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PREFACE 

We have used a geometric/optical tree canopy reflectance model to study the form and structure of 

savanna woodland in West Africa. The invertible Li-Strahler model was tested for its ability to estimate tree 

size and density (woody vegetation amount) from remotely sensed data in areas of sparse woodland. 

The following report summarizes the research supported primarily by NASA under Training Grant NGT 

05-010-804, and Grant NAGW-788, and comprises the Final Report for the Training Grant. The text that forms 

the body of this report has been submitted for publication, with NASA's support appropriately acknowledged, to 

a refereed journal (IEEE Transactions on Geoscience and Remote Sensing). with Janet Franklin, and Alan 

Strahler as authors. This text will also comprise the central chapter of the dissertation submitted by Janet Frank- 

lin to the Department of Geography, University of California at Santa Barbara, towards completion of her doc- 

torate. 

In addition to the testing of the canopy model, several supporting research tasks were undertaken in the 

course of the project that involved collaboration with other researchers. While they were not directly a part of 

the research presented in this report, Janet Franklin's participation in them was at least partially supported by the 

Training Grant. We anticipate that several research papers will result from those collaborations that are still in 

progress. We have included abstracts of those tasks in the Appendix. When the tasks are completed and 

manuscripts are produced, they will acknowledge the support of the NASA Training Grant, and copies will be 

forwarded to NASA. 



INVERTIBLE CANOPY REFLECTANCE MODELING OF 

VEGETATION STRUCTURE IN SEMIARID WOODLAND 

ABSTRACT 
The Li-Strahler canopy reflectance model, driven by Landsat Thematic Mapper (TM) data, provided 

regional estimates of tree size and density within twenty percent of sampled values in two bioclimatic zones in 
West Africa. This model exploits tree geometry in an inversion technique to predict average tree size and den- 
sity from reflectance data using a few simple parameters measured in the field (spatial pattern, shape, and size 
distribution of trees) and in the imagery (spectral signatures of scene components). Trees are treated as simply 
shaped objects, and multispectral reflectance of a pixel is assumed to be related only to the proportions of tree 
crown, shadow, and understory in the pixel. These, in turn, are a direct function of the number and size of 
trees, the solar illumination angle, and the spectral signatures of crown, shadow and understory. Given the v e -  
ance in reflectance from pixel to pixel within a homogeneous area of woodland, caused by the variation in the 
number and size of trees, the model can be inverted to give estimates of average tree size and density. Because 
the inversion is sensitive to correct determination of component signatures, which is a difficult procedure at best, 
predictions of size and spacing are not very accurate within small (e. g. 10-100 ha) areas. However, individual 
errors cancel when larger regions are considered, and the prccedure may predict size and density of trees over 
large areas of open woodland with good accuracy. 

REMOTELY sensed data are commonly used to produce thematic land-cover maps, but also can provide quan- 

titative information on biophysical variables, such as vegetation structure, amount, productivity, (reviewed in [l] 

and [23), photosynthesis, and transpiration [3] [4]. These biophysical characteristics of vegetation and their spa- 

tial and temporal distribution are critical inputs t~ ecological models that describe the interaction between the 

land surface and climate, energy balance, and hydrologic and biogeochemical cycles [5J 161 13 [SI 191 [lo] 1111. 

Remote sensing provides the only too! that can measure these variables for large areas [121 [13] [141. In this 

paper we use a canopy reflectance model and multispectral satellite data to estimate canopy structure in sparse 

woodland, a vegetation type of great spatial extent and importance. 

A family of mathematical models of the reflectance of a plant canopy composed of discontinuous woody 

cover allows the direct estimation of plant size and density from remotely sensed reflectance data [15]. These 

Li-Strahler models are geometric in character, treating trees (plants) as solid, discrete, three-dimensional objects 

on a contrasting background. They use geometric optics to estimate the proportion of each pixel in tree canopy, 
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shadow, and background. In the simplest model, tree density is assumed to be sufficiently low that the overlap- 

ping of trees and shadows may be ignored. Using this simple model, Li and Strahler [15] predicted tree size 

and density from Landsat MSS data within ten percent of actual values for sparse pine forest in northern Califor- 

nia. 

We have extended this model and tested it using Landsat Thematic Mapper data in a different 

environment where the basic assumptions of the model hold, but the parameters must be modified. The model 

was tested in sparse woodland and wooded grassland in the Sahelian and Sudanian bioclimatic zones in West 

Africa. 

11. BACKGROUND 

In plant canopy reflectance modeling, radiative transfer theory and geometric optics are used to predict the 

reflectance of a plant canopy as a function of the biophysical properties of the canopy elements, such as the size, 

shape, spatial distribution and optical properties of plants or plant parts. If a reflectance model can be 

mathematically inverted, the biophysical properties of the plant stand can be inferred from spectral reflectance 

measurements. The simple Li-Strahler model describes reflectance as a function of vegetation structure for a 

canopy composed of large woody plants distributed at low density on the landscape. The model represents an 

early formulation of a general modeling approach which explicitly treats the interaction of three-dimensional 

illuminated discrete objects with the spatial sampling interval imposed by a digital image [16] [171 1181 1191 

[20] [21] [22]. In the simple model it is assumed that the canopy is imaged by a multispectral scanner with 

pixel size several times larger than tree size, but with resolution fine enough that the sampling unit interacts with 

the size and placement of the trees. Thus, the model predicts variance as well as average reflectance. It uses 

covariance statistics from estimated mixtures of scene components across pixels for inversion to predict average 

tree size and density in a stand. While other canopy models are invertible, most predict the bidirectional 

reflectance distribution function (BRDF) of a canopy, and in inversion use field or aircraft radiometric measure- 

ments from varying look angles to predict some property of the vegetation, such as Leaf Area Index &AI) [23] 
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[241 [251 [26] [27], or leaf reflectance [28]. The Li-Strahler model is different from these other models in that it 

explicitly considers discretely distributed trees. 

A. Formulation of the Canopy Model 

The simple Li-Strahler model is discussed in detail elsewhere [15] [29] and will be reviewed in this sec- 

tion for clarity. The only modificatioc to the simple model is the change in the shape parameter. The model 

assumes that a woodland stand can be modeled geomeVically as a goup of solid objects (trees) with simple 

shapes, casting shadows on a contrasting background (understory, grass or soil). Furthermore: 

- A tree cmwn is a simple geometric form. In the sparse woodland, we use an ellipsoid on a stick (Fig. 1) 

for trees of all sizes. 

- Tree counts vary from pixel to pixel as a Poisson function with a fixed density, i. e. the spatial pattern is 

random at the scale of sensor resolution. 

The size distribution function of trees is known, so that Cr, the coefficient of variation of squared crown 

radius, can be determined for the stand. 

The tree crown and its associated shadow have spectral signatures that are distinct from that of the back- 

ground. 

- 

- 

The reflectance of a pixel is modeled as a linear combination of the signatures of scene components (illuminated 

tree crown, illuminated background, shadowed tree, and shadowed background) weighted by their relative areas. 

Pixels from an area of homogeneous tree cover can be used to estimate average reflectance of a stand of a given 

density. Interpixel variance exists because the number of trees per pixel and their size distribution vary. In the 

simple model, we ignore overlapping of trees and shadows, which would also produce pixel-to-pixel variance. 

Other proportion estimation models similarly predict cover as a function of brightness in canopies with incom- 

plete cover [30] [31] [32] [33] [34] [35]. This effect has been modelled by Otterman [36] [37l. However, the 

Li-Strahler model solves for tree size and density using the distribution functions and statistical independence of 

these two parameters. 
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I )  Model Parameters: The variables describing the stand are: 

A Area of a pixel. 

n 

N 

r 2  

R 

R2 

C,, 

Number of trees in a pixel. 

Average density of trees per m2 in a stand ( = E/A) .  

Squared crown radius of tree. 

Average r 2  for a pixel. 

Average R 2  for all pixels in a stand. 

Coefficient of variation of squared crown radius determined for stand. 

m =NR2. 

Note that since sc R2 is the average area of a crown, rnz is the proportion of woody cover in the stand. 

As a three dimensional object, the ellipsoid on a suck casts a shadow on the background. To quantify the 

area of canopy and shadow, a geometric factor, r, is used. r is defined such that mT is the proportion of a 

pixel covered by tree crown and shadow (i. e. the tree cover adjusted to include shadowing). Based on the 

geometry of an ellipsoid illuminated at solar zenith angle 8 (Fig, 1). 

