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ABSTRACT

Several concerns related to venting the Space Shuttle Orbiter payload bay during launch led

to laboratory experiments with a flight-type vent box installed in the wall of a subsonic wind tunnel.

This report describes the test setups and procedures used to acquire data for characterization of

airflow through the vent box and acoustic tones radiated from the vent-box cavity. A flexible

boundary-layer spoiler which reduced the vent-tone amplitude is described.

1.0 INTRODUCTION

Examination of payload bay microphone data from the first few Space Shuttle Orbiter flights

disclosed the existence of discrete frequency tones that exceeded payload test criteria for a few

seconds during ascent transonic flight. The data coupled with knowledge of appropriate frequencies
for cavity tones to exist in the vent boxes were sufficient to conclude that configuration 4 and 5 vent

boxes created the tones. In November 1983, Vibration and Acoustic Facility (VATF) personnel were

asked to consider laboratory tests to investigate the tone generation. The availability of a configu-

ration 5 vent box acoustic test article, a large compressed air supply at the VATF, and ol.her test

equipment at VATF allowed a wind tunnel test setup to be fabricated and installed at low cost. The
first test with the vent box mounted to a wind tunnel on January 9, 1985, resulted in generation of a

distinctly audible tone, which closely matched existing payload bay flight data in both sound

pressure level and frequency. Experiments immediately were turned toward treating the vent box

to diminish the tone generation.

Requests for additional testing with the vent box and suggestions for ref'mements to the test

setup resulted in expansion of the original intent of the test program. In addition to the planned
tone-reduction experiments, data were needed to document mass flow rates through the vent box

and maximum exit velocities from the contamination screen as functions of pressure drop across the

vent box and free-stream velocity passing by the vent box external opening. Meetings attended by

personnel from the U. S. Air Force, the Aerospace Corporation, the Rockwell International Corpora-

tion, and the NASA Lyndon B. Johnson Space Center were held to discuss test priority, facility
modifications, and data acquisition requirements. As modifications to the test setup were com-

pleted, checkout tests were performed to document facility operational characteristics without the

vent box. Finally, a comprehensive series of tests which addressed all the vent box test objectives

was conducted from July 2 to August 28, 1985.

Significant direct benefits of the test program included direct measurements of peak

velocities through the contamination screen, verification of vent box flow analytical models, and the

discovery of a simple technique to reduce vent box tone amplitude during ground tests by using a

flap of flexible reusable surface insulation (FRSI) at the upstream edge of the vent box opening. An
evaluation of the FRSI flap during Orbiter flight has been recommended to the Orbiter project

management. Figure 1 is a timeline of the payload bay atmospheric vent airflow testing at VATF

from the original request date through the date of recommendation ofan FRSI flap concept flight
trial.



2.0TEST SETUP

2.1 TEST ARTICLE DESCRIPTION

The vent box used forthe VATF testprogram was representative,inallrespectscriticalfor

flow tests,toa flightvent box ofthe vent system number 5 configuration. The testvent box had

been used previously as a fixtureforan acousticcertificationtestofan electromagnetic interference

(EMI) shield which was installedon the box. A fixedlink held the door ofthe box inan almost fully

open position.There was no motor-driven door closuresystem inthe testbox. Rockwell inter-

national Corporation drawings VT70-384017 and V070-384323 give detailsofthe vent box
dimensions and materials.

A rib-stiffenedaluminum panel designed to have dynamic similaritywith the Orbiter

sidewall was provided as a support fixtureforthe vent. The 30-inch by 68-inch panel represented

the Orbiter leftsidesectionbounded inthe x-directionby a main frame at X o979.50 and a stub

frame at Xo 1009.75 and bounded inthe y-directionby the payload bay longeron and the upper wing

surface. The panel, with the vent box attached, was bolted intoa frame structure which created a

volume around the vent box having geometric similaritywith that volume provided by the Orbiter

frames and longeron. Provision ofa dynamically and geometrically correctsupport forthe vent box

allowed forpossiblestructuralparticipationin vent tone generation. Drawing VATF-26022 gives

detailsfor the vent box support panel and frame.

2.2 WIND TUNNEL CONFIGURATION

Flight data indicated that vent tone generation occurred at high-velocity subsonic

conditions; thus, a high-velocity subsonic wind tunnel would be required for laboratory

investigations. The existence of a continuous-flow compressed air supply capable of delivering a
maximum 50 000 scfm made such a wind tunnel feasible in the VATF. Only a duct was required to

receive the available air and conduct it past the vent box opening at an appropriate velocity. The

duct had to converge from an area of 6 square feet, required for coupling 16 air supply hoses, to
approximately 1 square foot to achieve the desired flow velocity. Noise, vibration, and stability

considerations required the duct to be massive. A 13-foot-long acoustic progressive wave test

section having a duct area of 72 inches high by 12 inches deep provided an ideal basic structure
within which the needed wind tunnel was fabricated from steel structural sections, 3/8-inch-thick

steel plate, and wood. The wind tunnel duct has three primary sections: an upstream entrance

