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LEAPFROG VARIANTS OF ITERATIVE METHODS 
FOR LINEAR ALGEBRAIC EQUATIONS 

Paul E. Saylor 

ABSTRACT 
Two iterative methods are considered, Richardson’s method and a gen- 

eral second order method. For both methods, a variant of the method is 
derived for which only even numbered iterates are computed. The variant 
is called a leapfrog method. Comparisons between the conventional form 
of the methods and the leapfrog form are made under the assumption that 
the number of unknowns is large. In the case of Richardson’s method, it is 
possible to express the final iterate in terms of only the initial approxima- 
tion, a variant of the iteration called the grand-leap method. In the case of 
the grand-leap variant, a set of parameters is required. An algorithm is pre- 
sented to compute these parameters that is related to algorithms to compute 
the weights and abscissas for Gaussian quadrature. General algorithms to 
implement the leapfrog and grand-leap methods are presented. Algorithms 
for the important special case of the Chebyshev method are also given. 

This research was supported by the National Aeronautics and Space Administration 
under NASA Contract No. NAS1-18107 and by the U.S. Office of Scientific Research 
under Contract No. AFOSR 85-0189 while the author was in residence at the Institute 
for Computer Applications in Science and Engineering (ICASE), NASA Langley Research 
Center, Hampton, VA 23665. 
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1. Introduction. 

The subject of this paper is a set of techniques to improve efficiency in the 

iterative solution of a real or complex linear system Ax =b, especially for the 

solution of large problems on supercomputers. 

An iterative method generates a sequence ..., x(~-’) ,  x(~-’) ,  x ( ~ ) ,  ... . For the 

methods of this paper, a variant such that can be expressed directly in terms 

of x(~-’)  with no dependence on x(~-’ )  will be called a leapfrog method. A variant 

of Richardson’s method is also presented for which the final iterate is computed 

from the intial approximation with no computation of intermediate iterates. This 

will be called the grand-leap method. The advantages of the leapfrog and 

grand-leap methods are: (i) a slight reduction in some cases in the total number 

of arithmetic operations; (ii) an increase in the number of terms in vector sums, 

an advantage on supercomputers that “chain”, i.e., transmit results from one 

arithmetic unit directly to another; and (iii) a reduction in 1/0 operations for 

large problems. In his Ph. D. thesis [Chro86] studied methods to omit 

intermediate successive iterates for the conjugate gradient method as a way to 

allow parallel computation of matrix vector products. His goals overlapped 

somewhat with those of this paper but the approach is not the same. 

Two iterative methods are considered: Richardson’s method [FoWaGO, 

Hay0811 and a general second order iterative method. For Richardson’s method 

the leapfrog method was used in [Smol81, SmSa851 as a technique to avoid 

complex arithmetic. In this paper its other properties are explored. 



2 

Richardson’s method is an old method the advantages of which have 

generally been ignored; however, see [AnGo72]. In the symmetric positive definite 

case, Richardson iteration parameters do not yield an optimum iterate at  each 

step whereas a second order method does. This is one reason for the neglect of 

Richardson’s method. However, in a paper of Tal-Ezer [Ta187], a novel approach 

is described in which Richardson iterates are almost optimum at each step. 

The Chebyshev iteration is an example of a second order method [Mnt77, 

Mnt781, used for the solution of nonsymmetric systems. The Chebyshev iteration 

is not applicable, however, unless the eigenvalues of A lie in a half plane. 

Furthermore, the Manteuffel adaptive algorithm [Mnt78] assumes the eigenvalues 

appear in complex conjugate pairs, which holds if the matrix is real. This is a 

brief argument for the use of Richardson’s method if the matrix is either a 

general real nonsymmetric matrix with eigenvalues in both half planes or is a 

complex matrix the eigenvalues of which do not appear in complex conjugate 

pairs. It should be stressed that large complex matrices arise in signal processing, 

and constitute an important class of problems. 

1.1. Summary. In $2, the leapfrog version of Richardson’s method is derived. 

Iteration parameters are assumed given, with the exception of the Chebyshev 

case for which explicit formulas are given as well as an algorithm. With properly 

chosen parameters, the method applies to any real or complex matrix. 
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In $3, the grand-leap method is presented for computing the final 

Richardson’s method iterate in terms of the initial iterate. An algorithm is also 

given. 

Comparisons among the conventional, leapfrog and grand-leap versions of 

Richardson’s method are made in $4. 

In 55, the general formula for a second order method is stated, and a leapfrog 

version derived. An algorithm (Algorithm 3) is stated in which the parameters are 

assumed given. Algorithms for these parameters are presented in $7. 

Optimum La-iteration parameters are defined in the Chebyshev case in $2. 

In 9, L2-optimum parameters are defined. Optimum L2-Richardson’s 

parameters, in the case of real eigenvalues, are the roots of an orthogonal 

polynomial. An algorithm to compute roots of orthogonal polynomials is 

developed, which is an implementation of the Stieltjes algorithm [Gaut82 ] and 

related to an algorithm presented in [GoWe69] for the weights and nodes for 

Gaussian quadrature. This algorithm is modified to yield the quantities required 

to execute the gran-d-leap method. The L2-approach is only one approach to 

optimum parameters. A non-L2 treatment is given in [ElSt85, Tal871. Each of 

these references is more general than the L2-methods in 56. A completely general 

L2-approach may be based on [SaSm88] but is beyond the scope of this paper. 

Algorithms based on the methods in §6 are gathered and presented in- 57. 

Algorithms for the special and important Chebyshev case’ are also given in 57. 
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1.2. Conventions and Notation. Although an 12-inner product is a special 

case of the L2-inner product if the measure is chosen correctly, for clarity and 

convenience, the two are used separately. 

The solution of a linear set of equations Ax = b generally requires that the 

set be preconditioned by transforming it into a set such as, for example, 

CAX = Cb for which the iterative method converges more rapidly. (Other 

preconditionings yield systems such as CAQQ-h = Cb, but the same remarks 

hold for these other cases.) There is no change in the techniques or algorithms 

presented in this paper if they are applied to CAx = Cb rather than Ax = b 

other. than the change in the matrix from A to CA. It will therefore be assumed 

that A is the preconditioned matrix. 

It will be convenient from time to time to state that an algorithm converges 

with no restriction on the input data and if certain conditions on the eigenvalues 

are met. In a practical sense, of course, there are restrictions on the data such as 

those needed to prevent overflow, which may be infeasible to analyze and 

formulate. 

