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LINEAR PREDICTION OF STATIONARY VECTOR SEQUENCES 

Yoram Baram* 

SUMMARY 

The class of all linear predictors of minimal order for a stationary vector- 
valued process is specified in terms of linear transformations on the associated 
:lankel covariance matrix. Two particular transformations, yielding computationally 
efficient construction schemes, are proposed. 

1. INTRODUCTION 

The prediction of a vector-valued stationary sequence possessing a linear 
representation of finite order can be approached, in principle, by first construct- 
ing such a representation from the process second order statistics and then matching 
a Kalman filter to it. The construction of a linear representation can be performed 
by spectral factorization, as suggested by Anderson [ l ]  o r  by stochastic realiza- 
tion, as suggested by Faurre [2]. Given the covariance function of the process in 
the time domain, both approaches would be indirect, as the first requires the trans- 
formation to the frequency domain, while the second requires the intermediate so lu -  
tion of a different problem, namely, the deterministic input-output realization 
problem. 
Riccati equation. 
suggested by Faurre [3] and by Son and Anderson [4], also require the solution of 
Riccati equations. 

The construction of the Kalman filter further requires the solution of a 
More direct predictor constructions from the covariance function, 

In this paper we propose a direct approach to the construction of linear pre- 
dictors for stationary vector sequences from the covariance function. 
inspired by Akaike's coordinate-free realization concepts [ 5 ] ,  is based on simple 
geometric principles. 
of the class of all minimal order linear predictors, in terms of linear transforma- 
tions on the Hankel covariance matrix associated with the sequence. It does not 
give rise to Riccati or  Lyapunov equations. 
tion matrices defines specific predictor construction techniques. 

The approach, 

It suggests an explicit coordinate-dependent characterization 

The selection of particular transforma- 
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Haifa 32000, Israel. 

1 I 



2. GENERALIZED FORMULATION 

Let the covariance function of a zero-mean, full rank stationary sequence 
yn E Rm be given by 

where E denotes the expectation operation, and suppose that there exists a posi-  
tive integer P and a set of scalars al, ..., ap,l, a, = 1 ,  such that for any n z P 

P- 1 

k = O  

It is well known that when 
driven by white noise, a relationship of the type (2.2) is satisfied. 

yn is generated by a finite dimensional linear system 

The prediction problem is one of estimating the values of yn+k, k = O,l, ..., 
T T  T T  given the values of ynel, yn-2 ,... . 

and Yi = (Y,,Y,+~,. ..) 

Let us denote by Y- = (y,-,,~,-~ ,..., yo) n 
the past and the future vectors at time n. Let yk,i T T  

denote the ith element of yk and let YkIn-l denote the linear mean-square 

projection of yk on Yi. Let us further denote by (YAlYi) the space generated by 

)T the k-step past and future vectors at time n and T T  Yi(k) = (Yn,Yn+19".9Yn+k,l 

by 'nIn-1 (k) the linear mean-square projection of Yi(k) on Yi. We have 

where 

R(k,n) = E{YA(k)Yi) 

R2 

R3 

Rk+ 1 

... 

... 

... 

R 
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I t  f o l l o w s  
of R(k ,n )  
spanned  by 

from (2 .2 )  t h a t  for a n y  k 1 P t h e  rows beyond t h e  f i r s t  P rn rows 
are l i n e a r l y  d e p e n d e n t  on  t h e  p r e v i o u s  o n e s .  The s p a c e  ( Y A I Y ; )  is t h e n  

T .  

I t  c a n  a lso be s e e n  from (2 .2 )  t h a t  t h e  co lumns  of R ( k , n )  beyond t h e  f i r s t  P - rn 
columns are l i n e a r l y  d e p e n d e n t  on t h e  p r e v i o u s  o n e s .  I t  fol lows t h a t  t h e  f i r s t  
maximal se t  of l i n e a r l y  i n d e p e n d e n t  rows of R(P ,n )  is indexed  as t h e  se t  of  such  
rows of t h e  m a t r i x  

R = E ( Y i ( P ) [ Y i ( P ) ]  T 1 = 

. - -  R p  

1 
... R 1  R2 

R2 3 R 

RP+ 1 
... 