section which receives air into a 12-inch-deep by 72-inch-high area and converges in a 58-inch
length to an area less than one-sixth the initial area; a test section which maintains an area of

approximately 136 square inches for a length of 64 inches; and, finally, an exhaust section of 34-inch

length which has upper and lower surfaces that are hinged at their connection to the test section to
provide a variable exhaust area at the downstream end. The Orbiter vent box was mounted to the

test section so that the 7.66-inch high by 23.6-inch long vent opening was in the plane of the test

section sidewall, the 7.66-inch-high opening was approximately centered in the test section 13.63-

inch height, and the leading edge of the vent box opening was 24 inches aft of the test section

upstream end. In the vicinity of the vent box, the test section duct was 10 inches deep (measured

normal to the vent opening plane). A schematic representation of the wind tunnel configuration is
given by figure 2. Figure 3 provides details of the wind tunnel cross-sectional area as a function of

the distance from the leading edge of the vent box opening.



Thenecessityofdetectingandrecordingpossibleventtonesduringwindtunneloperation
requiredcarein locatingthewindtunnelto minimizethebackgroundnoiseleveloutsideofthevent
box(onthesidewhichnormallyfacesintotheOrbiterpayloadbay).Twosoundsourcesofconcern
werevibrationofthewindtunnelwallsandaerodynamicwindtunnelexhaustnoise.Thevibration
problemwasobviatedbyuse of massive or stiffduct components. Isolation of vent-box-generated

sound from exhaust noise was accomplished by placing the wind tunnel in the Sonic Fatigue

Laboratory (SFL) test preparation area and exhausting the wind tunnel into the adjacent

reverberant room. The preparation area in which the vent tones were detected is large and

acoustically absorptive enough to provide a good anechoic condition for the tone measurement.

3.0 INSTRUMENTATION

Definition was required during tests of the vent box of wind tunnel and vent box flow
conditions and accompanying vent box sound and vibration response. As many as 76 parameters

were simultaneously tape recorded for test runs; other measurements such as temperatures and

barometric pressure were manually logged intermittently during test operations. Several figures

are used to convey location and usage of different transducers. Figure 4 gives the location of
transducers directly associated with defining wind tunnel operational characteristics. Ten fixed-

pressure transducers and the microphone (M4) were flush mounted in the duct surfaces. Two cross-

sectional planes within the duct could be continuously mapped (point by point measurements) for

static pressure and total pressure distribution; a forward probe plane and an aft probe plane were
located 2.25 inches upstream and 37.54 inches downstream, respectively, from the leading edge of

the vent box opening. Figures 5(a) and 5(b) show the locations of 20 pressure ports and 1 micro-

phone (M2) inside the vent box, of 3 accelerometers surface mounted outside the downstream wall of
the vent box, of 2 microphones (M1 and M3) outside the box. In addition to the 4 microphones

defined previously, 30 microphones (M5 to M34) were located on the surface of a hemisphere as
illustrated in figure 6. This array of microphones permitted source power output and directionality

computations for the vent tones.

Two probe devices were used to measure velocities of flow exiting the vent box through the
EMI shield and the contamination screen. A manually moved probe IKurz model 443) provided

direct meter readings of the air velocity at selected points outside the E MI shield and contain marion

screen. Readings were logged manually. An electronic manometer and pitot probe which had a

voltage output proportional to air dynamic pressure was used in con iunction with a motor-driven
traversing system to make continuous recordings of dynamic pressure of air exiting the contamina-

tion screen along selected lines.

4.0 OPERATIONAL CHECKOUT OF THE TEST FACILITY

Operational chec ,,ut tests of the wind tunnel test facility prior to installing the vent box

were performed to identify any unforeseen hazards to personnel or the test article and to determine

operational characteristics and limitations for consideration in planning tests using the vent box.
Two test phases were conducted with significantly different setup features; therefore, separate

checkout test procedures were performed before each phase.

Initial checkout tests of the wind tunnel setup were performed December 4 and 5, 1984. At

that time, vent box tests were planned solely to investigate tone generation. The setup

requirements for such testing were considerably simpler than those eventually needed for airflow

testing. Instrumentation included only microphones M1 to M4, 2 static pressure measurements, 12

total pressure measurements, 2 temperature measurements, and a Kurz air velocity probe. The



mainconcernsduringthe first wind tunnel operation were tunnel structural integrity, quietness of

operation, and the maintenance of test section static pressure near ambient to prevent excessive
flow through the vent box. During the first tunnel operation, for which full flow was gradually

achieved, a plate was used to close the vent box mounting area; the run was characterized by little

vibration of the test setup, a relatively quiet sound pressure at microphone position M 1 of 112 dB, a

test section pressure of + 0.3 psig, and a maximum flow velocity of about 800 fps. For the second

operational configuration, a non-flight-configuration dummy vent box was installed to permit

prediction of the wind tunnel operational characteristics to be expected with the flight-type vent.

