
i . ..
NASA Contractor Report 181616

ICASE REPORT NO. 88-7

c

ICASE
I LEAPFROG VARIANTS OF ITERATIVE METHODS
I

I d
FOR LINEAR ALGEBRAIC EQUATIONS

~ ~

(bASA-CR- 1816 16) LEAPIROG Y A G I B b t f I S OF B188- 18532
111EBASIVE BETBODS PUB LIBEALB AIGEBPA
I i C t I A T I U S Final Report IhASA) 6 3 pCSCL 128

I Unclas
I ~3164 0124373

Paul E. Saylor

Contract No. NAS1-18107 and AFOSR 85-0189
January 1988

c

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, hapton, Virginia 23665

Operated by the Universities Space Research Association

I

https://ntrs.nasa.gov/search.jsp?R=19880008948 2020-03-20T08:27:14+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42833248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LEAPFROG VARIANTS OF ITERATIVE METHODS
FOR LINEAR ALGEBRAIC EQUATIONS

Paul E. Saylor

ABSTRACT
Two iterative methods are considered, Richardson’s method and a gen-

eral second order method. For both methods, a variant of the method is
derived for which only even numbered iterates are computed. The variant
is called a leapfrog method. Comparisons between the conventional form
of the methods and the leapfrog form are made under the assumption that
the number of unknowns is large. In the case of Richardson’s method, it is
possible to express the final iterate in terms of only the initial approxima-
tion, a variant of the iteration called the grand-leap method. In the case of
the grand-leap variant, a set of parameters is required. An algorithm is pre-
sented to compute these parameters that is related to algorithms to compute
the weights and abscissas for Gaussian quadrature. General algorithms to
implement the leapfrog and grand-leap methods are presented. Algorithms
for the important special case of the Chebyshev method are also given.

This research was supported by the National Aeronautics and Space Administration
under NASA Contract No. NAS1-18107 and by the U.S. Office of Scientific Research
under Contract No. AFOSR 85-0189 while the author was in residence at the Institute
for Computer Applications in Science and Engineering (ICASE), NASA Langley Research
Center, Hampton, VA 23665.

i

...
111

TABLE OF CONTENTS

1 .

2 .

3 .

4 .

5 .

6 .

Introduction ..
1.1. Summary ..
1.2. Conventions and Notation ..

Richardson’s Method: Conventional Form and Leapfrog Form
2.1. Conventional Richardson’s Method ...
2.2. Leapfrog Form ..
2.3. Optimum Chebyshev Parameters ..
2.4. An Algorithm in the Chebyshev Case ...

Richardson’s Method in One Step ...
3.1. Krylov Subspace Methods ...
3.2. An Expression for Ck-l ...
3.3. A Remark on Polynomial Preconditioning ..
3.4. Methods to Compute Ck-,(A)r(O) ...
3.5. Algorithm for the Grand-Leap ...

Comparisons ..

Second Order Iterations ...
5.1. The Second Order Iteration ..
5.2. Second Order Leapfrog
5.4. Algorithm for the Second Order Leapfrog Method in the Chebyshev
5.3. Comparisons ...

Case ... : ..

L2-Optimum Parameters ..
6.1. L2-Optimality ...
6.2. The Recursive Property of Orthogonal Polynomials
6.3. Second Order Iteration ...
6.4. A Method for the Roots of C k - l ..
6.5. Leading Coefficient gk -1 ...

8 -

PAGE 1 / INTENT1ONALkY BLANK

1
2
4

5
5
.
3

6
9

13
13
14
15
15
16

19

24
25
25
29

29

32
32
34
35
35
40

PRECEDING PAGE BLANK NOT C U E D

1v

7 . Algorithms ... 42

7.1. Algorithm for Normalized Residual Polynomials 42
7.2. Algorithm for the Grand-Leap Parameters ... 46
7.3. The Chebyshev Case ... 47

8 . Summary ... 53

9 . Acknowledgements .. 54

1

1. Introduction.

The subject of this paper is a set of techniques to improve efficiency in the

iterative solution of a real or complex linear system Ax =b, especially for the

solution of large problems on supercomputers.

An iterative method generates a sequence ..., x(~-’) , x(~-’) , x (~) , For the

methods of this paper, a variant such that can be expressed directly in terms

of x(~-’) with no dependence on x(~-’) will be called a leapfrog method. A variant

of Richardson’s method is also presented for which the final iterate is computed

from the intial approximation with no computation of intermediate iterates. This

will be called the grand-leap method. The advantages of the leapfrog and

grand-leap methods are: (i) a slight reduction in some cases in the total number

of arithmetic operations; (ii) an increase in the number of terms in vector sums,

an advantage on supercomputers that “chain”, i.e., transmit results from one

arithmetic unit directly to another; and (iii) a reduction in 1/0 operations for

large problems. In his Ph. D. thesis [Chro86] studied methods to omit

intermediate successive iterates for the conjugate gradient method as a way to

allow parallel computation of matrix vector products. His goals overlapped

somewhat with those of this paper but the approach is not the same.

Two iterative methods are considered: Richardson’s method [FoWaGO,

Hay0811 and a general second order iterative method. For Richardson’s method

the leapfrog method was used in [Smol81, SmSa851 as a technique to avoid

complex arithmetic. In this paper its other properties are explored.

2

Richardson’s method is an old method the advantages of which have

generally been ignored; however, see [AnGo72]. In the symmetric positive definite

case, Richardson iteration parameters do not yield an optimum iterate at each

step whereas a second order method does. This is one reason for the neglect of

Richardson’s method. However, in a paper of Tal-Ezer [Ta187], a novel approach

is described in which Richardson iterates are almost optimum at each step.

The Chebyshev iteration is an example of a second order method [Mnt77,

Mnt781, used for the solution of nonsymmetric systems. The Chebyshev iteration

is not applicable, however, unless the eigenvalues of A lie in a half plane.

Furthermore, the Manteuffel adaptive algorithm [Mnt78] assumes the eigenvalues

appear in complex conjugate pairs, which holds if the matrix is real. This is a

brief argument for the use of Richardson’s method if the matrix is either a

general real nonsymmetric matrix with eigenvalues in both half planes or is a

complex matrix the eigenvalues of which do not appear in complex conjugate

pairs. It should be stressed that large complex matrices arise in signal processing,

and constitute an important class of problems.

1.1. Summary. In $2, the leapfrog version of Richardson’s method is derived.

Iteration parameters are assumed given, with the exception of the Chebyshev

case for which explicit formulas are given as well as an algorithm. With properly

chosen parameters, the method applies to any real or complex matrix.

8

In $3, the grand-leap method is presented for computing the final

Richardson’s method iterate in terms of the initial iterate. An algorithm is also

given.

Comparisons among the conventional, leapfrog and grand-leap versions of

Richardson’s method are made in $4.

In 55, the general formula for a second order method is stated, and a leapfrog

version derived. An algorithm (Algorithm 3) is stated in which the parameters are

assumed given. Algorithms for these parameters are presented in $7.

Optimum La-iteration parameters are defined in the Chebyshev case in $2.

