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CHAPTER I
INTRODUCTION

The parabolic reflector antenna is the most useful and widely used
antenna type for communications purposes at microwave frequencies. A
parabolic reflector illuminated by a feed horn located at the focus of
the parabola radiates a so-called "pencil beam" pattern which is a
requirement for point-to-point communication. The other application of
reflector antennas is in the field of radio astronomy. Normally, high
gain and low noise temperature are required of the antenna for this
application. The focus-fed paraboiic reflector has limitations for
large D/X since the spillover from the feed is usually pointed toward
ground which is a high noise temperature source. Consequently, dual-
reflector antennas derived from the Cassegrain telescope have been used
for high gain and low noise temperature purposes.

The parabolic reflector antenna with a feed at the focus preserves
a fixed aperture distribution and thus, has a fixed radiation pattern
when the feed pattern and the geometry of the reflector are given. The
introduction of a second reflector in a dual-reflector system such as
the Cassegrain antenna which consists of a hyperbolic subreflector and a
parabolic main reflector or the Gregorian antenna which consists of an
elliptic subreflector and a parabolic main reflector allows for more
control over the aperture distribution of the main reflector. Although

there is an extra degree of freedom provided by the addition of the




second reflector, the aperture distribution still possesses a certain
amplitude taper which limits the performance of the antennas.

Recent developments in the technology of space communications
require that the antenna gain be optimized; or that the power radiation
pattern of the antenna illuminates an irregularly shaped target area,
the so called "contour beam" antenna. For an antenna to have optimal
gain, the illumination on the main reflector must be such that the
resulting aperture distribution makes maximum use of the entire
reflector surface. For an antenna to have a power radiation pattern
that follows a prescribed function in the contour beam application, the
aperture distribution must be specially designed. None of these are
provided by the conventional prime focus fed parabolic reflector or
dual-reflector such as the Cassegrain or Gregorian antennas.

Most recently, the reflector antenna is being used as a way to
generate a plane vave vhich illuminates a target or antenna for
measurement applications in indoor facilities. Electromagnetic
measurements require that the antenna or scatterer under test be
illuminated by a plane wave with a uniform amplitude distribution. 1In a
compact range this is achieved approximately by a focused parabola. The
non-uniform amplitude distribution caused by the taper of the feed-horn
and the space attenuation limits the size of antenna or scatterer that
can be measured.

In the past 20 years, considerable research has been conducted in

the area of dual-reflector antenna shaping to provide the capabilities



that the conventional reflector antennas are not able to achieve. These
capabilities include:

1. Maximize the illumination efficiency over the reflector
aperture so that the antenna gain is optimized.

2. Maximize the spillover efficiency so that most of the microwave
pover radiates in the desired direction and the power radiated
to the dther directions are minimized in order to reduce the
interference between adjacent antennas and antenna noise
temperature.

3. Generate particular aperture distributions so that the
radiation patterns of the antenna follow prescribed functions.

4. Generate a plane wave which has uniform amplitude and phase
distributions over most of the aperture of a compact range
reflector so that the size of antenna and scatterer under test
can be increased.

A new approach of dual-reflector shaping is proposed and studied in
this research. The main effort is limited to two-dimensional reflectors
although the approach is demonstrated for three-dimensional shaping of a
dual-reflector with circularly symmetric surfaces. This new approach is
based on the geometrical properties of Cassegrain and Gregorian
antennas. The shaped surface equations are formulated and solved
numerically.

Most reflector analyses and designs are based on the principles of
geometrical optics. The method of physical optics is also widely used

to calculate the scattered fields from reflector surfaces. These



techniques are briefly reviewed in Chapter II. Also, the geometrical
properties of conventional Cassegrain and Gregorian reflectors are
addressed in this chapter.

Chapter III discusses the formulation for shaping of dual-reflector
antennas when the primary source and required aperture distribution are
given. This is the basis of this research. A set of algebraic equations
are obtained. These equations have to be solved numerically. A
numerical approximation for solving these equations is presented in the
same chapter.

Several examples are presented in Chapter IV to validate the
formulation and solution of the surface equations. A conventional
Cassegrain or Gregorian reflector and feed pattern are assumed as a
starting point, and then the reflectors are shaped to obtain a
prescribed aperture distribution. The scattered fields of the
subreflector and main reflector for both conventional and shaped dual-
reflector antennas are calculated aqd presented for comparison.

