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A bst r a d  

This report summarizes the progress of the research supported by NASA Grant 

NAG-1-643. With the goal of tailorability in mind, the in-plane stiffness characteristics 

of a particular grid stiffened plate configuration under axial and shear loads have 

been studied. The contribution of the skin to the stiffener network and the resultant 

skidrib interaction is analyzed. For the given plate geometry and loads, it is shown 

that an optimum configuration does exist. 

In order to achieve optimally designed practical plate configurations, buckling 

constraints need to be included in the design. Due to the complex geometry and 

loading of the plates, a simplified local buckling analysis of isolated stiffeners and 

triangular skin elements between the stiffeners is considered. Development of a 

stiffener buckling analysis that represent stiffeners as shear deformable plate 

elements is presented. 
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Introduction 

The potential advantages of applying grid stiffening concepts to composite structural 

components are numerous and varied. They include high stiffness-to-weight ratio, 

tailorability, damage tolerance, and economy of manufacture. 

One of the earliest grid stiffening concepts was isogrid, so named for its 

pseudo-isotropic nature. While this may be appropriate for some applications, most 

structures have higher stiffness and strength requirements in specific directions. 

Thus it is expected that the efficiency of stiffened composite plates can be improved 

by tailoring their properties and geometries to meet the requirements of a specific 

application. 

The work being performed for designing minimum weight grid stiffened plates under 

combined in-plane loadings is discussed in this report. The initial effort has 

concentrated on developing appropriate modelling of a basic element of this plate 

configuration in order to understand the response of these plates under the individual 

load cases. A parallel work concentrated on the development of a simplified buckling 

analysis of plate sub-components in order to incorporate practical stability constraints 

into the design procedure. 

Stiffness Characterization 

The work to date has focused on the in-plane stiffness characteristics of a grid 

stiffened composite plate under tension and shear loads. In general, a typical panel 

would consist of a laminated composite skin with a network of attached rectangular 

cross-section ribs, Figure 1. As shown in the figure, a single stiffened cell was 

isolated for analysis. The reasons for this are two-fold. First, in modelling a large 

panel with a repetitive stiffener pattern, geometric symmetry can be exploited to 
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reduce the problem to one of analyzing a single representative cell. Thus, a fine 

mesh can be used to model the component without incurring excessive 

computational-expense. Secondly, some thought has been given to examining low 

width-to-length ratio structures, such as beams or ribs, where there may only be a 

single row of cells in one direction. With appropriate boundary conditions the same 

cell mesh can thus be used to model either a large panel or a slender member. 

The particular cell under investigation was 254 mm (10 in) long by 147 mm (5.77 in) 

wide with a 60 degree included angle between the stiffeners in the axial direction. 

The skin thickness and stiffener width remained constant at 2.54 mm (0.1 in) and 19 

mm (0.75 in) respectively. In line with current filament winding manufacturing 

techniques, the ribs were composed of unidirectional material. The skin was 

quasi-isotropic, with a (0/ + 49-45/90) layup. Elastic properties were representative 

of a typical graphite-epoxy material. 

Since the objective of this task was to study riblskin interaction, a design variable 

'stiffener ratio' (SR) was defined to be the ratio of stiffener height to skin thickness. 

The stiffener ratio of SR=O represents an unstiffened rectangular plate, while SR -P 

00 approaches a lattice grid (no attached skin). In practice, the lattice grid was 

modelled by setting the skin properties equal to zero. 

Axial Loading Results 

In this portion of the study, it was desired to model a representative portion of a large 

grid stiffened panel under uniform axial tensile load. As such, particular attention 

was paid to achieving the proper boundary conditions. To apply the axial load, a unit 

displacement in the x direction was imposed on all the nodes at one end while 

leaving them free in the y direction. However, it was found that the longitudinal 

edges had a tendency to curve or bow outward, see Figure 2. Caused by the ribs 

attempting to pivot or 'scissor' about the central node, the effect increased in severity 
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with larger stiffener ratios. While this behavior may be representative of a cell with 

free edges, for an internal section from a panel it violates displacement compatibility 

between neighboring cells. To eliminate the curvature, nodes along the longitudinal 

edges could simply be fixed in the transverse direction but left free in the axial 

direction. However, this restraint is probably not indicative of most applications 

(unless the panel were contained within a rigid frame) and results in artificially high 

axial stiffness values. 