When full compressor flow was approached for this setup, audible tones were emitted by the dummy
vent and microphone M1 indicated 128 dB. At a test section velocity of about 800 fps, the test

section static pressure was nearly atmospheric and the flow through the vent opening was about

7.5 lb/s. This flow rate was about twice the maximum rate predicted for an Orbiter vent, but the

dummy vent box had no contamination screen to restrict flow and the highest expected Orbiter flows

occur in rarefied air at much higher velocities. Therefore, testing was initiated using the flight-

configuration vent box for tone-generation experiments, which began December 9, 1984.

Requests for additional tone evaluation data and measurement of flow velocities through the

contamination screen for various pressure drops across the vent box required significant modifica-

tions to the wind tunnel setup. The initial tone evaluation test series was interrupted for refurbish-
ment of the wind tunnel to achieve its final configuration, which is described in section 2.0 of this

report. Modifications to the original setup included (l) wooden fairings to lengthen the constant-

area test section and provide better area convergence to achieve more uniform cross-sectional tlow,

{2} cross-sectional pitot-static probe capability upstream and downstream of the vent opening to

allow mass flow accounting and evaluation of the tunnel flow smoothness, (3) a continuous probe-

traversing system to permit measurement of peak velocities and mass flow through the vent box
contamination screen, and (4) hinged upper and lower bounding boards aft of the vent box opening

to allow control of the exit area and, thus, of the pressure drop across the vent box.

Upon completion of the previously described modifications, final wind tunnel checkout tests

were conducted from May 8 to May 31, 1985. These checkout tests were designed to provide an

assessment of cross-sectional flow smoothness, to investigate methods of vary ing the test section

static pressure with respect to ambient room pressure, and to develop a facility operational method

to permit repeating run velocity conditions. The data of figure 7, which were obtained by traversing
across the wind tunnel just upstream from the vent box Opening, show relatively smooth velocity

conditions existing in the duct. Figure 8 demonstrates that significant variation could be achieved

in the differential pressure across an open vent box. The data shown were obtained with the dummy

vent box by varying the exhaust opening size from 13.8 inches to 16.2 inches: two airflow veh)city

cases, 350 fps and 770 fps, are shown. Operational repeatability of run velocity was obtained by use
ofdata from figures 9 and 10. Figure 9 is a plot ofthe velocity ofcompressible air at 86 ° F versus the

ratio of static pressure to total pressure in the flow field. The static and total pressures were moni-

tored at a measurement point in the upstream test section probe plane which was approximately

representative of the average cross-sectional velocity. Usually, air compressor output was varied
according to the data of figure 10 to provide an approximate desired velocity at the test section

measurement point. When more accurate test section velocity was needed, the ratio ofstatic to total

pressure was set by variation ofcompressor output flow to produce the desired wind tunnel velocity

in accordance with the data of figure 9.

5.0 SUMMARY OF INITIAL TONE TESTS

As relatedinsection4.0 ofthis repo,'t,initialcheckout testresultson December 4 and 5,

1984, with a dummy vent box were favorable forbeginning testswith the fiightlikeOrbiter vent



box. On January 9, 1985, the first test using the Orbiter-type vent box and a wind tunnel flow

velocity of approximately 800 fps resulted in a strong audible tone having a sound pressure level of

133 dB at microphone position M 1 and a frequency of about 300 Hz. This result corresponds well

with flight data from the Orbiter payload bay in both amplitude and frequency. Figure 11 gives the
power spectrum of the sound measured at microphone position M 1 2 feet from the vent contamina-

tion screen. A distinct primary tone can be seen to exist at 300 Hz. Evidence of secondary tones can
be seen at frequencies higher and lower than the primary tone. Most of the tones observed are

readily identifiable as members ofan infinite series of tones generated by boundary-layer

disturbances over the vent box external orifice. The frequencies of such tones were expressed by
Rossiter as

fN = (C/W)(N- a}/([l ÷ 0.2(U/C)2] -05 + (1/K)t,N = 1,2,3 ...

where C is the free-stream speed of sound and U is the free-stream flow speed over an opening of
length W. Experiments have determined the proper values of a and K to be 0.25 and 0.57,

respectively, at Mach numbers greater than 0.5. The most intense tones developed within cavities

in a flow field occur when Rossiter frequencies coincide with acoustic mode frequencies of the cavity

Such coincidence of longitudinal acoustic modal frequencies and Rossiter frequencies for the vent

box can be identified by overplotting the expressions for each as functions of flow velocity. The
appropriate expression for the longitudinal acoustic mode frequencies of the vent box is

fi = i(C/2L)[1 + 0.2(U/C)21 °5' i = 1,2,3...

where L is the vent box longitudinal dimension. Figure 12 is an overplot ofthe first four Rossiter

frequencies with the first two acoustic frequencies versus free-stream velocity. At 800 fps, the first
four Rossiter frequencies are 126 Hz, 294 Hz, 462 Hz, and 630 Hz: tones corresponding to these

frequencies can be readily identified in the figure 11 data. Extraneous tones of a lower amplitude in

figure ll must indicate higher frequency vent box modes or modal frequencies of the wind tunnel.

