la - uGH S_c inf {la -~ V6H
V5€V5

* % x % *
+ sup , [a(VG’WG) - ad(vs,wc)]/uwsﬂ}
wGEV6
(2.20)
* % * % *
+sup , [(f ,WG) - (f ,WG)G]/“WGH
w(SeV‘S
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+ sup , f (au/an)(O,y)(wN - wh)(O,y)dy/Hw:“.
W= (wh,wN)eV6 Y

Proof: Let vz be any element in Vge Using (2.19), we have
* % 2 *  k k%
cHuG— VGH < aG(us— Vs~ VG)

~ x % % * Kk % * k% * Kk %
= -a(va,ua— VG) + a(vd,us— VG) - aG(VG’uG_ VG) + (f sU g~ VG)G'

Next, it follows from (2.1) that, for any W in HI(Q-)XH1(9+) such

that w vanishes on oQ,

(f*,w*) = f f(x)w(x)dx

f

~[ (M) (Dw (x)dx - [+ (Au) (D)W (x)dx
Q Y]

= a(u*,w*) + [ (3u/3n)(0,y)(w+ - w )(0,y)dy.
Y

* * *
Setting WS ug = Ve = (wh,wN) and combining the result with the previous

inequality, we obtain

* * 2 * * % L *  * * * % *
cIIu6 - VGW < a(u - Veols ~ VG) a(vs,u6 - VG) - aG(VS’ué - VG)
* % * * % *
-(f ug = VG) + (f g ~ VG)G + f (Bu/an)(O,y)(wN - wh)(O,y)dy,

Y

and (2.20) follows.

We are now interested in deriving a bound for:
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1) the consistency error term

sup , f (au/an)(O,y)(wN - wh)(O,y)dy/uwgu, and
Wy = (wh,wN)eVG Y

2) the approximation error term

inf * *

*
VGEVG“U —VGH

since estimating the two other terms of (2.20) is a standard result in

spectral methods.

3. ANALYSIS OF THE CONSISTENCY ERROR
The aim of this section is to study the term
*
{ (Bu/an)(O,y)(wN— wh)(O,y)dy, for any pair wg = (wh,wN) in Vs
where u is a given function on Q which we shall assume to be

sufficiently smooth. This analysis involves only one-dimensional approxima-

tion operators.

3.1 The case of ponctual matching condition.

We recall that there exists an interpolation operator ih from
ve CA); v(0) = v(1) = 0} into X;, such that, for any function v
continuous on Y and vanishing at 0 and 1, {v 1is the only element of

Xy, which satisfies

(3.1) ¥ ac Eh’ (éhv)(a) = v(a).
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Moreover, for any real number £, 1 <2 < k+ 1, there exists a constant ¢

such that, if the function v belongs to Wl’p(y) for a number

p, 1 < p £+, the following interpolation error holds [C, Thm. 3.1.5]

- 1 z-m =
(3.2) v /thﬂm, -y S.ch "v“l,p,Y’ m 0 or 1.
First, we prove suitable inverse inequalities in the space QN(§+),

which complete those given in [Q, Section 3.1] and could be useful in other

applications.

Lemma 3.1: Any polynomial gqy on [0,1] with degree < N satisfies

(3.3) "anl,l,(O,l) S-ZN"qNHO,w,(O,l)'

Proof: First, we have

lag"s.1,¢0,1) £ "y"0,=,¢0,1)°

Next, let QpyenssOp be the zeros of ay (i.e., the extrema of qy)

belonging to (0,1), in increasing order. Of course, K is < N. Then, it

suffices to compute

1

[ lag o)z
0 N

K-2
lay(a)) = a0 ] + kzl lagCoy4y) = aygo )|+ lag(1) - quley )|

IA

ZK“qN"O,w,(O,l)'
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Remark 3.2: The inequality (3.3) is optimal. Indeed, choosing qy €qual to
the Chebyshev polynomial with degree N, i.e., TN(C) = cos(N Arcos(l - 2g)),
we see that

1
/ |T§(c)|dc = 2N,
0

Corollary 3.3: There exists a constant c¢ such that, for any p and p*,

1 p<2 and 1l/p + l/p* = 1, any polynomial qy on [0,1]) with degree

Eay

S N satisfies

(3.4) cN3'2/pquu

Iq,l < .
1 0 - *
e, (0, 1) 0,p%,(0,1)

Proof: We recall the well-known inverse inequality [CQl, Lemma 2.1].

