Linear Prediction of Stationary Vector Sequences

Yoram Baram

(NASA-TM-100069)	LINEAR PEEDICTICN	OF	N88-18366
staticnaey vector	SEQUENCES (SASA)	14 p	
		CSCL 12B	

G3/66 \quad| Onclas |
| :--- |
| 0125852 |

March 1988

Linear Prediction of Stationary Vector Sequences

Yoram Baram, Ames Research Center, Moffett Field, California

March 1988

National Aeronautics and Space Administration

Linear prediction of stationary vector sequences

Yoram Baram*

SUMMARY

The class of all linear predictors of minimal order for a stationary vectorvalued process is specified in terms of linear transformations on the associated Hankel covariance matrix. Two particular transformations, yielding computationally efficient construction schemes, are proposed.

1. INTRODUCTION

The prediction of a vector-valued stationary sequence possessing a linear representation of finite order can be approached, in principle, by first constructing such a representation from the process second order statistics and then matching a Kalman filter to it. The construction of a linear representation can be performed by spectral factorization, as suggested by Anderson [1] or by stochastic realization, as suggested by Faurre [2]. Given the covariance function of the process in the time domain, both approaches would be indirect, as the first requires the transformation to the frequency domain, while the second requires the intermediate solution of a different problem, namely, the deterministic input-output realization problem. The construction of the Kalman filter further requires the solution of a Riccati equation. More direct predictor constructions from the covariance function, suggested by Faurre [3] and by Son and Anderson [4], also require the solution of Riccati equations.

In this paper we propose a direct approach to the construction of linear predictors for stationary vector sequences from the covariance function. The approach, inspired by Akaike's coordinate-free realization concepts [5], is based on simple geometric principles. It suggests an explicit coordinate-dependent characterization of the class of all minimal order linear predictors, in terms of linear transformations on the Hankel covariance matrix associated with the sequence. It does not give rise to Riccati or Lyapunov equations. The selection of particular transformation matrices defines specific predictor construction techniques.

[^0]
2. GENERALIZED FORMULATION

Let the covariance function of a zero-mean, full rank stationary sequence $y_{n} \in R^{m}$ be given by

$$
\begin{equation*}
R_{k}=E\left\{y_{n} y_{n-k}^{T}\right\} \tag{2.1}
\end{equation*}
$$

where E denotes the expectation operation, and suppose that there exists a positive integer P and a set of scalars $a_{1}, \ldots, a_{P-1}, a_{0}=1$, such that for any $n \geq P$

$$
\begin{equation*}
\sum_{k=0}^{P-1} a_{k} R_{n-k}=0 \tag{2.2}
\end{equation*}
$$

It is well known that when y_{n} is generated by a finite dimensional linear system driven by white noise, a relationship of the type (2.2) is satisfied.

The prediction problem is one of estimating the values of $y_{n+k}, k=0,1, \ldots$, given the values of y_{n-1}, y_{n-2}, \ldots. Let us denote by $Y_{n}^{-}=\left(y_{n-1}^{T}, y_{n-2}^{T}, \ldots, y_{0}^{T}\right)^{T}$ and $Y_{n}^{+}=\left(y_{n}^{T}, y_{n+1}^{T}, \ldots\right)^{T}$ the past and the future vectors at time n. Let $y_{k, i}$ denote the i th element of y_{k} and let $y_{k \mid n-1}$ denote the linear mean-square projection of y_{k} on Y_{n}^{-}. Let us further denote by $\left(Y_{n}^{+} \mid Y_{n}^{-}\right)$the space generated by $\left\{y_{k, i \mid n-1}, i=1, \ldots, m, k \geq n\right\}$, by $Y_{n}^{-}(k)=\left(y_{n-1}^{T}, y_{n-2}^{T}, \ldots, y_{n-k}^{T}\right)^{T}$ and $Y_{n}^{+}(k)=\left(y_{n}^{T}, y_{n+1}^{T}, \ldots, y_{n+k-1}^{T}\right)^{T}$ the k-step past and future vectors at time n and by $Y_{n \mid n-1}(k)$ the linear mean-square projection of $Y_{n}^{+}(k)$ on Y_{n}^{-}. We have

$$
Y_{n \mid n-1}^{+}(k)=R(k, n)\left[E\left\{Y_{n}^{-} Y_{n}^{-}\right\}\right]^{-1} Y_{n}^{-}
$$

where

$$
R(k, n)=E\left\{Y_{n}^{+}(k) Y_{n}^{-}\right\}=\left[\begin{array}{llll}
R_{1} & R_{2} & \cdots & R_{n} \\
R_{2} & R_{3} & \cdots & R_{n+1} \\
\vdots & & & \\
R_{k} & R_{k+1} & \cdots & R_{n+k-1}
\end{array}\right]
$$