Matrices and vectors are denoted by boldface type. 

The number of unknowns is denoted by N .  



5 

2. Richardson's Method: Conventional Form and Leapfrog Form. 

This section begins with a statement of Richardson's method, from which the 

leapfrog form is easily derived. The Chebyshev case is outlined and an algorithm 

given. 

2.1. Conventional Richardson's Method. Let T~ , ..., T ~ - ~  be a cycle of 

i terat ion parameters  where IC is called the per iod .  The purpose of iteration 

parameters is to reduce the error, but discussion of this is postponed until later. 

For now, attention is directed to the iteration, and the reader is asked to accept 

the parameters as given. 

Let x(O) be an initial guess. Richardson's method is defined as follows. For 

i =1, ..., IC, 

(2.1.1) 

2.2. Leapfrog Form. The recursion 

will be used, which may be derived by first subtracting (2.1.1) from x=x to 

obtain 
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e(') =e('-') ( i  -1) (2.2.2) 

where e( * )  = x  -x( ' ) ,  and then multiplying (2.2.2) by A. Since r ( i )  =Acdi), (2.2.1) 

follows. Vectors e( i )  and r(2) are called the (true) error and the residual error 

respectively. 

The leapfrog step from x ( i - 2 )  to x ( ~ )  results from using (2.2.1) in (2.1.1) to 

give [SmSa85], for i = 2, 4, ..., k (under the assumption that k is even) 

2.3. Optimum Chebyshev Parameters. 

and residual error satisfy 

It is easy to show that the error 

where Rk is the polynomial 

(2.3.1) 

Any polynomial such that Rk(0) =1 is called a fisidual polynomial [Stie58]. 

Parameters are chosen to minimize &(A) in some sense, to be discussed next. 
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Let R'be a set containing the spectrum of A. Usually one thinks of R as an 

interval or union of intervals on the real line. However if A is nonsymmetric, 

then both R and the spectrum may lie off the real axis in the complex plane. Two 

commonly used methods to minimize &(A) are either to minimize the L,-norm 

of polynomial &(<) over R or to minimize a weighted L2-norm over R. In this 

part, only the L,-norm will be discussed. How Chebyshev polynomials are used 

to minimae this norm will now be outlined. The papers of Manteuffel give more 

details [Mnt77, Mnt78]. 

The Chebyshev residual polynomial is defined by 

where Tk is the Chebyshev polynomial of degree I C ,  and d and c are parameters 

defining a confocal family of ellipses: d is the center and the foci are d f c .  

Henceforth, in the Chebyshev case, the set R containing the nonzero spectrum 

will be an ellipse. (An ellipse, as the term is used here, means the union of the 

curve and its interior.) Parameter c is assumed either real or purely imaginary; 

in either case, c 2  is real. (If c = 0, Rk(~) reduces to (I - d ) k  / d k . )  Assume that d 

is real and ope member of the confocal family with center d and foci d f c is in 

the interior of the right half plane, i. e., d > 0. (If there is one in the left half 

plane, then we consider -A instead of A.) These assumptions mean respectively 



8 

that the major axis of each ellipse of the family is either on the real line or that 

the major axis of each ellipse is perpendicular to the real line. If the major axis is 

on the real line, then the assumption that at least one member of the family lie in 

the interior of the right half plane means that d'- I c I > 0. Finally, note that if 

the eigenvalues are real, then ellipse R may be assumed to be the interval 

[d - I c I , d + I c I 1 ,  which is the degenerate ellipse of the confocal family. 

Among all residual polynomials, it may be shown [Mnt78] that the 

Chebyshev residual polynomial has the minimum L,-norm over the interval 

n= [d - I c I , d + I  c 1 1, and closely approximates the residual polynomial with 

minimum La-norm over any ellipse, 0, with center d and foci d f c .  

It is not necessary that d and c 2  be real in order that the Chebyshev 

iteration converge. The reason for assuming above that these are real quantities 

is connected with the Manteuffel algorithm [Mnt78]. The Manteuffel algorithm is 

valid only when the eigenvalues of A appear in complex conjugate pairs, and it is 

this that leads to the assumption that d and c 2  are real. In general for any d and 

c2, convergence results if there is one ellipse with center d and foci d f c 

containing the eigenvalues that does not also contain the origin. A s  a practical 

matter, however, the Chebyshev iteration is useful only 'when d and c can be 

obtained by some technique such as the Manteuffel algorithm. 

In the Chebyshev case the Richardson iteration parameters are derived from 

the roots, {pi}, of Tk which are 
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p i  =COS [ T F ] ,  i =0, ..., k-1. 

The roots of Rk are therefore d + c p i ,  for i =0,  ..., k-1 and the parameters for 

Richardson’s method are 

2.4. An Algorithm in the Chebyshev Case. First a technical note on 

avoiding complex arithmetic: If the major axis is vertical, i.e., if c is pure 

imaginary, then the roots of Rk occur in conjugate pairs. It is an advantage to 

order the parameters { r i }  in such a way that, in this case, ?-i-l and T;-,  are 

conjugate pairs (in order that ri-, + ri-, and ri-1ri-2, required by the algorithm, 

are real), a task equivalent to ordering the roots, { p i } ,  of Tk in such a way that 

pi - ,  = -pi-1. 

Let h = 7r/2k. The roots of Tk are the cosine’s of 

8, = h ,  8 ,  = T - h ,  e3 = 3h,  8, = T - 3h, ... . If k is even, which it is in the 

leapfrog case, the last two roots in this ordering are the cosine’s of e,-, = - - h 
7r 

2 

7r and 8 ,  = - + h .  Moreover, cosel = - COS~, ,  etc. In the algorithm, the formula 
2 

Bi = {2 [?I - 1 i(-l)i-lh + 7rmod(i +1, 2) 
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for i = 1, ..., k, will be used. If pi = cosBi, then in the c d e  when c is pure 

imaginary, { d  + c p 1 ,  d + C P ~ } ,  {d  + cp3 ,  d + c p , } ,  ... is a sequence of conjugate 

pairs. 

If the major axis is real, the error is reduced after a cycle of exactly k 

parameters, but the algorithm may not have converged. If the major axis is 

vertical, the error is reduced only if k is sufficiently large, a requirement that in 

practical applications, however, is observed to be reasonable. If the algorithm has 

not converged, the cycle of parameters is repeated. After the parameters have 

been recycled 1 times, the error, dk') = x - x ( ~ ' ) ,  satisfies e(k') = (Rk(A))'e('). 