2
"anl,(O,l) S-cN "qN"O,(0,1)°

Interpolating between this inequality and (3.3) gives (3.4), with a constant

independent of p (see [BL, Thm. 1l.1.1] or [LM, Chap. 1, Th. 5.1]).

Corollary 3.4: There exists a constant c¢ such that, for any real number p,

1<p<2, any polynomial qy on [0,1] with degree < N satisfies

< cN3/2_l/p

3-3) "i'1,p,00,1) &

Yagly/2,¢0,1)"
Proof: For p > 1, setting 1/p* =1 - 1/p, we know from [BL, Thm. 6.4.5]
that HI/Z(Y) is the interpolation space with index 1/2 between Wl’p(Y)

and Lp*(Y); hence we derive (3.5) for p > 1 from (3.4). That implies
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/2-1/p
tagly 1,¢0,1) <o hagy/2.¢0,1)

for p tending to 1, which proves (3.5) with p = 1.

We need a precise version of the Sobolev imbedding (further details can

be found in [T] for instance).

Lemma 3.5: There exists a constant c¢ such that, for any real number p,

2 < p<+», any function v in H1/2(0,1) satisfies

(3.6) vy 5.¢0,1) S-CJE“VHI/Z,(O,I)'

Proof: Since H1/2(0,1) coincides with the space of the restrictions of the
functions of Hl/z(ﬂo, it suffices to prove (3.6) with (0,1) replaced by R
First, let ¢ be a real number > 0. For any function v in H1/2+e (B,
denoting by ; the Fourier transform of v, we have

wz) = @) 1/2 [ yeye 1%84g,  so that
pitd

v, < e f IQ(E)IdE
0,=, R~ " ¢

1/2+48 . 1/2 -1/2-¢ /2

<o v 2a + 1] a2+ (el ag) !
R R

Since the map: v > (f |;(5)|2(1 + |€|2)1/2+€d€)1/2 is a norm on HI/Z¥E (R
R

equivalent to the one which is obtained by interpolation, we must estimate the

constant [ a+ |E|2)—1/2_€d5. The change of variables £ = cotanw

R
gives
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/2 /2
-1/2- - -1+
[ a+ |E]2) 1/2 ®dE = 2 [ (sinw) 1+2€ 4 <ef w ! zedw = ¢ /e.
R 0 0
We deduce
vy o g £ c/.’E)||v||l/2+€’]R .
Finally, for a real number p > 2, we choose E=1/(p - 2) and we interpo-
late this last inequality with the identity i = vl . We obtain
O, R O,R
1/(142¢) —
iy ok S (c/¥e) Wiy g < c/p MR X

We are now in a position to prove the following result.

Proposition 3.6: For any function u in

Hé(ﬂ)(\)Hz(Q), the following

*
- D
estimate holds for any vs (wh,wN) in V6
1/2 - *
(3.7) f (3u/3n)(0,y) (wy = w,)(0,y)dy < chN YIogN flu 1 Mgl
Y 2,8
Proof: Let p be any real number, 2 < p < +», and p* be such that 1/p +
1/p* = 1. Since u belongs to HZ(Q), the trace 9u/3n belongs to
Hl/z(Y); hence Lemma 3.5 gives
13u/3nll < cYphul .
pr,Y - 2’9
Next, let us compute
f (3u/3n) (0,y) (wy = w,)(0,y)dy S_uau/anno’ ,anh . L
Y 0,p ,Y
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i cYpliul _nwh - wNn x °
2,Q 0,p Y

But, due to the definition (2.10) of Vg, whp 1s equal to ,Lth on Y, so

that, by (3.2)

f (8u/8n)(0,y)(wN - wh)(O,y)dy_S c/p hiul _Mw
Y 2,Q L,p ,Y

Applying Corollary 3.4 gives

_Hw I

*
[ (3u/3n)(0,y)(wy - w )(0,y)dy < ¢ /5 a2 gy N'1/2,Y

Y 2,9

< ¢ ./Eth/le/pnuu Tw, i .
b

Choosing p = logN, we obtain the desired result.