It follows from (2.2) that for any $k \geq P$ the rows beyond the first P. m rows of $R(k, n)$ are linearly dependent on the previous ones. The space ($Y_{n}^{+} \mid Y_{n}^{-}$) is then spanned by

$$
Y_{n \mid n-1}^{+}(P)=R(P, n)\left[E\left\{Y_{n}^{-} Y_{n}^{-}\right\}^{T}\right]^{-1} Y_{n}^{-}
$$

It can also be seen from (2.2) that the columns of $R(k, n)$ beyond the first $P \cdot m$ columns are linearly dependent on the previous ones. It follows that the first maximal set of linearly independent rows of $R(P, n)$ is indexed as the set of such rows of the matrix

$$
R=E\left\{Y_{n}^{+}(P)\left[Y_{n}^{-}(P)\right]^{T}\right\}=\left[\begin{array}{llll}
R_{1} & R_{2} & \cdots & R_{P} \\
R_{2} & R_{3} & \cdots & R_{P+1} \\
\vdots & & & \\
R_{P} & R_{P+1} & \cdots & R_{2 P-1}
\end{array}\right]
$$

The subsequent analysis will require some further notation. Let A and B be any two matrices such that A has no fewer rows and no fewer columns than B. Let us denote by $r_{B}(A)$ the matrix whose rows are those rows of A, indexed as the first maximal set of linearly independent rows of B. Similarly, let us denote by $c_{B}(A)$ the matrix whose columns are those columns of A indexed as the first maximal set of linearly independent columns of B. We will find it convenient to write these row and column selection operations in terms of matrix products

$$
r_{B}(A) \equiv r_{B}^{A} A
$$

and

$$
c_{B}(A) \equiv A c_{B}^{A^{T}}
$$

where r_{B}^{A} and c_{B}^{A} are properly dimensioned, full rank matrices of zeros and ones. For instance, suppose that A has dimension 5×7 and that rows 1, 3, and 4 and columns 1, 2, and 5 of B form maximal independent sets. Then

$$
r_{B}^{A}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

and

$$
c_{B}^{A}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Since it may be assumed that the matrices involved have compatible dimensions, we will use the somewhat abbreviated notation

$$
r_{B} \equiv r_{B}^{A}, \quad c_{B} \equiv c_{B}^{A}
$$

Let M and N be arbitrary nonsingular square matrices of dimension $m \cdot P$ and let

$$
X_{n}=M Y_{n \mid n-1}^{+}(P)
$$

and

$$
Z_{n}=N Y_{n}^{-}(P)
$$

Let us further define

$$
x_{n}=r_{M R N} T_{n}
$$

and

$$
z_{n}^{T}=Z_{n}^{T} c_{M R N}^{T}
$$

It can be seen that X_{n} is a vector of minimal dimension which spans ($Y_{n}^{+} \mid Y_{n}^{-}$) in the sense that each element of the latter space can be obtained by a linear combination of the elements of x_{n}. Clearly, x_{n+1} belongs to $\left(Y_{n+1}^{+} \mid Y_{n+1}^{-}\right)$, which is included in $\left(Y_{n}^{+} \mid Y_{n+1}^{-}\right)$. The latter may be decomposed as $\left(Y_{n}^{+} \mid Y_{n+1}^{-}\right)=\left(Y_{n}^{+} \mid Y_{n}^{-}\right) \otimes V_{n}$ where V_{n} is the space generated by

$$
v_{n}=y_{n}-y_{n \mid n-1}
$$

and \otimes denotes the Cartesian product. Since V_{n} is orthogonal to $\left(Y_{n}^{+} \mid Y_{n}^{-}\right)$, it follows that there exist matrices A_{n} and B_{n} such that

$$
\begin{equation*}
x_{n+1}=A_{n} x_{n}+B_{n} v_{n} \tag{2.4}
\end{equation*}
$$