But R k l ( ( )  # (Rk(c))' where Rkl is the optimum Chebyshev residual polynomial 

of degree kl .  This is a basic problem with Richardson's method: It is optimum 

only at the end of one cycle of parameters. For an alternative appGoach, not 

based on Chebyshev parameters, see [Tal871 in which a method is proposed to 

increase the number of parameters in an almost optimum way (thus the period is 

not fixed) until convergence is achieved. 

Algorithm 1. (Leapfrog Richardson's method in the Chebyshev case.) 

Purpose. Execute Richardson's method with Chebyshev parameters and omit 

alternate steps. 

Input. Matrix A, right side b,, initial guess ~('1, cycle k ,  and ellipse 

parameters d and c .  The ellipse parameters are assumed known, for example, as 

output from the Manteuffel algorithm [Mnt78, Ashb851. The user must also 
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provide a maximum number of cycles of iterations and an error criterion to halt 

the iteration. 

Output. Iterate ~ ( ~ 1 ,  the iterate reached after the last cycle of k parameters 

in the standard execution of Richardson’s method. 

Restrictions. If d and c 2  are real, then d is assumed either positive or 

negative and will be assumed positive without loss of generality. 

Also, for real c , 0 < d - 1 c I . In general for any d and c 2, convergence results if 

there is one ellipse with center d and foci d & c containing the eigenvalues that 

does not also contain the origin. If the matrix is singular, the algorithm 

converges to a solution if the systea is consistent. Period k is even. 

Notes. (1) Quantities e i ,  p i ,  and T~ need not be array variables since only 

three values are used during execution, but subscripts make the algorithm more 

convenient to state: (2) A slight modification of the algorithm would allow { ~ i }  to 

be an input array? for example, from Algorithm 4. 

7r 
1) Set h := -. 

2k 

2) Do either until convergence or a limit on the number of loops is exceeded. 

2.1) For i = 2 to k by 2 do: 

2.1.1) Set B i - l  := (2 - l}(-l)i-2h + nmod(i, 2). 

2.1.2) Set di := {2 [e] - l}(-l)i-lh + rmod(i + 1, 2). 
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2.1.3) Set pi -1  := cosOi-l . 

2.1.4) Set pi := codi  . 

1 
d + c p i - 1  

2.1.5) Set 7 i -2  := 

1 
d + c p i  

2.1.6) Set ~ i - ~  := 

2.2) If not converged, set x(O) := x ( ~ )  . 
I 

2.3) Enddo. 
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3. Richardson's Method in One Step. 

It is easy to see that leapfrog could be continued further to allow computing x(~) 

from x(Zd4). Ultimately, one arrives a t  an expression for x(~) in terms of x(O) with 

no intermediate approximations, the form of which is, as will be seen 

momentarily, 

X(k)=X(0) +Ck-l(A)r(') , (3.1) 

where Ck-l is a polynomial of degree k-1. Computing x(~) only from x(O) while 

omitting the computation of any intermediate approximation will be called the 

grand-leap. 

3.1. Krylov Subspace Methods. 

Krylov subspace method, i. e., for 1 5 i, 

Richardson's method is an example of a 

,(i) - x(0) E v, , 

where v. is the Krylou subspace defined by 

(3.1.1) 

, ..., A i - 1  r -  (0 )  

The proof of (3.1.1) is an easy induction based on di )  = x('-') + T 

Membership relation (3.1.1) implies (3.1). 

r(i-l). 
i -1 
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3.2. An Expression for Ck-l. Multiply 

by A to obtain 

Since 

it follows that 

- R k ( d  
9 s c k - l ( d  = 

which is a polynomial since Rk (0 )  = 1. 

Therefore if 

then 

ck-l(~)=ek?-l+ - +el. (3.2.1) 

The representation of any polynomial in s in terms of powers of 

power form. 

is called the 
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3.3. A Remark on Polynomial Preconditioning. Assume that residual 

polynomial Rk is small on set R (containing the spectrum of A.) Therefore, on fl, 

ck-l(() is an approximation to (-', and Ck-,(A) is an approximation to A-l. 

Polynomial Ck -1 arises in so-called polynomial preconditioning [Adm82, AMS87, 

Chen82, JMP83, Say183, Ta1871. 

3.4. Methods to Compute Ck-l(A)r(o). In the important Chebyshev case, 

The coefficients, B i ,  could be easily determined by expanding Tk - in terms 

of powers of 5. In principle, the coefficients of any residual polynomial could be 

determined in the same way, although no residual polynomial is as well 

documented as the Chebyshev case. 

Despite the simplicity of this approach, it has the unfavorable feature that 

even when the coefficients, B i ,  are known explicitly, it is numerically difficult to 

compute the vector d=BkAk--'r(O)+ * * +B1r(O) due to the ill conditioning of the 

basis {r(O) ,  * - - , A  }, if k is large. However, to avoid instability it is often 

sufficient to take a small value of IC, say k =5. If the power form coefficients are 

known then nested' polynomial evaluation (Homer's 'rule) could be used to 

k - 1  (0) r 



16 

compute CkVl(A)r(*). 

An algorithm is presented later, Algorithm 2, in which the roots, 

{ai : i = 1, ..., k - l}, and the leading coefficient, gk-l, of Ck-l will be assumed 

given. The roots of Ck-l may be computed from the power form (for example by 

computing the eigenvalues of the companion matrix.) A method and algorithm 

(Algorithm 5) are presented in E$ that do not require the power form coefficients. 

Also see [Tal871 for a non-L2 approach. 

3.4.1. Avoiding Complex Arithmetic.  If A is real, then it is reasonable to 

assume that the coefficients of Ck-l are real. If so, then the roots of Ck-l occur 

in complex conjugate pairs. Let 0 and a be a conjugate pair. Since 

(A-a)(A-$u= 

no complex arithmetic is required to evaluate Ck-l(A)r(o) when the factored form 

is used. (In the general case when A is complex, the roots do not occur in 

conjugate pairs.) 

3.5. Algori thm for the Grand-Leap. 

Algorithm 2. (Compute x ( ~ )  =x(O) + Ck-l(A)r(o).) 
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Purpose. Compute the final iterate x ( ~ )  from the initial guess with no 

intermediate iterates computed, except those at the end of each cycle. 