In 9, L2-optimum parameters are defined. Optimum L2-Richardson’s

parameters, in the case of real eigenvalues, are the roots of an orthogonal

polynomial. An algorithm to compute roots of orthogonal polynomials is

developed, which is an implementation of the Stieltjes algorithm [Gaut82] and

related to an algorithm presented in [GoWe69] for the weights and nodes for

Gaussian quadrature. This algorithm is modified to yield the quantities required

to execute the gran-d-leap method. The L2-approach is only one approach to

optimum parameters. A non-L2 treatment is given in [ElSt85, Tal871. Each of

these references is more general than the L2-methods in 56. A completely general

L2-approach may be based on [SaSm88] but is beyond the scope of this paper.

Algorithms based on the methods in §6 are gathered and presented in- 57.

Algorithms for the special and important Chebyshev case’ are also given in 57.

4

1.2. Conventions and Notation. Although an 12-inner product is a special

case of the L2-inner product if the measure is chosen correctly, for clarity and

convenience, the two are used separately.

The solution of a linear set of equations Ax = b generally requires that the

set be preconditioned by transforming it into a set such as, for example,

CAX = Cb for which the iterative method converges more rapidly. (Other

preconditionings yield systems such as CAQQ-h = Cb, but the same remarks

hold for these other cases.) There is no change in the techniques or algorithms

presented in this paper if they are applied to CAx = Cb rather than Ax = b

other. than the change in the matrix from A to CA. It will therefore be assumed

that A is the preconditioned matrix.

It will be convenient from time to time to state that an algorithm converges

with no restriction on the input data and if certain conditions on the eigenvalues

are met. In a practical sense, of course, there are restrictions on the data such as

those needed to prevent overflow, which may be infeasible to analyze and

formulate.

Matrices and vectors are denoted by boldface type.

The number of unknowns is denoted by N .

5

2. Richardson's Method: Conventional Form and Leapfrog Form.

This section begins with a statement of Richardson's method, from which the

leapfrog form is easily derived. The Chebyshev case is outlined and an algorithm

given.

2.1. Conventional Richardson's Method. Let T~ , ..., T ~ - ~ be a cycle of

i terat ion parameters where IC is called the per iod . The purpose of iteration

parameters is to reduce the error, but discussion of this is postponed until later.

For now, attention is directed to the iteration, and the reader is asked to accept

the parameters as given.

Let x(O) be an initial guess. Richardson's method is defined as follows. For

i =1, ..., IC,

(2.1.1)

2.2. Leapfrog Form. The recursion

will be used, which may be derived by first subtracting (2.1.1) from x=x to

obtain

6

e(') =e('-') (i -1) (2.2.2)

where e(*) = x -x(') , and then multiplying (2.2.2) by A. Since r (i) =Acdi), (2.2.1)

follows. Vectors e(i) and r(2) are called the (true) error and the residual error

respectively.

The leapfrog step from x (i - 2) to x (~) results from using (2.2.1) in (2.1.1) to

give [SmSa85], for i = 2, 4, ..., k (under the assumption that k is even)

2.3. Optimum Chebyshev Parameters.

and residual error satisfy

It is easy to show that the error

where Rk is the polynomial

(2.3.1)

Any polynomial such that Rk(0) =1 is called a fisidual polynomial [Stie58].

Parameters are chosen to minimize &(A) in some sense, to be discussed next.

7

Let R'be a set containing the spectrum of A. Usually one thinks of R as an

interval or union of intervals on the real line. However if A is nonsymmetric,

then both R and the spectrum may lie off the real axis in the complex plane. Two

commonly used methods to minimize &(A) are either to minimize the L,-norm

of polynomial &(<) over R or to minimize a weighted L2-norm over R. In this

part, only the L,-norm will be discussed. How Chebyshev polynomials are used

to minimae this norm will now be outlined. The papers of Manteuffel give more

details [Mnt77, Mnt78].

The Chebyshev residual polynomial is defined by

where Tk is the Chebyshev polynomial of degree I C , and d and c are parameters

defining a confocal family of ellipses: d is the center and the foci are d f c .

Henceforth, in the Chebyshev case, the set R containing the nonzero spectrum

will be an ellipse. (An ellipse, as the term is used here, means the union of the

curve and its interior.) Parameter c is assumed either real or purely imaginary;

in either case, c 2 is real. (If c = 0, Rk(~) reduces to (I - d) k / d k .) Assume that d

is real and ope member of the confocal family with center d and foci d f c is in

the interior of the right half plane, i. e., d > 0. (If there is one in the left half

plane, then we consider -A instead of A.) These assumptions mean respectively

8

that the major axis of each ellipse of the family is either on the real line or that

the major axis of each ellipse is perpendicular to the real line. If the major axis is

on the real line, then the assumption that at least one member of the family lie in

the interior of the right half plane means that d'- I c I > 0. Finally, note that if

the eigenvalues are real, then ellipse R may be assumed to be the interval

[d - I c I , d + I c I 1 , which is the degenerate ellipse of the confocal family.

Among all residual polynomials, it may be shown [Mnt78] that the

Chebyshev residual polynomial has the minimum L,-norm over the interval

n= [d - I c I , d + I c 1 1, and closely approximates the residual polynomial with

minimum La-norm over any ellipse, 0, with center d and foci d f c .

It is not necessary that d and c 2 be real in order that the Chebyshev

iteration converge. The reason for assuming above that these are real quantities

is connected with the Manteuffel algorithm [Mnt78]. The Manteuffel algorithm is

valid only when the eigenvalues of A appear in complex conjugate pairs, and it is

this that leads to the assumption that d and c 2 are real. In general for any d and

c2, convergence results if there is one ellipse with center d and foci d f c

containing the eigenvalues that does not also contain the origin. A s a practical

matter, however, the Chebyshev iteration is useful only 'when d and c can be

obtained by some technique such as the Manteuffel algorithm.

In the Chebyshev case the Richardson iteration parameters are derived from

the roots, {pi}, of Tk which are

9

p i =COS [T F] , i =0, ..., k-1.

The roots of Rk are therefore d + c p i , for i =0, ..., k-1 and the parameters for

Richardson’s method are

2.4. An Algorithm in the Chebyshev Case. First a technical note on

avoiding complex arithmetic: If the major axis is vertical, i.e., if c is pure

imaginary, then the roots of Rk occur in conjugate pairs. It is an advantage to

order the parameters { r i } in such a way that, in this case, ?-i-l and T;-, are

conjugate pairs (in order that ri-, + ri-, and ri-1ri-2, required by the algorithm,

are real), a task equivalent to ordering the roots, { p i } , of Tk in such a way that

pi - , = -pi-1.

Let h = 7r/2k. The roots of Tk are the cosine’s of

8, = h , 8 , = T - h , e3 = 3h, 8, = T - 3h, If k is even, which it is in the

leapfrog case, the last two roots in this ordering are the cosine’s of e,-, = - - h
7r

2

7r and 8 , = - + h . Moreover, cosel = - COS~, , etc. In the algorithm, the formula
2

Bi = {2 [?I - 1 i(-l)i-lh + 7rmod(i +1, 2)

10

for i = 1, ..., k, will be used. If pi = cosBi, then in the c d e when c is pure

imaginary, { d + c p 1 , d + C P ~ } , {d + cp3 , d + c p , } , ... is a sequence of conjugate

pairs.

If the major axis is real, the error is reduced after a cycle of exactly k

parameters, but the algorithm may not have converged. If the major axis is

vertical, the error is reduced only if k is sufficiently large, a requirement that in

practical applications, however, is observed to be reasonable. If the algorithm has

not converged, the cycle of parameters is repeated. After the parameters have

been recycled 1 times, the error, dk') = x - x (~ ') , satisfies e(k') = (Rk(A))'e(').