Multiplying (2.4) on the right by z_{n}^{T}, taking expectation and noting that v_{n} is orthogonal to Y_{n}^{-}, hence, to z_{n}, we obtain

$$
\begin{equation*}
E\left\{x_{n+1} z_{n}^{T}\right\}=A_{n} E\left\{x_{n} z_{n}^{T}\right\} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{align*}
E\left\{x_{n} z_{n}^{T}\right\} & =r_{M R N} T^{M E}\left\{Y_{n \mid n-1}^{T}(P)\left[Y_{n}^{-}(P)\right]^{T}\right\} N^{T} c_{M R N}^{T}{ }_{M}^{T} \\
& =r_{M_{M N N}} T^{\operatorname{MRN}^{T} c^{T}}{ }_{M R N}{ }^{T} \\
& =\overline{M R N}^{T} \tag{2.6}
\end{align*}
$$

where

$$
\bar{M}=r_{\operatorname{MRN}^{T}} \mathrm{~T}^{M}, \quad \bar{N}=c_{\operatorname{MRN}} \mathrm{T}^{\mathrm{N}}
$$

It can be seen that $E\left\{x_{n} z_{n}^{T}\right\}$ is a non-singular matrix. We also have

$$
\begin{align*}
E\left\{x_{n+1} z_{n}^{T}\right\} & =r_{M R N} T^{M E}\left\{Y_{n+1 \mid n}(P)\left[Y_{n}^{-}(P)\right]^{T}\right\} N^{T} c_{M R N}^{T} \\
& =\overline{M R}^{T} S^{-T} \tag{2.7}
\end{align*}
$$

where

$$
R^{s}=E\left\{Y_{n+1}^{+}(P)\left[Y_{n}^{-}(P)\right]^{T}\right\}=\left[\begin{array}{cccc}
R_{2} & R_{3} & \cdots & R_{P+1} \tag{2.8}\\
R_{3} & R_{4} & \cdots & R_{P+2} \\
\vdots & & & \\
R_{P+1} & P_{P+2} & \cdots & R_{2 P}
\end{array}\right]
$$

Substituting (2.6) and (2.7) into (2.5), we obtain

$$
A_{n}=A=\bar{M} R^{S} \bar{N}^{T}\left(\bar{M} R \bar{N}^{T}\right)^{-1}
$$

It follows from the definition of x_{n} that there exists a matrix C_{n} such that

$$
\begin{equation*}
y_{n}=C_{n} x_{n}+v_{n} \tag{2.9}
\end{equation*}
$$

Multiplying (2.9) on the right by z_{n}^{T} and taking expectation, we obtain

$$
\begin{equation*}
C_{n}=E\left\{y_{n} z_{n}^{T}\right\}\left[E\left\{x_{n} z_{n}^{T}\right\}\right]^{-1} \tag{2.10}
\end{equation*}
$$

where

$$
E\left\{y_{n} z_{n}^{T}\right\}=\left(\operatorname{MRN}^{T}\right) 1_{M^{T}}^{M_{N}^{T}}
$$

where $\left(M R N^{T}\right)_{1}$ is the first block row of $M R N^{T}$. Hence,

$$
C_{n}=c=\left(\operatorname{MRN}^{T}\right)_{1} c_{M R N}^{T} T^{T}\left(\overline{M R N} \bar{N}^{T}\right)^{-1}
$$

Multiplying (2.4) on the right by v_{n}^{T} and taking expectation, noting that v_{n} is orthogonal to x_{n}, we obtain

$$
\begin{equation*}
B_{n}=B=E\left\{x_{n+1} v_{n}^{T}\right\}\left[E\left\{v_{n} v_{n}^{T}\right\}\right]^{-1} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{align*}
E\left\{x_{n+1} v_{n}^{T}\right\} & =E\left\{x_{n+1} y_{n}^{T}\right\}-E\left\{x_{n+1} x_{n}^{T}\right\} C^{T} \\
& =\bar{M} \underline{R}-A n C^{T} \tag{2.12}
\end{align*}
$$

and

$$
\begin{align*}
E\left\{v_{n} v_{n}^{T}\right\} & =E\left\{\left(y_{n}-C x_{n}\right) y_{n}^{T}\right\} \\
& =R_{0}-C n C^{T} \tag{2.13}
\end{align*}
$$

where

$$
n=E\left\{x_{n} x_{n}^{T}\right\}
$$

and

$$
\underline{R}=\left(\begin{array}{lll}
R_{1}^{T} & R_{2}^{T} & \cdots \tag{2.14}
\end{array} R_{P}^{T}\right)^{T}
$$