Input. Matrix A, right side b, the intitial guess ~( '1 ,  period I C ,  the leading 

k - 1  

Parameter T ~ ,  which is the reciprocal of the root of R,, is required if k = 1. These 

I 

t 

parameters are generated from Algorithm 5,. and, in the Chebyshev case, from 

Algorithm 6. However, there are other sources for the parameters such as [Ta187]. 

TLe user must also provide a maximum number of cycles of iterations, and an 

error criterion to  halt the iteration. 

Output. Iterate x ( ~ ) ,  the last iterate reached after a cycle of k parameters in 

the standard execution of Richardson's method. 

Restrictions. The algorithm executes with no restrictions on the input data. 

However in order for the algorithm to converge to the solution of Ax = b, for all 

b, it is necessary that I Rk(Ai)l < 1 for each nonzero 

eigenvalue, A,, of A. If this holds and A is singular, the algorithm converges to a 

= I 1 - AiCk-l(Ai)/ 

solution when the system is consistent. 
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2.2) Return. 

3) Separate the roots {ai} of Ck-l into real roots and conjugate pairs of (nonreal) 

roots: al, ..., am are real; ..., a k - 1  are nonreal and 

a j + l = Z j , m + l < j < k - 2 .  

4) Do until convergence or a limit on the number of loops is exceeded: 

4.1) Set r(O) := b -Ax(') . 

4.2) Set 

4.3) If not converged set x(O) :=x(~ !  

Enddo. 
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4. Comparisons. 

To display some.of the advantages in the leapfrog and grand-leap approach a 

side-by-side comparison of algorithms is made in Table 1. The conventional 

Richardson’s method is compared to the leapfrog version, in which alternate steps 

are omitted, and to the grand-leap version in which all intermediate steps have 

been omitted. The period, IC, is assumed even. 

The operations shown in Table 1 form the kernel of a loop, the commands 

for which have been omitted. The details for a complete algorithm have been 

given already and would be distracting here. 

On any computer, reducing the number of arithmetic operations, the 

traditional goal of algorithm design, is an advantage. In the case of the leapfrog 

and grand-leap versions, i t  is a thin advantage but an advantage nevertheless and 

one that is unexpected. (Since Richardson’s method is a Krylov subspace method, 

the number of matrix-vector multiplications cannot be reduced.) It is a further 

advantage on supercomputers that do chaining that there are more terms in the 

leapfrog expression for x ( ~ )  than in the conventional expression. 

Some additional comment is needed on how arithmetic operations are 

counted. The number of arithmetic operations given in the table is based on the 

assumption that there is no mixed real and complex arithmetic. Let us consider 

when mixed arithmetic occurs. The Table 1 parameters are 

{ ~ i ,  a;, T* + 7; , ~i 7; , a; + ai, oi Fj }. In the Hermitian symmetric positive definite 
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.case, the roots of R, are real, the Table 1 parameters are real, and there is no 

mixed arithmetic. (It is reasonable to assume this. A Hermitian positive definite 

system could be solved with nonreal parameters, however.) If A is a general 

complex nonsymmetric matrix, all Table 1 parameters are general complex 

quantities and since the matrix is complex, there is again no mixed arithmetic. 

Mixed arithmetic occurs in Richardson’s method if A is real and 

nonsymmetric, for then the Table 1 parameters are general, complex quantitie . 

whereas the other quantities are real. If A is real, it is reasonable to assume that 

polynomials Rk and Ck-l are real. The roots may then be grouped in conjugate 

pairs, and the leapfrog and grand-leap methods performed in real arithmetic. 

Richardson’s method, however, requires complex arithmetic, and the number of 

arithmetic operations is effectively larger than shown in Table 1. In this case, one 

would not want to consider Richardson’s method, which was the motive for using 

the leapfrog method in [SmSa85]. 

Now we come’ to an aspect of these comparisons, namely the effect on 1/0 

due to the solution of largesystem, that is important to take into account but is 

necessarily limited due to the range of the subject. 

The limitation made here is to consider only programmer-controlled storage, 

from among a list of topics required for a more complete discussion that includes 

architectures, specific application problems, and implementation details. The 

reader may object that although it is reasonable to dismiss architectures, it is still 
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not reasonable to restrict discussion in quite this way. For, the typical user is 

running problems on a virtual memory machine and is beset with multiple 

worries that deserve attention, such it5 memory “touches”, or the loading of 

vector registers, or the losses due to flushing a cache. Unfortunately, such 

transfers between memory levels are hardware dependent and simply cannot be 

analyzed within the scope of this paper; the conclusions reached here below do 

not necessarily hold in these cases. It should be noted, however, that even for 

virtual memory systems, there exist limits [Ecc183] that compel the use of explicit 

1/0 commands similar to those in Table 1. 

One final comment to justify the narrow focus that is taken: It is 

characteristic of many supercomputers that only programmer-controlled 

peripheral storage is available for large problems and when needed is usually 

responsible for languid performance. This dismal fact often attracts comment. 

For example, Ortega and Voigt observe, “The [programmer-controlled] 1 /0  

problem produced by very large problems [is] ... known to be potentially 

devastating on high performance systems ... .” [OrVo85]. Programmer-controlled 

storage includes system commands, custom utilities, and the less efficient choice, 

depending on circumstances, of Fortran commands. Only Fortran commands are 

given in Table 1. 

In order to weigh the effect of transfers from peripheral storage, a large set-of 

linear equations is assumed. This vague statement will be sharpened in order ,to 
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arrive at a rather specific assumption. The discretization of coupled partial 

differential equations in three dimensions yields, in some applications, leviathan 

systems of order ten million complex unknowns. Such problems lead to the 

assumption that a matrix multiplication, which may involve a preconditioning, 

absorbs the primary memory and that processing after a matrix multiplication 

requires reading in a vector from disk. This assumption is seen in Table 1 when, 

for example, in the leapfrog algorithm, r ( i - 2 )  must be read from disk after 

computing t = di-2). 

Under these conditions, a third advantage of the leapfrog and grand-leap 

algorithms is seen: there are fewer READ’S and WFtITE’s. 

In an actual implementation, it may well happen, for example, that two 

in the matrix READ’S are not necessary in any algorithm and that x 

conventional algorithm need not be written on disk. Conditions will vary, and 

the results in the table are only representative. If the assumption on matrix 

vector multiplications is not valid, the comparisons would change, but it is 

plausible that for large problems there would remain an 1/0 advantage to the 

leapfrog and the grand-leap formulations. 