Previous experimenters have reported that the second Rossiter tone usually predominates. This
prediction was found to be the case with the Orbiter vent box; the second Rossiter tone coupled with

the first longitudinal acoustic mode to produce the lightly damped (narrow bandwidth) tone at about
300 Hz seen in figure [ 1.

Immediately following the first exposure of the flight-type vent box to the laboratorv flow

environment, a visual inspection revealed a 6-inch-long tear in the first pleat of the contamination

screen adjacent to the downstream vent box wall. The test run had lasted about 15 minutes, during

which a mapping of the flow exiting the contamination screen and the EM[ shield was accomplished
using the Kurz hand-held velocity probe. Evaluation of the probe data showed that the mass flow

rate during this test was approximately 3.6 Ib/s through the contamination screen and 07 lb/s

through the EMI shield. After removal ofthe contamination screen from the vent box, a more

thorough inspection revealed several additional small tears. The tears were repaired by application
of a silicone adhesive.

Since the contamination screen was expected to be unavailable for several days to enable
inspection and repair, a trail run was conducted at 800 fps without the screen to evaluate the effect

on tone generation created by the absence of the screen. The data withou_ the screen were compar-
able to the data of figure I 1 with the screen except that a great amplitude increase occurred in a

100-Hz tone associated with the first Rossiter tone driving a wind tunnel longitudinal mode. Based

on the continued existence ofan intense 300-Hz tone in the absence of the contamination screen, the

decision was made to proceed with an initial series of tests aimed at investigating means of

5



attenuating the offensive300-Hz vent tone without the contamination screen mounted to the vent

box,

Thirty-six test runs were conducted in this initial vent tone investigative effort without the

presence of the contamination screen. Trials at various wind tunnel velocities showed that flow

through the open vent box could be reduced considerably without much decrease in tone amplitude
by operating in the speed range of 620 fps to 660 fps; this speed range became an operational

standard for the initial tests. Tests were conducted to examine the effect on vent tone amplitude

produced by rudimentary alteration of several potential tone source parameters including box wall

vibration, boundary flow across the box opening, and rotational flow within the box. Additionally,
attempts were made to absorb the sound after its creation by the source. The vent box wails vibrate

intensely during tone generation. Restraint of the vibration, however, showed it to be a response
rather than a tonal generation parameter. The application of baffles oriented to block some of the

rotational flow within the vent box and to partially interfere with the longitudinal acoustic modes

had a noticeable beneficial effect at selected tonal frequencies. Lining the vent box with

acoustically absorptive foams below the vent box door provided good reduction of some tonal

components. Whenever the application of a foam tended to block flow to the cavity above the open

vent door, however, a tonal component associated with the third Rossiter frequency dramatically

increased in sound level. Several experiments involved interfering with the boundary-layer flow at
the upstream lip of the vent box. Specific boundary-layer-disturbing configurations tried included

covering the opening with l/4-inch mesh hardware cloth, placing the end of a board perpendicular to

the opening and slightly protruding into the boundary layer from inside the vent box, and lining the
upstream edge of the vent box with short streamers. All of the methods which directly interacted

with the boundary layer effectively reduced most tonal components and had no adverse effects at

any dominant frequency. The 1.5-inch-long streamers made of duct tape performed the best overall
and provided 12.5 dB of attenuation at the primary 300-Hz tone.

The initialeffortsreported inthissectiontoattenuate the vent box tone generation were

regarded as providing preliminary information for use infinalteststobe conducted afterimplemen-

tationofrefinements in the wind tunnel configuration and inoperationalcontrolof flow conditions

past and through the vent box. Also, subsequent testswould includethe contamination screen in

the vent box setup.

Based on the results of the initial tone attenuation testing, additional experiments were seen

to be needed to define the potential attenuation attainable by application of absorptive materiais.

flow baffles, and boundary-layer disturbers in ways which are compatible with flight usage of the
vent boxes and which precipitate minimal engineering efforts for retrofit.

6.0 FINALTEST PHASE SUMMARY

Multiple objectives were addressed by the final phase of VATF Orbiter vent airflow testing,

which occurred from July 2 to August 28, 1985. A chronological summary of the final test phase
activity is provided by table I. As seen in table [, there were 105 separate data tape runs for which

as many as 76 signals were recorded from microphones, accelerometers, pressure transducers, and a

traverse position indicator. Test configuration numbers were assigned to distinct operating
conditions of the wind tunnel or vent box setup. Primary operational conditions which defined a

configuration were the flow velocity within the test section and the height of the wind tunnel exit

plane. Variation of the exit height was used to modify the pressure drop across the vent box and, as
a result, the ratio of mass flow through the vent box relative to the test section total mass flow. To

indicate relatively the flow through the contamination screen from the wind tunnel, a single
reference velocity was measured, when convenient, with the Kurz probe at a point which was 1 inch



outsidethecontaminationscreen,1inchfromthedownstreamedge,andverticallycenteredin the
upperscreensection.Thecommentscolumnof tableI indicatesthegeneralobjectiveaddressedby
eachtestconfigurationor identifiesrunsfor whichobjectiveswerecompromisedbyanomalies.Test
activitieswereconductedtoinvestigateflowdistributionthroughtheventbox,reductionof peak
flowthroughthecontaminationscreen,effectivityofabaffleboardonthepayloadbaysideofthe
contaminationscreen,sound-generationpropertiesoftheventbox,andsuppressionoftheventbox
tones.