One problem associated with compact range reflectors is the edge
diffraction from the sharp terminations of the main reflector surface.
This diffracted field enters the area where the antenna or scatterer are
under test and interferes with the plane wave reflected from the
reflector surface. This interference causes variations on both the
amplitude and phase of the plane wave illuminating the target under test
and reduces the accuracy of the measurements. The edge diffracted
fields can be reduced by adding rolled edges [1,2] to the main reflector

surface. This modification to the edges of the shaped main reflector is



discussed in Chapter V. Examples are also shown to illustrate the
improvement of adding rolled edges. The scattered fields from the
reflectors are calculated by the method of physical optics which results
in false end-point contributions to the scattered fields. The method of
correcting the end-point contributions [3,4] is also reviewed in the
same chapter.

Chapter VI demonstrates the application of the shaping processes to
three-dimensional circularly symmetric dual-reflectors that are
illuminated by a primary source with a circularly symmetric power
radiation pattern and thus the secondary aperture distribution of the
reflector is also circularly symmetric.

A summary and conclusion of the study are given in Chapter VII.
Suggestions for further studies are also addressed. Three appendices
are included. Appendix A presents a direct application of the
principles of geometrical optics to dual-reflector shaping. Appendix B
provides the details of solving the surface equations which are
formulated in Chapter III. Finally, Appendix C shows the calculation of
the geometrical optics reflected fields for the conventional Cassegrain

and Gregorian reflector antennas.



CHAPTER IIX
THEORETICAL TECHNIQUES

This chapter briefly reviews the techniques which are used in the
analysis and synthesis of shaped dual-reflector antennas. The designs
of microwave reflector antennas are basically based on the principles of
geometrical optics. As to the pattern analysis of reflector antennas,
there are many methods available such as Geometrical Theory of
Diffraction (GID) and Physical Optics (PO). In this study, the method
of Geometrical Optics (GO) is used to calculate the incident fields and
the induced surface currents on the reflector surfaces, and then, the
method of Physical Optics is used to calculate the scattered fields from
the reflector. These methods are briefly described in this chapter.

The method of synthesis of shaped dual-reflector antennas used in
this research is based on the ray géometries of conventional Cassegrain
and Gregorian dual-reflector antenna systems. The characteristics of
the geometrical optics reflected rays of these antennas are reviewved.

Throughout this research, the electromagnetic field is assumed time
harmonic, and the ejwt time dependence is understood and suppressed.

All the reflector surfaces are perfectly conducting and exist in free

space.



2.1 Geometrical Optics

The electromagnetic field associated with the propagation of
visible light is characterized by a very high frequency of the field or
very small wavelength. A good first order approximation to the
propagation of electromagnetic waves at very high frequencies may be
obtained by neglecting the finiteness of the wavelength. The branch of
optics which is characterized by the neglect of the wavelength is known
as Geometrical Optics. Mathematically, Geometrical Optics is the
leading term in the asymptotic high frequency solution of Maxwell’s
equations and is subjected to certain geometrical laws. An excellent
reference to geometrical optics is the work by Born and Wolf [5]. Some
basic properties of the geometrical optics field are

1. The time-averaged electric and magnetic energy densities are
equal, and they are each equal to one half of the total stored
energy density.

2. The average Poynting vector is in the direction of the normal
to the geometrical wavefront, and its magnitude is equal to the
product of the average energy density and the velocity v=c/n
where ¢ is the speed of light in free space, and n is the
refractive index of the medium. In free space, n=1 so that
v=C.

3. Geometrical optics is a ray tracing technique in which
geometrical rays are the family of directed curves

perpendicular to the geometrical wavefront. Geometrical rays



also represent the direction of energy flow at every point. In
a homogeneous medium, the geometrical rays are straight lines.

4. The geometrical optics field is a transverse electromagnetic
field (TEM), i.e., the electric and magnetic field vectors at
each point are orthogonal to each other and to the ray.