( i - 1 )  
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Conventional 

WRITE x ( ~ )  . 

2 matrix mults. 

4 vector READ's 
2 matrix READ's 
2 vector WRITE'S 

4N adds 
2N mults. 

Table 1 
Leapfrog 

2 matrix mults. 

3 vector READ's 
2 matrix READ's 
1 vector WRITE 

3N adds 
2N mults. 

G ran d-L eap 

CY=u+i? - 
u=uu 

READ A 
v~=Av, 

WRITE u(') 

2 matrix muIts. 

1 vector READ 
2 matrix READ's 
1 vector WRITE 

2N adds 
2N mults. 
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5. Second Order Iterations. 

In the real eigenvalue case, residual polynomials of practical value are orthogonal 

polynomials, and satisfy a three term recursion. This elegant property yields 

second order methods, which have an extra term in the expression for the new 

iterate as compared to Richardson’s method. Richardson’s method is also called a 

first order method and a second order method sometimes called Richardson’s 

second order method. In a second order method, each new iterate is optimum in 

the sense that the residual polynomial satisfies an L2-optimality property, to be 

be discussed in 56. The Chebyshev iteration, employed by Manteuffel [Mnt77], is 

an example. In the case of a first order method, dk) is optimum if the residual 

polynomial, Rk, is optimum, but di) is not optimum for i # k ,  a fact commented 

on previously in the Notes for Algorithm 1. There is a cost in the second order 

method for optimality at  each step: a larger number of arithmetic operations and 

a greater use of storage compared to Richardson’s method. 

The objective is a second order method for which only even numbered 

iterates are computed using information only at even numbered steps, a method 

hereafter called a second order leapfrog method. In the Chebyshev case, an 

algorithm will be given. 
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5.1. The Second Order Iteration. 

be the given initial guess. Define Ax(-') to be zero and for 0 5 k ,  

Some preliminaries are needed. Let x (0) 

The second order iteration requires a set of parameters {ak, qk: 1 5 IC} 

that are given explicitly in the Chebyshev case i.n Algorithm 3, and derived in a 

general way in Algorithm 4. Assume these parameters are given. The iteration 

may now be stated. Let r(O) = b - AX('). For k 21, 

(5.1.1) 

and 

5.2. Second Order Leapfrog. The derivation is somewhat lengthier than in 

the case of Richardson's method due to: the need to express Ax(k)  in terms of 

information at  step k -2; and a complication involving the residual vector. 

First, an expression for ~ ( ~ 1 ,  k 2 2 ,  is obtained in terms of information at  

step k -2. Since 



it follows that 

~ ( ~ 1  = x ( ~ - ~ )    AX(^-^) . 

~ 

Now use (5.1.1) in the last equation to obtain 

Then 

It remains to express A d k )  and Ax(k)  in terms of information at  step k -2. 

The expression for Ar(k)  is simply 
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To summarize, the formulas to go from step k - 2 to step k are 

and 

Initially, 

and 
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Table 2 

Conventional Second Order 

WRITE  AX(^-^) 

2 matrix mults. 

6 vector READ’s 
2 matrix READ’s 
4 vector WRITE’S 

6N adds 
4N mults. 

Leapfrog Second Order 

READ 

READ x ( k  
READ J k  -2) 

WRITE w 

2 matrix mults. 

5 vector-READ’S 
2 matrix READ’s 
4 vector WRITE’S 

6N adds 
4N mults. 
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5.3. Comparisons. Under the same assumptions as for the previous set of 

comparisons, the two versions of the second order iteration are compared in Table 

2. There are fewer advantages of the leapfrog algorithm in this case since the 

number of arithmetic operations and the number of WRITE’S is the same. The 

advantages are that there are fewer READ’S and a greater number of terms in the 

sum defining x ( ~ )  in the leapfrog version. Note that variations are possible, for 
J 

example, in recomputing w in the leapfrog version, and that the arrangement of 

terms used here is not necessarily suitable for a particular problem or 

architecture. 

5.4. Algorithm for the Second Order Leapfrog Method in the 

Chebyshev Case. For the convenience of the reader, an algorithm is given 

below for the case of Chebyshev parameters. As before with Algorithms 1 and 2, 

no attempt is made to incorporate 1/0 statements. 

Algori thm 9. (Second order leapfrog i terat ion wi th  Chebyshev parameters . )  

Purpose. Execute the leapfrog form of the second order iteration for the 

Chebyshev case. The parameters are the same as for the standard second order 

Chebyshev iteration as used for example in the Manteuffel algorithm [Mnt78, 

Ashb851. 

Input. Matrix A, right side b, and initial guess x(’); also a pair d and c such 

that d is the center and d f c are the foci of a family of ellipses over which the 



Chebyshev residual polynomial is (nearly) minimum with respect to the uniform 

norm. The ellipse parameters are assumed known, for example, as output from 

the Manteuffel algorithm [Ashb85]. In the general non-Chebyshev case, this 

algorithm could be easily modified to allow {ak} and { 7 k }  to be input parameters, 

say, from Algorithm 4. 

Output. The algorithm generates a set of optimum iterates converging to the 

solution of Ax = b if the restrictions are satisfied. 

Restrictions. The restrictions are the same as for Algorithm 1. 

Notes. The ak and 7 k  parameters need not be array variables; the subscripts 

aid clarity. 

1) Set r(O) := b - Ax('). 

2) Set cy1 := l /d .  

4) Set Ar(') := -AAx('). 

2d 
2 d 2  - c 2 .  5) Set cy2 := 

6) Set 7, = da ,  - 1. 

7) Do k -= 2 by 2 until either convergence or a limit is exceeded: 
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7.3) Set := b -Ax(k ) .  

7.5) Set 7 k + l  := d c ~ k + ~  - 1. *- 7.6) Set C Y ~ + ~  := 

7.7) Set 7 k + 2  := - 1. 

7.8) Set Ax(k)  := ak+lr(k) + ~ k + ~ w .  

Enddo 
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6. L2-Optimum Parameters. 

If either the Lz- or lz-norm is used to define optimum residual polynomials, then 

it turns out that optimum residual polynomials form a family of orthogonal 

polynomials if the inner product (either integral or sum) is defined over a real set. 

From this fact, algorithms follow for the computation of the 7-parameters for 

Richardson’s method, the a-parameters for the grand-leap method, and the 

parameters for the second order method, which are presented in this section. The 

assumption that the inner product is defined over a real set usually means that 

the eigenvalues of the system matrix are real. The Chebyshev case is an 

exception for which the eigenvalues need not be real. (Since Chebyshev 

polynomials form an orthogonal family, Chebyshev residual polynomials are Lz- 

optimum as well as L,-optimum.) 