It 
r = X + - - - A o  

case' 

where 

and 

1 - COS0’ P =cos-’ [ [1 + t ] [ sine’ I]. 
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and 

If A,, A,, A,, and A, are the areas of sunlit background and crown, and shadowed background and crown 

within the pixel, then 

A, +A, +A, = m T  

and 

A, = 1 - mr. 

The signature of pixel i in band j , Si;, is then modeled as 

Sij = (AB.G,) + (A;C;) + (A;Z,) + (A,.Tj) 

where G , C , Z and T are the reflectance signatures for a unit area of sunlit background and crown, and sha- 

dowed background and crown, respectively. Equation (1) can be written 

Si; = A, G j  + (1-A, ).Xo 

where Xo is the average reflectance of a tree and its associated shadow. 

Fig. 2 (modified from [15]) shows an idealized plot of the four spectral components on greenness (i. e. 

infrared to red contrast) and brightness spectral axes. A bright soil background (G) has high brighmess and low 

greenness, and sunlit canopy (C) has high greenness and is less bright than the background. Shadowed canopy 

(T) and background (Z) are less bright and less green. The composite tree signature Xo falls within the triangle 

CTZ. When cover is low, the pixel signature S varies along the line GXo with distance from G proportional to 

tree cover (m). However, as cover increases, the proportion of shadowed background decreases and the relative 

proportion of sunlit crown increases. This occurs because shadows fall on the near-vertical sides of trees instead 

-5- 



FINAL REPORT, NASA GRANT NGT 05410-8W 

of the background, and are thus less visible from nadir. At full canopy closure, only sunlit and shadowed 

crowns are present. The composite tree signature is then X,, which falls on the line TC. As coverage 

increases, the signature will thus diverge fi-om the line GXo toward X,, and the simple (linear) model is no 

longer appropriate. 

Substituting the expressions for A, and (1 - A,), dropping the subscripts in (1) for convenience, and solv- 

ing for m we have for each pixel 

G - S  
T(G - X o )  m =  

From (2) we can derive the variance of m : 

where V ( S )  is the variance in reflectance for all pixels in the stand. 

For multiple spectral bands m should be the same if determined from any band. However, variance in the 

signatures and stand parameters will cause m to vary, and thus m can be taken as a weighted average or 

selected as the median value. 

2) Model Sensitivity: The sensitivity of this model to noise in S and the component signatures, and to 

errors in estimation of parameters, can be shown by taking the partial derivative of m with respect to these vari- 

ables. 

(because when cover is low S = G )  1 - - am S -Xo 
aG T(G - X o ) 2  T(G -Xo) 
- -  - 
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When the spectral contrast between background and tree is high, sensitivity to noise in S ,  G and Xo will be 

reduced, because (G - Xo) is in the denominator. When density is low (m is small), noise or error in estimat- 

ing Xo and r are less important than t'he contrast between tree and background (G - X,), because m is in the 

numerator. 

3)  Inversion of the Model: If size and density are independent, then the expressions for the mean and vari- 

ance of independent products can be applied ([15] p. 709). If V(R2) = V(r2)/n = V(&N , then 

V ( m )  = (N + C , ~ N  + = (M + C , ~ M  + C,,R?R?. (4) 

where M is the average m in the stand. Solving for R2, we obtain: 

Applying the approximation = 1 + xI2, we obtain: 

This should be reasonably accurate if V ( m )  is fairly large. Finally, substituting (2) and (3), the expressions for 

mean and variance of m , into (5 )  or (6), R2 and N can be found fiom the reflectance values of the pixels in a 

stand. 

111. STUDY SlTESIN MALI 

The Li-Strahler model was originally developed and tested for sparse pine woodland in northeastern Cali- 

fornia. However, there are many other landscapes for which the assumptions of the model hoId Acacia and 

broadleaf savanna or woodland in Africa also consist of trees at low density, with a uniform, contrasting unders- 

tory of grass or soil at some point in the annual cycle. Further, the plants can be regarded as having simple 
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shapes, invariant with size, and with little overlap, thus casting shadows that can be predicted from tree 

geometry and sun angle. Savanna canopies are more translucent than conifers, having lower LAX, and cast 

weaker shadows. The simple model is still applicable because the components’ signatures are calibrated from 

the imagery, although the contrast between G and XC, will be reduced in this woodland type. I 

Woodland and savanna, or wooded grassland, will be defined as the subtropical and tropical vegetation 

formations where the grass stratum is continuous, trees and shrub cover is greater than five percent and less than 

eighty percent, where iire occurs, and where the growth is closely associated with alternating wet and dry sea- l 

sons [38]. We chose to test the model for woodland sites in Africa because of the global extent and importance 

of this physiognomic type. Woodland and wooded grassland cover ten to twenty percent of the land surface, 

greater than any other surface cover type (except desert and ice) [39]. Dry woodlands and wooded savanna 

(with tree cover greater than ten percent) are presently estimated to cover 486.4 million ha or 22.2 percent of the 

continent of Africa, including 8.6 million ha in Mali [40]. Woodlands are often monospecific (one or two dom- 

I 
I 
I 

I 

inant types of trees) or nearly so, of low density, have a uniform herbaceous understory, and occur over exten- I 
sive areas of flat terrain. 

We tested the model in study sites in the Sahelian and Sudanian bioclimatic zones in Mali, West Africa 

(Fig. 3). The Sahel is usually defined with reference to mean annual isohyets and corresponds to the 200-600 

mm annual precipitation zone [41] [42] [43] [44] [45]. The vegetation of the Sahel ranges from an open annual 

grassland with less than ten percent woody cover in the north to perennial grasses with 25 percent or more tree 

cover in the south. In the Sahelian zone in northern Mali, four test sites were located in the Gourma region, 

three from among those being monitored by ILCA/Mali (The International Livestock Centre for Africa) in colla- 

boration with the GIMMS Project (Global Inventory, Monitoring and Modeling System; National Aeronautics 

and Space Administration, Goddard Space Flight Center) [46] [47] [48] [49]. The fourth site was added in this 

study. Although tree cover is generally low in the Sahel, woodlands are locally dense. in low-lying inundated 

areas, and all of our sites were located in these dense woodland stands (thirty to sixty percent cover). Three of 
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these sites are dominated by Acacia seyal, one by Acacia nilotica. 

The Sudanian zone is the region to the south of the Sahel, lying between about 1 lo and 13" N in West 

Africa, where the rainfall is 600 to lo00 mm, the rainy season lasts 4 to 5 months, and there is permanent agri- 

culture. The vegetation is a mosaic of open woodland savanna, with trees up to 15 m tall, some closed wood- 

land, and edaphic bush thickets and grasslands [50]. The Sudanian test sites are located within the administra- 

tive region of SCgou, Mali. The crop/woodland type of vegetation is formed when crops are grown under a 

woodland of useful trees that are preserved when land is cleared [51]. Three sites are dominated by Virellaria 

paradoxu (kuitc?), and three by Acacia albidu. All sites are located in the house fields, cultivated areas near the 

village where shrubs and weeds are cleared regularly. 

We emphasize that these sites were carefully chosen based on prior field investigations, reconnaissance, 

and photo interpretation, to be representative homogeneous woodland stands of a certain minimum size and 

range of cover. In order to apply the model more generally, areas of woodland must first be defined in a seg- 

mented or stratified image. 

Iv. METHODS 

Tree shape parameters and tree cover, size and density were measured in the field to parameterize and test 

the model. Sites ranged in size from about 9 to 90 ha (100 to lo00 TM pixels), with most sites about 20 to 40 

ha (200 to 500 pixels). This corresponds roughly to the size of the 1 km diameter circular plots used by Hier- 

naux and Justice [48] in their AVHRR study. 

Four to eight fixed-radius plots were located systematically within sites (at regular intervals on a rectangu- 

lar grid or line) in order to sample all parts of the stand, and not bias the location of the plots. Plot radius was 

fixed within, but variable among sites, and was established by taking preliminary density measurements and 

choosing a radius that would include approximately fifty trees per site (see Fig. 4 for an example of plot size). 