Remark 3.7. Of course, the estimate (3.7) is not what we would wish, since
the convergence 1is obtained only if the discretization parameters are linked

by the following condition:
(3.8) 1im{hN!/2/TogN] = o,

(in fact, in (3.7) and in this condition, h can be replaced by h which is
the greatest of the lengths of the edges of triangles K in Th contained

in Y).

Remark 3.8: The estimate (3.7) is independent of k; indeed, we do not know

how to improve it for large values of k.
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3.2 The case of integral matching condition.

This case turns out to be simpler. We denote by LI% the Hilbert pro-

jection operator from LZ(Y) onto %,. We have for any v in Hé(Y)

v - "hV"O,y < v - *hYHO,Y’
so that, for any v in Hé(Y)(ﬂ\HR(Y), 1 <2 < ktl,

(3.9) v - m, vl S_chlﬂvﬂ

h™"0,Y 2,v*

By interpolation, this inequality also holds for any v in

HS(Y), 172 < 2 < 1. Finally, recalling that the interpolation space with

index 1/2 between Hé(Y) and LZ(Y) is Hééz(y) (see [LM, Chap. 1, Th.

11.7]) and denoting by Mol * the norm of Hééz(y), we also obtain
for any v in HOO ()
(3.10) v = mw_vlil < chl/zﬂvﬂ .

h" "0,y — *

1/2 .y

Now, we prove the following.

Proposition 3.9: For any function u in Hé(n)f~1H2(n) such that the func-

tion u~ ©belongs to HL(Q—), where £ 1is a real number, 2 < 2 < k + 5/2,
*
the following estimate holds for any W = (wh,wN) in Vé
*
He

(3.11) [ (3u/3n)(0,y)(w = W )(0,9)dy < S el T T Tt
Y 2,0
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Proof: Let w; = (wh,wN) be any element in Vl-

53 due to the definition

(2.11) of Vé, Wh coincides with on Y. We compute

TN

{ (3u/3n) (0, y)(wy - w )(0,y)dy = { (3u/8n) (0,y)(wy = m w)(0,y)dy

=.{ [(3u/9n) - ﬂh(au/an)(O,y)](wN - nth)(O,y)dy,
so that

{ (3u/3n)(0,y)(wN - wh)(O,y)dy.S N{3u/dn) - wh(au/an)HO’YHwN - ﬂthHO,Y'

If & -1/2 1is not an integer, we note that 9u/3n belongs to
Hé(Y)(\H2_3/2(Y) and that, since wy vanishes on ant\y, |y belongs
to Hééz(Y). Applying (3.9) or (3.10) to bound the first term and (3.10) to

bound the second one, we obtain

{ (au/an)(O,y)(wN - wh)(O,y)dy.S chz‘lnau/annl_B/z,YHwan/z* Y’

(with #ou/ani replaced by #3u/dnh in the case L =2),

and the result follows. The case where 2 -1/2 is an integer follows by

an Interpolation argument.

Remark 3.10: Clearly, the estimate (3.11) is much better than (3.6), since it

is independent of N. In fact, the term f (Bu/an)(o,y)(wN - wh)(O,y)dy

Y
goes to 0O whenever the discretization parameter h decreases to O.
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4. ANALYSIS OF THE APPROXIMATION ERROR

We begin by recalling some properties of the approximation by finite
element functions and by polynomials in the two-dimensional case.

First, since for each X in T, the set & is P(K)-unisolvent,
there exists an interpolation operator Ty, from {v e @) v=0 on
30 \v} into ¥, such that, for any function v continuous on 1l and
vanishing on 3@ \y, T.v is the only element of X, which satisfies

h

(4.1) ¥ ac EhrW(Q_LJY), CThv)(a) = v(a).

Moreover, if the function v belongs to Hl(ﬁ—) for a real number
2, 2 < <k + 1, the following interpolation error holds [C, Thm. 3.1.5]

(4.2) tv- Tt _<ec vl ,m=0 or 1.
Next, we state the following result which can be derived in the same way

as in [M2, Thm. 3.2].

