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A Visual Programming Environment for the Navier-Stokes 
Computer 

S herryl Tomboulian Thomas W. Crockett 
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ABSTRACT 

The Navier-Stokes Computer is a high-performance, reconfigurable, pipelined macliiiie designed to 

solve large coinputatioiial fluid dynamics problems. Due to the complexity of the architecture, devel- 

opment of effective high-level language compilers for the system appears to be a very difficult task. 

Consequently, a visual programming methodology has been developed wliicli allows users to program 

the system at an architectural level by constructing diagrams of the pipeline configuration. These 

schematic program representations can then be cliecked for validity and automatically translated into 

machine code. The visual environment is illustrated by using a prototype graphical editor to program 

an example problem. 
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18107 while the authors were in residence at ICASE. 
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A Visual Programming Environment for the Navier-Stokes 
Computer 

S herryl Tomboulian Thomas W. Crockett 
David Middleton 

Institute for Computer Applications in Science and Engineering 

1 Introduction 

The Navier-Stokes Coniputer (NSC) [GI, developed at  Princeton University with funding from NASA, is a 

special-purpose, high-performance parallel system designed for very large computational fluid dynamics 

(CFD) applications. The architecture consists of multiple processing nodes arranged in a hypercube 

configuration. Each node coiitains a few dozen functional units wliicli can be reconfigured dynainically 

into one or inore vector pipelines. 

The arcliitecture lins some features resembling those of Multiflow's TRACE' coniputers 141 and 

CDC's CYBERPLUS2 [ 1,3], such as iiiultiple function units and long instruction words. However, there 

are significant differences wliicli appear to iiiake developinelit of effective high-level language compilers a 

very difficult problem. A s  an alternative, a visual programming methodology is presented wliicli employs 

a graphical interface to assist tlie user in programmniing tlie NSC at  tlie inacliirie arcliitecure level. 

'Mult i f iw and TRACE are trademarks of hlriltiflow Computer, Inc 
zCYBERPLUS is a trademark of Control Data Corporation. 



A brief overview of the NSC is given first, and some of the difficulties in programming it with 

conventional methods are discussed. The design for a visual programming environment is then described, 

and a prototype version is used to illustrate the concepts for a sample problem. Conclusions based on 

experience with the prototype system are reported. 

2 NSC Architecture 

The major architectural components of the Navier-Stokes Computer are described here. The focus is on 

the individual nodes, rather than on the system as a whole, since it is the internal design of the nodes 

which makes the NSC a novel architecture. The information presented is a considerable simplification 

of the actual design, with many details omitted for the sake of clarity. The description given ia sufficient 

for an understanding of the visual environment described in this paper. The final design of the NSC 

hardware is not complete a t  this writing, so some adjustments to the following may be needed in the 

future. 

Each node contains 32 functional units. Every functional unit can perform floating-point operations, 

and some of them can also perform either integer/logical operations or max/min computations. In 

addition, each functional unit has an associated register file which can be used to  store constants or 

intermediate values, as well as to buffer data to adjust for pipeline timing delays. The functional 

units are hardwired into three types of arithmetic-logic structures (ALSs) ,  called singlets, doublets, and 

triplets, which contain respectively 1, 2, or 3 floating-point units. 

Memory is arranged in 16 planes of 128 Mbytes each, for a total memory of 2 Gbytes per node. 

In addition, there are 16 doublebuffered data caches. Two ahift/delay units are provided to aid in 

reformatting memory data into multiple vector streams. A complex programmable switching network 

routes data among ALSs, memory planes, caches, and shift-delay units. Communication between nodes 

is handled by means of a hyperspace router. The various hardware components are configured into vector 

pipelines during execution by programming the switches. Multiple pipelines may be set up to  run in 

parallel. The pipeline configurations may be rapidly modified under program control as the computation 

proceeds through different phases. Scalars are treated as vectors of length one. A simplified diagram of 

the data path architecture is shown in Figure 1. 

Control flow is even more complex. A central sequencer provides high-level control flow, but indepen- 

dent DMA controllers associated with each memory and cache plane pump data through the pipelines. 

An elaborate interrupt scheme is used to signal pipeline completions, evaluate conditional expressions, 

and trap exceptions. 

Projected peak performance of the system is quite high, with a maximum rate of 640 MFLOPS per 
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Figure 1: Simplified diagram of the datapath architecture of the Navier-Stokes Computer. 
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node. A 64-node NSC would have a total memory of 128 Gbytes and maximum performance of 40 

GFLOPS [SI. 

3 Programming Considerations 

There are several features of the NSC architecture which make compilation of high-level languages into 

efficient object code a difficult task. One of the most serious is the organisation of memory into separate 

planes. During an instruction (vector operation), a function unit can read or write in only a single 

memory plane, and multiple function units working in the same memory plane can cause contention 

problems. This causes serious problems for a compiler in trying to decide where to allocate variables, 

since the optimum layout for one pipeline may be unworkable for the next. In some cases, it may be 

necessary to maintain multiple copies of arrays, or to relocate them between phases of the computation. 