Whenthefinal testphasebegan,thehighestpriority objectivewas to obtain flow distribution
data from which contamination screen pressure drop and flow resistance properties and the peak

velocity through the screen could be assessed. The data obtained were to be analytically fitted by

Aerospace Corporation personnel so that the sea-level test data could be used for predicting flight
conditions. Test configurations 5 to 22 were devoted to acquiring the needed flow distribution data,

which were tape recorded as runs 7 to 34. For these runs, signals from all fixed-pressure

transducers identified in section 3.0 of this report were recorded as well as dynamic pressure

traverse data for flow exiting the contamination screen (Orbiter inboard direction). The traverse

data were acquired by recording the electronic manometer output while moving a pitot-static probe
continuously along six horizontal lines across the contamination screen at distances of I inch, I l

inches, or 2l inches between the screen and the probe. For each configuration, additional data for

flow through the EMI shield were logged manually from direct Kurz probe indications at 14 points

in a plane 1 inch outside the shield. Data from the 6 traverse lines across the contamination screen
and from discrete measurement points outside the EM[ shield were used to compute approximate

total mass flows through the screen and the shield. Table II summarizes key data and computed

results from runs for which sufficient data were acquired to permit the mass flow computations. As

shown by table [I, total mass flows through the vent box ranged from approximately 0.9 to 4.3 Ibis

The traverse data acquired during the flow distribution investigative runs showed a

predominant peak velocity exiting the contamination screen adjacent to the vent box downstream
wall. Since such localized high-velocity flow could impinge on and damage payloads, reduction of

the peak was explored in several test runs. Initially, a minimal modification was tried which

consisted of blocking airflow through the first pleat or" the contamination screen by the application of

tape. This approach seemed promising because only a single layer of screen material opposed the

flow impingement at the first pleat. Data from configuration 43 with and without tape blocking the

first pleat indicated virtually no reduction of the peak velocity caused by the tape application. Runs
72, 96, and 97 were conducted later employing a sheet metal deflector installed vertically at the

downstream edge of the contamination screen and protruding inward at a 45 ° angle with respect to
the screen surface. Deflectors 3 inches, 2 inches, and 1 inch wide (runs 72, 96, and 97) reduced the

peak undeflected velocity of 52 fps (run 73) to 0 fps, 19 fps, and 41 fps, respectively. Thus, deflectors
could be employed to good advantage at the downstream edge of the contamination screen. A

summary of flow distribution data for the deflection study runs is included in table II.

In preparation for subsequent and sound-suppression effort and to provide knowledge

applicable to the Orbiter flights, several test runs were devoted to providing an understanding of the

vent box sound-generation characteristics; specific characteristics of interest were sound power

output, directionality of the radiated sound, and the effects of wind tunnel speed and mass flow

through the vent box on the radiated sound intensity. Generally, the radiated sound intensity was
found to increase with wind tunnel flow speed. A speed of 660 fps was selected as a standard for

forthcoming sound-suppression work because the vent tone was well developed at this speed and

because higher speeds, although yielding greater tone intensity, would have more potential for

fatiguing the vent box components. At 660 fps, the tonal intensity increased as the mass flow
through the vent box decreased. Decreased mass flow through the vent box accompanied increased

wind tunnel height at the exit plane to about 29 inches, where the occurrence of exhaust flow



separationcausedanincreaseof massflow. An exit height of about 26 inches provided nearly

minimum mass flow with a stable exhaust condition and, consequently, was chosen for follow-on

noise-suppression work. A hemispherical array of 30 microphones at a 3-foot radius (fig. 6) was used

to provide data which would allow tonal power computations and would indicate the directionality
of sound radiated from the contamination screen. A review of data from the hemispherical array

showed the sound radiation to be dipole; maximum sound was radiated forward and aftward (along

the Orbiter x-axis}, and a sound minimum tended to exist on a vertical plane through the center of

the vent box. This type of radiation pattern would be expected from the vent box first longitudinal

acoustic mode, which couples with the external flow boundary layer to generate the dominate vent
box tone.

Plates which are 35.75 inches by 29.50 inches (approximately 12 inches larger in both

dimensions than a contamination screen} have been used on some Orbiter flights to shield payloads

from air loads created by flow through the vent boxes into the payload bay. The baffle plates are

centered with respect to the contamination screens in a plane 10 inches from the screens. Test

configurations 12, 14, 15, and 23 were dedicated to documenting the flow effects of a baffle board.