5. In a homogeneous medium the polarization of the geometrical
optics field remains constant along a ray.

6. A ray optical field can be described in terms of an astigmatic
ray tube as shown in Figure 2.1. The electric field at s

associated with ray tube is given by
B(s) = (o) Apy,py,5)e7 kS (2.1)

in which E(o) is the field at the reference O, A(pl,pz,s) is the spread
factor, and Py1 Py are the radii of curvature of the geometrical wave

front. The spread factor is given by

P1P

(o759 (575 (2.2)

A(pl’ pz’s) =

which results from the conservation of energy along the ray. Equation
(2.1) expresses the intensity law of geometrical optics. Since the
geometrical optics field is TEM, the magnetic field must also follow
these laws. If one of the radii of curvature is infinity as in the two-

dimensional case, the spread factor reduces to
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Figure 2.1. Astigmatic tube of rays.
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S =

distance from reflection point to observation point and p;,p;
are the principal radii of curvature of the reflected
vavefront at the point of reflection QR. The unit vectors
associated with the dyadic reflection coefficient are defined
as

unit incident vector parallel to the plane of incidence and
perpendicular to the incident ray

unit reflected vector parallel to the plane of incidence and
perpendicular to the reflected ray

unit vector perbendicular to the plane of incidence where the
plane of incidence is defined as the plane formed by the unit

-

vectors si and n as shown in Figure 2.2.

The general expressions for p; and p; can be found in [6].

However, for some special surface geometries, pi and p; can be obtained
numerically or directly from the properties of the surfaces. When one
of the radii of curvature goes to infinity, as in the two-dimensional

case, the reflected electric field becomes

r

s = |p
B(s) = B'(ap) - R i e Jks (2.5)

pl+S

For a two-dimensional surface which is infinitely long along the z-axis,
the reflected electric field for a TE polarized incident wave (generated

by a z-directed electric line source) is given by

12
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r
1 oiks
r

BT(s) = Ef(s)z = -;Ei(oR) (2.6)

P +S

and the reflected magnetic field for a TM polarized incident wave

(generated by a z-directed magnetic line source) is given by

r
! e—jks
r

B5(s) = BY(s)z = zAi(Q (2.7)

R) +S
] .

One final note for the geometrical optics reflected field is that the
law of reflection is satisfied; i.e., the angle of incident @' and the

angle of reflection o' are equal, and the incident vector sl, the

“r .
reflected vector s° and the surface normal n are co-planar.

2.3 Physical Optics

Physical optics (P0) is also a high frequency method which uses the
integral equation representation, along with the physically reasonable
high frequency assumption that the scattered field from one point on a
body to any other point is insignificant compared to the incident field
strength. This method is based on the approximation of Stratton-Chu
Equations for the scattered field [7] and states that for scattering
from a perfectly conducting body in free space, the scattered fields are

given by

13



A A [Zfsw " b d, - V)w] ds (2.8)

and
is - L J, x W) ds. (2.9)

Note that ¢ is the free space Green’s function, and 3; is the induced
surface current on the scatterer surface as shown in Figure 2.3. 1In

general, the induced surface current 3; is given by
I - nx @TOTAL Ly @ . % (2.10)

in which ﬁTOTAL is the total magnetic field on the surface of the
scatterer, ﬁi is the incident magnetic field on the surface, and ; is
the surface normal. Substituting Equation (2.10) into Equations (2.8)
and (2.9), it is apparent that the unknown field ﬁs appears on both
sides of the equation so that a coupled set of integral equations is
obtained. Although one can solve gs by the Method of Moments, it is
very tedious and inefficient since the size of the scatterers is usually
very large in terms of a wavelength in the high frequency region.
Consequently, from the boundary conditions at the perfectly conducting

surface, one obtains that
R 4 -
n x ﬁ =N X Hs on surface S.

The induced surface currents are approximated by

14



3 -

S

2 ; X ﬁi on the lit side
(2.11)

0 on the shadow side

and the scattered fields 25 and ﬁs can be calculated by Equations (2.8)
and (2.9). This is the so-called "physical optics" approximation. The
approximation to the induced surface currents are valid when the
transverse dimensions of the surface, the radii of curvature of the
surface, and the radii of curvature of the incident wave front are all
much larger than a wavelength.