Another problem arises since the function units within each ALS are not constructed identically. Only 

a single unit can perform integer operations, and another unit has circuitry for min/max computations. 

This, coupled with the distinctions between singlets, doublets, and triplets, complicates the problem of 

mapping function units onto expression graphs. Generation of control code is made more difficult by the 

presence of multiple sites of control (sequencer, DMA units, interrupts, etc.) which must be carefully 

orchestrated to  insure that all possible actions are mutually consistent. Numerous other details tend to 

complicate programming as well. Any of the individual problems could probably be handled successfully, 

but they tend to interact with each other, making the overall problem more difficult than the Bum of 

the subproblems. Given current compiler technology, it is difficult to see how all of these considerations 

can be handled simultaneously while still producing code that can achieve high utilisation of 32 function 

units. It has been estimated that construction of a FORTRAN compiler for the NSC would take about 

three years, and the performance of the resulting code relative to other high-performance computers is 

in doubt. 

Because of these problems, it seems that a programming methodology more closely tied to the archi- 

tecture might deliver better performance. Traditionally, this has been accomplished by writing assembly 

language programs for performance-critical applications. Unfortunately, the NSC lacks anything neem- 

bling a conventional assembly language. Each instruction must be specified in a complex hierarchical 

microcode which contains specific control for every function unit, register file, switch setting, DMA unit, 

etc. The effect of an instruction is to completely specify the pipeline configuration and function unit 

operations for the entire machine. This requires a few thousand bits of information per instruction, 

encoded in dozens of separate fields. Therefore, hand-written microprograms are clearly not practical 

for the NSC. 
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4 A Visual Programming Environment 

In an effort to simplify programming at the architectural level, a visual programming methodology 

has been developed. This approach is based on an informal manual technique which evolved among 

applications researchers at Princeton University and NASA’s Langley Research Center. Using this 

technique, programs were designed by hand-drawing a series of pipeline configurations, each representing 

one stage, or loop body, within the overall program. The diagram in Figure 2, which has been cleaned up 

for presentation purposes, is a typical example of this style. The figure represents a point Jacobi update 

for the 3-D Poisson equation on a uniform grid with a residual convergence check [6]. The equation for 

the update is given by 

The natural evolution of this manual technique suggested that an automated environment in which 

pipeline instructions were drawn interactively on a graphics display and then automatically translated 

to  microcode could be an effective way of programming the NSC at the machine level. 

The concept of visual programming is not new, but it has become increasingly practical as work- 

stations with high resolution graphics have become widely available 151. A recent survey of visual 

programming techniques can be found in 121. This method seems to  be a natural approach for pro- 

gramming data flow and pipelined architectures. Visual programming techniques have been applied to  

parallel architectures before, but for different architectural models. A prominent example is Poker [7], 

which is a parallel programming environment designed to support the CHiP computer. 

The scope of this project has purposely been limited to internal programming of individual nodes, 
since this area is the source of greatest difficulty. If needed, techniques similar to  those used in Poker 

could be applied to the larger multi-node environment. Although the design has been tailored specifically 

to the NSC, the same general approach could be used for other reconfigurable pipeline machines. 

Three major goals were established for the NSC visual programming environment. The b t  is 
that the representation have a one-to-one correspondence with the functional model of the machine, so 

that everything could be specified precisely if necessary. However, an effort would be made to choose 

appropriate defaults wherever possible in order to minimize the amount of detail required. The defaults 

could be easily overridden when required. The second goal is that the graphical representation be easy 

to  program and clearly represent the semantics so that a programmer looking a t  an instruction would 

immediately see the intent. The third is that the environment would do all it could to ease the user’s 

task by preventing or indicating syntactic errors and violations of hardware constraints as the program 
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Figure 2: Example pipeline diagram generated as an aid to program design. (From (61.) FLONET refers 
to a portion of the switch network. 
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Figure 3: Major components of the visual programming system. 

is entered. This error-checking philosophy is similar to that embodied by syntax-directed editors for 

textual programming languages. More extensive checking could be done when the visual representations 

are translated to  microcode, and any additional errors would be visually presented to the programmer. 

The design for the visual environment contains three major components, a graphical editor, a checker, 

and a microcode generator. Figure 3 shows the interaction between these components and the user. 