The K urz probe was used to measure the distribution of air velocity around the periphery of a 3/4-
inch-thick plywood board sized and placed to simulate a flight baffle board: air velocities departing

the board edges in the plane of the board were logged for wind tunnel flow speeds of 200, 350, and

500 fps. Obviously, the baffle boards do a good job of shielding objects in the payload bay cargo space

from the vent box air inflow. Microphone data from the hemispherical array were tape recorded in

configuration 83, run 98, to determine whether the presence of a baffle board would act, also, as an
acoustic shield for payloads. Comparison of the array sound levels with and without the simulated
baffle board indicated that a baffle board would not be suitable as a sound shield. Whereas the

average effect of the board was to reduce the array sound level by 3 dB, some microphones directly

shielded by the board actually showed increased levels compared to microphones not being shielded.
The laboratory results are considered to be compromised by sound reflections from one wall and the

floor and, therefore, to be not closely representative of a flight baffle configuration. Nevertheless, it

can be readily concluded that a baffle board would have little merit as a payload sound shield.

More than halfofthe final test phase experiments, 57 of 105 data runs, directly supported an
effort to suppress the vent box tone generation. The noise-suppression experiments were performed

at a wind tunnel average cross-sectional airspeed of 660 fps (approximately Mach 0.62) with the

-contamination screen installed on the vent box and the wind tunnel exit height set at 25.8 inches:

these setup parameters resulted in an approximate airflow through the vent box of 1.8 lb/s. Various

sound-suppression techniques were applied to the vent box for testing. In an effort to decouple the
first longitudinal acoustic mode of the vent box from the boundary tones, two vertical partitions

were installed to divide the vent box into three equal subvolumes without interfering with door

closure. With the partitions, the predominant tone decreased by only 2.5 dB. Absorption of the

acoustic energy within the vent box was attempted by lining the interior wall surfaces with FRSI
blankets from 0.5 to 1.25 inches thick; FRSI was used because it has sound-absorptive qualities and

is a flight-approved material. Several pounds of FRSI provided just 3.5 dB reduction of the primary

tone. Together, the FRSI and partitions provided a marginally acceptable 6-dB attenuation, but the

material weight added and the major design effort needed to implement these modifications for

flight appeared to be unacceptable for such marginal benefit. Two noise-suppression techniques

were applied directly to the boundary-layer noise-generation mechanism. Several shear-layer
spoiler configurations which have been used successfully in the past were applied just upstream of

the vent box opening on the wind tunnel wall. The externally applied spoilers, being no more than 6

inches long and 1 inch high, were lightweight and small but afforded from 11.5 to 16 dB of
attenuation for the major vent tone. Even though they would give excellent noise reduction if

implemented, the analysis, the development, and, possibly, the aerodynamic testing required to add

spoilers of the standard type to the Orbiter would be expensive. As mentioned in section 5.0 of this



report, 1.5-inch-long duct tape streamers were found to be effective in spoiling the boundary layer

and, consequently, in reducing the vent noise. This concept was developed further during the final

vent box test phase by use of FRSI to make the streamers. For the wind tunnel tests an 8-inch-long
blanket of either 0.16- or 0.32-inch-thick FRSI was positioned to overlap the upstream edge of the

vent opening by 1.5 inches; seven 1.5-inch slits 1 inch apart and parallel with the vent x-axis were
made to create six adjacent streamers. In several tests with different FRSI samples, attenuation of

the dominant vent tone ranged from 7.5 to 13 dB. Figure 13 contains data from one of the FRSI

tests. The FRSI streamer approach to vent tone attenuation appears promising for several reasons:

good attenuation is achieved with negligible weight; FRSI is an approved thermal protection system
material for use on the Orbiter: and little or no design and analysis will be required to implement

FRSI streamers. A suggested implementation method for Orbiter vents number 3, 4, and 5 is

provided in figure 14.

Extensive data from the final vent box test phase have been given to interested organizations.

The size of the base prevents full publication; therefore, the existing data plots, tabulations, and

analog magnetic tapes will be retained at the VATF for dissemination upon request. Tables [ and II
provide a good overview of the tests accomplished and, thus, will provide assistance for formulating

data requests.

7.0 CONCLUDING REMARKS

As a result of several concerns related to venting the Orbiter payload bay during launch, an

experimental program was conducted in the VATF from January 9 to August 28, 1985. For the

tests, a configuration 5 vent box was mounted in the wall of a wind tunnel; airflow through the vent
box and the sound emitted by the vent box were measured for various wind tunnel operating

conditions. Significant direct benefits of the test program included direct measurements of peak

velocities through the contamination screen, verification of vent box flow analytical mode Is, and the

discovery of a simple technique to reduce the vent box tone amplitude during ground tests by use of

a flap of FRSI cut into streamers and overhanging the upstream edge of the vent opening. An

evaluation of the FRSI flap during Orbiter flight has been recommended to the Orbiter project

management.

The final phase of the vent box test program with the flight-type configuration 5 vent box

consisted of 105 test conditions with as many as 76 transducer signals tape recorded. A very large
volume of data has been accumulated: therefore, rather than attempting to publish all the existing

data plots, tabulations, and analog magnetic tapes, the VATF will retain them for dissemination

upon request.