The algorithms’in this section generalize to the case of an inner product 

defined over a contour in the complex plane. (A generalization may be based on 

[SaSm88] .) 

6.1. L2-Optimality. Some notation is necessary. Let r be an interval or a 

union of intervals on the real line (generally, r could be any measurable subset) 

and let w be a positive weight function on r. Define 
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where L = s w (  t ) d  E. The set r may be assumed to be real by a linear change of 
r 

variables if necessary. In practice, rather than the continuous inner product, one 

would use a discrete inner product of the form 

where m ( ( )  is a measure, such as I E, . A norm is defined by 

An (L2-) optimum residual polynomial of degree k is defined to be that residual 

polynomial, Rk , with the smallest norm, 

where Pk is any residual polynomial of degree k. Ideally, r should contain the spectrum 

of A, and conform to the spectrum as closely as possible. Thus if the spectrum were 

contained in the union of two intervals, r should also be the union of, if possible, the 

same two intervals. How to find the interval or union of intervals containing the 

spectrum is a difficult problem, and is not considered here; the reader is referred to the 

Manteuffel algorithm [Mnt78] (which, however, computes only one interval containing 

the spectrum.) If {Ri} is a set of optimum residual polynomials, then [Stie58] they form 

an orthogonal set with respect to the modified weight function, tw ( E ) :  

(6.1.1) 
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if and only if i #j. 

6.2. The Recursive Property of Orthogonal  Polynomials. The well-known 

three term recursion for orthogonal polynomials is recalled, a property that yields not 

only a second order iteration, which is derived here, but, also in 57.1, an algorithm for 

computing, among other things, the roots of the optimum residual polynomial, needed in 

order to execute Richardson’s method. 

Define q5-l to be zero, and let do be a nonzero constant. A family, { d k  :O<k}, of 

orthogonal polynomials satisfies a three term recursion: for 1 5 k ,  

(6.2.1) 

where a k ,  P k  , 7 k  are recursion coe f i c i en t s  given by 

One coefficient is a parameter that- allows a normalization, such &, for example, 

11 d k  11 =l. If { d k :  0 5 k }  is a family of residual polynomials, the desired 

normalization is (bk (0 )  = 1, which yields Pk = 7 k  + 1 and, with R k  ( e )  = & ( E ) ,  



(6.2.3) 

6.3. Second Order Iteration. The recursion for the residual polynomials yields an 

iteration for which x ( ~ )  is L2-optimum in the following sense: The error, e(k) =x -x ( k )  , 

satisfies e(k)  =Rk (A)e(O), where Rk is an L2-optimum residual polynomial. 

To derive the iteration, replace with A in (6 .2 .2)  and multiply on the right by r:') 

to get[Stie58], for 1 5 k and r(-') defined to be zero, 

d k )  = ( 1  +7k)r(k-') +ak Ar(k -') -7k r (k - 2 ) .  

Replace r(j) by b - h ( j ) ,  j = k  -2;k -1 ,  k ,  and multiply on the left by A-' to obtain 

X ( k ) = ( 1  +7k)x('-')+(ykr('-')-rkx (k -2). 

Initially, x(O) is given and r(O) = b'-AxCo). 

The iteration is usually expressed in terms of the iterant difference, x ( ~ )  - x ( ~ - ' ) ,  as 

in (5 .1.1) .  

6.4. A Method for the Roots of CkVl. 

which are the roots of Ck-l. 

A matrix will be derived, the eigenvalues of 

Recall from 56.1 that an optimum residual polynomial of degree k is defined to be 

that resicha1 polynomial, R k ,  that  solves the weighted least squares problem 
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J I  Rk(E)l 2.1(E)dE I J I  P,(Ol "WE ? 
r r 

where Pk is any residual polynomial of degree I C .  Also if {Ri} is a set of optimum 

residual polynomials, then they form an orthogonal set with respect to the modified 

weight function, Ew(E); see (6.1.1). 

The roots of orthogonal polynomials may be computed by a stable algorithm based 

on the fact that the roots are the eigenvalues of a symmetric tridiagonal m a t h ,  Sk. 

The algorithm is called the Stieltjes algorithm and matrix Sk is called the Jucobi matrix. 

The Stieltjes algorithm is recommended for computing the optimum Richardson's 

method parameters, which are the reciprocals of the roots of the optimum residual 

polynomial. Matrix S k  may be modified by one element to obtain a matrix the nonzero 

eigenvalues of which are roots of Ck-l. 

If only the roots of Rk and Ck-l are desired, it.is not important that Rk(0) = 1. It 

is preferable to work with the normalized family 

6.4.1. The Roots of Rk(C). The elements of matrix S k  are the coefficients of the 

three term recursion satisfied by {q5i }. 

It is convenient to write the recursion (6.2.1) in the slightly different form 
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The first three terms of the recursion are 

which may be written in matrix form as 

In general, k terms yield the matrix-vector equation 

where 

m =(40(0, 4d0, “‘7 4 k - , ( E ) ) ?  

6, = (0, . . . , 0, 1, 0, . . . , O)T is the k t h  unit vector and S k = ( s i j )  is the tridiagonal 

Jacobi matrix [Wilf62, GoWe691. The eigenvalues of the Jacobi matrix coincide with the 

roots of &. 

Next, a nested procedure in which the eigenvalues of S,, ..., Sk are successively 

computed will be described for computing the roots of q5k. Let { p j i : l < j s i }  be the 

roots of 4, ; these are the eigenvalues of S i .  
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The procedure begins with the initial polynomial 40. Since g50 is a constant such 

that /I q5011 tw =1, it follows that 

1 
40(J)= 11 111 tW - 

Next, to compute the root of &, it follows from 

t6o(E)=sIl4o(t) + s 1 2 4 1 ( 1 ) ,  , 

that, if 41 is to be orthogonal to do, 

Of course, &(s 11) =O. 

Now assume Sk-l has been computed, 2 5 IC. Since it is the ( I C  -1)X(IC -1) principal 

submatrix of Sk, only the last row and column of Sk need be computed, a total of three 

nonzero elements. Since the polynomials are normalized, S k  may be proved to be 

symmetric. Hence only ~ ~ - ~ , k  and s k k  are required. 

