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ABSTRACT 

System theorists understand that the same matliematical objects 

which determine controllability for nonlinear control systems of 

ordinary differential equations also determine hypoellipticity f o r  

linear partial differential equations. Moreover, almost any study oi' 

0.d.e. systems begins with linear systems. It is remarkable that 

Hormander's paper on hypoellipticity of second order linear p.d.e.'s 

starts with equations due to Kolmogorov, which we show are analogous to 

the linear 0.d.e.'~. 

controllable linear system can be paralleled for a Kolmogorov equation 

if an appropriate type of feedback is introduced. 

Eigenvalue placement by state feedback for a 

Results concerning 

transformations of nonlinear systems to linear systems are similar t o  

results for transforming a linear p.d.e. to a Kolmogorov equation. 
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I INTRODUCTION 

We consider second order linear partial differential equations of 

the forms. 

where the coefficients are in some open set in IRn containing the 

origin. Here we assume the matrix (Ajk(x)) is symmetric, is positive 

semidefinite, and has constant rank m . If we consider f as the 

input to the p.d.e and u as its output, then we can replace f by 

f - C(x)u. so we consider C(x) 0. 

Of particular interest to us is the spatial partial differentizl 

equa t ion 

(3) 
au n n 

+ 2 B . ( x )  ax -- - f(x), 
j 

a2u 
j , k=l Ajk(x) aXja\ j=1 J 

with th 

(4) 
2 m 2  

2 x u + xou = f(x). 
j=1 j 

ssumptions on (A. (x)) as above. Hormander [l] w Jk 
such an equation as 

i tes 

n where Xo. Xi, . . . .Xm are (e“ vector fields on tR , and Xi ,X2,. . . .Xm 
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are assumed t o  be linearly independent. Equations (3) and (4) are said 

I to be hmelllDtlc if f being implies that u is (e". 

Results concerning hypoellipticity of (4) can be compared with 

corresponding results concerning controllability of the nonlinear system 

m 

j' 
G = X,(x) + c X.(x)v 

j=1 J 

where V ~ , V Z ,  . . . ,  v are the controls. The linear version of (5) (in 

which the usual roles of A and B are reversed to fit the standard 

upcoming p.d.e. notation) is 

m 

( 6 )  x = BX + Av, 

where A and B are appropriate matrices. 

Our purpose in this paper is to introduce a particular linear 

partial differential equation (called a Kolmogorov equation) that 

relates to the p.d.e. ( 3 )  as the linear system (6) relates to the 0.d.e 

(5). For this particular p.d.e. we shall introduce an appropriate 

feedback that allows "eigenvalue placement" if the equation is 

hypoelliptic. 

Fourier transform of the solution u. We also mention the problem of 

We study the effect of this feedback on the spatial 

transforming (by state coordinate changes and feedback) the linear 

p.d.e. (3) t o  a Kolmogorow equation as one would transform the nonlinear 

system (5) to a controllable linear system (6). 
.. 

We remark that the results of Hormander on hypoellipticity have 

been applied in systems theory by Elliott [ a ] ,  [3]. 
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11. P.D.E.'s AND FEEDBACK 

An equation of special interest is 

and B = (b. ) are constant matrices, A is 
jk) Jk 

where A = (a 

symmetric, positive semidefinite of rank m. and the matrix 

(A,BA,B2A.. . . .B A) has rank n (this last condition implies n- 1 

hypoellipticity). Such a p.d.e. is called a Kolmonorov equation. In 

fact if - - is added as in (1). Kolmogorov [4] indicates that certain 

probability density functions satisfy such equations. 

aU 
at 

By using the input f we can introduce an appropriate type of 

feedback for the equation (7). This feedback should leave invariant thc 

principal symbol of (7) and the hypoellipticity condition. Writing ('7) 

in Hormander's vector field notation yields 

m~ 
c E< u + L u = f, 
j J 

- 
where are linearly independent and constant coefficient 

and %I is a linear vector field. Our linear feedback takes the form 

Xi ,%, . . . .zm 

(9) 
m 

f = H  k x T  
j=1 j j'* 

where each k is a lxn matrix of constants. We can feed back a sum 

Of terms involving a linear combination of x variables times a vector 
j 
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field applied to the solution u. Each must be a vector field 

whose square appears in (8). 

-le: Consider the p.d.e. on IR 

J J 

2 

This is of the form (7) with 

and of the form (8) with m=l and 

If we let 

f = (aoxi + a1x2) - a + f  - ax2 

where a0 and a1 are constants, then (10) becomes 

Moreover, A remains unchanged and B moves to 



Neither the principal symbol or hypoellipticity of (10) is changed by 

the linear feedback. We can choose a0 and ai to yield any desired 

characteristic polynomial for B. 

We want to consider the effect of feedback of the form (9) on the 

p.d.e. (7). 

with E = (EI.SB.....E ) being the transform variables. Then (with u 

being the Fourier transform of u) we find 

Following the argument in [ l ]  we take Fourier transforms 
h 

n 

This is a first order linear p.d.e. which can be solved by the method of 

characteristics for a given noncharacteristic set of initial conditions. 

The characteristic curves are determined by ( B '  denotes B transpose) 

h 

and u must satisfy 

h du - = A(f.S) - f. dT 

Here T denotes the parameter along the characteristic curves. 

Hence the linear feedback in which the B matrix is altered simply 
,. 

changes the characteristic curves used in solving for u. Equation (17) 
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is actually unaltered. 

Given the Kolmogorov equation (7) with matrices A and B. we can 

form the controllable linear control system (6) 

. 
x = BX + AV 

We define the Kolmogorov indices e ,  > 
Kronecker indices KI 2 K Z  > . . .  > K~ of this linear system. Canonical 

forms for (7) which parallel canonical forms for linear systems can also 

be derived. 

2 . . . 2 em of (7) to be the 

We state our main result without proof. 

Theorem Assume that the matrices A = (a ) and (B = b ) from the 

p.d.e. (7) 
jk jk 

n n 
- f  a U  + C bjk x - -  axk ajk ax.axk j,k=l 

j , k=l J 

satisfy rank [A.BA, . . .  ,Bn-lA] = n. Then the eigenvalues of the B 

matrix can be arbitrarily placed (with complex eigenvalues occuring in 

conjugate pairs) by linear feedback. 

If rank A = m is n, then equation (7) is elliptic. Then linear 

This compares feedback can be used to eliminate all first order terms. 

to x = Bx + Av with a control for each state. 

Our Kolmogorov equation (7) has constant coefficient second order 

part and linear varying first order part. 

differential equation (3) has variable coefficients. 

problem is to derive necessary and sufficient conditions to transform 

(in a designated sense) the general hypoelliptic equation (3) to a 

However, our original partial 

An interesting 
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blmogorov equation (7). This should compare to results for moving a (1- 

nonlinear control system of o.d.e's to a controllable linear system 151. 

PI. c71. c81. c91.clo1. 
Of course, partial differential equations of order higher than two 

can be considered. Also the implementations of the results of this 

paper by finite difference and finite element schemes when only point 

sensors and actuators are involved is an open problem. 

. .  .. 

I11 CONCLUSION 

We have drawn parallels between control theory for linear o.d.e's 

and the Kolmogorov p.d.e.'s. An appropriate type of linear feedback for 

p.d.e.'s was introduced. A transformation theory for more general 

partial differential equations is presently being researched. 
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