9



TABLE [.-TEST RUN CHRONOLOGY FOR THE ORBITER VENT BOX

Date Test Tape Duct Exit Ref.

Config. run velocity height velocity

no. no. fps in fps

Comments

7/2/85

7/3/85

7/8/85

7/10/85

7/11/85

7/12/85

7/17/85

7/18/85

7/25/85
7/26/85

l 1,2 200 15
2 3,4 200 13.9

3 5,6 200 11.5
4 200 11.5

5 7 200 11.5 55.0

6 8 200 13.1 36.7

7 9 2OO 15 23.3

8 350 15.5
9 10 350 15.5

11 350 15.5 31.7

10 12 350 13.9

13 350 13.9 63.3
14 350 13.9

ii 15 350 13.1

16 350 t3.1 70.8

17 350 t3.1

12 350 13.1
13 18 350 15

19 350 15 48.3

14 200 ll.5

15 200 11.5

16 20,21 500 16.2
22 500 16.2 45.8

17 23 500 16.9

24 500 16.9 44.2

18 25 500 18
26 500 18 32.5

19 500 19.2 24.0

20 27 500 20

28 500 20 22.5

21 29 50O 15
3O 500 15 73.3

22 31 50O 13.8

32 500 13.8 98.3
33 500 13.8

34 50O 13.8

23 500 13.8

24 35 750 17.5
25 36 700 20

26 37 700 20

Traverse probe not functional.

Traverse probe not functional.

Traverse probe not functional.

Diagnosing probe system.
Complete flow mapping.

Complete flow mapping.

Complete flow mapping

Air compressor shutdown.

Data tape recording.

Contamination screen traverse: 1 inch away.
Data tape recording.

Contamination screen traverse: 1 inch away.

Contamination screen traverse: 1 inch away.

Data tape recording.

Contamination screen traverse: 1 inch away.
Contamination screen traverse: 1 inch away.

Flow mapping around baffle plate.

Data tape recording.

Contamination screen traverse: l inch away.
Tufts at vent opening and contamination
screen.

Tufts,mapping baffle piate t'[ow.

Data tape recording.

Contamination screen traverse: l inch away.
Data tape recording.

Contamination screen traverse: l inch away.

Data tape recording.

Contamination screen traverse: 1 inch away.
Reference velocity measurement only.

Data tape recording.

Contamination screen traverse: I inch away.

Data tape recording.

Contamination screen traverse: l inch away.

Data tape recording.

Contamination screen traverse: l inch away.
Contamination screen traverse: l 1 inch

away.
Contamination screen traverse: 2 l inch

away.
Baffle plate flow mapping.

Sound directivity.

Directivity without contamintion screen.
Vent box flow and direction without screen.

10



TABLEI.-Continued

Date Test Tape Duct Exit Ref.
Config. run velocity height velocity

no. no. fps in fps

Comments

7/29/85 27 38 700 24.2
7/31/85 28 39 660 15.5 75.0

29 40 660 16.2 69.2
30 41 660 [4.5 96.7
31 42 660 13.8 116.7

32 43 660 17.5 56.7

33 44 660 20 40.8
34 45 660 24.2 75.0

8/1/85 35 46 660 20

36 47 580 20 20.0

37 48 580 22 26.7

38 49 580 21 20.8
39 50 580 t8.8 25.8

40 5t 580 t8 33.3

41 52 580 17 51.7

42 53 580 15.9 70.0

_2/85 43 350 13.2

8/12/85 44 54 660 20 183.3
45 55 660 20 70.8

56 660 20

8/13/85 46 57 660 22 43.3

47 58 660 24 35.0

48 59 660 26.5 24.2
49 60 660 29 23.3

50 61 660 27.5

62 660 27.5

5l 63 660 25.8 33.3
_14/85 52 64 660 25.8 38.3

8/15/85 53 65 660 25.8 73.3

54 66 660 25.8 73.3
55 67 660 25.8 48.3

68 660 25.8

56 69 660 25.8 40.0

57 70 660 25.8 51.7

8/16/85 58 71 660 25.8
72 660 25.8

59 73 660 25.8 43.3

Vent box flow and direction without screen.

Sound o/p vs. mass flow/traverses.

Sound o/p vs. mass flow/traverses.

Sound o/p vs. mass flow/traverses.

Sound o/p vs. mass flow/traverses.

Sound o/p vs. mass flow/traverses.
Sound o/p vs. mass flow/traverses.

Sound o/p vs. mass flow/traverses.

Three directivity conditions.

Sound o/p vs. mass flow/traverses.

Sound o/p vs. mass flow/traverses.

Sound o/p vs. mass flow/traverses.
Sound o/p vs. mass flow/traverses.

Sound o/p vs. mass flow/traverses.

Sound o/p vs. mass flow/traverses.

Sound o/p vs. mass flow/traverses.

Flow deflection-tape screen pleat.
Anomaly/flow blockage-duct exit.

Complete contamination screen traverse.

Sound directivity - 34 microphones.

Sound o/p vs. mass flow/traverses.
Sound o/p vs. mass flow/traverses.