Tree height (H), crown diameter (= a), and height to widest crown diameter were measured for all trees in each 

plot. 
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Average h and b (see Fig. 1) were calculated for the site, and were used with the sun angle for the TM 

scene to calculate r from the geometry of an ellipsoid on a stick. The model parameter C,z was calculated from 

sample data for the sites. Size distribution was examined by inspecting histograms of tree size (expressed both 

as crown size and height) for all sites. Spatial pattern was established by mapping point patterns of 200-900 

trees from low-altitude aerial photographs in sample quadrats within test sites for which there was good photo 

coverage (sites 2, 15 and 20). and analyzing using quadrat analysis [IS] [52] and second-order analysis of inter- 

tree distances 1531. 

Observed cover for the sites was estimated from the sample plot data. Independent cover estimates for 

some of the plots from line transect (from [47l and [49]) and photointerpreted point intercept on a grid (by the 

authors; see [54] for methods) were also used to test the model. These compared favorably with the field meas- 

urements, within the expected range of variance (see [22] Table I). 

TM data were used to test this model. Early dry Season imagery was chosen to enhance the contrast 

between trees (still green for most species) and background (a dry herbaceous layer, or bare soil). The TM 

scene for the Sahelian sites was acquired 9 September 1984 at the end of a very poor rainy SeaSOn [48] [55], but 

just after a local rainfall event in the study area [46]. A second Sahelian scene, acquired 7 May 1985 at the end 

of the dry season, was also used to test the model. The Scene for the Sudanian sites dates from 17 November 

1984, after the harvest, so the fields beneath the tree canopy have been cleared. The mean and variance of 

reflectance for all pixels (S and V ( S ) )  were computed for each spectral band in the test sites. 

The component signatures required by the model are simply the relative brightnesses of the components 

(background, tree and shadows) compared to the mean brightness of the stand, not the absolute radiance or 

reflectance. The signatures were established from the satellite data, because it would have been very difficult to 

calibrate them accurately from field radiometer measurements in a heterogeneous environment, and to project 

them through a modelled atmosphere. Signatures for background and canopy (G and X,) were initially com- 

puted from small training areas in the image, using aerial photographs as a guide. Areas of no tree cover in or 
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near sites were used to estimate G , and pixels with high tree cover were used to estimate X& Comparable and 

satisfactory results were obtained by automatically choosing the extreme pixel values from the histogram of the 

brightness values in the site as the G and Xo signatures. It was possible to predict G and Xo using the model in 

these sites for which N and R2 were known, and compare predicted values to those observed in training sites or 

the histograms. 

The model was tested by providing the stand parameters (I' and C,z> and the spectral parameters (G , XO, 

S and V ( S ) ) ,  predicting R2 and N for each site, and comparing to actual R2 and N from field measurements. 

Observed and predicted values were compared by simple regression. The model was tested for all visible and 

infrared TM bands (1-5 and 7; see Table I for wavelength bands) and then for a subset of bands, TM 3,4 and 7. 

Band 3 was chosen because in our experience red reflectance is strongly related to tree cover [56] [57], Band 4 

because of its relationship to green vegetation amount [58],  and Band 7 because it had the highest variance in 

the sites, and has also been shown to be related to tree cover [59]. These bands are from different regions of 

the spectrum and tend to be uncorrelated. Finally, the model was tested using transformed spectral channels, the 

NDVI (Normalized Difference Vegetation Index [a] [61]) representing image greenness, and the first principal 

component representing image brightness. 

V. RE~ULTS 

A. Stand Parameters 

The tree shape measurements for the sites (height, 8, and crown radius, T )  and the derived model parame- 

ters r and Cr2 are shown in Table 11. The trees in the Sudanian sites are taller, with relatively narrower crowns, 

and in the Sahelian sites, the trees are shorter with relatively wider crowns. In site 15 the trees are essentially 

balls of foliage sitting on the ground, and r is smaller than for site 101 because even though the average crown 

is smaller in 101, it is elevated off the ground and more shadow is visible. The average r for the Sahelian sites 

is 5.1. The Sudanian sites have larger r because the TM scene was imaged later in the fall so the solar angIe is 

greater. Average r for the Sudanian sites is 7.1. 
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Tree size distributions for all sample populations were slightly to extremely right-skewed. This concurs 

with other studies of the West African savanna (summarized in [62]). Log-transforms produced normal-looking 

disuibutions. Fig. 5 presents two examples of size parameters (crown area and height) as log-normalized. Thus, 

if field measurements were not available, the assumption of a lognormal size distribution is valid for these sites, 

and the formula for Cr2 for a lognormal distribution could be used. However, for these sites Cr2 was calculated 

directly from sample data, and ranges from 2 6  to .77 (Table 11). There is no apparent difference in the CrZ 

values between the two regions; however, the value is sensitive to the presence of a few very large crowns in 

the sample population (as in sites 2 and 15). 

Fig, 6 shows the point locations and results of second order analysis for one of the sites. In all sites there 

is generally an inhibition distance of five to ten meters, below which the probability of finding two trees is very 

low, but at relevant sensor resolution (20 to 50 m) a Poisson model is adequate. This is supported by the qua- 

drat analysis (Table XU). At larger distances (50 to 100 m) a Poisson model still fits in many of the sites, 

including the sparser stands (site 2) at densities where the Poisson model broke down in our earlier studies of 

California pine stands 1151. 

The actual tree size (expressed as squared crown radius), density, and cover for the sample sites are shown 

in Table IV. Sahelian sites have small trees at higher density. Sudanian sites have very large trees at low den- 

sity, and generally lower cover. 

In order to compare observed size, density and cover with predicted values obtained by model inversion, 

estimates of sample variance in these quantities are required. These estimates help to indicate how much of the 

difference between the predicted and observed values results from sample variance rather than disagreement 

between model and measurement. For r2, variance is simply determined using the many individual tree count 

measurements for all plots taken at a site. However, for N, the sample size within a site was small, ranging 

from four to eight. To determine whether or not sample variance should be based on within-site measurements, 

or are sufficiently similar between sites or regions that pooled estimates should be used, we conducted three 
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analyses of variance (ANOVAs) (Table V). The ANOVAs showed significant difference at region and site lev- 

els, indicating that pooling was inappropriate. Accordingly, the standard deviations shown in Table IV are based 

on within-site measurements. 

B. Effect of Model Approximations: 

Equation (6) was almost always the best predictor, although in a few cases Equation (5) was better. 

Therefore, (6) was accepted as being a reasonable approximation (V(m) was fairly large), and in all analyses, 

the results from this approximation are presented. 

C. Early vs. late dry season imagery: 

For the Sahelian study region, we hypothesized that the September 1984 image (recorded following a rain- 

fall event) would have a green herbaceous layer of varying density or standing water in sites 15,20 and 21, 

causing low separability of component signatures, and that late dry-season (May 1985) imagery would work 

better in the model. This is true for site 20, the only site for which Goh, (brightest pixel in stand) is darker than 

Gpred (probably due to herbaceous growth or inundated soil in the site). However, the M a y  1985 late dry Season 

imagery did not consistently predict cover better than the 1984 imagery for the Sahelian sites (see Fig. 7). It is 

difficult to discern a pattern with only four points; however, it appears that as long as there is some spectral con- 

trast between background and tree, the model can be inverted. It can be seen in Fig. 8 (shown for 1984 data) 

that for sites 15 and 101, G and Xo don’t separate well in greenness (NDVI). but the contrast is better in bnght- 

ness, and the predictions of the model are reasonable. 

D. Efect of Stand Parameters: 

We used the average values of C,, (.45) and r (7.1 for Sudanian scene, 5.1 for Sahelian), and there was 

no systematic change in the accuracy of predictions. There is little change in the predicted values of RZ and N, 

and no systematic error caused by holding the stand variables constant. Predicted cover values only changed by 

three to four percent, improving or degrading the prediction by only that much (Table VI). 

-13- 
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E.  Effect of Shape Model: 

In order to evaluate the effects of shape on the inversion procedure, we developed an alternative formula- 

tion of for the shape of a hemisphere on a stick. At least some of the trees in each plot could be considered 

to fit this shape reasonably well. To test this change, we calculated r for the sites using the hemisphere model 

to see if it performed better or worse than that of an ellipsoid. There was no consistent difference in the results 

using the hemisphere shape. As r increases, predicted R 2  increases (and predicted N doesn’t change), so, as r 
increases results should improve in cases where cover was underestimated, and vice versa. Since there were 

cases where cover was over- and underestimated, there was no overall improvement in model results (see Table 

VI). 