R2P- 

The s u b s e q u e n t  a n a l y s i s  w i l l  r e q u i r e  some f u r t h e r  n o t a t i o n .  Let A and  B be 
any  two matrices s u c h  t h a t  A h a s  no  fewer rows and no  fewer columns  t h a n  B .  Let 
u s  d e n o t e  by 
maximal set of l i n e a r l y  i n d e p e n d e n t  rows of B. S i m i l a r l y ,  l e t  u s  d e n o t e  by cg (A)  
t h e  m a t r i x  whose columns  are t h o s e  columns of A i ndexed  as t h e  f i r s t  maximal se t  
of l i n e a r l y  i n d e p e n d e n t  columns of B .  We w i l l  f i n d  i t  c o n v e n i e n t  t o  write these 
row and column s e l e c t i o n  o p e r a t i o n s  i n  terms of m a t r i x  p r o d u c t s  

rB(A) t h e  m a t r i x  whose rows are those rows of A ,  i ndexed  as  t h e  f irst  

A r ( A )  E r A B B 

and 

A'  cB(A) 5 AcB 

where 
For i n s t a n c e ,  s u p p o s e  t h a t  A has d imens ion  5 x 7 and  t h a t  rows 1 ,  3 ,  and  4 and 
columns 1 ,  2 ,  and  5 of B form maximal i n d e p e n d e n t  sets. Then 

rA and  cA B B are p r o p e r l y  d i m e n s i o n e d ,  f u l l  r a n k  matrices of z e r o s  a n d  o n e s .  

B -  

e 



and 
1 0 0 0 0 0 0  

A 0 1 0 0 0 0 0  CB = 
0 0 0 0 1 0 0  [ 

Since it may be assumed that the matrices involved have compatible dimensions, we 
will use the somewhat abbreviated notation 

~ 

A A rB z rB , cB cB 

Let M and N be arbitrary nonsingular square matrices of dimension rn-P and 
let 

and 

‘n = MYnln-l + ( e )  

Zn = NY-(P) n 

Let us further define 

x = r  X 
M R N ~  

and 

T T  
ZT n = ‘nCMRNT 

I It can be seen that xn 
sense that each element of the latter space can be obtained by a linear combination 
of the elements of xn. 

(YilYi+l). The latter may be decomposed as (YiIYi+l) = (YnlY;) o Vn where Vn is 

the space generated by 

is a vector of minimal dimension which spans (YiIY,) in the 

+ Clearly, x ~ + ~  belongs to ( Yn+, I Yi+ ) , which is included in 
+ 
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and @ denotes the Cartesian product. Since Vn is orthogonal to (Yi IY,), it 
follows that there exist matrices An and B, such that 

+ B v  ( 2 . 4 )  = AnXn n n n+ 1 X 

Multiplying (2.4) on the right by 
is orthogonal to Yi, hence, to zn, we 

T 

T z n ,  taking expectation and noting that 
obtain 

v, 

where 

T T T  (P)[Yi(P)l I N  c T E{xnzn) = r 
TME{'n(n-l M R N ~  MRN 

= r  M R N ~ C ~  
M R N ~  M R N ~  

- -T = MRN 

where 
- - 
M = r  M ,  N = c  N 

M R N ~  M R N ~  

T It can be seen that E{xnzn) is a non-singular matrix. We also have 

m m r n m  

- S-T = MR N 

where 

3 R 

R4 

pP+2 

... 

... 

... 

( 2 . 6 )  

(2 .7)  

(2.8) 
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Substituting (2.6) and (2.7) into (2.51, we obtain 

= A = M R ~ ~ ~ ( ~ ; R N  -T -1 
*n 

It follows from the definition of x, that there exists a matrix C, such 
that 

Yn = c x  n n  + v n  ( 2 . 9 )  

Multiplying (2.9) on the right by z;f and taking expectation, we obtain 

(2.10) 

where 

where (MRNT)l is the first block row of MRNT. Hence, 

cn = c = ( M R N ~ ) ~ ~  T(i?~iT)-’ 
MRN 

Multiplying (2.4) on the right by vx and taking expectation, noting that v, is 
orthogonal to xn, we obtain 

Bn = B = E{X~+,V~)[E{V~V~)I T 
T -1 

where 

T = - MR - AIIC 
- 

and 

(2.11) 

(2.12) 

= Ro - CnCT (2.13) 
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where 

T II = E(xnxn 1 

and 

R = (RT R2 T RP) T T  - (2.14) 

We next derive the term nCT, which appears in both (2.12) and (2.13).  Noting that 