To model the longitudinal edges properly, it was desired to impose the condition that 

they remain straight, but still allow contraction/expansion in the transverse direction. 

This was achieved by adding a row of elements to each side of the plate, see Figure 

3, with high transverse (E2)  and shear (G12) moduli to reduce the edge curvature, but 

a very low axial (E,) modulus so as to not alter the axial response of the panel. It was 

found that imposing the straight edge constraint with these beam like features 

increased the axial stiffness of all stiffened panels. The effect was more pronounced 

for higher stiffener ratios, rising to a maximum 5.4% improvement for SR = 10 (Figure 

4). 

As shown in Figure 4, the axial stiffness increased with thicker stiffeners, as 

expected. However, it is the structural efficiency on a weight basis, or equivalently 

the stiffness per unit volume (specific stiffness) which is of interest. Except for very 

low stiffener ratios, the efficiency of the panels decreases appreciably with increasing 

stiffener ratio, as indicated in Figure 5. At a stiffener ratio of SR = 10 the specific 

stiffness is only 50% of that for an unstiffened panel. Consistent with this trend, the 

specific stiffness for a lattice grid was extremely low at 0.0364 Nlrnrn‘, which 

represents just 4.4% of the unstiffened plate value. 

The panels appear to be relatively flexible under axial loading because of the 

stiffeners’ tendency to scissor together. Therefore, as the stiffener ratio becomes 

larger, the skin is less effective in controlling this action. Transverse contraction of 
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the panel became increasingly pronounced with the higher stiffener ratios, and in 

particular the lattice panel (Figure 6). 

At very small stiffener ratios the specific stiffness increased with increasing stiffener 

ratio and reached a peak, indicating an optimum value of the stiffener ratio. It is 

believed that the small increase in specific stiffness at the low stiffener ratio was due 

more in part to laminate ply synergism than to geometric stiffening effects. Figure 7 

shows that the addition of a small amount of 30 degree material to the quasi-isotropic 

substrate results in an increased E, for the stiffener material. Therefore, the material 

itself became stiffer, resulting in improved panel stiffness. Unfortunately, this effect 

only appeared at very low stiffener ratios, with the trend to lower moduli giving 

reduced specific stiffness for the panels above SR = 0.25. 

From these results, it would appear that this grid configuration is not well suited to 

axial loading. Since the primary mode of deformation appeared to involve rotation 

of the stiffeners, some means of controlling this would likely show substantial 

efficiency improvements. This might take the form of transverse stiffeners at the 

nodes, which results in isogrid, or employing an anisotropic skin with increased 

transverse stiffness. 

Shear Loading Results 

The problems associated with modelling a panel under shear loads were similar to 

those encountered for the axial case. That is, it was desired to constrain all edges 

to remain straight but still allow free contraction or expansion in both the axial and 

transverse directions. This was eventually accomplished by adding a second pair of 

rows of elements to the ends of the panel. The shear loading was applied by 

imposing a unit displacement in the direction of the diagonal, with the opposing node 

fixed (Figure 8). 
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I ’  Qualitatively, the results were somewhat similar to those for axial loading. With 

increasing stiffener ratio, the shear stiffness rose concurrently (Figure 9). However, 

the peak shear stiffness for SR=10 was 160% higher than that for SR=O, whereas 

the equivalent increase for the axial case was only 90%. On a weight (volume) basis, 

the specific shear stiffness again decreased significantly after an early peak (Figure 

10). Although the improvement at low stiffener ratio was considerably more 

pronounced than for the axial case, the increase was still limited to only about 4% 

over the unstiffened plate, at a SR=0.4. For higher stiffener ratios, the degradation 

in specific shear stiffness was not as severe as that for the axial case. For example, 

at a stiffener ratio of SR=lO the shear panel retained 69% of the unstiffened plate 

stiffness, versus only 50% for the axial case. The lattice panel had a specific shear 

stiffness equal to 0.155 N/rnrn4, which represents 44% of the plate value. This 

displays a considerable improvement over the lattice grid under axial loads, which 

only retained 4.4% of the corresponding unstiffened plate stiffness. Also, the 

deformed lattice grid does not appear significantly different than the stiffened panels 

(Figure 1 l), which again differs from the behavior under axial loading (Figure 6). 