Lemma 4.1: Let p be a real number > 1 such that p~1/2 is not an
integer. There exists a projection operator Hg from the space

{v ¢ Hp(ﬁ+); v=0 on 89+\Y} onto {vN € QN(§+); vy = 0 on 3Q+\Y}
such that, if a function v vanishing on 3Q+\Y belongs to HO(Q+) for

a real number o > p, the following error estimate holds

g -0
(4.3) v HNVH + S_cN fivi + 0 S_u S_p.
U, 0,8
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Now, we are going to approximate a function u of Hé(n) by a func-

tion Ve with vz in VG' In fact, we shall set
%* -— p +

where q;; will be chosen in X, so that Vs satisfies the matching

condition. Of course, the choice of q} depends on this condition.

4.1 The case of ponctual matching condition.

We immediately prove the following result.

Proposition 4.2: For any function u in Hé(n) such that the pair u*

belongs to Hz(ﬂ—)xﬂo(9+), where & and o are real numbers,

2 {2<k+1 and o > 2, there exists a pair v; in Vg such that

* * ~1. - - -
(4.5) a” - vl < ctt* i _+ %+ Oty )
2,9 0,8
Proof: For any function =z defined on n*, let us denote by z the

function defined on Q by
¥ (x,y) € @, z(x,y) = z(-x,y).
Next, we take 2 <p £ inf{k + 1,0}, p - 1/2 ¢ Iy, and choose vz as in

—t o +
(4.4) with q; equal to -Th(u - ﬁgu ). Clearly, we have at any point

a of Eh
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(T,u)(a) + g (a) = u (a) - u'(a) + (Mu')(a) = (u)(a),

* .
so that v belongs to vP. Moreover, we write

§ 5
* * - - +
e - vl <l =Tl _+ gl _+ THE AT
1,0 1,0 1,9
- - — o + + +
< =T A Ud - T - T 2k - fat
1,9 1,9 1,0

Finally, applying (4.2) and Lemma 4.1, we deduce

* * -1 - -1 s 5 - -
tus ~ vgh < efnt T B b rr ﬁ§u+u e % i
L,8 p,0 0,0
-1 - -1 p~0 + o +
5 c{hz Na I _+ hp le cllu I + + N1 0llu ] +}.
2,9 0,0 o,

Applying the convexity inequality oaB < oP/p + Bq/q (a« > 0,8 >0,1/p+ 1/q =

1), gives the proposition.

4,2, The case of integral matching condition.

As far as the approximation error is concerned, this case is less
simple. First, we introduce the following lifting operator Ry, from Xh,
into X%;: for any vy in =xp, Ryvy is equal to vy on Y and vanishes
in any point a of Eh\Y. This amounts to stating that
vh(a)qa.

(4.6) Vv, = za&Ehvh(a)qalYe X, thh = Eaegh
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We recall that T stands for the Hilbert projection operator from Lz(y)

onto Xxp. Our purpose is to prove a stability result for the operator Rh"h'

We use now a technique due to M. Crouzeix and V. Thomee [CT]. We first

0

introduce the subset Eh of the points of Eh which are a vertex of a
triangle K in T, and the subspace of xy
(4.7) 2 o tv. ex; Vae 2, v.(a) = 0};

*h h ¢ *h’ h* 'h >

we denote by x1 the orthogonal subspace to xi in X, with respect to

h
the scalar product of LZ(Y) (when k 1is equal to 1, the space x% is

simply {0}, and the space x; coincides with xh). Let wﬁ, i =1 or

2, be the orthogonal projection from LZ(Y) onto xﬁ; we have of course

_ .1 2
(4.8) TS Tyt
Hence, we are going to prove a stability result successively for Rhwﬁ
and Rhﬂ;.

~

First, we recall some classical notation. Let K be the "reference"

triangle with vertices (1,0), (0,1), and (0,0). For any triangle K in Ty,

~

there exists an affine mapping ¥, which maps K onto K; let By be the
Jacobian matrix of Fyg, and hy, be the diameter of K. Moreover, if the

triangle K has an edge E contained in Yy, we assume that F maps the

-~

edge E with vertices (0,0) and (1,0) onto E, and we denote by Bp the

-

Jacobian matrix of the restriction of Fyp to E. For any function q on

K, we set: q = quK.
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We denote by %, the set of triangles K in T, which have an edge

contained in Y. For any K in £, we set
(4.9) Yo = Span{qa,aeahfﬁ\BK}.

Lemma 4.3: let K be a triangle of th’ and let E be the edge of K
contained in Y. Any polynomial q in Yg satisfies

/Ilqll2 < c.