F.  Component Signature Estimation: 

Using unadjusted component signatures, density (N) is overestimated and size (R’) is underestimated for 

all sites and all bands. This is because the brightest pixel reflectance in the stand (or signatures from tdning 

sites) are overestimates of the background signature G . If G is overestimated, the model predicts too many 

trees, and if N goes up, R2 must go down, so size is underestimated. When observed and predicted G and Xo 

were regressed, the coefficient of determination (r2) values were very high (.96-.99). The distributions of 

G , , ~ G , Z , ~  and XOprcdlX~h were very peaked (see Fig. 9). so the average (median) values of GpradGok and 

Xoprc~XOobs in each region were used to scale C and Xo (.90 and 1.15 in the Sudanian sites, .98 and 1.05 in the 

Sahelian sites). Thus, G is slightly darker than the brightest pixel and Xo slightly brighter than the darkest in all 

spectral channels including the near-infrared (Band 4). and in composite image brightness (the first principal 

component of the spectral data). This pattern is reversed in composite image greenness (the NDVI in this 

analysis). When G and XO are adjusted using these simple scaling factors, the results improved, especially for 

predictions of cover and density. This adjustment was necessary for obtaining reasonable predictions, even 

though it only changed the signatures by a few DNs (“digital numbers” or brightness levels, quantized to 256 

levels for TM data) because of the extreme sensitivity of the model to the component signatures, especially to 
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the background signature G . 

G. Multispectral Predictions 

We tested the model for single spectral bands for all sites (each band is assumed to be an independent 

predictor). When observed and predicted size and density were compared for all sites and all single bands, the 

results were highly variable. However, the results substantially improved when the median predictions from 

among the bands was compared to the observed value. The median improved the correlation between observed 

and predicted values because the scaling of G sometimes caused spurious results for a band. For example, if 

scaled G (GprcJ was closer than S to Xo, the result was a negative R2 prediction, or an extremely large 

predicted N. Because the spectral bands are correlated within spectral regions, the results were also dculated 

for the median prediction from Bands 3, 4, and 7, bands which are not strongly correlated (Fig. 7 and Table VI). 

Results are slightly better for the six band median. Fig. 7 (e) and (f) also shows that although the variance in 

observed N and R2 (estimated f3om the plot data) is large in some cases, it is not as great in the “variance” in 

the multispectral predictions (shown as the range of the three-band prediction). 

H. Transformed Spectral Channels 

Successful inversion of the model requires good spectral separability of G and XO (Fig. 2); thus, we 

explored the use of multiband transforms to define G and Xo. For this analysis, we selected the first principal 

component of the images as a brightness channel, and used the NDVJ as a greenness channel. Although NDVI 

is not necessarily orthogonal to the fkst principal component, it is well known to respond to green vegetation in 

a fashion independent of image brighness. Averaging the predictions of size and density obtained from these 

two transformed bands did not produce a better result than the median of Bands 3.4 and 7 (Table VI), but the 

results are helpful for graphic interpretation because they correspond to the idealized spectral channels used by 

Li and Smhler in their original formulation of the model. The effect of scaling G is to create a linear relation- 

ship between G ,  S and Xo. Fig. 8 shows the position of G, XO and S for the Sahelian sites (15,20,21, 101) 

for both observed and predicted (adjusted) values of G and Xo. Separation between G and XO is best for sites 
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20 and 21, and cover, size and density are predicted more accurately for these sites than for sites 15 and 101 

where separation is poorer. The patterns are similar for the Sudanian sites. 

I. Regional Estimates 

When the observed and predicted tree size and density are averaged for all sites in a region, the results 

clearly differentiate the two distinctive regions. As Table VI1 shows, the tree dimensions and dismbution are 

very different in the two regions and the averaged predictions for size and density are very close to the observed 

averages for the regions. T-tests show that the regions have significantly different average size and density (all 

at least at the O.OOO5 level). Observed and predicted values for each region are not significantly different; how- 

ever, it should be noted that the samp:e size for the t-test is small. 

VI. SUMMARY AND DISCUSSION 

The models doesn’t predict tree size very well for the ten test sites (r2 = 20). Size is both under- and 

overestimated. The model predicts density and cover better (rZ is .62 to .78) in these test sites, where cover 

ranges from approximately ten to forty percent. It is a reasonable assumption that V ( m )  (variance in cover 

among pixels) is large at this sampling scale (30 m TM pixels), and Equation (6) can be used to approximate R2 

for these samples (100-lo00 pixels). 

The results support our prediction that the model is sensitive to the choice of the G signature and to the 

separability of G and Xo. When G is overestimated, tree size is systematically underestimated, and density 

overestimated. Scaling G dramatically improved results. Sites and spectral bands with good separability 

between G and Xo generally showed better predictions (sites 1,20,21, Bands 3, 5.7). although there were 

exceptions. Also in support of our predictions for these sites with low cover (small m), the model is not sensi- 

tive to variance or error in estimating tree shape and size parameters (r and C,J. Using a different shape model 

that slightly changed r, or using standardized r and C,z had very little effect on the overall results. 

Best results were obtained by using all spectral channels for the predictions, and selecting the median 

value from among them. This is because scaling the component signatures can cause spurious results for an 
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individual band. The best results come from selecting the median predictions from al l  six visible and infrared 

TM bands, even though some spectral bands are strongly correlated, and the predictions are therefore not 

independent. Reasonable predictions of tree size and density were also obtained using three largely uncorrelated 

bands (3,4 and 7). Neither parameter was systematically over- or underestimated for the sites. 

The sites that were not predicted well are helpful in illustrating the limits of the simple model. Cover is 

underestimated in site 20, which has the highest cover value. As cover increases, trees and shadows do, in fact, 

overlap. Xo will approach X, as shown in Fig. 2. Therefore, our estimate of Xo is too dark, and for a given 

brightness, tree cover will be underestimated. Either tree size is underestimated when variance is low, or density 

is underestimated when variance is higher. However, in this site the actual cover may also be overestimated by 

our plot data (see Fig. 7 (d) and Table IV). 

For several of the sites (2,4, 5, 7), tree density is as low as one to three trees per pixel. In this case, the 

predictions of the model will be strongly influenced by variations in the background (G). This will contribute to 

errors in the prediction of both N and R2. Also, Xo will be incorrectly estimated at low density, causing errors 

in the prediction of R2. This can be seen in site 7. The darkest pixel in the stand doesn't represent XO because 

it contains background. Therefore Xo is too bright and R2 is overestimated. If Xo is assigned a lower bright- 

ness, closer to the values for the other Vilelluriu puradoxa sites (Xo = .98 Xo), the predicted value is much closer 

to observed (see Fig. 7 (c)). 

In site 2, density is overestimated and cover underestimated. This may be because scaled G is still 

brighter than the actual background signature, although when inspecting the imagery €or the stand, there are not 

any anomalously bright pixels included in the training data. However, our photointerpreted cover for the stand 

is much greater than is calculated from the plot data, and closer to the value predicted from the model. In this 

case the observed values for tree size and density may be low, due to sample variance or errors in the field 

measurements. 
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We conclude that at this scale, in small sites on the order of 0.5 km2, variations in the understory signa- 

ture and other stand parameters cause site-specific predictions, particularly of tree size, to be poor. However, 

when predictions are averaged within the Sudanian and Sahelian regions, regional differences in the structure of 

these woodland types are accurately detected and quantified by the inversion procedure. 

Therefore, this procedure could be used most effectively as part of a multistage inventory to estimate the 

average size and density of woody plzus directly over large areas in woodlands ranging from ten to forty per- 

cent cover. In an automated procedure, G and Xo could be selected from the histograms for twenty or thirty 

sites in a stratified region. Cr2 and r can be chosen a priori for a vegetation ty-pe. We would expect a good 

prediction of tree size and density for a stratum within a region based on the average from these sites. We feel 

that the model could be inverted using Landsat MSS data in this landscape because stands are sufficiently large 

that even at 80 m resolution there are enough pixels (100 or more) to estimate variance. 