In summary, the stiffened panel behaved similarly to the axial panel in a qualitative 

sense. Quantitatively, the shear panel appeared to be more sensitive to the changes 

at low stiffener ratios, but less prone to degradation in specific stiffness with 

increasing stiffener ratio. The lattice grid in particular displayed much improved 

performance over its axial counterpart. 

Summary of Stiffness Characterization 

Imposing suitable boundary conditions on the stiffened cells (i.e. the straight edge 

constraint) was found to have a significant effect on the results obtained. In the shear 

case, the addition of beams was essential to distribute the nodal point loads, 

eliminating gross local deformations. These results highlight the need to model 

specimen boundary conditions as accurately as possible. 
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For both the axial and shear loaded plates, an optimum specific stiffness existed at 

very low stiffener ratios. Although this effect was more pronounced for the shear 

case, the increase was still relatively small. Aside from this modest initial increase, 

the general trend was to decreasing specific stiffness for increasing stiffener ratio. 

The limiting case was provided by the lattice grids, which displayed poor specific 

stiffness, especially so for the axially loaded example. This result suggested that in 

order to increase the efficiency of the grid stiffened panel under axial and shear 

loads, it is essential to control the scissoring of the stiffeners. 

For the rib plus attached skin panel, preventing the scissoring action might include 

using an anisotropic skin with increased stiffness in the transverse direction. In 

addition, the results for very low stiffener ratios hinted that it may be possible to 

improve the stiffener material properties via judicious choices of rib and skin ply 

combinations. For either the skinned or the lattice panel, the addition of transverse 

stiffeners at the nodes should also result in substantial improvement in panel 

stiffness due to triangulation of the structure. Of course, adding transverse members 

of the same thickness as the original ribs would result in isogrid, with its attendant 

pseudo-isotropic behavior. However, if the panel were to support loads of a 
/ 

directional nature, it would likely be possible to adjust the thickness or width of the 

ribs individually to arrive at a reduced weight configuration. 
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Stability Constraints 

The in-plane stiffness analyses of the previous section were conducted without any 

type of buckling constraints imposed on the designs. Thus, for maximum specific 

stiffness, a design was similar to that of a flat plate with rather low stiffeners. 

However, intuitively one expects that in practice the performance of this structure 

would be poor due to its low out-of-plane bending stiffness, and thus attendant low 

resistance to buckling under compressive loads. Besides the constraints on specific 

stiffness and local failures associated with the material strength failure in the 

stiffeners and the skin panels, constraints against stability failures must be included 

in the design in order to achieve meaningful structures. Global buckling of the panel, 

as well as the local buckling of the skin between the stiffeners and the stiffeners 

themselves must be included in the optimization process. 

In evaluating the suitability of various proposed buckling schemes, it should be noted 

that verification of the model appears to be difficult. Experimental results in the 

literature for buckling tests on grid stiffened composite panels are very limited. The 

data that is reported often exhibits a considerable amount of scatter, generally 

thought to be a result of manufacturing imperfections. Due to the complex geometry 

of the panels, an exact analytical solution does not exist. The best estimate of panel 

response may be that provided by a detailed finite element (FE) analysis, which may 

result in a prohibitively expensive design optimization run. Rather than performing 

a sophisticated finite elements buckling analysis of the grid stiffened plate, the 

approach used in the present study is to use simplified buckling analysis of the 

overall plate and the individual components. Following is the development of the 

procedure for the buckling analysis of the stiffeners. 
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Stiffener Buckling Failure 

Grid stiffened fiber-reinforced composite plates are primarily manufactured as 

filament-wound structures. The filament winding process as an economical method 

of fabrication makes the grid stiffened structural concept attractive. For stiffeners 

with unidirectional fibers, the stiffener material is orthotropic with respect to the 

stiffener axis. For typical high performance composite materials, the shear stiffness 

of such a configuration will be low compared with the longitudinal modulus of the 

material. Even for stiffeners which are laminated with plies of various angular 

orientations, the transverse shear stiffness is low. The low transverse shear 

stiffness, combined with the possibility of low ratios of stiffener length to thickness 

ratio, point to the importance of the effects of transverse shear deformations in 