But R k l (() # (Rk(c))' where Rkl is the optimum Chebyshev residual polynomial

of degree kl . This is a basic problem with Richardson's method: It is optimum

only at the end of one cycle of parameters. For an alternative appGoach, not

based on Chebyshev parameters, see [Tal871 in which a method is proposed to

increase the number of parameters in an almost optimum way (thus the period is

not fixed) until convergence is achieved.

Algorithm 1. (Leapfrog Richardson's method in the Chebyshev case.)

Purpose. Execute Richardson's method with Chebyshev parameters and omit

alternate steps.

Input. Matrix A, right side b,, initial guess ~('1, cycle k , and ellipse

parameters d and c . The ellipse parameters are assumed known, for example, as

output from the Manteuffel algorithm [Mnt78, Ashb851. The user must also

11

provide a maximum number of cycles of iterations and an error criterion to halt

the iteration.

Output. Iterate ~ (~ 1 , the iterate reached after the last cycle of k parameters

in the standard execution of Richardson’s method.

Restrictions. If d and c 2 are real, then d is assumed either positive or

negative and will be assumed positive without loss of generality.

Also, for real c , 0 < d - 1 c I . In general for any d and c 2, convergence results if

there is one ellipse with center d and foci d & c containing the eigenvalues that

does not also contain the origin. If the matrix is singular, the algorithm

converges to a solution if the systea is consistent. Period k is even.

Notes. (1) Quantities e i , p i , and T~ need not be array variables since only

three values are used during execution, but subscripts make the algorithm more

convenient to state: (2) A slight modification of the algorithm would allow { ~ i } to

be an input array? for example, from Algorithm 4.

7r
1) Set h := -.

2k

2) Do either until convergence or a limit on the number of loops is exceeded.

2.1) For i = 2 to k by 2 do:

2.1.1) Set B i - l := (2 - l}(-l)i-2h + nmod(i, 2).

2.1.2) Set di := {2 [e] - l}(-l)i-lh + rmod(i + 1, 2).

12

2.1.3) Set pi -1 := cosOi-l .

2.1.4) Set pi := codi .

1
d + c p i - 1

2.1.5) Set 7 i -2 :=

1
d + c p i

2.1.6) Set ~ i - ~ :=

2.2) If not converged, set x(O) := x (~) .
I

2.3) Enddo.

1 3

3. Richardson's Method in One Step.

It is easy to see that leapfrog could be continued further to allow computing x(~)

from x(Zd4). Ultimately, one arrives a t an expression for x(~) in terms of x(O) with

no intermediate approximations, the form of which is, as will be seen

momentarily,

X(k)=X(0) +Ck-l(A)r(') , (3.1)

where Ck-l is a polynomial of degree k-1. Computing x(~) only from x(O) while

omitting the computation of any intermediate approximation will be called the

grand-leap.

3.1. Krylov Subspace Methods.

Krylov subspace method, i. e., for 1 5 i,

Richardson's method is an example of a

,(i) - x(0) E v, ,

where v. is the Krylou subspace defined by

(3.1.1)

, ..., A i - 1 r - (0)

The proof of (3.1.1) is an easy induction based on di) = x('-') + T

Membership relation (3.1.1) implies (3.1).

r(i-l).
i -1

14

3.2. An Expression for Ck-l. Multiply

by A to obtain

Since

it follows that

- R k (d
9 s c k - l (d =

which is a polynomial since Rk (0) = 1.

Therefore if

then

ck-l(~)=ek?-l+ - +el. (3.2.1)

The representation of any polynomial in s in terms of powers of

power form.

is called the

15

3.3. A Remark on Polynomial Preconditioning. Assume that residual

polynomial Rk is small on set R (containing the spectrum of A.) Therefore, on fl,

ck-l(() is an approximation to (-', and Ck-,(A) is an approximation to A-l.

Polynomial Ck -1 arises in so-called polynomial preconditioning [Adm82, AMS87,

Chen82, JMP83, Say183, Ta1871.

3.4. Methods to Compute Ck-l(A)r(o). In the important Chebyshev case,

The coefficients, B i , could be easily determined by expanding Tk - in terms

of powers of 5. In principle, the coefficients of any residual polynomial could be

determined in the same way, although no residual polynomial is as well

documented as the Chebyshev case.

Despite the simplicity of this approach, it has the unfavorable feature that

even when the coefficients, B i , are known explicitly, it is numerically difficult to

compute the vector d=BkAk--'r(O)+ * * +B1r(O) due to the ill conditioning of the

basis {r(O) , * - - , A }, if k is large. However, to avoid instability it is often

sufficient to take a small value of IC, say k =5. If the power form coefficients are

known then nested' polynomial evaluation (Homer's 'rule) could be used to

k - 1 (0) r

16

compute CkVl(A)r(*).

An algorithm is presented later, Algorithm 2, in which the roots,

{ai : i = 1, ..., k - l}, and the leading coefficient, gk-l, of Ck-l will be assumed

given. The roots of Ck-l may be computed from the power form (for example by

computing the eigenvalues of the companion matrix.) A method and algorithm

(Algorithm 5) are presented in E$ that do not require the power form coefficients.

Also see [Tal871 for a non-L2 approach.

3.4.1. Avoiding Complex Arithmetic. If A is real, then it is reasonable to

assume that the coefficients of Ck-l are real. If so, then the roots of Ck-l occur

in complex conjugate pairs. Let 0 and a be a conjugate pair. Since

(A-a)(A-$u=

no complex arithmetic is required to evaluate Ck-l(A)r(o) when the factored form

is used. (In the general case when A is complex, the roots do not occur in

conjugate pairs.)

3.5. Algori thm for the Grand-Leap.

Algorithm 2. (Compute x (~) =x(O) + Ck-l(A)r(o).)

17

Purpose. Compute the final iterate x (~) from the initial guess with no

intermediate iterates computed, except those at the end of each cycle.

Input. Matrix A, right side b, the intitial guess ~('1 , period I C , the leading

k - 1

Parameter T ~ , which is the reciprocal of the root of R,, is required if k = 1. These

I

t

parameters are generated from Algorithm 5,. and, in the Chebyshev case, from

Algorithm 6. However, there are other sources for the parameters such as [Ta187].

TLe user must also provide a maximum number of cycles of iterations, and an

error criterion to halt the iteration.

Output. Iterate x (~) , the last iterate reached after a cycle of k parameters in

the standard execution of Richardson's method.

Restrictions. The algorithm executes with no restrictions on the input data.

However in order for the algorithm to converge to the solution of Ax = b, for all

b, it is necessary that I Rk(Ai)l < 1 for each nonzero

eigenvalue, A,, of A. If this holds and A is singular, the algorithm converges to a

= I 1 - AiCk-l(Ai)/

solution when the system is consistent.

18

2.2) Return.

3) Separate the roots {ai} of Ck-l into real roots and conjugate pairs of (nonreal)

roots: al, ..., am are real; ..., a k - 1 are nonreal and

a j + l = Z j , m + l < j < k - 2 .

4) Do until convergence or a limit on the number of loops is exceeded:

4.1) Set r(O) := b -Ax(') .

4.2) Set

4.3) If not converged set x(O) :=x(~ !

Enddo.