Because size and spacing are often related to leaf and woody biomass, this technique could also provide 

woodland biomass estimates over large areas [63]. Besides their obvious relationship to standing biomass, 

important enough in itself, height and spacing couId be used to determine surface roughness and other parame- 

ters important to land-surface climatological models [ll]. Also, regional-scale ecological models of ecosystem 

photosynthetic production and biogeochemical cycling may require input parameters of vegetation structure of 

the tw obtainable through our inversion procedure [4] [MI. This is especially true in open woodland where 

tree canopy is not homogeneous, and its interaction with radiation and the atmosphere near the ground cannot be 

approximated by homogeneous plane-parallel models. 
4 

Finally, the inversion procedure may help monitor desertification - the spread of desert-like conditions 

into arid and semi-arid lands, such as the Sahel, caused by drought and overexploitation of vegetation and soil in 

the region [65]. In general, drought reduces density by killing individual trees (observed by Poupon [a]), while 

over-use of trees (coppicing and woodcutting for fuel and fodder) reduces crown area, while number of individu- 

als may actually increase [67]. These two phenomenon could be distinguish in a regional context using the 
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inversion procedure, which could be applied to historical Landsat data to examine changes in the recent past. 
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TREE SHAPE h' 

Site I species I n r Height (m) Crown Radius (m) 
mean o mean CT crz 

15 I Acacia nilotica I 
20 Acacia seyal 
21 Acacia seyal 
101 Acacia seyal 105 

8.35 2.44 3.67 1.19 7.00 
8.61 2.94 4.13 1.60 6.67 
11.07 1.96 4.15 1.02 7.28 
13.17 3.01 5.57 2.06 7.10 
11.58 2.58 4.91 1.72 7.07 
12.60 2.71 4.72 1.36 7.55 
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S164 
.7780 
.2612 
.5682 
.5616 
.2969 

Table I 

1 Vitellaria paradom 
2 Vitellaria paradom 
3 Acacia albida 
4 Acacia albida 
5 Acacia albida 
7 Vitellaria paradom 

TM SPECTRAL BANDS 

0.45-0.52 
0.52-0.60 
0.63-0.69 
0.76-0.90 
1.55-1.75 

7 2.08-2.35 

35 
50 
32 
63 
60 
50 

Table 11 
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Table I11 

QUADRAT ANALYSIS: FIT TO POISON DISTRIBUTION 
- 

n n 
Size quadrats points mean 

Site 15 (Acacia nilotica) 
784 

4.7 9 
10 

196 587 3.0 
8.0 12 

20 
25 121 567 4.7 

81 547 6.8 3.1 13 
9.1 18 

30 
35 64 587 9.2 
40 49 587 12.0 20.9 24 
50 25 466 18.6 '10 27 

20 182 838 4.6 10.0 10 
25 121 877 7.2 24.8 18 
30 81 850 10.5 25.9 19 
35 56 780 13.9 '15 28 
40 42 757 18.0 '51* 30 

10 625 223 0.36 3.1 0 
144 212 1.47 0.3 4 

3.9 7 
20 

64 213 3.3 
5.8 14 

30 
40 36 213 5.9 
50 25 223 8.9 6.4 17 

213 13.1 11.3 26 60 16 

x 2  df 

587 0.7 4.7 3 

Quadrat 

Site 20 (Acacia seyal) 

Site 2 (Vitellaria paradoxa) 

* significantly different at .05 level 
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(Crown radius)* (m2) Density (ha-’) 
mean d n mean d I n Site 

Table IV 

Cover (%) 
sampled I photo 

1 14.85 10.67 35 45.74 13.84 4 22 

3 18.25 9.33 32 35.72 7.44 4 21 

5 27.02 20.25 60 12.74 8.37 6 11 

2 19.58 17.27 50 30.36 6.65 6 19 

4 35.18 26.52 63 21.40 12.23 8 24 

7 24.05 13.11 50 10.61 3.08 6 08 

Table V 

27 

ANOVA OF DENSITY IN SAMPLE SITES 
Source of Variation F D 

15 14.21 11.73 56 71.30 40.53 4 32 
20 10.53 6.97 87 168.07 24.63 3 56 
21 7.03 5.04 75 149.21 26.29 4 33 

101 6.82 5.19 105 133.69 154.55 4 29 

r 

Regions vs. plots within regions 1357.51 O.oo00 
Sudanian Sites, sites vs. plots within sites 61.82 O.oo00 
Sahelian Sites, sites vs. plots within sites 4.51 0.02 
Sahelian Sites, without site 101 61.82 O.oo00 

23 
39 
44 
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Region 

Table VI 

SUMMARY OF MODEL RESULTS 
REGRESSION, OBSERVED VS. PREDICTED STAND PARAMETERS 

Trial a b r2 

R2 N 
n Observed Predicted Observed predicted 

mean o mean o mean o mean o 

COVER 

Sudanian 
Sahelian 

Six Bands Median .674 +.036 .74 
Bands 3 ,4 ,7  Median .922 +.094 .62 
Standard r and Cr, .038 +.682 .72 
Hemisphere shape model .039 +.652 .76 

Six Bands Median .586 +8.352 .28 
Bands 3.4.7 Median .756 +7.449 .16 
Standard r and Cr2 .348 +6.511 .18 
Hemisphere shape model .399 +5.207 .18 
Brightness and NDVI .270 +13.170 .04 

DENSITY (N) 

TREE SEE (R2> 

6 23.16 7.30 27.42 10.24 26.10 13.69 38.22 25.80 
8 9.65 3.23 12.89 5.25 130.57 38.83 123.97 44.40 

Six Bands Median .822 +15.280 .72 
Bands 3 ,4 ,7  Median .807 +17.992 .75 
Standard r and C,, .810 +7.887 .78 
Hemisphere shape model .807 +17.992 .75 
Brightness and NDVI .591 +36.750 .17 

Table W 

-30- 



I, J 
Fig. 1 - Tree shape and illumination geometry for an ellipsoid on a stick. 

I I I I I I 

Brightness 

Fig. 2 - Idealized plot of spectral components on brightness and greenness spectral axes. 
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Fig. 4 - A portion of site 15 shown on an aerial photograph with plot size (25 m radius) indicated by the cir- 
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Fig. 5 - Histograms of six dismbutiom for (a) Acacia dofica (crown area) and (d) Acacia albida (height). 
The quantile-quantile (Q-Q> plots represent the data plotted against corresponding quantiles of the normal distri- 
bution (units are standard deviations). If the points fall in a straight line, they are normally distd)uted. (b), (e) 
raw values; (c). (0 lognomd values. 
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'01 Acacia albida (n = 156) 

.- e 
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. . -  . 
Fig. 5 - (cont.) Histograms of size distributions for (a) Acacia nilotica.(crown area) and (d) Acacia albidu 
(height). The quantile-quantile (Q-Q) plots represent the data plotted against corresponding quantiles of the nor- 
mal disaibution (units ke standard deviations). If the points fall in a straight line, they are normally distributed. 
@), (e) raw values; (c), ( f )  lognormal values. 
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SECOND ORDER ANALYSIS . 
G O U R M A  SITE 15 

(n-589) 

5 20 25 40 

d(m) 

. .  
Fig. 6 - (a) Point locations of trees, Gouma Site 15 with grid of 30 m quadrats overlain. (b) Cumulative fre- 
quency of observed inlerpint distances (Li [dl). The diagonal is the expected frequency for a Poisson dismbu- 
tion, and the lines surrounding it are the .05 significance level. 
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Fig. 7 - Observed vs. predicted stand parameters for Band 3,4, 7 median, (a) cover, (b) density ( N ) ,  (c) size 
(R2), (d) cover substituting photointerpreted values for sites 2, 15, 20, (e) density with sample variance (+ one 
smdard deviation) and range of predicted values plotted, ( f )  size with sample variance (+ one standard devia- 
tion), and range of predicted values.plotted. A s t i r  (*) indicates predicted vdues  in one band that is much 
greater than the range of the y-axis shown. Points are labeled by site number; numbers followed by .5 are based 
on 1985 TM data. All other points are based on 1981 spectral data. 
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Fig. 7 - (cont.) Observed vs. predicted stand parmeters for Band 3, 4, 7 medim, (a) cover, @) density (N), (C) 
size (R2), (d) cover substituting photointerpreted values for sites 2, 15, 20, (e) density with sample Variance (k 
ongskndard deviation) and range of predicted values plotted, (0 size with sample variance (-+ one standard 
deviation), and range of predicted values plotted. A star (*) indicates predicted values in one band that is much 
greater than the range of the y-axis shown. Points are labeled by site number; numbers followed by .5 are based 
on 1985 TM data. All other points are based on 1984 spectrd data. 
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Fig. 8 - Component signatures for background (G), tree (X,) and stand reflectance (S) plotted on brightness 
(PC1) and greenness (NDVI) transformed spectral axes, (a) observed G and Xo and, (b) prcdicted G and XO for 
Sahelian sites, 1984 spectral data. 
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Fig. 9 - Histogram of G,,,dGObs values for Sahelian sites, all TM Bands. 
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Estimating Leaf and Wood Biomass in Sahelian and Sudanian Woodlands 
Using a Remote Sensing Model 