computing the buckling load for a stiffener. With this point in mind, a procedure is 

developed to predict the critical end load for a composite stiffener. The stiffener is 

assumed to be a simple blade type, and thus is treated as a rectangular plate with 

one edge joining the skin, the opposite edge away from the skin free, and the other 

two edges loaded uniformly along the stiffener axis. The loads for the stiffeners are 

calculated from the finite analysis of the plate already performed for the stresses and 

displacements. The boundary conditions at the loaded edges of the stiffeners are 

probably between that of simply supported and fixed conditions, with indications in 

the literature that it is closer to a fixed condition. In considering anticipated buckling 

modes, if the stiffeners are assumed to buckle simultaneously with the triangular skin 

sub-elements, then the hub of the stiffeners would undergo no rigid-body rotation, so 

that the stiffener end would be fixed except for a small amount of flexibility in the hub. 

One possible treatment is to assume that the stiffener ends are fixed, but that the 

effective stiffener length is greater than the exposed stiffener length by some fraction 

of the hub diameter. Because many of the earlier works have considered simply 

supported ends than fixed ends, the computational procedure developed here for the 

simply supported end conditions. This will result in an conservative design results. 
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In the following analysis the stiffener plate is considered to be a laminated composite 

material which is orthotropic with respect to the stiffener axis. First order shear 

deformation theory is used in a Rayleigh-Ritz procedure to solve for the critical 

buckling load and the buckling mode shape. 

Buckling Calculations 

Theory 

The stiffener is treated as a rectangular plate supported on three edges, with a 

uniform compressive load, N', applied at the two opposing supported edges. The 

plate dimensions and coordinate axes are shown in Figure 12. The plate material is 

assumed to an orthotropic composite laminate. The plate theory used is the 

first-order transverse shear deformation theory for plates, in which shear deformation 

is assumed to be linear through the thicknesses. 

The assumed displacement field in the plate is given by 

where u,, u,, and u, are the displacement components in the x ,  y ,  and z directions, 

respectively, u, v, and w are the corresponding displacements of the mid-plane of the 

plate, and +k and 4y are the rotations due to bending of a material line initially 

perpendicular to the mid-plane, about the y- and x-axes, respectively. (Using the right 

hand rule, the sense of the rotations are j for 4, , and -i for &) The 

strain-displacement relation for small displacements, 

A 



results in the following expressions for strains: 

Energy considerations can be used to derive the differential equations of equilibrium 

for the plate. Assuming a linearly elastic material, the strain energy of the plate, U, 

can be written as 

where SZ is the domain of the plate in the x-y plane. The potential energy of the 

applied loads, V, is 

A 
V =  - fiuidS2 

where S, is the portion of the plate surface where a traction t is applied. The total 

potential energy, n, is 

and by the principle of minimum total potential energy, the variation of the total 

potential energy is zero, or 
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When the loading applied to the plate is limited to in-plane edge loads, the resulting 

system of equations corresponding to virtual displacements of the five displacement 

variables, u, v, w, &, and by, are: 

where the in-plane edge force resultants, Ni, the moment resultants, Mi, and the edge 

shear force resultants, Qi , are given by 

2 

and the transverse force term, N, is 

i = 1 , 2 , 6  



which arises by considering the projection of the in-plane force resultants on the 

z-axis for the case where the plate is deflected. 

To treat the buckling of a plate stiffener, consider the following boundary load 

conditions: 

From the first two of equations (a), we have the solution that 

so that we can now limit our consideration to the following three equilibrium 

equations: 

Consider the constitute equations for an orthotropic lamina with respect to its 

principle axes. For the transverse shear, we have the relations 

where the symbols will be defined presently. The constitutive equations relating the 

in-plane stresses and strains are those for an orthotropic plate where the transverse 

normal stress is zero, and in summary we have the following constitutive relations: 
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where the same contracted notation is used for stresses, ui as was introduced for 

strains in equations (a), and where 

Y12E2 
Q12 = 

E2 

1 - Y12Y2i 1 - Y12Y21 1 - Y12Y21 
Q22 = 

El  
Q l l  = 

where E, and E, are Young’s moduli, y,2 and y2, are Poisson’s ratios, and GZ3, GI3 and 

G,, are shear moduli, the subscripts having the usual meanings. 