T k T  y 1 = CA nC Rk = E{Yn+k n 

it can be seen that 

Where E is defined by (2.14) and 

(2.15) 

Since Ynln-l(P) = Ox, and since the covariance rank of x, is the same as that 
of Ynln-l(P), it follows that 0 is full rank. Hence, 

rICT = (0 T 0) -1 0 T E 

which, substituted in (2.12) and (2.13), completes the derivation of the matrix B, 
defined by (2.11). In summary, the generalized predictor is given by 

x = o  
0 

X = AX + Bvn , n n+ 1 
(2.16) 

k = CA xn 'n+k In- 1 
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where 

- S-T -T - 1  A = MR N ( ~ R N  

T T  C = (MRN 
M R N ~  

T B = [i - A ( O  0 ) -  

MRiT ) - 

T T -1 T 
0 ]RIRo - C ( e  0) 0 E] 

(2.17) 

(2 .18)  

(2.19) 

l and 

v = yn - cxn n 

The class of all minimal order linear predictors for the sequence 
defined by (2.16).  
the nonsingular matrices M and N. Two particular selections are suggested in the 
following section. We note that 

yn is now 
A particular member of the class is specified by selection of 

X = Axn + Bvn n+ 1 
(2.20) 

yn = cxn + vn 

With 
Yn * 

A ,  B, C, and vn as defined above, is a minimal realization of the sequence 

3 .  SPECIFIC CONSTRUCTIONS 

A .  Original Coordinates 

When the matrices M and N are taken t o  be identity matrices, the vectors 
Y-(P) and Yi(P) are left in their original coordinates. The minimal redictor for 
tgis choice is specified in the preceding section, with MRNT and MRSN' replaced 
simply by R and RS. 
early independent rows and linearly independent columns of R. The following proce- 
dure selects a maximal set of such rows. Extension to the selection of linearly 
independent columns is immediate. 

The predictor is essentially defined by maximal sets of lin- 

The procedure consists of checking the rank deficiency of matrices Ri, con- 
sisting of the first i-1 linearly independent rows of R and the row following 
them. If Ri is rank-deficient, its last row is replaced by the next row of R 
and the rank check is repeated. If Ri has full-column rank, the next row of R 

a 



is attached to Ri to form Ri+l and a rank check is performed. This procedure is 
continued until rank Ri = M o r  until all the rows of R have been checked. The 
final Ri will contain a maximal set of iinearly independent rows of R. This 
procedure can be extended to the construction of a linear predictor o r  a miqimal 
realization from a sample covariance sequence, employing a recently proposed statis- 
tical rank test method [6]. 

B. Canonical Coordinates 

Construction in the original coordinates requires a sequence of rank checks on 
submatrices of the Hankel covariance matrix R. A computationally more attractive 
technique may be obtained by selecting the matrices M and N so as to diagonalize 
the matrix MRNT. Let M and N be the matrices of normalized eigenvectors of RRT 
and R R, respectively, corresponding to the nonzero eigenvalues. These may be 
obtained directly from the singular value decomposition of R (see, e.g., [ 7 ] ) .  It 
can be readily seen that 

T 

Denoting 

0 C 

where s , ,  ..., sp are the squared nonzero singular values of R, the predictor is 
now specified by the matrices 

A = [ I p  O]MRSNT [ig S-’ (3.2) 

c = [S’ 0 e.. 01s-I (3.3) 

and B is defined by (2.191, with r defined by (3.l), 0 defined by (2.15), 

and A and C defined by (3.2) and (3.3). We note that while the above procedure is 
computationally more effective than the one performed in the original coordinates, 
when the exact covariance function is known, it is not presently extendable by means 
of statistical inference t o  the case where only a sample covariance sequence is 
given. We also note that the above construction is different from the canonical 
variates realization method suggested by Larimore [8], which produces an approximate 

M R N ~  
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representation for the process, even when the latter possesses a finite order reali- 
zation. 
with the parameters specified above. 

The present construction produces an exact realization of the form (2.20) 

4. CONCLUSION 

A direct approach t o  the construction of a minimal order linear predictor for a 
stationary vector sequence from its covariance function has been proposed. 
class of all such predictors has been characterized in terms of linear transforma- 
tions on the Hankel covariance matrix. 
specified. 

The 

Two specific construction schemes have been 
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