19

4. Comparisons.

To display some.of the advantages in the leapfrog and grand-leap approach a

side-by-side comparison of algorithms is made in Table 1. The conventional

Richardson’s method is compared to the leapfrog version, in which alternate steps

are omitted, and to the grand-leap version in which all intermediate steps have

been omitted. The period, IC, is assumed even.

The operations shown in Table 1 form the kernel of a loop, the commands

for which have been omitted. The details for a complete algorithm have been

given already and would be distracting here.

On any computer, reducing the number of arithmetic operations, the

traditional goal of algorithm design, is an advantage. In the case of the leapfrog

and grand-leap versions, i t is a thin advantage but an advantage nevertheless and

one that is unexpected. (Since Richardson’s method is a Krylov subspace method,

the number of matrix-vector multiplications cannot be reduced.) It is a further

advantage on supercomputers that do chaining that there are more terms in the

leapfrog expression for x (~) than in the conventional expression.

Some additional comment is needed on how arithmetic operations are

counted. The number of arithmetic operations given in the table is based on the

assumption that there is no mixed real and complex arithmetic. Let us consider

when mixed arithmetic occurs. The Table 1 parameters are

{ ~ i , a;, T* + 7; , ~i 7; , a; + ai, oi Fj }. In the Hermitian symmetric positive definite

20

.case, the roots of R, are real, the Table 1 parameters are real, and there is no

mixed arithmetic. (It is reasonable to assume this. A Hermitian positive definite

system could be solved with nonreal parameters, however.) If A is a general

complex nonsymmetric matrix, all Table 1 parameters are general complex

quantities and since the matrix is complex, there is again no mixed arithmetic.

Mixed arithmetic occurs in Richardson’s method if A is real and

nonsymmetric, for then the Table 1 parameters are general, complex quantitie .

whereas the other quantities are real. If A is real, it is reasonable to assume that

polynomials Rk and Ck-l are real. The roots may then be grouped in conjugate

pairs, and the leapfrog and grand-leap methods performed in real arithmetic.

Richardson’s method, however, requires complex arithmetic, and the number of

arithmetic operations is effectively larger than shown in Table 1. In this case, one

would not want to consider Richardson’s method, which was the motive for using

the leapfrog method in [SmSa85].

Now we come’ to an aspect of these comparisons, namely the effect on 1/0

due to the solution of largesystem, that is important to take into account but is

necessarily limited due to the range of the subject.

The limitation made here is to consider only programmer-controlled storage,

from among a list of topics required for a more complete discussion that includes

architectures, specific application problems, and implementation details. The

reader may object that although it is reasonable to dismiss architectures, it is still

21

not reasonable to restrict discussion in quite this way. For, the typical user is

running problems on a virtual memory machine and is beset with multiple

worries that deserve attention, such it5 memory “touches”, or the loading of

vector registers, or the losses due to flushing a cache. Unfortunately, such

transfers between memory levels are hardware dependent and simply cannot be

analyzed within the scope of this paper; the conclusions reached here below do

not necessarily hold in these cases. It should be noted, however, that even for

virtual memory systems, there exist limits [Ecc183] that compel the use of explicit

1/0 commands similar to those in Table 1.

One final comment to justify the narrow focus that is taken: It is

characteristic of many supercomputers that only programmer-controlled

peripheral storage is available for large problems and when needed is usually

responsible for languid performance. This dismal fact often attracts comment.

For example, Ortega and Voigt observe, “The [programmer-controlled] 1 /0

problem produced by very large problems [is] ... known to be potentially

devastating on high performance systems” [OrVo85]. Programmer-controlled

storage includes system commands, custom utilities, and the less efficient choice,

depending on circumstances, of Fortran commands. Only Fortran commands are

given in Table 1.

In order to weigh the effect of transfers from peripheral storage, a large set-of

linear equations is assumed. This vague statement will be sharpened in order ,to

22

arrive at a rather specific assumption. The discretization of coupled partial

differential equations in three dimensions yields, in some applications, leviathan

systems of order ten million complex unknowns. Such problems lead to the

assumption that a matrix multiplication, which may involve a preconditioning,

absorbs the primary memory and that processing after a matrix multiplication

requires reading in a vector from disk. This assumption is seen in Table 1 when,

for example, in the leapfrog algorithm, r (i - 2) must be read from disk after

computing t = di-2).

Under these conditions, a third advantage of the leapfrog and grand-leap

algorithms is seen: there are fewer READ’S and WFtITE’s.

In an actual implementation, it may well happen, for example, that two

in the matrix READ’S are not necessary in any algorithm and that x

conventional algorithm need not be written on disk. Conditions will vary, and

the results in the table are only representative. If the assumption on matrix

vector multiplications is not valid, the comparisons would change, but it is

plausible that for large problems there would remain an 1/0 advantage to the

leapfrog and the grand-leap formulations.

(i - 1)

23

Conventional

WRITE x (~) .

2 matrix mults.

4 vector READ's
2 matrix READ's
2 vector WRITE'S

4N adds
2N mults.

Table 1
Leapfrog

2 matrix mults.

3 vector READ's
2 matrix READ's
1 vector WRITE

3N adds
2N mults.

G ran d-L eap

CY=u+i? -
u=uu

READ A
v~=Av,

WRITE u(')

2 matrix muIts.

1 vector READ
2 matrix READ's
1 vector WRITE

2N adds
2N mults.

24

5. Second Order Iterations.

In the real eigenvalue case, residual polynomials of practical value are orthogonal

polynomials, and satisfy a three term recursion. This elegant property yields

second order methods, which have an extra term in the expression for the new

iterate as compared to Richardson’s method. Richardson’s method is also called a

first order method and a second order method sometimes called Richardson’s

second order method. In a second order method, each new iterate is optimum in

the sense that the residual polynomial satisfies an L2-optimality property, to be

be discussed in 56. The Chebyshev iteration, employed by Manteuffel [Mnt77], is

an example. In the case of a first order method, dk) is optimum if the residual

polynomial, Rk, is optimum, but di) is not optimum for i # k , a fact commented

on previously in the Notes for Algorithm 1. There is a cost in the second order

method for optimality at each step: a larger number of arithmetic operations and

a greater use of storage compared to Richardson’s method.

The objective is a second order method for which only even numbered

iterates are computed using information only at even numbered steps, a method

hereafter called a second order leapfrog method. In the Chebyshev case, an

algorithm will be given.

25

5.1. The Second Order Iteration.

be the given initial guess. Define Ax(-') to be zero and for 0 5 k ,

Some preliminaries are needed. Let x (0)

The second order iteration requires a set of parameters {ak, qk: 1 5 IC}

that are given explicitly in the Chebyshev case i.n Algorithm 3, and derived in a

general way in Algorithm 4. Assume these parameters are given. The iteration

may now be stated. Let r(O) = b - AX('). For k 21,

(5.1.1)

and

5.2. Second Order Leapfrog. The derivation is somewhat lengthier than in

the case of Richardson's method due to: the need to express Ax(k) in terms of

information at step k -2; and a complication involving the residual vector.

First, an expression for ~ (~ 1 , k 2 2 , is obtained in terms of information at

step k -2. Since

it follows that

~ (~ 1 = x (~ - ~) AX(^-^) .

~

Now use (5.1.1) in the last equation to obtain

Then

It remains to express A d k) and Ax(k) in terms of information at step k -2.

The expression for Ar(k) is simply

27

To summarize, the formulas to go from step k - 2 to step k are

and

Initially,

and

28

Table 2

Conventional Second Order

WRITE AX(^-^)

2 matrix mults.