Sound o/p vs. mass flow/traverses.

Sound o/p vs. mass flow/traverses.

Anomaly/duct liner loose.

Sound o/p vs. mass flow/traverses.

Sound o/p vs. mass flow/traverses.
Baseline sound o/p run.
FRS[ liner and internal baffles.
FRSI liner.

Internalbaffles.Ref. vel.high.

Internalbaffles.

Baseline sound o/p repeat.

Open cellhoneycomb side liner.
Flow deflector-downstream wall.

Contamination screen traverse with deflec.

Contamination screen traverse without

deflec.

II



TABLE I.- Concluded

Date Test

Config.

no.

Tape

run

no.

Duct

velocity

fps

Exit

height
in

Re£

velocity

fps

Comments

8/21/85

8/22/85

8/23185

8/26/85

8/27/85

8/28185

60

61

62

63
64

65

66

67

68

69
70

71

72

73
74

75

76
77

78

79

80

81
82

83

84

85

86

87
88

89

9O

74

75

76

77

78
79

80

81

82

83
84

85

86

87
90

89

90

91
92

93

94

95

96
97

98

99

100

101

102
103

104

105

66O

660

660

660

66O
660

66O

66O

66O

66O
66O

660

66O

66O

66O
66O

66O

660
660

66O

66O

66O

66O
66O

66O

660

660

660

66O
66O

66O

66O

25.8

25.8

25.8
25.8
25.8

25.8

23.4

23.4

25.8

25.8
23.4

21

17.8
21

21

21

25.8

25.8

25.8
25.8

23.4
19.2

25.8
25.8

25.8

25.8

25.8

25.8

25.8
25.8

28.5

28.5

41.7

40.0

45.0

27.5

24.2

30.0

55.8

52.5

6.7
11.7

18.3

40.0

43.3

38.3
56.7

36.7

33.3
11.7

15.0

38.3

45.0

46.7

43.3

53.3
53.3

5O.O

33.3

31.7

Rubber streamers/8:1.5 in. long.

Rubber streamers/8:1 in. long.

Baseline sound o/p run.
Anechoic treatment on room wall.

Two external B/L spoilers at 45 °.

Single castellated spoiler.
Single castellated spoiler.
Anomalous run.

Anomalous run.

Hardware cloth spoiler: 0.25".

Hardware cloth spoiler: 0.25".
Hardware cloth spoiler: 0.25".

Hardware cloth spoiler: 0.25".

Hardware cloth/fwd half opening.

Hardware cloth/aft half opening.

Hardware cloth/aft 4" opening.
Rubber flap at opening/l.5" long.

Rubber flap at opening/l.5" long.

Rubber flap slit at center.

External FRSI spoiler: 1" high.
External FRSI spoiler: 1" high.

External FRSi spoiler: 1" high.
Flow traverse with 2" deflector,

Flow traverse with 1" deflector

Sound directivity/baffle plate.

Baseline sound o/p run.

FRSI streamers/2" long/0.32" thick.

FRSI streamers/2" long/0.16" thick.

FRSI streamers/2" long/0.32" thick.
FRSI streamers/1.5" long/0.32" thick.

FRSI streamers/1.5" long/0.32" thick.

Baseline sound o/p run.
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TABLE II.- VENT BOX MASS FLOW FOR DIFFERENT OPERATIONAL CONDITIONS

Duct velocity, Duct pressures, Mass flow,
Tape Exit

fps psig Ib/s
run height,

no. Nom. Max. Avg. in Upstream a Downstream a Avg. EMI Screen Total

7 200 212 190 11.5

8 200 218 189 13.1

9 200 212 188 15.0

I1 350 385 349 15.5

13 350 386 346 13.9

16 350 385 348 t3.L

19 350 383 346 15.0

22 500 550 538 16.2

24 500 556 524 t5.g

26 500 561 529 18.0

28 500 560 526 20.0

30 500 552 524 15.0

32 500 552 520 13.3

72 660 (b) (b) 25.8

73 880 699 859 25.8

96 660 (b) (b) 25.8

97 660 (b) (b) 25.8

0.058

.055

048

115

160

170

138

285

.273

.2fi3

.253

.318

.353

.263

.273

.395

.388

0.193

.088

.050

.058

.300

.318

t73

215

075

148

315

515

698

.658

.645

.650

.535

0,126

.072

.04g

.087

.230

.244

.156

.250

.174

.058

.031

417

526

tg8

186

128

124

0.808

.459

.201

.L54

.566

.696

.275

.236

.303

.357

.330

31g

70O

321

544

364

43g

2.415

1.813

1.002

1.485

2.785

3.176

2.035

2.213

1.689

1.615

.591

2.694

3.58t

.771

1,226

.609

.757

3 223

2 272

I 203

I 649

3 351

3 872

2 310

2 449

1 992

i 972

921

3 013

4 281

I 092

]. 770

973

I ig6

aUpstream and downstream measurements are 5.75 inches forward and 4.37 inches aft of the

vent opening, respectively.

bDuct cross-sectional mapping not done for this run.
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