Matrix Skbl yields the roots pl ,kWl,  ..., p k - l , k - l  of q5k-l.  Let 

Then 
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The elements to be computed are sk k - l ,  and skk. These are unknowns in the relations 

(with, of course, ~ k - ~ , ~  = s k , k - l )  

t 4 k  -1(E) = S k , k  - 1 4 k - 2 M  + S k k  4 k - d O  +Sk ,k + 1 4 k  (0. (6.4.1) 

Orthogonality yields 

(6.4.2) 

Skk = W k - l ,  4 k - l ) t w  * (6.4.3) 

This completes the computation of S k .  An algorithm (Algorithm 4) is given in 37. 

6.4.2. The Roots of Ck-l. We have 

, it follows that Since Rk (6) = - 4 k  (0 
4 k  ( O )  



tdk -I( ;k 140( c) -tsk ,k -14k -2( E )  -k S k k  4 k  -1( e) - sk ,k +14k ( O )  (Ec, - 1 (a ]  9 (6.4.4) 

where slk l  : = ~ k , k + ~ q 5 k ( O ) / r ~ 5 ~ ( [ ) .  

Hessenburg matrix SR = ( S i i )  by setting S;.i :=si 

has been defined. 

(Of course, do([) is a constant.) Define a lower 

unless i = k ,  j = 1, in which case slkl 
- 

The equation 

now becomes 

6.5. Leading Coefficient gk-l. Preparations are nearly complete for the 

computation of 

x ( ~ )  =do) +Ck-l(A)r(o) . 

There is one remaining detail, an expression for the leading coefficient gk-l such that 



Recall that 

and 

Therefore, 

In the Chebyshev case, an alternative formula is given in the next section. 
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7. Algorithms. 

In this section, algorithms are given for the root finding algorithms for the general 1,- 

case and also for the Chebyshev case. 

7.1. Algorithm for Normalized Residual Polynomials. 

Algor i thm 4. (Compute  the recursion coe f i c i en t s  of a specified orthogonal fami ly ,  

and the roots and leading coe f i c i en t s  of t h e  degree k orthogonal po lynomial  q5k of  the 

f a m i l y . )  

Purpose:  Generate the factored form of successive normalized (real) 

orthogonal polynomials, 4*,  i = 0, ..., k ;  and the residual polynomial recursion 

.parameters, { cyk ,  qk}. Additional output is described below. If polynomials are 

optimum with respect to a weight function w ,  they are then orthogonal with respect to 

the (real) weight function (tu((), and this will be the weight function used below. Note 

that & ( E )  = q5k(()/q5k(0) is a residual polynomial. 

I n p u t .  A subprogram must be provided to compute an inner product 

1 ( f , g ) = t/ f ( ( ) g  (()(w ( ( )d  ( where L = J d  (. In practice, this subprogram would 
r r 

l M  

Mi=l 
compute a discrete inner product (f,g)=-c f ( ( i ) g ( & ) & w ( & ) .  Input to the 

subprogram would be the number, M ,  of nodes, the nodes f i , i=l ,  ..., M ,  and the 

weight, w(Ei) (an array or external function). 
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Input to Algorithm 4 then consists of input to the subprogram, the subprogram 

itself, and the degree, I C ,  of the highest degree normalized orthogonal polynomial. 

Output. The algorithm generates (1) a two dimensional array of roots, {pp }, of 4, , 

0 < i 5 k, required for (a modification of) Algorithm 1 in the non-Chebyshev case; (2) 

, needed for Algorithm 2 in the special case k = 1; (3) the Jacobi parameter T~ = - 1 

P l l  

matrix (4) &, and q5k(0), needed for Algorithm 5 ;  ( 5 )  the recursion coefficients 

{ak, 7 k }  for the residual polynomials, needed for (a modification of) Algorithm 3; and 

(6) the array of leading coefficients, vi, of q 5 i ,  needed for Algorithm 5 .  

Restrictions. Degree k must satisfy k L M .  The restriction on r is that the nodes, 

{&}, lie on the real line, which holds if A is Hermitian symmetric positive definite. 

However, it is not necessary that A be Hermitian symmetric positive definite. For 

example, if A is real nonsymmetric then F may be taken to be the major axis of an 

ellipse enclosing the nonzero spectrum and the inner product taken to be the inner 

product defining Chebyshev polynomials; see $7.3. 

Notes. The reciprocals of the roots of c j k  are the r-parameters needed for 

Richardson’s method, and are general input for a modification of Algorithm 1. 

This algorithm directly computes the recursion coefficients, {sii};-for normalized 

polynomials; see (6.4.1). These are not the recursion coefficients, {ak, qk}, for residual 

polynomials. A n  expression for the ak, yk coefficients in terms of the s , ~  coefficients is 

given as follows. 
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Since Ri ( I )  = di (()/di (0), (6.4.1) is equivalent to 

From (6.2.2), it follows that 

For step 6.4) below, the monic polynomial, 7 r i ,  is used to  calculate the leading 

i 

j = 1  
coefficient of d i .  Let the i roots of q5i be ( p 5  }. Define 7ri ( I )  = I2 ( I  - p j i ) .  Let 

i 

j = 1  
The factored form di ( I )  = uj Il (( - p 5  ) is recommenczd for evaluating di ( I ) .  

. Set do := u o .  
1 

1) Set uo := II 111 ( w  

2) Set s11.:= ( I d o , d ~ ) ( ~ ,  and set p l l  := s l l ,  the root of dl . 

3) If k = 1, return. 



1 
4) Set u1 := I1 dI ( w  * 

5) Set 41(0) := vl 

6) For 2 5 i 5 k 

6.1) Set tl 

- P 1 1 )  - 

do: 

e first i - 2 elements a the last column of S4i, column i ,  equal to 0. 

6.2) Formulas (6.4.2) and (6.4.3) give the remaining two elements. Set 

s i i  := ( t 4 i - l , + i - I ) ( w  * 

6.3) Compute the eigenvalues of (the symmetric matrix) Sb,.. Set the roots, { ,oji >, 

of q5i to these eigenvalues. 

1 
6.4) Set vi:= II Ti II <w * 

Pii * 6.5)  Set ipi (0) := (-1)' v i p l i  . . .  

Enddo. 
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7.2. Algorithm for the Grand-Leap Parameters. 

Algorithm 5. (Compute g k ,  and the roots  and leading  coeficient of Ck-l.) 