(4.10) 0,E <

uq"l,K“qHO,l,E

Proof: Due to assumption (2.2), it is well-known (see [C, Thm. 3.1.2 and

3.1.3] or [B, Lemma 2.3]) that, for any function q in Hl(K),

-1 1/2,° -
iqh < chB, H|(det B)| " “ngn . < cigr .
1,k = Be B 1R~ l,K’

"q"o,1,E = |(det BE)luqu . <c hanno Lo
b}

0,1,E ,E
and
hqly ¢ = | (det BE)|1/2MqH “ Z_c'hé/zuqn ~
’ 0,1,E 0,E
whence
Iqt Hqll /nqu2 < cu;l n;n /nc;u2 .
1,K 0,E = - - -

0,1,E 1K 0,1, O,E

A A

Finally, if q belongs to Yy, q ©belongs to the space Y spanned by the

Lagrange polynomials of the points (j/k, 0), 0 < j < k. Clearly, on this

last finite-dimensional space, the semi-norm: q + lql ~ and & + H&M -

0,1,E 0,E

are norms and the three norms bl A0 . and Bell - are equiva-
1,K 0,E 0,1,E

lent, completing the proof of the Lemma.
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We need the following Gagliardo-Nirenberg inequality.

Lemma 4.4: let s be a real number, 0 { s < 1/2. Let E be the edge of a

triangle of T, contained in Y. Any function w in HI(E) satisfies

! 1/2 1/2
, (4.11) NWHO JE S_cﬂwﬁ s,E Hwﬂl s ,E

Proof: Using the previous notation, we set w = woFK, and applying the

classical Gagliardo-Nirenberg inequality, we obtain

Hwll - < cﬂwﬂl/znwﬂl/z Ao

0,, E s,E 1-s,E

Next, applying [C, Thm. 3.1.2 and 3.1.3] or [B, Lemma 2.3] gives

o ~ < | (det BE)I Iwuo . hK
0,E -

1/2 1/2

hl ~ £ cUByi|(det B.)] Lg et Ty L
1 F ’ - s

Interpolating between these two inequalities, we have

* s-1/2 ~ ., 1/2-s
fwl . ichK “w"s,E and lwl ~<c hK lw'l-s,E’
s,E 1-s,E
so that
_ 0 s/2-1/4, 1/4-5/2 1/2 1/2
“W"O,w,E = Hwno E S_chK hK nwns’Enwnl_s’E.
’

We are now in a position to prove the following lemma.
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Lemma 4.5: Let s be a real number, 0 < s < 1/2. The operator Rhﬂi
satisfies the following stability property: for any function w in

1l 7%y,

1/2“W"1/2
8,Y l1-s,y

(4.12) HRhnﬁwﬂl’Q_ < clwlh
Proof: lLet w Dbe any function in HI_S(Y). If ECY is the edge of a
triangfe K of .th, there exists a polynomial in x} which is equal to nﬁw
on E and vanishes on Y\E; using this polynomial and the definition of

ﬂ2 we have

h’

2 2 2
I WHO = é w(y)(whw)(y)dy 5»"W"O,w,E“"hW"0,l,E'

,E

N

Now, applying Lemma 4.3, we obtain

2 2 2 2 .
"Rh"hwul,K S-""hWHO,E/""hwuo,l,E e uwuo’w,Y.

Using Lemma 4.4, we derive

2 1/2 1/2
“Rh"hwnl,k-i cuwns,E uw“l-s,E'
Adding up this inequality on all triangles K of X%, and using the Cauchy-
Schwarz inequality, we obtain (4.12).
Next, we consider the operator w;. Following [CT] and using the

theory of orthogonal polynomials, we can easily find a polynomial ] in

Pk([O,l]) such that
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1

$(1) =0, [ wy)e(y)dy = 0,
0

¥ € P, ([0,11)/6(0)

(4.13)

]
—
.

$(0) = 0 and $(1)

We denote by (0,y,), 1 < 1 < M, the points of g%, with
i - - h

0 < Y1 < ves K Ym < 1. Setting yp =0 and yy4) = 1, we denote by Ej4 /9,

0 < i<M, the edge with vertices (0,y;) and (0,y;41). Finally, we define

the function wj, 1 <i< M, by
v, (v) =y - Y/ vy =y )) 1f ye Ey1/2

(4.14) LSS ARR FISPNAC AR FISPD L L AL PN X

0 elsewhere.

s

It is an easy matter to see that the set {wi, 1 S'i S.M} is a basis of xi.