For the three-dimensional case, the free space Green’s function is
e-Jkr

T where r is the distance from the source point to the field point

and when r»)\, Equations (2.8) and (2.9) become

jk 2 o ~q _—jkr
BS .. 22 J []’s - r)r] & s (2.12)
S
and
s 1 e Jkr
ﬁ=ﬁj3sxv(r]ds. (2.13)

For the two-dimensional case, the free space Green’s function is
%3 ng)(kp) where Héz)(kp) is the zeroth order Hankel function of the

2nd

kind, and the surface integral in Equations (2.8) and (2.9) should
be replaced by a line integral. There are two polarizations in the two-
dimensional problem, one is the Transverse Electric (TE) case, and the

other is the Transverse Magnetic (TM) case. In the TE case, the

15



incident fields are generated by an electric line source along the z-
axis; while in the TM case, the incident field is generated by a

magnetic line source along the z-axis.
For an electric line source, the incident electric field is §i=in
and the incident magnetic field is Hl=¢H; as shown in Figure 2.4. The

physical optics induced surface current 3;15 given by

3 = 2 ; X ﬁi = 2 ; x ¢H

i
s ¢ sz. (2.14)

Thus, from Equation (2.8) with the surface integral replaced by a line

integral, one finds that

25 - % - -3k 2z, (29, v+ ‘1(—2- (J,z - ) %dl (2.15)
over

illuminated region

But ii (Jz z + V)% = 0 since there is no variation along z-axis, i.e.,

)

I =0, thus

k Z
s .1 4(2) - _gf 2)
E; = -3k 2, | I, * 75 Ho (ko) dl = - J, H7) (kp)dl

(2.16)
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Figure 2.4.

TE incidence in two-dimensional case.

17

ELECTRIC
LINE
SOURCE



For a magnetic line source, the incident magnetic field is ﬁiaz Hz;

thus, the induced surface current on the lit side is given as

3s - 2(n x B

3s = 2(; X ; Hz) = i C Hz
or

3s -1y

-~

where 1 is the unit tangent vector along the surface of the scatterer as

(2.17)

shown in Figure 2.5. The scattered magnetic field is then given by

in which
"9 ©13Y1 (2) .
we ot S gt G
k °~ d (2)
W=+ H (4 d(kp) HO (kp)
W=+ %3 c (—ng)(kp))
or
W= - 33 e B (ke)

18
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Figure 2.5.

TM incidence in two-dimensional case.

19

MAGNETIC
LINE SOURCE



Consequently, one obtains

#s - - jl 5 1 x (+ %5 0 ng)(kp)] d1

or

# .- %5 j A x p) 5 H{Z)(kp)dl

and the scattered magnetic field is given by

i ;H: I S I z+ (1xp) 3 Hiz)(kp) dl.

(2.19)

(2.20)

Vhen the observation point is in the far-zone of the induced current the

large argument approximation of the Hankel function can be used and

Equations (2.16) and (2.20) become

7]

k —jkp
ES--2 |-9 JdWA L ;e T g
z o \8n z ]—|

lit P

K .. _jke
B - - |-2 JW4 zo(1 x p) J, & d1
z 8n 1
11t D

(2.21)

(2.22)

These two equations are used in this research to calculate the scattered

fields from the shaped reflector antennas.
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2.4 Conventional Cassegrain Reflector Antenna

The conventional Cassegrain reflector antenna is a two-reflector
antenna which is designed in the form of a hyperbolic subreflector and a
parabolic main reflector based on the principle of the Cassegrain
optical telescope [8]. The geometry of the Cassegrain system is shown in
Figure 2.6. The feed of the antenna is usually located at the real
focal point of the hyperbolic surface while the focus of the main
reflector is matched with the virtual focal point of the hyperbolic
surface in a focused system. The surface of the subreflector can be
described by

a0 2 2.29)

and the surface of the parabolic main reflector by

2
= L _ -
x = o (F -F). (2.24)
m
The various parameters associated with the reflector surface are defined
below:
Fc = distance between the two focii of the hyperbolic surface

F = distance between the real focus and the vertex of the

hyperbolic reflector
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Figure 2.6. Geometry of the Cassegrain antenna system.
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Lv= FC—F = distance between the virtual focus and the vertex of the

hyperbolic surface

F
e = eccentricity of the hyperbolic surface = F —gL

c v
2a = length of the transverse axis of the hyperbolic surface = Fc/e
2b = length of the conjugate axis of the hyperbolic surface

a lez—l

Pattern analyses of the Cassegrain antenna have been well
established such as the one in [9]. One can refer to this reference for
more detail. However, the behavior of the reflected rays from the
subreflector and main reflector will be summarized here. For a focused
hyperbolic surface illuminated by a source located at the real focus,
the reflected rays from the surface appear to emanate from the virtual
focus. Thus, the reflected field caustic distance is equal to the
distance between the virtual focus and the point of reflection on the
subreflector. The reflected rays from the main reflector are then
parallel to the reflector axis since the incident rays radiate from the
virtual focus of the subreflector; i.e., the focus of the parabola. The
ray geometry is given in Figure 2.7. This phenomenon is the basis for

the dual-reflector shaping of this research.
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Figure 2.7.