The graphical editor provides the usual operations found in an editor, such as the ability to enter new 

input, modify or delete existing data, and save the results. However in this case, the objects being 

operated on are graphical rather than textual. The graphical editor also is responsible for extracting 

information from the pictures and storing it in internal data structures. Two types of internal data are 

distinguished. One type consists of information which is needed solely to manage the graphical display, 

such as the position of images on the screen. The other type consists of semantic information which 
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in needed in order to generate microcode. Since the semantics are represented graphically, both types 

of information are needed in order to reconstruct the display. But in order to generate code, only the 

semantic information is needed. 

The checker contains, in a knowledge base or other suitable representation, detailed information 

about the architecture of the NSC, so far as it is relevant to the programming process. This includes 

various machine parameters such as the number and types of function units, their organization into 

ALSs, the number and size of memory planes, etc. More importantly, the checker also knows all of 

the rules about conflicts, constraints, asymmetries and other restrictions in the NSC architecture. The 

graphical editor calls on the checker a t  appropriate points during interaction with the user to  validate 

the information being input. Any errors are flagged as soon as they are detected. In addition, the 

graphical editor uses the checker's knowledge of the architecture to reduce the possibilities for making 

errors. For example, if the user has routed the output from one function unit to  a particular memory 

plane, the graphical editor will not let him send the output of a second unit to the same plane. The 

philosphy is similar to that embodied by syntax-directed text editors, with the goal being to  assist the 

user in developing correct programs despite the complexity and numerous restrictions of the architecture. 

Another advantage of having a checker is that it helps to make the whole visual environment more robust 

in the face of changes to the machine design. Some changes can be handled merely by updating the 

knowledge base, with minimal impact on the graphical editor and microcode generator. 

Once a complete program (or consistent program fragment) has been defined, the microcode gener- 

ator uses the semantic data structures created by the graphical editor to generate machine code for the 

NSC. The checker is invoked again at  this point to perform a thorough check of global constraints and 

other conditions which may not be practical to  check during the editing process. 

In order to  test the concept of visual programming for the NSC, a prototype graphical edi- 

tor/asaembler was designed and implemented. The prototype focusses mainly on the graphical editor 

portion of the design, in order to determine whether the great level of detail needed in the microcode 

instructions can be conveniently presented pictorially, and to assess the ease of programming with this 

type of interface. The checker is not present as a separate entity, although some checking functions are 

incorporated into the graphical interface. Since the final design of the NSC is not complete, and there 

is no means of running actual NSC programs, the prototype produces only the semantic data structures 

as output, rather than the actual microcode instructions. The semantic data can be thought of as a 

pseudo-code representation of the instructions. 
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Figure 4: ALS icons. 

5 Programming Example 

The major features of the visual environment are illustrated here using the prototype graphical editor 

to program the example problem from the previous section. The central concept is that visual objects, 

or icons, are used to represent architectural components of the NSC at a suitable level of abstraction. 

The user manipulates these icons interactively to construct a program. Subimagea within each icon 

are also meaningful, providing the interface to an additional level of program detail A high-remlution 

bit-mapped display is used M the drawing surface. Interaction is provided primarily with a 'mouse", 

augmented with a keyboard for some operations. 

In the prototype, icons consist principally of the three different ALS types (Figure 4). Two r e p  

resentations of the doublet are provided, since doublets may be configured to  operate aa singlets by 

bypassing one of the functional units. Functional units are shown M aquara within the icon, with the 

'double box" units having integer/logical as well as floating-point capabilities. Other icons which would 

be useful, but are not currently implemented, include memory planes and shiftdelay units. 

In addition to the icons, a variety of other visual devices are employed. Theae include p o p u p  

menus and subwindows, 'buttons", 'sliders", and even text fields, where appropriate. The prototype ie 
implemented on a Sun-3 workstation using Sunviews graphics software. 

Figure 5 shows the basic display window used. The right hand side ie a 'control panel" area used 

to select icons and specify various editor operations. The large area in the center is the drawing space 

in which pipeline diagrams are constructed. Informational and error messages are displayed in the 

narrow strip across the top. The region at the left is reserved for control flow specifications and variable 

declarations, which are not implemented in the prototype. 

aSsun-.9 and SunVkr arc tradcmarkr of Sun Microeyrtcnu, Inc. 
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Figure 5: Display window for the visual environment. 

To construct a program, a user defines a series of pipeline diagrams. Each pipeline corresponds to  

a single instruction, or one line of code, in a more conventional language. Control panel operations 

provide the usual editor operations to insert, delete, copy, and renumber pipelines, as well as to  scroll 

forward or backward or jump to a specific pipeline. 

The first step in constructing a pipeline diagram is t o  select the needed ALSs and position them 

in the drawing area of the screen (Figure 0.) This is accomplished by moving the mouse pointer into 

the control panel area and selecting the appropriate icon, then ‘dragging” the outline of the ALS to  its 

desired location. The process is repeated until all of the needed ALSs have been selected (Figure 7). 