Janet Franklin 
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and 

Pierre H. Y. Hiernaux 

International Livestock Centre for Africa 
(Centre International pour 1’Elevage en Afrique) 

B. P. 60, Bamako, MALI, West Africa 

Abstract 

Predictions of tree size and density from a remote sensing model was us% with 

allometric equations from the literature to estimate woody and foliage biomass in sparse 

woodland. Woodland sites were located in the Sudanian and Sahelian bioclimatic zones in 

Mali, West Africa, with cover ranging from ten to fifty percent. Our estimates are compared 

to independent measurements made in the Sahelian sites, and to typical values from the litera- 

ture for these regions and for similar woodlands. If combined with a vegetation stratification 

at the appropriate scale, this approach could provide regional estimates of woody biomass for 

fuelwood inventory. Estimates of foliage biomass could be used in forage production model- 

ing and inventory. Both could be used in regional and global scale models of biogeochemical 

cycling. 

-42- 



FINAL REPORT, NASA GRANT NGT-05-010-804 

Reflectance properties of West African savanna trees from field radiometer 
measurements 

JANET FRANKLIN AND DAVID S. SIMONETT 
Department of Geography, University of California, 
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STEPHEN D. PRINCE' AND NIALL P. HANAN Present address: Earth Resources 
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ALAN H. STRAHLER 
Department of Geology and Geography, 
Hunter College of the City University of New York, 
695 Park Ave, New York, New York 10021, U.S.A. 

Abstract. Reflectance properties of savanna trees were measured using a pole- 

mounted radiometer for two Sahelian and two Sudanian species in West Africa. 

The measurements showed that canopy spectral components, viz shadowed and 

sunlit tree crown and background, have distinct reflectance characteristics in red 

and infrared wavebands as modelled by Li and Strahler (1986). Sunlit canopy is 

the greenest component, and sunlit background (consisting of bare soil) the bright- 

est. Shadowed crown is the darkest component, and is greener than shadowed 

background. The field radiometer measurements were used to calculate the nor- 

malized difference vegetation index (NDVI), and the integrated NDVI over the 

canopy was related to leaf area and crown volume. 

-43- 



FINAL REPORT, NASA GRANT NGT-05-010-804 

APPENDIX II. 

PUBLICATIONS RESULTING FROM 
WORK SUPPORTED BY 

NASA GRANT NGT-05-010-804 

-44- 



CANOPY REFLECTANCE MODELING IN SAHELIAN AND 
SUDANIAN WOODLAND AND SAVANNAH 

' . Janet Franklin 

Department of Geography 
University of California 

Santa Barbara, CA 93100 

Li Xiaowen 
Alan H. Strahler 

Department of Geology and Geography 
Hunter College of the City University of New York 
. 695 Park Ave, New York, New York 10021 

ABSTRACT 
A geometric-optical canopy reflectance model, driven by Landsat Thematic Mapper (TM) data, 

provided direct estimates of tree cover within twenty percent of actual values for several sparse 
woodland stands in West Africa. This model exploits tree geometry in an inversion technique to 
predict average tree size and density from reflectance data using a few simple parameters measured 
in the field (spatial pattern, shape, and size distribution of trees). Trees are treated as simply shaped 
objects, and multi-spectral reflectance of a pixel is a function of the proportion of tree crown, sha- 
dow, and understory in the pixel. These proportions are a direct function of the number and size of 
trees, and given the variance in reflectance within a homogeneous area of woodland, the model can 
be inverted to give estimates of average tree size and density. The model was tested in two sites in 
the Sahelian zone and five sites in the Sudanian zone, Mali. Tree density was consistently overes- 
timated, and tree size underestimated, but correlation between observed and predicted values was 
very good (r2>.85). After improving our method for selecting component spectral signatures (for 
tree and background) results improved dramatically for stand estimates of tree size and density. 

1. INTRODUCTION . 
A family of mathematical models of the reflectance of a plant canopy composed of discontinuous 

woody cover allows the direct estimation of plant size and density from remotely sensed reflectance 
data (Li and Strahler 1985). The models are geometric in character, treating trees (plants) as solid 
objects on a contrasting background, and estimating the proportion of each pixel in tree canopy, sha- 
dow, and background. In the simplest model, tree density is assumed to be low, and trees and sha- 
dows do not overlap enought to change the proportion of shadow in a pixel. Using this simple 
model, Li and Strahler (1985; Strahler and Li 1981) predicted tree size and density within ten percent 
of actual values for sparse pine forest in northern California from Landsat MSS data. 

We have extended this model and tested it using Landsat Thematic Mapper (TM) data in a new 
environment where the basic assumptions of the model hold, but the parameters must be modified. 
The model was tested in sparse woodland and wooded grassland in the Sahelian and Sudanian 
bioclimatic zones in West Africa. Dry woodlands and wooded grasslands are important ecologically 
and economically in Africa, and cover forty percent of the continent by some estimates. The deple- 
tion of woody cover due to changes in land use practices, coupled with increasing population and 

'Presented at the Twentieth International Symposium on Remote Sensing of Environment, Nairobi, Kenya, 4-10 December 
108B 
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drought, is a severe problem for people living in these areas where trees are used for fuel and fodder. 

sity of woody plants over large areas. Because size and spacing are often related to leaf and woody 
biomass, this technique could also provide woodland biomass estimates over large areas. 

Further, an important application of global remote sensing is the estimation of ecosystem pro- 
ductivity using spectral greenness measures from the AVHRR sensor (Justice et al. 1985, Tucker et 
al. 1985a, Tucker et al. 1985b). One problem with this approach is that the relationship between the 
spectral index and green biomass is affected by woody cover (and other factors such as soil back- 
ground and atmosphere; Hiernaux and Justice 198G, Holben and Fraser 1984). Our model could help 
improve these methods by providing tree density estimates within vegetation strata, for adjusting the 
greenness index/biomass relationship. 

Our method can be used as part of a multi-stage inventory to directly estimate the size and den- 

2. BACKGROUND 
Plant canopy modeling provides a way of understanding the reflectance of a vegetated surface 

by building a functional model of reflectance based on the biophysical, optical, and spatial properties 
of the scene elements (plants or plant parts). If a reflectance model can be inverted the biophysical 
properties of the plant stand can be inferred from spectral reflectance measurements. The simple 
Li-Strahler model uses covariance statistics from estimated mixtures of scene components across pix- 
els for inversion, to predict average tree size and density in a stand. This model is discussed in great 
detail in Li and Strahler (1985) and Li (1983) and will only be described briefly here. The assump- 
tions of the model are as follows: 
- 
- 

a tree crown is a simple geometric form, in this case a hemisphere on a stick (Fig. 1). 
tree counts vary from pixel to pixel as a Poisson function with a fixed density (e. g. - the spa- 
tial pattern is random at the scale of sensor resolution) 
the size distribution function of trees is known, so that C,,, the coefficient of variation of 
squared crown radius, can be determined for the stand. 
the tree crown and its associated shadow have a spectral signature which is distinct from that of 
tht- understory (background). 

- 

- 

The reflectance of a pixel is modeled as a linear combination of the signatures of scene components 
(tree crown, background, shadowed tree and background) weighted by their relative areas. Pixels 
from an area of homogeneous tree cover can be taken as replicate measures of reflectance. Interpixel 
variance comes from variance in the number of trees among pixels and variation in the size of trees 
within and between pixels (if chance overlapping of trees and shadows is ignored). 