We next establish the following lemma.

Lemma 4.6: The following stability property holds for any i, 1 < i { M,

(4.15) IRy 1 _ < c.
RACLRICE

Proof: As a result of (2.2), the support of wi is made of a finite number
of triangles K of Ty, bounded independently of h (see [B, Rem. 3.21]).

Let K be such a triangle, and assume that Fy maps the point (0,1) onto

(O’Yi)’




-30-

1) If K meets Y only in (0,y4), Rhwilk coincides with the Lagrange
polynomial q associated with this point, hence
IRy, . < ch _lﬂl(det B )'1/2";" < ¢
nily g £ elB K ~ <
1,K
— *
2) 'If K has an edge E contained in Y, we introduce the polynomial ¢

of Pk(K) which coincides with ¢ on [0,11x{0} and vanishes at any

point of 2. which does not belong to E, i.e., at any point with coordi-
K
nates (j/k, 2/k), 0 < j <k, 1 <2 <k - j; then, Rhwilk coincides with
* —1
¥y oFK and
-1 1/2  * .
Ry 1) g < clBy nf(det B[ "1y "1 : < e
?

completing the proof.
M
Let w be any function in L2(Y). Setting ﬂiw = 3 Aiwi’ we note
i=1

that the vector of coefficlents A= ()\1)1-515_M is given by

(4.16) GA =,

where G = (gij)IS;,jSM is the square matrix of order M defined by

1
(4.17) ¥(i,1), 1 1,5 <M, g0 = [ v (9, (dy,
i 5 i 3
and where B = (ui)l<i<M is the vector of R! given by
1
(4.18) Wi, 1 <1 <M, ug= [ w(y)v (ydy.

0



-31-

It is easy to see that the matrix G 1is symmetric and tridiagonal. Its

coefficients have been computed in [CT, Lemma 2]:

€1 = Fyqq ~ 74/ +2)  and

(4.19)
&i,141 © (—l)k_l(yi+1 -y ) /k(k + 1)(k + 2).

Using the arguments of [CT]}, we prove the following lemma.

Lemma 4.7: With the notation (4.16) to (4.18), the following estimate holds

2

(4.20) ui/(yiﬂ V)

I~

Af < ec
1 -1

Il &~

i 1

Proof: Let D be the diagonal matrix with coefficients di = 811>

1 <i<M. We have G = D(Id + K), where K 1is a tridiagonal matrix with a

zero diagonal; moreover, all the coefficients of K are bounded by 1/(k +

1). 1f "'“2 denotes the matrix norm associated with the euclidean norm

on R!, it has been computed in [CT] that, for any integer 22>1,

nx"»z <o+ D!

/2(k + )L,

Hence, we deduce

/

-1 L 1/2 -2
(I +K) Ty <1+ ], o0 IR, <L+ o o0 20+ D)7k + )7,

so that 1(Id + K)—lll2 is bounded by a constant depending only on k. This

_proves the lemma, since
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A= (1d + K)'ID'lu.

We are finally in a position to prove the féllowing lemma.

Lemma 4.8: Let s be a real number, 0 < s < 1/2. The operator

satisfies the following stability property: for any function w in

17 (y),

172172
8,Y l—SaY

1
(4.21) HRhwhwﬂl o S_c“wﬂ

Proof: Let w be any function in Hl-S(Y). Setting wiw =

have

,
Rp™h¥ = 121 Bp¥ys

we note that each ¢,, 1 <1< M, is orthogonal in nlee™)

] 1 <] <M, 1#7], but at most two, whence

j’

M
HRhﬂiwnz _<3 ] AfuRhwiuz .
1,9 i=1 1,0

Lemma 4.6 then yilelds

h'h - —

M
IR wlwll2 <e ) A
1,9 1=

Using Lemma 4.7 with the notation (4.18) we obtain

M
2 2
Z USSR U

1.2
HRhwhwﬂl o S_c .

s i

to any

R

h™h
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Noting that the support of ¢1 is Ei—l/Zl“)Ei+1/2’ we compute