The next step is to specify the inputs and outputs of the function units. These are selected by 

‘mousing” on the 1/0 pads (short wires terminated by small black circles). A menu pops up showing 

the available choices. These may be either external connections to  other function units, caches, memories, 

or shift/delay units, or else internal connections for feedback loops or register file data. Timing delays, 

needed for proper alignment of vector streams, may be introduced by routing input data into a circular 

queue in a register file and then retrieving the value a number of clock cycles later when it appears at 

the head of the queue. 

10 
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Figure 8 illustrates the proceas of connecting the output from one function unit to the input of 

another. The mouse controls a 'rubber-band" line which conceptually indicates a wiring connection 

between the two pads. The checker ia used during this operation to ensure that only legal connections are 

attempted. The microcode generator would later derive switch settings by interrogating the connection 

tables built by the graphical editor. 

In the case of a cache or memory connection, additional information ia needed to program the DMA 
units. This is handled by a popup subwindow, in which the cache or memory plane number, variable 

name or starting address, stride, etc. are specified.' (See Figure 9.) 

Note that the use of popup menus and windows is crucial to our approach. By hiding ancillary 

information until it is needed, the amount of detail displayed in the pipeline diagrams is reduced to a 

manageable level. Menus and subwindow templates also serve to prompt the user for needed informa- 

tion and remind him of his choices, both valuable services in an environment as complex as the NSC 
architecture. 

The third and final step is to program the functional units by specifying the arithmetic or logical 

'Several improvements in the graphical treatment of memories and cache8 have recently been designed, but have not 
yet been fully integrated into the prototype system. 
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Figure 8: Establishing connections between function units. 

12 



I 

1I 

ORIGINAL PAGE IS 
POOR QUALIm 

.a a. 

lane [3] 0 7 1  16 
Offmt: 10000 S t r i d e : .  

4 

(b) 

Figure 9: P o p u p  rubwindow for rpecifying cache connections. 

operationr which they are to  perform. Once again thin ia done with a p o p u p  menu (Figure 10). The 

menu appears when the moure ir ured to relect a function unit within an ALS. Figure 11 showa the 

completed pipeline diagram for the point Jacobi iteration of Equation 1. 

6 Conclusions 

While the rerultr bamd on the prototype graphical editor should be regarded u preliminary, it appears 

fearible to  implement a complete v tua l  programming environment for the Navier-Stoker Computer. 

T h t  environment would clearly be more convenient and farter to ure than hand-written microcode. 

The improvements derive tom mverd futorr. First, the viaud mpmmntation more clearly reflect8 the 

hlvdwue architecture and program intent than do ream of textud microummbler code. The data-flow 

rtyle of the diagram b o  reemr to be a natural way for hununr to  dacribe computations. In addition, 

information hiding with rubwindowi can be ured to effectively reduce the amount of low-level detail 

which murt be dtplayed and arrimilated at one time. Thin L romewhat andogour to the UBI of m a c r a  

and rubroutincr in textual knguager. Another advantage t that the detailed knowledge of architectural 

intricacirr built into the v tua l  environment reducer the paribility of writing erroneour progrrmr and 

errore are caught rooner when they do occur. 

On the other hand, programming at t h t  level, even with the paphicd  interface, t a tedious process. 

The amount of machinelevel detail which murt be rpecified requker that the programmer have a good 

undentanding of the hardware deiign. The urer murt focur not only on rolving h b  problem, but ab0 on 
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Figure 11: Completed pipeline diagram for the point Jacobi iteration. 
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mapping hie problem onto this very complex architecture. So given a choice, a higher-level programming 

environment would be preferable. 

One approach to  reducing the complexity is to use a simpler architectural model, perhaps a subset of 

the NSC. The tradeoff here M between performance and programmability. By ignoring certain features 

of the architecture, it may become easier to program, but performance may be adversely affected in 

some situations. Initial examination of this approach has shown that some abstraction is possible, but 

the performance ramifications are unclear. 

Experience with the prototype visual environment also indicates that implementation of a complete, 

production-quality system would be a significant software development project, resulting in at  least a 

few tens of thousands of lines of code. Most of this would be devoted to the graphical interface and the 

checker, with smaller portions devoted to code generation and traditional editor functions. 

The visual environment could potentially be extended to include debugging features. During execu- 

tion, each new instruction would display the corresponding pipeline diagram, annotated to show data 

values flowing through the pipeline. This could help to pinpoint timing errors, as well as other bugs in 

the program. The visual environment might also be useful as a back end to a compiler, displaying the 

results of the compilation process. 

In summary, a visual programmming environment offers several advantages for efficiently program- 

ming a reconfigurable pipeline architecture such as the NSC. However, it is st i l l  essentially a low-level 

programming language, and requires a significant implementation effort in order to become a usefal 

tooL It remains to be seen whether this approach can compete with compiled high-level languages Over 

the long term. 
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