We next derive the term πC^{T}, which appears in both (2.12) and (2.13). Noting that

$$
R_{k}=E\left\{y_{n+k} y_{n}^{T}\right\}=C A^{k} \Pi C^{T}
$$

it can be seen that

$$
\theta \pi c^{T}=\underline{R}
$$

Where \underline{R} is defined by (2.14) and

$$
\theta=\left[\begin{array}{l}
C A \tag{2.15}\\
C A^{2} \\
\vdots \\
C A^{2}
\end{array}\right]
$$

Since $Y_{n \mid n-1}(P)=\theta x_{n}$ and since the covariance rank of x_{n} is the same as that of $Y_{n \mid n-1}(P)$, it follows that θ is full rank. Hence,

$$
\pi C^{T}=\left(\theta^{T} \theta\right)^{-1} \theta^{T} \underline{R}
$$

which, substituted in (2.12) and (2.13), completes the derivation of the matrix B, defined by (2.11). In summary, the generalized predictor is given by

$$
\begin{align*}
x_{n+1} & =A x_{n}+B v_{n}, \quad x_{0}=0 \tag{2.16}\\
y_{n+k \mid n-1} & =C A^{k_{n}} x_{n}
\end{align*}
$$

where

$$
\begin{gather*}
A=\overline{M R} \bar{N}^{-T}\left(\bar{M} R \bar{N}^{T}\right)^{-1} \tag{2.17}\\
C=\left(M R N^{T}\right) 1_{1} c_{M R N}^{T}\left(\overline{M R} \bar{N}^{T}\right)^{-1} \tag{2.18}\\
B=\left[\bar{M}-A\left(\theta_{\theta}^{T}\right)^{-1} \theta^{T}\right] \underline{R}\left[R_{0}-C\left(\theta^{T} \theta\right)^{-1} \theta^{T} \underline{R}\right] \tag{2.19}
\end{gather*}
$$

and

$$
v_{n}=y_{n}-C x_{n}
$$

The class of all minimal order linear predictors for the sequence y_{n} is now defined by (2.16). A particular member of the class is specified by selection of the nonsingular matrices M and N. Two particular selections are suggested in the following section. We note that

$$
\begin{align*}
x_{n+1} & =A x_{n}+B v_{n} \tag{2.20}\\
y_{n} & =C x_{n}+v_{n}
\end{align*}
$$

With A, B, C, and v_{n} as defined above, is a minimal realization of the sequence y_{n}.
3. SPECIFIC CONSTRUCTIONS

A. Original Coordinates

When the matrices M and N are taken to be identity matrices, the vectors $Y_{n}^{-}(P)$ and $Y_{n}^{+}(P)$ are left in their original coordinates. The minimal predictor for this choice ${ }^{n}$ is specified in the preceding section, with $M R N^{T}$ and $M R^{S} N^{T}$ replaced simply by R and R^{S}. The predictor is essentially defined by maximal sets of linearly independent rows and linearly independent columns of R. The following procedure selects a maximal set of such rows. Extension to the selection of linearly independent columns is immediate.

The procedure consists of checking the rank deficiency of matrices R_{i}, consisting of the first i-1 linearly independent rows of R and the row following them. If R_{i} is rank-deficient, its last row is replaced by the next row of R and the rank check is repeated. If R_{i} has full-column rank, the next row of R
is attached to R_{i} to form R_{i+1} and a rank check is performed. This procedure is continued until rank $R_{i}=M$ or until all the rows of R have been checked. The final R_{i} will contain a maximal set of inearly independent rows of R. This procedure can be extended to the construction of a linear predictor or a minimal realization from a sample covariance sequence, employing a recently proposed statistical rank test method [6].

B. Canonical Coordinates

Construction in the original coordinates requires a sequence of rank checks on submatrices of the Hankel covariance matrix R. A computationally more attractive technique may be obtained by selecting the matrices M and N so as to diagonalize the matrix MRN T. Let M and N be the matrices of normalized eigenvectors of $R R^{T}$ and $R^{T} R$, respectively, corresponding to the nonzero eigenvalues. These may be obtained directly from the singular value decomposition of R (see, e.g., [7]). It can be readily seen that

$$
{\underset{M R N}{T}}_{r_{M R N}^{T}}^{c}=\left[\begin{array}{ll}
I_{P} & 0 \tag{3.1}
\end{array}\right]
$$