< 1 = - pwi T
S RN CANE Vilo, 1,y Gaer™ Yg-)M¥ 0,2,(y;_15Y147) ¥19,1,¢0,1)°

so that

M

M

1.2 2 2
IR, . wi <e § oiwl e ) oy .
R T A Oy ) T s OB

Thanks to Lemma 4.4, we derive
M
1,2
IRemwl® _ < c ) Hwl el ,
R 97— T qm1 SEilp SEp

and using the Cauchy-Schwarz inequality gives the result

Proposition 4.9: For any function u in Hé(ﬂ) such that the pair o

belongs to Hz(ﬂ_) x HG(Q+), where £ and o0 are real numbers,

2 <2<k +1 and o > 2, there exists a pair v; in Vé such that

*

(4.22) Hu* - Vs

1 < efh® LuuTy + %t g
- - +
£,8 0,8

Proof: Let s be a real number, 0 < s < 1/2; we take p = 3/2-s. We

* -
choose Vs as in (4.4) with gq; equal to Rhwh(nﬁu+ - Thu ). Then, we
have

"éﬂf +q9 nﬂw1 0,

belongs to Vé. Moreover, we compute

o %

so that v
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I - vl < lu - Tu u + IR m (" - TuD) + e - 1Pt
u vl < Mu N _ Rh"h u Thu _ u l'INuII +
’ 1,9 Q
<u - Tu + IR, T, (u - 7'u—)ﬁ + WR 7 (u+ - pu+)ll
AS h - h"h h - IR Ty
1,9 1,9
+ ot - 1P
N ot
Lemmas 4.5 and 4.8, together with (4.8), imply
% - - -1/2, - -1/2
Tu vsl < u~ Thu b+ lu Tﬁu ns’Ynu Tu nl-s,y
1,0
+ _ p +1/2 + _ _p +1/2 + o+
+ fu HNu Hs’Ynu HNu “l—s,Y + llu HNu “1 Q+.
b ]
Using the trace theorem, we obtain
* * - - - - —
lu - vaﬂ < Ju - Thu 0 _+ hu Ahu n1/2 - iﬁu “1/2 _
- 1,9 s+1/2,9 3/2-s5,9Q
+ + + + +
+ - ng 1172 - l'[gu 172 o ' - Il.gu T
s+1/2,Q 3/2-s5,Q 1,9

Finally, estimates (3.2) and (4.2), together with an interpolation argument,

the trace theorem and Lemma 4.1 prove the result.

Remark 4.10: Here also, the error is better for the integral matching condi-
tion than for the ponctual one. Indeed, in (4.22), the two discretization

parameters are involved in a completely independent way.
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5. FINAL ESTIMATES AND CONCLUSION
First, we recall an estimate which follows at once from a standard result

in spectral methods [CQ2, Lemma 3.2] [MQ, Formula (3.22)].

f+
belongs to Hp(ﬂ+), where p 1is a real number > 1, the following estimate

holds for any w = (v, wy) in Vg

* % -
(5.1) (% ,wg) = (£ W < N Pasty L
p,Q 0,0

Our main results are stated in the two following theorems.

Theorem 5.2: Assume that the solution u of problem (1.1) is such that the

pair u* belongs to HZ(Q-)XHO(Q+), where o 1is a real number > 2.

Assume moreover that the function f of LZ(Q) is such that the function
ft belongs to Hp(9+), where p 1s a real number > 1. Then, in the case
of the ponctual matching condition, the solutions u and us of problems

(1.1) and (2.15) satisfy

(5.2)

* * - - - -
lu - UGI < c{hN1/2¢1ogN fu | + (ho 1 + N1 d)uu+l + F N1 pIf+l }.
- - +
2,0 o,Q P, Q

Theorem 5.3: Assume that the solution u of problem (l1.1) is such that the

pair o* belongs to Hz(ﬂ_)XHo(Q+), where 2 and o are real numbers,

2 <2<k +1 and o > 2. Assume moreover that the function f of LZ(Q)

i{s such that the function f* belongs to Hp(9+), where p is a real
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number > 1. Then, in the case of the integral matching condition, the solu-
tions u and us of problems (1.1) and (2.15) satisfy

* * -1 - - -
(5.3) ' - ugh < et hiaT o+ Mt s Py .