To transform the constitutive relations for the lamina to an arbitrary coordinate 

t ra nsfo r m at io n , 

cos0 -s in0  0 

s in8 cos8 0 

0 0 1  

{::} Z’ 

or 

where the primed axes are the principle orthotropic axes. The the transformation for 

a fourth order tensor is 

where cjk, is in the unprimed axis system. Noting that in expanded notation 
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the transformation results in 

all = Q~~  COS,^ + z ( Q ~ ~  + 2Q66) sin28 cos2e + Q~~ sin4e 

aI2 = ( Q ~ ~  + Q22 - 4Q66) sin2e cos2e + Q ~ ~ (  sin4e +  COS^^) 
Q22 = Q~~ sin4e + z(QI2 + 2Q66) sin2@ cos2e + Q~~ C O S ~ B  

a16 = ( Q ~ ~  - Q~~ - 2Q66) sin e C O S ~ B  + (oI2 - Q~~ + 2Q66) sin3e COS e 
Q26 = ( Q ~ ~  - Q~~ - 2Q66) sin3e cos e + ( Q ~ ~  - Q22 + 2Q66) sin e C O S ~ B  

Q66 = ( Q ~ ~  + Q~~ - 
C, = C, cos2e + c,, sin2@ 

C,, = c,, COS e + c,, sin e 
C,, = (c,, - c,,) cos e sin e 

(21) 
- 

- 2Q66) sin2e cos2e + Q,( sin48 + COS~B) 
- 

2 2 

Substituting in the expression for strains in terms of the assumed displacements, the 

constitutive relations in the unprimed axis system are 

Consider a laminate made of k orthotropic layers, each oriented at some angle with 

respect to the reference axes. Integrate equation (22) over the thickness to get the 

following constitutive relations between the resultants of equations (9) and the 

assumed displacements: 
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All A16 611 ' 1 2  ' I 6  

. A26 612 ' 2 2  ' 2 6  

616 B26 ' 6 6  

Dll  D12 D16 

. SYM . . D22 D26 

. .  * D66 9 x r y  + 9 y y x  

where K2 is the commonly used shear correction factor, assumed here to be (5/6), 

and 

where hk-, and h,, are the z-coordinates of the lower and upper surfaces, respectively 

(positive z being up), of the k-th lamina with respect to the mid-plane of the plate. 

We now restrict consideration to laminates which are orthotropic with respect to the 

reference axes. These include unidirectional and symmetric cross-ply laminates. For 

these laminates, 6, = 0, i j  = 1,2,6, and A,, = A,, = D,, = D,, = 0. For an orthotropic 

material, equations (23) reduce to 
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To employ the Rayleigh-Ritz procedure, begin by recreating the variational 

statements used in deriving the governing differential equations. Multiply the three 

equations (13) by the virtual displacements Sw, &bX, and respectively, and 

integrate over the x-y domain of the plate: 

aQ1 + - aQ2 - N I X y  a2w)SwdQ = 0 
a x  ay a x  

Jsz 
n 

Integrate by parts and apply Gauss' divergence theorem to get 
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where 

where n, and ny are the in-plane components of the unit normal vector at the boundary 

of the plate. 

For plates with a combination of simply supported (S.S), fixed, and free edges, the 

RHS terms of equations (27) are identically zero, since on all boundaries either the 

respective displacement components are specified and have a zero variation, or the 

resultant generalized force components are zero. 

solutions for w, &, and 4" in the following form: 

i= 1 i=l 

We introduce approximate 

i= 1 

where $i(x,y) ,  Oxi(x,y), and eyi(x,y)  are shape functions which satisfy the geometric 

boundary conditions and which are part of a complete set, and A;, B;, and Ci are 

constant coefficients to be determined. The variations which appear in equations (27) 

now become 
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i= 1 i= 1 

When equations (29) and (30) are substituted into equations (27) and the variation of 

each coefficient seen in equations (30) is taken to be independent of the others, the 

following system of equations results: 

Z K i ' A ,  + CKd2ej + C K i 3 C j  = N',CMijAj  i = 1,2, ..., Nw 
j=1 j=1 j=l j=l 