6 vector READ’s
2 matrix READ’s
4 vector WRITE’S

6N adds
4N mults.

Leapfrog Second Order

READ

READ x (k
READ J k -2)

WRITE w

2 matrix mults.

5 vector-READ’S
2 matrix READ’s
4 vector WRITE’S

6N adds
4N mults.

29

5.3. Comparisons. Under the same assumptions as for the previous set of

comparisons, the two versions of the second order iteration are compared in Table

2. There are fewer advantages of the leapfrog algorithm in this case since the

number of arithmetic operations and the number of WRITE’S is the same. The

advantages are that there are fewer READ’S and a greater number of terms in the

sum defining x (~) in the leapfrog version. Note that variations are possible, for
J

example, in recomputing w in the leapfrog version, and that the arrangement of

terms used here is not necessarily suitable for a particular problem or

architecture.

5.4. Algorithm for the Second Order Leapfrog Method in the

Chebyshev Case. For the convenience of the reader, an algorithm is given

below for the case of Chebyshev parameters. As before with Algorithms 1 and 2,

no attempt is made to incorporate 1/0 statements.

Algori thm 9. (Second order leapfrog i terat ion wi th Chebyshev parameters .)

Purpose. Execute the leapfrog form of the second order iteration for the

Chebyshev case. The parameters are the same as for the standard second order

Chebyshev iteration as used for example in the Manteuffel algorithm [Mnt78,

Ashb851.

Input. Matrix A, right side b, and initial guess x(’); also a pair d and c such

that d is the center and d f c are the foci of a family of ellipses over which the

Chebyshev residual polynomial is (nearly) minimum with respect to the uniform

norm. The ellipse parameters are assumed known, for example, as output from

the Manteuffel algorithm [Ashb85]. In the general non-Chebyshev case, this

algorithm could be easily modified to allow {ak} and { 7 k } to be input parameters,

say, from Algorithm 4.

Output. The algorithm generates a set of optimum iterates converging to the

solution of Ax = b if the restrictions are satisfied.

Restrictions. The restrictions are the same as for Algorithm 1.

Notes. The ak and 7 k parameters need not be array variables; the subscripts

aid clarity.

1) Set r(O) := b - Ax(').

2) Set cy1 := l /d .

4) Set Ar(') := -AAx(').

2d
2 d 2 - c 2 . 5) Set cy2 :=

6) Set 7, = da , - 1.

7) Do k -= 2 by 2 until either convergence or a limit is exceeded:

I 31

7.3) Set := b -Ax(k) .

7.5) Set 7 k + l := d c ~ k + ~ - 1. *- 7.6) Set C Y ~ + ~ :=

7.7) Set 7 k + 2 := - 1.

7.8) Set Ax(k) := ak+lr(k) + ~ k + ~ w .

Enddo

32

6. L2-Optimum Parameters.

If either the Lz- or lz-norm is used to define optimum residual polynomials, then

it turns out that optimum residual polynomials form a family of orthogonal

polynomials if the inner product (either integral or sum) is defined over a real set.

From this fact, algorithms follow for the computation of the 7-parameters for

Richardson’s method, the a-parameters for the grand-leap method, and the

parameters for the second order method, which are presented in this section. The

assumption that the inner product is defined over a real set usually means that

the eigenvalues of the system matrix are real. The Chebyshev case is an

exception for which the eigenvalues need not be real. (Since Chebyshev

polynomials form an orthogonal family, Chebyshev residual polynomials are Lz-

optimum as well as L,-optimum.)

The algorithms’in this section generalize to the case of an inner product

defined over a contour in the complex plane. (A generalization may be based on

[SaSm88] .)

6.1. L2-Optimality. Some notation is necessary. Let r be an interval or a

union of intervals on the real line (generally, r could be any measurable subset)

and let w be a positive weight function on r. Define

33

where L = s w (t) d E. The set r may be assumed to be real by a linear change of
r

variables if necessary. In practice, rather than the continuous inner product, one

would use a discrete inner product of the form

where m (() is a measure, such as I E, . A norm is defined by

An (L2-) optimum residual polynomial of degree k is defined to be that residual

polynomial, Rk , with the smallest norm,

where Pk is any residual polynomial of degree k. Ideally, r should contain the spectrum

of A, and conform to the spectrum as closely as possible. Thus if the spectrum were

contained in the union of two intervals, r should also be the union of, if possible, the

same two intervals. How to find the interval or union of intervals containing the

spectrum is a difficult problem, and is not considered here; the reader is referred to the

Manteuffel algorithm [Mnt78] (which, however, computes only one interval containing

the spectrum.) If {Ri} is a set of optimum residual polynomials, then [Stie58] they form

an orthogonal set with respect to the modified weight function, tw (E) :

(6.1.1)

34

if and only if i #j.

6.2. The Recursive Property of Orthogonal Polynomials. The well-known

three term recursion for orthogonal polynomials is recalled, a property that yields not

only a second order iteration, which is derived here, but, also in 57.1, an algorithm for

computing, among other things, the roots of the optimum residual polynomial, needed in

order to execute Richardson’s method.

Define q5-l to be zero, and let do be a nonzero constant. A family, { d k :O<k}, of

orthogonal polynomials satisfies a three term recursion: for 1 5 k ,

(6.2.1)

where a k , P k , 7 k are recursion coe f i c i en t s given by

One coefficient is a parameter that- allows a normalization, such &, for example,

11 d k 11 =l. If { d k : 0 5 k } is a family of residual polynomials, the desired

normalization is (bk (0) = 1, which yields Pk = 7 k + 1 and, with R k (e) = & (E) ,

(6.2.3)

6.3. Second Order Iteration. The recursion for the residual polynomials yields an

iteration for which x (~) is L2-optimum in the following sense: The error, e(k) =x -x (k) ,

satisfies e(k) =Rk (A)e(O), where Rk is an L2-optimum residual polynomial.

To derive the iteration, replace with A in (6 .2 .2) and multiply on the right by r:')

to get[Stie58], for 1 5 k and r(-') defined to be zero,

d k) = (1 +7k)r(k-') +ak Ar(k -') -7k r (k - 2) .

Replace r(j) by b - h (j) , j = k -2;k -1 , k , and multiply on the left by A-' to obtain

X (k) = (1 +7k)x('-')+(ykr('-')-rkx (k -2).

Initially, x(O) is given and r(O) = b'-AxCo).

The iteration is usually expressed in terms of the iterant difference, x (~) - x (~ - ') , as

in (5 .1.1) .

6.4. A Method for the Roots of CkVl.

which are the roots of Ck-l.

A matrix will be derived, the eigenvalues of

Recall from 56.1 that an optimum residual polynomial of degree k is defined to be

that resicha1 polynomial, R k , that solves the weighted least squares problem

36

J I Rk(E)l 2.1(E)dE I J I P,(Ol "WE ?
r r

where Pk is any residual polynomial of degree I C . Also if {Ri} is a set of optimum

residual polynomials, then they form an orthogonal set with respect to the modified

weight function, Ew(E); see (6.1.1).

The roots of orthogonal polynomials may be computed by a stable algorithm based

on the fact that the roots are the eigenvalues of a symmetric tridiagonal m a t h , Sk.

The algorithm is called the Stieltjes algorithm and matrix Sk is called the Jucobi matrix.