}
+ +
2,Q g,8 P,

Proof: We set & = (h,(N - 1)_1). Of course, we apply Proposition 2.5 and,
in (2.20), we choose v; = (Vh’vN) equal to the pair defined in Proposi-
tions 4.2 and 4.9 respectively, but with 8 replaced by 3. Since wy
belongs to QN_1(§+) and the quadrature formula (2.12) is exact on all

*
polynomials of degree < 2N-1, this implies that, for any LA in Vso

ko x %
a(vé,wé) = as(vs,wa).

Then the estimates (5.2) and (5.3) follow from (2.20), Propositions 3.6 and
3.9 respectively, Propositions 4.2 and 4.9 respectively, and Lemma 5.1.

By a classical duality method, it is possible to derive an improved esti-
mate for fu - uGH in the case of the integral matching condition.

0,0

Proposition 5.4: Under the assumptions of Theorem 5.3, in the case of the

integral matching condition, the solutions u and us of problems (1.1)

and (2.15) satisfy

-1 -1 - l-0 -1, +
lu - uG“O,Q S.c{h (h+ N a1 _+N (h+ N “)iu +

2,9 o,
(5.4)

+ NPty e
0,9
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Proof: We have

lu = ugl = sup |, [ (u - us)(x)g(x)dx/ngﬂ

0,0 geL?(Q) @

0,0°

Let g be any function in LZ(Q). The unique solution w in HS(Q)
the problem

-Aw = g 1in Q,

(5.5)

w=0 on 299,
satisfies
(5.6) Iwll < cligl

2,0 ~ 0,0°

*
Setting Uy = (uh,uN), we compute

[ (u - ug)(Oe(x)dx = ale” = ug,w) + [ (36/3n)(0,3) (uy = uy)(0,y)dy.
Q Y

Hence, for any wz in v, with ¥ = (h,(N - 1)_1), we have
§

f dx = x % % % *  * x ok
d (u - u5)(x)g(x) x = a(u - Ug, W = WG) + (f ’WG) - (f ’WG)G

+ [ (3w/3n)(0,y) (uy - u, )(0,y)dy.
Y

Choosing w§ as defined in Proposition 4.9 and using Lemma 5.1, we obtain

of
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- * -
[ (v - ud@glx)dx < ef{(h + N Ly - u:" T L,
Q = 0.9 9

(5.7)
+ (aw/an)(o,y)(uN'- u, )(0,y)dy.
Y

It remains to estimate this last term. But we note that uh'Y is equal
so that
to ﬂhuN,

f (aw/an)(O,y)(uN - uh)(O,Y)dY
Y

f [(3w/3n) - ﬂh(aw/an)](o,y)(uN - ﬂhuN)(O,y)dy
Y

{ [(3w/3n) = m (Aw/3n)]1(0,y)[(u - mu) - (4d - = )(u - u)1(0,y)dy

| A

1(3w/9n) - nh(aw/an)n0 Y(nu - muly Y + H(id - nh)(u - uN)nO Y).
Using (3.9) and (3.10) yields
f (aw/an)(O,y)(uN - uh)(O,y)dy‘S c hl/znaw/ann

Y 1/2 ,y

21207 4+ n /2t - ul D

2,0 1,Q

(h

which together with (5.6) and (5.7), gives (5.4).

The detailed analysis we have performed allows us to compare the two
algorithms, corresponding to different matching conditions. 1Indeed, whatever
the regularity of the exact solution is, we obtain better convergence results

in the case of the integral matching condition. Since we have already noted
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that the computational cost of the two methods is of the same order, we think
that this last algorithm has to be preferred. Numerical tests3 [KP] which are
currently being implemented should confirm the theoretical results.

As already stated in this paper, we are only concerned with a model prob-
lem on a model domain. However, in this very simple example, it turns out
that the order of accuracy in the finite element domain is simultaneously re-
stricted by the degree of polynomials and by the regularity of the solution,
while in the spectral domain it is only limited by the regularity of the solu-
tion. That is why we believe that, in more general problems, the finite ele-
ment domain must be chosen in such a way that it contains a neighborhood of
both the singularities of the solution (in the case of hyperbolic equations
with shock waves for instance) and the singularities of the boundary of the
domain (for instance, corners of polygons which induce singularities of the
solution even if the righthand member is very smooth). Then, local refine-
ments of the mesh can be applied to improve the convergence, in a much simpler
way than for the p-version of finite elements. These techniques are presently

being developed by the second author.3
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