From the reflectance values the parameter m ( = NR 2, can be calculated, where N is the aver- 
age tree density, and R the average squared crown radius. Note that m K is equal to the proportion 
of woody cover in the stand. If N and R are uncorrelated (a reasonable assumption is a sparse 
stand) then the expression for mean and variance of two independent products will apply, and mean 
size and density can be separated using the mean and variance of stand reflectance. 

The model also includes a geometric factor, r, which is defined such that m r is the proportion 
of a pixel covered by tree crown and shadow. r can be calculated from the tree-shape geometry and 
the sun angle. The reflectance signatures of the model are: 
G Reflectance vector for a unit area of illuminated background (constant). 
C Reflectance of a unit area of illuminated crown (constant). 
Z Reflectance of a unit area of shadowed background (constant). 
T Reflectance of a unit area of shadowed crown (constant). 
s Reflectance of a pixel. Variable; depends on number and size of trees in pixel. 
V ( S )  Variance in reflectance of all pixels in a stand. 

The signature of pixel i in band j is then modeled as 
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where 
Zcg Proportion of pixel not covered by crown or shadow. 
Kc Proportion of area covered by crown and shadow that is in illuminated crown. 
Kt Proportion of covered area in shadowed crown. 
Ifz Proportion of covered area in shadowed background. 
Because K, , Ifz , and Ift sum to one (by definition), the expression (Cj *ICc + Zj -Ifz + Tj .Kt ) 
represents a point in multispectral space lying within a triangle with vertices at C , 2, and T (see 
Figure 1). This point is Xo ; the average reflectance of a tree and its associated shadow. When m 
varies, S will vary along a straight line connecting points G and X,. 

The area of a pixel which is not background (1 - Kg ) was previously defined as m r. So, 
Zfg = 1 - m r. Therefore, dropping the subscripts, (1) can be written 

s = G ( l - m r ) + X o m r  

and rearranging, we have 
G - S  .m = 

T(G - S o )  ' 

From (i!) we can derive the variance of m : 

In the multiband case, rn should be the same if determined from any band. However, variance 
in the signatures and stand parameters will cause m to vary, and thus m can be taken as a 
weighted average. Because (G  - X,) is in the denominator, sensitivity to variance and noise in S , 
G and X, will be reduced when spectral contrast between trees and background is high. 

If size and density are independent, then the mean and variance of m are the mean and vari- 
ance of independent products, and the following expressions apply: 

M = E ( ~ R ~ )  = ~ ( n ) .  E ( R ~ )  = N R ~ ,  

V ( m )  = V ( n R 2 )  = (R2)2 V ( n )  + N 2 V ( R ' )  + V ( n ) V ( R ' )  . 

(4) 

(5) 

V ( n )  = N . (6) 

(7) 

and 

Becausc n is a Poisson function, 

Further, 

V ( R 2 )  = V(r? ) /n  x V ( r ? ) / N  = CRz(E(r2))*/N 

because CR, = V ( r 2 ) / ( E ( r 2 ) ) ? .  Substituting (G) and (7) into (S), 

V ( m )  M ( N  + CRZ N + CR~)(R2)?  = ( M  + c R 2  M + C,? R?)R?. (8) 

Solving for R2, we obtain: 
[(I + CR2)'h.r' + 4V(m)CRl]" - (1 + c R ? ) h f  

2 c R ?  R2 = (9) 

Applying the approximation m. 1 + z / 2 ,  we obtain 

3 .  
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Finally, substituting (2) and (3), the expressions for mean and variance of m , into (IO), R2 can be 
found from the reflectance values of a pixel in a stand, and the N can be found using (4). 

3. STUDY SITES IN MALI 
Salielian test sites in the Gourma region of Mali were chosen from among those being monitored 

by ILCA/Mali (The International Livestock Centre for Africa) in collaboration with the G W I S  Pro- 
ject (Global Inventory, Monitoring and Modeling System; National Aeronautics and Space Adminis- 
tration, Goddard Space Flight Center). Two sites were used for the initial test of the model, LCA 
Sites 15 and 20. Site 15 is located in an Acacia nilotica woodland (approximately 31 percent cover), 
011 an alluvial plain of poorly drained vertisols. Site 20 is located in an Acacia seyal woodland 
(approximately 58 percent cover), also on an alluvial plain of vertisols that  is inundated during the 
rainy season, but more freely drained that Site 15 (Hiernaux e t  at. 1984). 

The Sudanian test sites are located in the Region of Se'gou. The crop/woodland type of vegeta- 
tion is formed when crops are grown under a woodland of useful trees which are preserved when land 
is cleared. Sites 1 and 2 are dominated by Vitellaria paradoza (called shea, karite', or shi), and Sites 
3, 4N and 4s are dominated by Acacia albida (balanzan). All sites are located in the house fields 
(cultivated areas near the village where shrubs and weeds are cleared regularly) and cover range from 
13 to 25 percent. 

4. METHODS 
A hemispherical shape was initially chosen to test the model in savanna, based on field recon- 

naissance. Tree height (H) and crown diameter (= 27 ) were measured for thirty to one hundred 
trees in each site, and average h (see Fig. 1) was calculated from H - R for the stand. The ratio 
/ I  /R was used to calculate r from the geometry of the hemisphere. Size distribution was examined 
by inspecting histograms of tree size (expressed both as crown size and height) for all sites. The 
model parameter CRZ was calculated from sample data for the sites. Spatial pattern was established 
by mapping point patterns of 200-900 trees from low-altitude aerial photographs in sample quadrats 
within the test sites, and analyzing using quadrat analysis (Li and Strahler 1981, Franklin et al. 
1085), and second-order analysis of inter-tree distances (Franklin and Getis 1985). 

was chosen to enhance the contrast between trees (still green for most species) and understory (a dry 
herbaceous layer, or bare soil). The TM scene for the Gourma sites was acquired 9 September 1984 
at  the end of a very bad growing season in the Sahel. The scene for the Se'gou sites dates from 17 
Novemher 1984, after the harvest, so the fields beneath the canopy have been cleared. The mean 
and variance of reflectance (S and V ( S ) )  were computed for each of the test sites. Signatures for 
background and canopy (G and X,) were computed from small training areas in the image, using 
aerial photographs as a guide. Areas of no tree cover in or near sites were used to estimate G , and 
pisels with high tree cover were used to estimate X,. 

The model was tested by inputting the stand parameters (I' and CR2) and the spectral parame- 
ters (G , .Yo, S and V(S)), predicting R 2  and N for each site, and comparing to actual R * and N 
from field measurements. Observed and predicted values were compared by simple regression. The 
iiiodel was tested using TM Bands 3 (.63-.69 pm) and 7 (2.08-2.35 pm). Band 3 was chosen because 
in our esperience red reflectance is strongly related to tree cover (Logan and Strahler 1982, Franklin 
1(386), and Band 7 had the highest variance in the sites, and has also been shown to  be related to 
tree cover (Horler and Ahern 1980). 

Landsat Thematic Mapper (TM) data were used to test this model. Early dry season imagery 

5. RESULTS 
Table I shows the stand parameters h / R  , R , CRz and r for all sites. Values for H / R  range 

from 1 to 1.6 for Se'gou sites (taller trees, narrower crowns) and 0.5 to 0.G for Gourma sites (shorter 
trees, wider crowns). CR, values range from 0.21 to 0.G9. 
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Trze size distributions for all sample populations were slightly to extremely right-skewed, and a 
logtransform produced a normal-looking distribution (Fig. 3). Thus, if field measurements were not 
available, the assumption of a lognormal size distribution is supported for these sites, and the for- 
iiiula for CR, for a lognormal distribution could be used. However, for these sites CR? was calculated 
directly from sample data. 