The Stieltjes algorithm is recommended for computing the optimum Richardson's

method parameters, which are the reciprocals of the roots of the optimum residual

polynomial. Matrix S k may be modified by one element to obtain a matrix the nonzero

eigenvalues of which are roots of Ck-l.

If only the roots of Rk and Ck-l are desired, it.is not important that Rk(0) = 1. It

is preferable to work with the normalized family

6.4.1. The Roots of Rk(C). The elements of matrix S k are the coefficients of the

three term recursion satisfied by {q5i }.

It is convenient to write the recursion (6.2.1) in the slightly different form

37

The first three terms of the recursion are

which may be written in matrix form as

In general, k terms yield the matrix-vector equation

where

m =(40(0, 4d0, “‘7 4 k - , (E)) ?

6, = (0, . . . , 0, 1, 0, . . . , O)T is the k t h unit vector and S k = (s i j) is the tridiagonal

Jacobi matrix [Wilf62, GoWe691. The eigenvalues of the Jacobi matrix coincide with the

roots of &.

Next, a nested procedure in which the eigenvalues of S,, ..., Sk are successively

computed will be described for computing the roots of q5k. Let { p j i : l < j s i } be the

roots of 4, ; these are the eigenvalues of S i .

38

The procedure begins with the initial polynomial 40. Since g50 is a constant such

that /I q5011 tw =1, it follows that

1
40(J)= 11 111 tW -

Next, to compute the root of &, it follows from

t6o(E)=sIl4o(t) + s 1 2 4 1 (1) , ,

that, if 41 is to be orthogonal to do,

Of course, &(s 11) =O.

Now assume Sk-l has been computed, 2 5 IC. Since it is the (I C -1)X(IC -1) principal

submatrix of Sk, only the last row and column of Sk need be computed, a total of three

nonzero elements. Since the polynomials are normalized, S k may be proved to be

symmetric. Hence only ~ ~ - ~ , k and s k k are required.

Matrix Skbl yields the roots pl ,kWl, ..., p k - l , k - l of q5k-l. Let

Then

39

The elements to be computed are sk k - l , and skk. These are unknowns in the relations

(with, of course, ~ k - ~ , ~ = s k , k - l)

t 4 k -1(E) = S k , k - 1 4 k - 2 M + S k k 4 k - d O +Sk ,k + 1 4 k (0. (6.4.1)

Orthogonality yields

(6.4.2)

Skk = W k - l , 4 k - l) t w * (6.4.3)

This completes the computation of S k . An algorithm (Algorithm 4) is given in 37.

6.4.2. The Roots of Ck-l. We have

, it follows that Since Rk (6) = - 4 k (0
4 k (O)

tdk -I(;k 140(c) -tsk ,k -14k -2(E) -k S k k 4 k -1(e) - sk ,k +14k (O) (Ec, - 1 (a] 9 (6.4.4)

where slk l : = ~ k , k + ~ q 5 k (O) / r ~ 5 ~ ([) .

Hessenburg matrix SR = (S i i) by setting S;.i :=si

has been defined.

(Of course, do([) is a constant.) Define a lower

unless i = k , j = 1, in which case slkl
-

The equation

now becomes

6.5. Leading Coefficient gk-l. Preparations are nearly complete for the

computation of

x (~) =do) +Ck-l(A)r(o) .

There is one remaining detail, an expression for the leading coefficient gk-l such that

Recall that

and

Therefore,

In the Chebyshev case, an alternative formula is given in the next section.

42

7. Algorithms.

In this section, algorithms are given for the root finding algorithms for the general 1,-

case and also for the Chebyshev case.

7.1. Algorithm for Normalized Residual Polynomials.

Algor i thm 4. (Compute the recursion coe f i c i en t s of a specified orthogonal fami ly ,

and the roots and leading coe f i c i en t s of t h e degree k orthogonal po lynomial q5k of the

f a m i l y .)

Purpose: Generate the factored form of successive normalized (real)

orthogonal polynomials, 4*, i = 0, ..., k ; and the residual polynomial recursion

.parameters, { cyk , qk}. Additional output is described below. If polynomials are

optimum with respect to a weight function w , they are then orthogonal with respect to

the (real) weight function (tu((), and this will be the weight function used below. Note

that & (E) = q5k(()/q5k(0) is a residual polynomial.

I n p u t . A subprogram must be provided to compute an inner product

1 (f , g) = t/ f (() g (()(w (()d (where L = J d (. In practice, this subprogram would
r r

l M

Mi=l
compute a discrete inner product (f,g)=-c f ((i) g (&) & w (&) . Input to the

subprogram would be the number, M , of nodes, the nodes f i , i=l , ..., M , and the

weight, w(Ei) (an array or external function).

43

Input to Algorithm 4 then consists of input to the subprogram, the subprogram

itself, and the degree, I C , of the highest degree normalized orthogonal polynomial.

Output. The algorithm generates (1) a two dimensional array of roots, {pp }, of 4, ,

0 < i 5 k, required for (a modification of) Algorithm 1 in the non-Chebyshev case; (2)

, needed for Algorithm 2 in the special case k = 1; (3) the Jacobi parameter T~ = - 1

P l l

matrix (4) &, and q5k(0), needed for Algorithm 5 ; (5) the recursion coefficients

{ak, 7 k } for the residual polynomials, needed for (a modification of) Algorithm 3; and

(6) the array of leading coefficients, vi, of q 5 i , needed for Algorithm 5 .

Restrictions. Degree k must satisfy k L M . The restriction on r is that the nodes,

{&}, lie on the real line, which holds if A is Hermitian symmetric positive definite.

However, it is not necessary that A be Hermitian symmetric positive definite. For

example, if A is real nonsymmetric then F may be taken to be the major axis of an

ellipse enclosing the nonzero spectrum and the inner product taken to be the inner

product defining Chebyshev polynomials; see $7.3.

Notes. The reciprocals of the roots of c j k are the r-parameters needed for

Richardson’s method, and are general input for a modification of Algorithm 1.

This algorithm directly computes the recursion coefficients, {sii};-for normalized

polynomials; see (6.4.1). These are not the recursion coefficients, {ak, qk}, for residual

polynomials. A n expression for the ak, yk coefficients in terms of the s , ~ coefficients is

given as follows.

44

Since Ri (I) = di (()/di (0), (6.4.1) is equivalent to

From (6.2.2), it follows that

For step 6.4) below, the monic polynomial, 7 r i , is used to calculate the leading

i

j = 1
coefficient of d i . Let the i roots of q5i be (p 5 }. Define 7ri (I) = I2 (I - p j i) . Let

i

j = 1
The factored form di (I) = uj Il ((- p 5) is recommenczd for evaluating di (I) .

. Set do := u o .
1

1) Set uo := II 111 (w

2) Set s11.:= (I d o , d ~) (~ , and set p l l := s l l , the root of dl .

3) If k = 1, return.

1
4) Set u1 := I1 dI (w *

5) Set 41(0) := vl

6) For 2 5 i 5 k

6.1) Set tl

- P 1 1) -

do:

e first i - 2 elements a the last column of S4i, column i , equal to 0.

6.2) Formulas (6.4.2) and (6.4.3) give the remaining two elements. Set

s i i := (t 4 i - l , + i - I) (w *

6.3) Compute the eigenvalues of (the symmetric matrix) Sb,.. Set the roots, { ,oji >,

of q5i to these eigenvalues.