NW N*X N*Y 

C K ~ ~ A ,  + C K ~ B ~  + C K ~ C ~  = o i = 1,2, ..., N~~ 

N W  NSX N+Y 

i = 1,2, ..., N% 

j=l j=l j=1 

C K t l A j  + C K r e j  + c K y C j  = 0 
j=l j=l j=l 

where 
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Jo Jo 

+A,-- 
t b  afii a+j 

Wi 

K1' 'I = j  K 2 ( A 5 5 z x  
0 0  

K,i2 = K2' I' = 
t b  

K 2 ( a 5 5 - - & l x j ) d y d x  
0 0  

Equations (31) can be reduced to a symbolic form as follows which has the form of 

an eigenvalue problem. 

For the critical buckling condition the determinant of the matrix in equation (33) must 

be zero, and the resulting eigenvalues, N'x, are the approximate critical buckling 

loads corresponding to various approximate buckling mode shapes. The lowest 

critical value of N', identified, is the approximate buckling load of interest. 

The required two-dimensional shape functions are chosen here to be built as 

products of pairs of one-dimensional shape functions, one being a function of x, the 

other, a function of y. The following notation for indexing and dimensioning is used: 
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where the superscripts on f (x )  and g ( y )  indicates the associated variable: w, 4x, or 

4, 

Stiffener Representation 

In the following paragraphs the boundary conditions for a simply supported loaded 

end is considered, the shape functions are identified, and the resulting expressions 

for the matrix elements (equations (32) )  are listed. In those expressions, dii is the 

Kronecker delta function, for which 

and for a typical matrix element, we use the notation 

k t  K;’ = K,,, 

implying that i is a function of rn and n by the relations given in equations (39),  and j 

is a function of r and s in the same manner. 

The boundary conditions used for this case are 
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and assuming a nominal half-wave buckling mode shape, the additional conditions 

are specified to discount any contributions not symmetric in x about the line x = L/2: 

x ( $ +  A ,  y )  = w ( $ -  A , Y )  

The following shape functions are used: 

$i(x,y) :  f,,,(x) = sin(2m - I)X- X * g,(x) = y" 

ex,(x,y): fm(x)  = cos(2t7-1- A).- X ; g,(x) = y" 

B,,(x,y): fm(x) = sin(2m - 1 ) ~ -  X ; g,(x) = y ("-1) 

e *  
(39) e 

e 

and when the integrals of equations (32) are evaluated, the following expressions 

result: 

Ki] 11 = K,,, 11 = K2A5511 + K 2 A,I2 

where 

2 p + S + l )  

2e (n + s +  1) 
I, = (2m - 1 ) * R  Smr 9 

(40 - a)  

&("+s-l) 

8 mr 2 ( n + s -  1) 
I, = - 
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(n+s+l ) 12 72 
6 mr ''2 ( n + s +  1) 

K i 2  = Kmnrs = K2AS5(2m - 

22 
Kmnrs = D l l l l  + D6612 = K2A5513 

where 

1 b("+S+') 
I, = C(2m - 1)n-J - 

28 ( n  + s  + 1) 6rnr 

23 
Kmnrs = D1211 + D6612 

where 

(s - 1)(n+s-l) n I, = - (2m - 1)- 6mr 2 ( n + s -  1) 
nb("+s-l) 

6mr 2 ( n + s -  1) 
I, = (2m - 1)- 

33 
Kmnrs = O22I1 + D6612 + K2A4413 

where 

, n = l o r s = l  co 

(40 - b )  

(40 - C) 

(40 - d )  

bt"+s-') 
6 mr 2 ( n + s - 1 )  

I, = - 
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Summary of Buckling Considerations 

The equations governing the buckling of a uniaxially loaded orthotropic stiffener were 

developed using a first order shear deformation theory for plates. An approximate 

solution procedure was developed and implemented on a computer using the 

Rayleigh-Ritz method, for plates with simply supported loaded ends. The method 

also adapts easily to the treatment of uniaxially loaded orthotropic plates with other 

boundary conditions. This method can be used in conjunction with a stability analysis 

of triangular sub-elements of the panel skin to form a local buckling criteria for 

designing grid stiffened plates. Currently, buckling analysis of panel skin 

sub-components between the stiffeners is under way. 
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f;, 1.2 : Labeling conventions for end-loaded stiffener. 