Table I. Stand Parameters 

Site c,, c, X0.b XO.. S V ( S )  Area(ha) 
15 119.9 137.6 108.5 108.2 124.7 43.4 71.6 
20 151.9 141.0 lW.2 114.8 119.1 44.4 72.0 
1 103.1 102.4 68.7 72.1 90.7 59.4 51.8 
2 98.2 95.4 68.7 58.1 84.8 56.9 92.5 
3 98.2 96.9 79.0 77.0 86.7 37.1 86.2 

4N 110.5 106.4 83.0 86.8 95.9 83.3 25.2 
4s 108.6 104.0 83.0 86.4 98.7 24.6 18.1 

Using Xo and C from 4N, 
4s 106.4 86.8 98.7 24.6 

Site Species n h l R  R CR% 
15 A. nilotica(*) 56 .50 3.63 .6850 4.37 
20 A .  seyal(*) 87 .62 3.23 .4401 4.55 
1 V. paradoza 33 1.22 3.62 .6166 6.73 
2 V. paradoza 32 1.06 3.88 .2560 6.44 
3 A. albida 32 1.50 4.44 2672 7.11 

4N A. albida 14 1.17 6.57 .2125 6.63 
4s A,  albida 16 1.64 4.66 .3816 7.19 

R2.((m2) R2,, N o ( / p i z )  N,, CA C,, % 
14.04 5.04 6.42 24.66 .31 .44 70 
10.62 3.78 15.57 34.93 .58 .46 79 
13.86 11.43 3.73 4.22 .18 .17 94 
16.02 16.02 2.48 3.97 .14 .2? 64 
18.18 16.74 3.58 4.52 .?3 .2G 88 
45.63 23.13 1.59 3.28 25 .?6 96 
24.21 8.82 1.55 5.50 .I3 .I7 76 

predict R 2  and N 
24.21 14.76 1.55 3.33 .17 .I7 100 

Fig. 4 shows the point locations and results of second order analysis for one of the sites. In all 
sites there is generally an inhibition distance of five to ten meters, below which the probability of 
finding two trees is very low, but at relevant sensor resolution (20 to 50 m) a Poisson model is ade- 
quate. This is supported by the quadrat analysis. At larger distances (50 to 100 m) a Poisson model 
still fits in many of the sites, including the sparser stands (Site 2) at densities where the Poisson 
model broke down in our earlier studies (Franklin e t  al. 1985). 

The results of the model test are shown in Table II which includes the model parameters and 
observed and predicted values values of R ' and N . The model consistently overestimates density 
and underestimates crown size, but predicted cover values are very close to actual cover based on 
field measurements, and there is good correlation between observed and predicted values of N and 
R (Table IV). Table I11 shows the rank order of observed and predicted R ', N and Cover for TM 
Bands 3 and 7. Rank order is preserved in most cases. The model easily separates big crown, low 
density stands from large crown, high density stands. 

Table II. Results Canopy Model Inversion TM Band 3 (.63-.60pm ) 
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R ?  N 
Pred Obs Pred Obs Pred Obs Pred Obs 

20 20 20 20 4N 4 s  2 4s 
15 1 15 1 2 4N 4 s  4N 
4s 15 1 15 1 2 4N 2 

1 2 4 s  2 3 3 3 3 
2 3 3 3 4 s  1 1 1 
3 4 s  4N 4 s  15 15 15 15 

4N 4N 2 4N 20 20 20 20 

Table III. Rank Order of Predicted and Observed Size, Density and Cover 

Cover 
Pred Obs Pred Obs 

4 s  4 s  4s 4s 
1 2 2 2 
2 1 1 1 
3 3 3 3 

4N 4N 4N 4N 
15 15 15 15 
20 20 20 20 

We noted that it is difficult to accurately characterize component signatures using training data. 
Using our training technique, the observed G was too bright, and observed X o  too dark in most 
cases. Overestimating G caused the individual predictions of N to be too high, and R ’ too low. 
‘I’herefc,re, our next approach was to predict the component signatures (G and X o )  using the model, 
hased cn observed N and R for the sites. Table I1 shows predicted values of G and Xo.  In all 
cases there is a good correlation between observed and predicted spectral variables (G  and Xo); see 
Table IV. To see if signature extension is possible, predicted values of G and ..Yo from Site 4N were 
used to predict N and R? in Site 4s (same type of woodland, different size and density). The bot- 
tom entry in Table I1 show that the predicted values match observed more closely when component 
signatures are predicted from the model, and then extended in this way. 

Table IV. Regression Equations and r * for Observed and Predicted Values 

Variable Band Regression Equation r*  
R2 3 0 6 s  = 1.279(Ptcd) + 5.013 .56 

7 Ubs = 1.781(Pred) - 0.560 .68 
N 3 Obs = 0.35S(Pred) + 0.835 .S6 

7 Obs = 0.459(Pred) + 0.625 -95 
Cover 3 0 6 s  = 1.117(Pted) + 0.056 .75 

7 06s = 1.033(Pred) + 0.309 .75 
G 3 06s = 0.741(Pred) + 20.396 .88 
x, 3 Obs = 1.251(Pred) + 23.330 .99 

We also ran the model holding the stand parameters h / R  and CR, constant for all stands (we 
chose intermediate values from among those measured in the field) and predicted R ? and N , to test 
the sensitivity of the model to these parameters. Table V shows the results for constant values of 
Ir. / R  and CR?. There is little change in the predicted values of R ’ and N ,  no systematic error 
caused by holding the stand variables constant, and no change in the rank order of observed and 
predicted values. 
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Table V. Model Results for Constant h / R  (=1) and CR?(=.5) 
(Band 3; G , X,, S , and V (S ) same as in Table 3) 

4N 

14.04 4.86 
10.G2 3.15 
13.86 13.14 
16.02 13.59 
18.18 15.93 
45.03 19.63 
24.21 9.18 

6.42 21.95 
15.57 36.35 
3.73 3.91 
2.48 4.74 
3.58 5.35 
1.59 3.84 
1.55 5.98 

.31 .37 84 

.58 .40 60 

.18 .18 100 

.14 .22 64 
2 3  .30 77 
.25 .2G 9G 
.13 .19 G8 

6. DISCUSSION 
Using the Li-Strahler simple variance-dependent canopy model, characterizing tree geometry, 

spatial and size distribution from field data, and deriving spectral data from TIM imagery, we were 
able to predict tree cover in test sites with reasonable accuracy (80 to 100 percent using TM Band 7, 
60 to 100 percent using TM Band 3). The model easily separates low from high density stands; rank 
order of observed and predicted cover values are similar. 

The model is relatively insensitive to the stand parameters r (which predicts the amount of tree 
crown and associated shadow from the geometry of the trees), and CR? (the variance in tree size) as 
shown hy the results using a standard value for h / R  (from which r is calculated) and C,?. This 
mean that reasonable values for h / R  and C,, can be chosen for a species or woodland type, and 
estendcd over large areas. 

In this test, the model underestimates crown size and overestimates density in all sites. The 
correlations between observed and predicted values shows that density is predicted better that  crown 
size. The problem appears to be that our technique for choosing component signatures overestimates 
the brightness of G , to which the model is very sensitive, and in most cases underestimates the 
brightness of Xp However, regressions of observed and predicted G and X, values show very good 
correlation ( r  2>.85), so it may be possible to adjust values of G and Xo from training data by sim- 
ple regression. Another alternative is to predict G and Xo using the model itself in test sites where 
size and density are known, and then extrapolate these signatures to other areas. This was tested in 
Sites 4 N  and 4S, with greatly improved predicted values of N and R 2. 

7. CONCLUSIONS 
The Li-Strahler canopy model provides a physically-based model which explains the major 

characteristics of reflectance, and variance in reflectance, in a sparsely wooded landscape in terms of 
variations in tree size and density, and shadowing geometry. This gives a functional explanation for 
the ob5erved empirical relationship between reflectance (brightness) and tree cover. 

Therefore, it needs to be tested further in the following ways. Sites need to be divided into “train” 
and “test” portions, to see if signature and parameter extension is possible. More sites, over a 
greater range of crown size and density, need to be included. The accuracy of predicted N and R 
should be improved by averaging predictions from uncorrelated spectral bands, principal components, 
or multi-date imagery, and this must be tested. Further, this technique is most cost-effective when 
nl)plied to the coarsest spatial resolution for which inter-pixel variance is sufficient to invert the 
model. This can be tested with lower resolution imagery, or by resampling TM to simulate lower 
resolution imagery. Finally, our field work this year has convinced us that an  ellipsoid is a better 
shape model than a hemisphere’in this landscape, and in future work, I’ will be calculated accord- 
ingly. 

As a technique, this model is most useful when it can be parameterized and run over large areas. 
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Figure 1. Tree form geometry. 

h t a n 0  < 2 r  

C 

Brightness 

Figure 2. Idealized plot of model in multispectral space. 
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Figure 3. Size distribution of trees and Q-Q plot of log transform for Site 15. 
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Figure 4. Point locations and results of second order analysis for Site 2. 
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