1
6.4) Set vi:= II Ti II <w *

Pii * 6.5) Set ipi (0) := (-1)' v i p l i . . .

Enddo.

46

7.2. Algorithm for the Grand-Leap Parameters.

Algorithm 5. (Compute g k , and the roots and leading coeficient of Ck-l.)

Purpose. Compute the a-parameters and parameter gk-l needed for the grand-leap

algorithm; these parameters are the roots and leading coefficient respectively of C k - l .

Input. A matrix (s i j) k + l X k + l , such as S4,+l from Algorithm 4, nonzero parameters

vk, q50, and +k (0), such as, also, from Algorithm 4, and period k.

Output. The algorithm generates the k - 1 roots, {oi}, and leading coefficient gk-l

of the “polynomial preconditioner” Ck -l. These quantities become input for Algorithm

2.

Restrictions. There are no restrictions other than those imposed on the input

parameters.

1) Initialize k 2 2 .

2) Set .Fij := s i j for 1 5 i, j 5 k (gkl will be reset in step 3).)

-
4) Set Sk :=(.Fij) .

5) Compute the eigenvalues of sk.
eigenvalues of S k .

Set the roots of Ckbl equal to the nonzero

47

7.3. The Chebyshev Case.

determined with explicit inner products.

For this special case, the grand-leap parameters may be

7.3.1. Chebyshev Orthogonality. Assume d , c # 0, and 0 is not in the interval

[d - c , d + c] . If d and c are real, this is equivalent to assuming d > 0, and d - I c I

> 0. Let Ti(,u) be the Chebyshev polynomial of degree i defined by the familiar

recursion T,=l ,T , (p)=p , and for 1 si, Ti+l (p)=2pTi(p) -TT;- l (p) .

Let $, (E) =Ti [([- d) / c] be the shifted and translated Chebyshev polynomial. The

. The family {$i: 0 5 i} satisfies t h e Chebyshev residual polynomial is therefore - $i (0
$1 (0)

orthogonality relations (where c > 0 if real) .

where

1 48

7.3.2. Recursions for the Shifted Chebyshev Polynomials.

yields a recursion for {G2}:

The recursion for T,
I
I

i and for 1 5 i ,

7.3.3. Roots of C k - l , The roots of Ck-l are among the eigenvalues of sk. An explicit

expression for S , requires S, and +k(O). To determine these quantities, the three term

recursion for the normalized polynomials is needed. The normalized polynomials are:

I

The recursion is

and for 2 5 i ,

49

7.3.3.1. Matrix S,. From the recursion for {+;}, it follows that

s, =

C d -
2

C C - d -
2 2

. . .
. . .

. .

To modify S k to obtain s,, r$k (0) is needed. For 1 5 k ,

which follows from Tk (p) = coshkcosh-'(p).

50

7.3.3.2. Matrix sk-l. Therefore,

ik
d

C -
2

0

~

7.3.4. Leading Coefficient gk -1. Since

C -
2

C d -
2

. . .
. . .

. . .
C C - d -
2 2

. . . 0 - - d
2

. (7.3.1)

$k (E)
$k (O)

it suffices to find the leading coefficient of Rk = - .

The leading coefficient of $k (c) is easily obtained. from the recursion

and, for 2 5 i ,

61

$i(O = 2 7 $ i - l (t) - $i-z(t) ' -
k

. This combined with the expression
C

1 The leading coefficient of $k is therefore - - 2

for $k(0) gives

coshkcosh-' I - -I

7.3.5. Algorithm for the Grand-Leap Parameters in the Chebyshev Case.

Algorithm 6. (Compute the parameters f o r the Grand-Leap Algorithm in the

Chebyshev Case.)

Purpose. Compute gkWl, r0, and ol, ..., o k - l in the Chebyshev case as required, for

Algorithm 2.

Input. Ellipse parameters d and c and period I C .

Output. The k - 1 roots, {a;}, and leading coefficient gk-' of the polynomial

preconditioner Ck-l.

Restrictions. If the grand-leap algorithm is to converge then the ellipse parameters must

satisfy the same restrictions as in Algorithm 1.

52

Notes. The algorithm uses a matrix s, that is not defined if c = 0. In this case, the set

of Chebyshev residual polynomials reduces to the family {Rk = (I - d) k / d k : 0 5 k ;.,

which is not an orthogonal family for any weight function. The case c = 0 is often used

in the Manteuffel algorithm in order to compute improved ellipse parameters adaptively.

If one believed that c = 0 then Richardson’s method would converge in a single step if

the matrix were normal, in which case no need exists for the grand-leap formulation. If

one were computing ellipse parameters adaptively, then the parameter computation

technique reduces to a sequence of matrix vector mu tiplications, and again the grand-

leap formulation is not desired. For. these reasons if c is small relative to d the

algorithm halts. The halting criterion is a comparison of I c / d I to the machine epsilon,

denoted in the algorithm by “mach eps” and defined to be the largest machine number,

E , such that the floating point sum 1 + E equals the machine number 1.

As a final note, there does exist an analog of g k in the degenerate case (c = 0), and

the algorithm control could branch to the computation of the eigenvalues of the analog

of gk, but the lack of a practical need obviates this version.

1 1) Set T~ :=
- ~ ~ / 2 + d *

2) If k = 1 or I c / d I 5 l/mach eps then return.

3) Set

1

sa

4) Set the roots { a', . . . , a k - 1) of Ck-l equal to the nonzero eigenvalues of matrix

(7.3.1).

5) Set the leading coefficient gk--l/Of Ck-l equal to

gk -

8. Summary.

1[1 2 c

- --

k

The leapfrog and grand-leap variants of Richardson's method and a general second

order method have been described. A comparison among the methods and variants

shows that there are advantages either to omitting every other iterant or to omitting all

iterants (except the last).

The leapfrog and grand-leap variants require sets of parameters that may be

computed from the eigenvalues of a matrix. In the leapfrog case, the matrix is the same

as that which expresses the roots of a member of a family of orthogonal polynomials as

the eigenvalues of a symmetric tridiagonal matrix. This matrix may be modified slightly

to yield the parameters needed for the grand-leap variant.

54

Algorithms for the leapfrog and grand-leap methods are given in the Chebyshev

case. In the Chebyshev case, explicit values for the elements of the tridiagonal matrix are

well known and need not be computed.

9. Acknowledgements.

I am indebted to David Gottlieb and Ahmed Sameh for their interest and questions, to

Paul Concus for many corrections; and to Jerry Minerbo for comments on the

requirements for solving large problems. Using normalized polynomials is a suggestion of

Bill Gragg. Partial support was provided by NSF DMS 8 7 03226.

55

References

[Adm82] L. Adams. “Iterative Algorithms for Large Sparse Linear Systems on Parallel

Computers”, NASA CR-166027, NASA Langley Research Center,

Hampton, Va. 23665, 1982.

[AnGo72] R. S. Anderssen and G. H. Golub. ‘‘Richardsop’s Non-Stationary Matrix

Iterative Procedure”, Research Report 304, Stanford University, Dept. of

Computer Science, 1972.

[Ashb85] S. F. Ashby. “CHEZBYCODE: A FORTRAN Implementation of Manteuffel’s

Adaptive Chebyshev Algorithm”, Research Report No. UIUCDCS-R-85-

1203, Univ. of Illinois at Urbana-Champaign, Dept. of Computer Science,

1985.