Purpose. Compute the a-parameters and parameter gk-l needed for the grand-leap 

algorithm; these parameters are the roots and leading coefficient respectively of C k - l .  

Input. A matrix ( s i j ) k + l X k + l ,  such as S4,+l from Algorithm 4, nonzero parameters 

vk, q50, and +k (0), such as, also, from Algorithm 4, and period k. 

Output. The algorithm generates the k - 1 roots, {oi}, and leading coefficient gk-l 

of the “polynomial preconditioner” Ck -l. These quantities become input for Algorithm 

2. 

Restrictions. There are no restrictions other than those imposed on the input 

parameters. 

1) Initialize k 2 2  . 

2) Set .Fij  := s i j  for 1 5 i, j 5 k (gkl will be reset in step 3).) 

- 
4) Set Sk :=(.Fij) . 

5) Compute the eigenvalues of sk. 
eigenvalues of S k .  

Set the roots of Ckbl equal to the nonzero 
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7.3. The Chebyshev Case. 

determined with explicit inner products. 

For this special case, the grand-leap parameters may be 

7.3.1. Chebyshev Orthogonality. Assume d ,  c # 0, and 0 is not in the interval 

[d - c ,  d + c ] .  If d and c are real, this is equivalent to assuming d > 0, and d - I c I 

> 0. Let Ti(,u) be the Chebyshev polynomial of degree i defined by the familiar 

recursion T,=l ,T , (p )=p ,  and for 1 si, Ti+l (p)=2pTi(p) -TT;- l (p) .  

Let $ , ( E )  =Ti [( [ - d ) / c ]  be the shifted and translated Chebyshev polynomial. The 

. The family {$i: 0 5 i} satisfies t h e  Chebyshev residual polynomial is therefore - $i (0 
$1 ( 0 )  

orthogonality relations (where c > 0 if real) . 

where 
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7.3.2. Recursions for the Shifted Chebyshev Polynomials. 

yields a recursion for {G2}: 

The recursion for T, 
I 
I 

i and for 1 5 i ,  

7.3.3. Roots of C k - l ,  The roots of Ck-l are among the eigenvalues of sk. An explicit 

expression for S ,  requires S, and +k(O). To determine these quantities, the three term 

recursion for the normalized polynomials is needed. The normalized polynomials are: 

I 

The recursion is 

and for 2 5 i ,  
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7.3.3.1. Matrix S,. From the recursion for {+;}, it follows that 

s, = 

C d -  
2 

C C - d -  
2 2 

. . .  
. . .  

. .  

To modify S k  to obtain s,, r$k (0) is needed. For 1 5 k ,  

which follows from Tk ( p )  = coshkcosh-'(p). 
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7.3.3.2. Matrix sk-l. Therefore, 

ik 
d 

C - 
2 

0 

~ 

7.3.4. Leading Coefficient gk -1. Since 

C - 
2 

C d -  
2 

. . .  
. . .  

. .  . 
C C - d  - 
2 2 

. . .  0 -  - d  
2 

. (7.3.1) 

$k ( E )  
$k (O) 

it suffices to find the leading coefficient of Rk = - . 

The leading coefficient of $k ( c )  is easily obtained. from the recursion 

and, for 2 5 i ,  
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$i(O = 2 7  $ i - l ( t )  - $i-z( t )  ' - 
k 

. This combined with the expression 
C 

1 The leading coefficient of $k is therefore - - 2 

for $k(0)  gives 

coshkcosh-' I - -I 

7.3.5. Algorithm for the Grand-Leap Parameters in the Chebyshev Case. 

Algorithm 6. (Compute the parameters f o r  the Grand-Leap Algorithm in the 

Chebyshev Case.) 

Purpose. Compute gkWl, r0, and ol, ..., o k - l  in the Chebyshev case as required, for 

Algorithm 2. 

Input. Ellipse parameters d and c and period I C .  

Output. The k - 1 roots, {a;}, and leading coefficient gk-' of the polynomial 

preconditioner Ck-l. 

Restrictions. If the grand-leap algorithm is to converge then the ellipse parameters must 

satisfy the same restrictions as in Algorithm 1. 
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Notes. The algorithm uses a matrix s, that is not defined if c = 0. In this case, the set 

of Chebyshev residual polynomials reduces to the family {Rk = (I - d ) k  / d k :  0 5 k ;., 

which is not an orthogonal family for any weight function. The case c = 0 is often used 

in the Manteuffel algorithm in order to compute improved ellipse parameters adaptively. 

If one believed that c = 0 then Richardson’s method would converge in a single step if 

the matrix were normal, in which case no need exists for the grand-leap formulation. If 

one were computing ellipse parameters adaptively, then the parameter computation 

technique reduces to a sequence of matrix vector mu tiplications, and again the grand- 

leap formulation is not desired. For. these reasons if c is small relative to d the 

algorithm halts. The halting criterion is a comparison of I c / d  I to the machine epsilon, 

denoted in the algorithm by “mach eps” and defined to be the largest machine number, 

E ,  such that the floating point sum 1 + E equals the machine number 1. 

As a final note, there does exist an analog of g k  in the degenerate case (c = 0), and 

the algorithm control could branch to the computation of the eigenvalues of the analog 

of gk, but the lack of a practical need obviates this version. 

1 1) Set T~ := 
- ~ ~ / 2 + d  * 

2) If k = 1 or I c / d  I 5 l/mach eps then return. 

3) Set 

1 
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4) Set the roots { a', . . . , a k - 1 )  of Ck-l equal to the nonzero eigenvalues of matrix 

(7.3.1). 

5) Set the leading coefficient gk--l/Of Ck-l equal to 

gk - 

8. Summary. 

1[1 2 c  

- -- 

k 

The leapfrog and grand-leap variants of Richardson's method and a general second 

order method have been described. A comparison among the methods and variants 

shows that there are advantages either to omitting every other iterant or to omitting all 

iterants (except the last). 

The leapfrog and grand-leap variants require sets of parameters that may be 

computed from the eigenvalues of a matrix. In the leapfrog case, the matrix is the same 

as that which expresses the roots of a member of a family of orthogonal polynomials as 

the eigenvalues of a symmetric tridiagonal matrix. This matrix may be modified slightly 

to yield the parameters needed for the grand-leap variant. 
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Algorithms for the leapfrog and grand-leap methods are given in the Chebyshev 

case. In the Chebyshev case, explicit values for the elements of the tridiagonal matrix are 

well known and need not be computed. 
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