Denoting

$$
S=\left[\begin{array}{lllll}
s_{1} & & & 0 & \\
& s_{2} & & & \\
& & \cdot & & \\
0 & & & & s_{p}
\end{array}\right]
$$

where s_{1}, \ldots, s_{p} are the squared nonzero singular values of R, the predictor is now specified by the matrices

$$
\begin{align*}
& A=\left[\begin{array}{ll}
I_{P} & 0
\end{array}\right] M R^{S_{N}}{ }^{T}\left[\begin{array}{c}
I_{P} \\
0
\end{array}\right] S^{-1} \tag{3.2}\\
& C=\left[\begin{array}{llll}
s_{1} & 0 & \cdots & 0
\end{array}\right] S^{-1} \tag{3.3}
\end{align*}
$$

and B is defined by (2.19), with $r_{\text {MRN }} T$ defined by (3.1), 0 defined by (2.15), and A and C defined by (3.2) and (3.3). We note that while the above procedure is computationally more effective than the one performed in the original coordinates, when the exact covariance function is known, it is not presently extendable by means of statistical inference to the case where only a sample covariance sequence is given. We also note that the above construction is different from the canonical variates realization method suggested by Larimore [8], which produces an approximate
representation for the process, even when the latter possesses a finite order realization. The present construction produces an exact realization of the form (2.20) with the parameters specified above.

4. CONCLUSION

A direct approach to the construction of a minimal order linear predictor for a stationary vector sequence from its covariance function has been proposed. The class of all such predictors has been characterized in terms of linear transformations on the Hankel covariance matrix. Two specific construction schemes have been specified.

REFERENCES

1. B. D. O. Anderson, "The Inverse Problem of Stationary Covariance Generation," I. Stat. Phys., Vol. 1, No. 1, pp. 133-147, 1969.
2. P. L. Faurre, "Identification par minimisation d'une representation markovienne de processus aleatoire," Symp. on Optimization, Nice, June 1969, SpringerVerlag Lecture Notes on Mathematics, 132.
3. P. L. Faurre, "Stochastic Realization Algorithms," in System Identification, R. K. Mehra and D. G. Lainiotis eds., Academic Press, New York, 1976.
4. L. H. Son and B. D. O. Anderson, "Design of Kalman Filters Using Signal Model Output Statistics," Proc. IEE, Vol. 120, No. 2, pp. 312-318, February 1973.
5. H. Akaike, "Stochastic Theory of Minimal Realization," IEEE Trans. on Automatic Control, Vol. AC-19, No. 6, December 6, 1974.
6. Y. Baram and B. Porat, "Identification of Minimal Order State Space Models from Stochastic Input-Output Data," to appear in SIAM J. on Contr. Optimization, Vol. 26, No. 1, January 1988.
7. G. Golub and W. Kahan, "Calculating the Singular Values and Pseudo-Inverse of a Matrix," SIAM J. Numerical Analysis, Ser. B, Vol. 2, pp. 205-224, 1965.
8. W. E. Larimore, "System Identification, Reduced Order Filtering and Modelling via Canonical Variates Analysis," Proc. Amer. Contr. Conf., H. S. Rao and T. Dorats, eds., IEEE, New York, pp. 445-451, 1983.

NMEn Report Documentation Page		
$\begin{aligned} & \text { 1. Report No. } \\ & \text { NASA TM-100069 } \end{aligned}$	2. Government Accossion No.	3. Recipient's Catalog No.
4. Title and Subtitle Linear Prediction of Stationary Vector Sequences		5. Report Date March 1988
		6. Performing Organization Code
7. Author(s) Yoram Baram		8. Performing Organization Report No. A-88087
		10. Work Unit No. $505-66-11$
9. Performing Organization Name and Address Ames Research Center Moffett Field, CA 94035		11. Contract or Grant No.
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546		13. Type of Report and Period Covered Technical Memorandum
		14. Sponsoring Agency Code
15. Supplementary Notes Point of Contact: Heinz Erzberger, MS 210-9, Ames Research Center, Moffett Field, CA 94035, (415) 694-5425 or FTS 464-5425		
16. Abstract The class of all linear predictors of minimal order for a stationary vectorvalued process is specified in terms of linear transformations on the associated Hankel covariance matrix. Two particular transformations, yielding computationally efficient construction schemes, are proposed.		
17. Key Words (Suggested by Author(s)) System compensation Inversion identification	18. Distrib	$\begin{aligned} & \text { ect category - } 66 \end{aligned}$
19. Security Classit. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of pages 22. Price 12 A02

[^0]: *Y. Baram is a Senior Research Associate of the National Research Council at the NASA Ames Research Center, Moffett Field, CA 94035, on sabbatical leave from the Department of Electrical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel.