[AMs871 S. F. Ashby, T. A. Manteuffel and P. E. Saylor. “A Taxonomy for Conjugate

Gradient Methods”, Report No. UIUCDCS-R-87-1355, 1987.

[Chen82] So Cheng Chen. “Polynomial Scaling in the Conjugate Gradient Method and

Related Topics in Matrix Scaling”, Report CS-82-23, Computer Science

Dept., Penn. State Univ., University Park, Pa. 16802, 1982.

[Chro86] A. Chronopoulos. “A Class of Parallel Iterative Methods Implemented on

Multiprocessors”, Report No. UTUCDCS-R-86-1267, Univ. of Illinois at

Urbana-Champaign, Dept. of Computer Science, November 1986.

[Eccl83] T. K. Eccies. A Method of Data Management in a Simlulator Used for Large

I

[E 1s t 851

[FoWaGO]

[Gaut82]

[GoWe69]

[Hay0811

1 ~ ~ ~ 8 3 1

[Mn t 7 71

[Mnt78]

56

Reservoir Models. In: Proceedings of the Seventh SPE Symposium

on Reservoir Simulation. SPE, Dallas, TX, 1983.

H. C. Elman and R. L. Streit. “Polynomial Iteration for Nonsymmetric

Indefinite Linear Systems”, Research Report 380, Yale University, Dept. of

Computer Science, 1985.

G. E. Forsythe and W. W. Wasow. Finite Difference Methods for Partial

Differential Equations. John Wiley and Sons, New York, 1960.

W. Gautschi. On Generating Orthogonal Polynomials. SLAM J. Stat. Sci.

Comp., Vol. 3, No. 3, pp. 289-317, 1982.

G. H. Golub and J. H. Welsch. Calculation of Gaussian Quadrature Rules.

Mathematics of Computation, Vol. 23, pp. 221-230, 1969.

L. A. Hageman and D. M. Young. Applied Iterative Methods. Academic

Press, New York, 1981.

0. G. Johnson, C. A. Micchelli and G. Paul. Polynomial Preconditioning for

Conjugate Gradient Calculations. SLAM J. Numer. Anal., Vol. 20, No. 2,

pp. 362-376, 1983.

T. A. Manteuffel. The Tchebyshev I tera t ion fo r Nonsymmetr i c Linear

Sys tems . Numer. Math., Vol. 28, pp. 307-327, 1977.

T. A. Manteuffel. Adapt ive procedure for estimating parameters for the

nonsymmetr ic Tchebyshev iteration. Numer. Math., Vol. 31, pp. 183-208,

~~
~~~ 

57 

1978. 

[OrVo85] J. Ortega and R. G. Voigt. “Solution of Partial Differential Equations on 

Vector and Parallel Computers”, SIAM J. Stat. Sci. Comp., pp. 149-240. 

1985. 

[Say1831 P. E. Saylor. Preconditioning Symmetric Indefinite Matrices. Io: 

Preconditioning Methods: Analysis and Applications, David J. 

Evans, ed. Gordon and Breach Science Publishers, New York, pp. 295-319, 

1983. 

[SaSm88] P. E. Saylor and D. C. Smolarski S.J. Computing the Roots of Compiez 

Orthogonal and Kernel Polynomials. SIAM J. Sci. Stat. Comput.. 1-01. 

9, 1988. 

[Smol81] D. C. Smolarski S.J. “Optimum Semi-Iterative Methods of the Solution of 

Any Linear Algebraic System with a Square Matrix”, Report Yo. 

UKJCDCS-81-1077, Univ. of Illinois at Urbana-Champaign, Dept. of 

Computer Science, December 1981. 

[SmSa85] D. C. Smolarski S.J. and P. E. Saylor. “An Optimum Semi-Iterative Method 

for Solving Any Linear Set with a Square Matrix”, Report No. UIUCDCS- 

R-85-1218, Univ. of Illinois at Urbana-Champaign, Dept. of Computer 

Science, July 1985. 

[%e581 E. Stiefel. Kernel Polynomials in Linear Algebra and Their Numerical 



68 

Applications. National Bureau of Standards Math. Series, Vol. 49: 

pp. 1-22, 1958. 

(Tal871 H. Tal-Ezer. “Polynomial Approximation of Functions of Matrices a n d  

Applications”, NASA Contractor Report 178376, ICASE Report No. 87-63, 

Institute for Computer Applications in Science and Engineering, NASI 

Langley Research Center, Hampton, Va. 23665, 1987. 

[Wilf62] H. S. Wilf. Mathematics for the Physical Sciences. John Wiley and Sons: 

New York, 1962. 



Report Documentation Page 
1. Report No. 2. Government Accession No. 

NASA CR-181616 
ICASE Repor t  N o .  88-7 

LEAPFROG VARIANTS OF ITERATIVE METHODS FOR 
LINEAR ALGEBRA EQUATIONS 

4. Title and Subtitle 

3. Recipient‘s Catalog No. 

5. Report Date 

January 1988 

6. Performing Organization Code 

7. Authork) 
Paul E. Saylor 

8. Performing Organization Report No. 

88-7 

10. Work Unit No. 

505-90-2 1-01 
J 

9. Performing Organization Name and Address 
I n s t i t u t e  f o r  Computer Applicat ions i n  Science 

16. Abstract 
Two i t e r a t i v e  methods a r e  considered,  Richardson’s method and a genera l  second 

o rde r  method. For both methods, a v a r i a n t  of the  method i s  der ived  f o r  which only  
even numbered i t e r a t e s  a r e  computed. The v a r i a n t  i s  c a l l e d  a leapf rog  method. 
Comparisons between the  conventional form of the  methods and the  leapf rog  form are 
nade under the  assumption t h a t  the  number of unknowns i s  l a r g e .  In the  case of 
Richardson’s method, i t  is poss ib le  to express the f i n a l  i t e r a t e  i n  terms of only 
the i n i t i a l  approximation, a v a r i a n t  of t he  i t e r a t i o n  ca l l ed  the  grand-leap 
nethod. I n  the  case of the  grand-leap v a r i a n t ,  a s e t  of parameters i s  requi red .  
4n algori thm is  presented t o  compute these  parameters t h a t  i s  r e l a t e d  t o  algo- 
r i t h m s  t o  compute the weights and a b s c i s s a s  f o r  Gaussian quadrature .  General 
a lgori thms t o  implement the  leapf rog  and grand-leap methods a r e  presented.  
Ugori thms f o r  t h e  important s p e c i a l  case of the Chebyshev method a r e  a l s o  given.  

11. Contract or Grant No. 

and Engineering 
Mail Stop 132C, NASA Langley Research Center 
Hampton, VA 23665-5225 

12. Sponsoring Agency Name and Address 
National  Aeronautics and Space Administration 

Hampton, VA 23665-5225 
Langley Research Center 

NAS 1-1 81 07, 
AFOSk 85-0189 

Contractor  Report 
13. Type of Report and Period Covered 

14. Sponsoring bgency Code 

I I 

NASA FORM 1626 OCT 86 

NASA-Langley, 1988 

17. Key Words (Suggested by Authorls)) 
i t e r a t i v e  methods, Richardson’s method, 
2hebyshev method 

18. Distribution Statement 

64 - Numerical Analysis 

Unclass i f ied  - unlimited 

20. Security Classif. (of this page) 21. No. of pages 19. Security Classif. (of this report) 
Uncl ass i f  i ed Unclass i f ied  63 

22. Price 
A04 