Ray geometry of the Cassegrain antenna system.
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2.5 Conventional Gregorian Reflector Antenna

Similar to the Cassegrain reflector antenna, the Gregorian antenna
is also a two-reflector system but, instead of the hyperbolic
subreflector, the subreflector is an elliptical two-dimensional surface
and the focus of the main reflector lies between the two reflectors as
shown in Figure 2.8. The elliptic surface has two focii and the focus
of the main reflector is usually matched with focal point #2 while the
primary feed is located at focal point #1 in the focused case. The

surface of the elliptic subreflector can be described by

e

)
X = a 1-Yb—2+§E . (2.25)

and the equation for the surface of the main reflector is the same as

Equation (2.24). The parameters of the antenna are

Fc = distance between the two focii of the elliptic surface

F = distance between focal point #1 and the vertex of the elliptic

reflector
L =F-F
v c
F
e = eccentricity = —
F -2L
c v
2a = length of the major axis of the elliptic surface = Fc/e
2b = length of the minor axis of the elliptic surface = a 1—e2.

Note that FC<F so that Lv is negative and e<1.
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The ray geometry of the Gregorian antenna is shown in Figure 2.9.
When illuminated by a source located at focal point #1, the reflected
rays from the elliptic subreflector pass through focal point #2 and the
reflected rays from the main reflector are again parallel to the
reflector axis since the incident rays emanate from focal point #2. The
caustic distance of the reflected ray from the subreflector is the
distance between focal point #2 and the point of reflection on the

subreflector surface. However, this caustic distance is negative since

the reflected rays pass through it.
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Figure 2.8. Geometry of the Gregorian antenna system.

27



N
'

Figure 2.9.

N/

N ..

Ray geometry of the Gregorian antenna system.

28



CHAPTER III

SYNTHESIS OF TWO-DIMENSIONAL DUAL-REFLECTOR ANTENNAS

3.1 Introduction

The design of dual-refléctor antennas, including the conventional
Cassegrain parabola-hyperbola and Gregorian parabola-ellipse antennas,
are all based on the principles of geometrical optics. Since
g?ometrical optics is a high frequehcy method, the reflectors must be
large and have a large radius of curvature compared to the wavelength.
The principles of geometrical optics state that:

1. Snell’s law [10] must be satisfied at each reflector, that is,
the incident ray, the reflected ray, and the surface normal at
the reflection point on each reflector must be coplanar, and
the angles of incidence and reflection are equal.

2. Pover flow along each differential tube of rays remains
constant, even when the tube undergoes a number of reflections
(conservation of power [11]).

3. Ray directions are normal to the surface of constant phase, and
this condition is maintained after a number of reflections

(theorem of Malus [12}).
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Conventional Cassegrain and Gregorian reflector antennas are two
examples vhich satisfy the above principles. The geometries of these
two antennas are shown in Figures 2.6 and 2.8 of the previous chapter.
As discussed previously, with the source which has a spherical wavefront
(or cylindrical wavefront for the two-dimensional case) and is located
at focus #1, the reflected rays from the subreflector which satisfy
Snell’s law of reflection appear to emanate from the second focus and
also have a spherical wavefront (or a cylindrical wvavefront). Since
the second focus is also the focus of the parabolic main reflector, the
reflected rays from the parabola which also satisfy law of reflection
form a uniform plane wave and are parallel to the axis of parabola. It
can be shown that the power contained in the ray tubes before and after
reflection are equal in order to satisfy the law of power conservation.
Also, the incident and reflected rays from each reflector are normal to
their corresponding wavefront.

In general, the geometrical optics designs of dual-reflector
antennas must satisfy the above priﬁciples either mathematically or
physically. Galindo [13] and Kinber [14] used these principles to set up
two first-order ordinary differential equations which can be solved
exactly, if possible, or numerically to obtain a couple of circularly
symmetric reflectors for realizing a prespecified aperture amplitude
distribution. Green [15] and Williams [16] also used‘these principles
to design the sﬁbreflector and then correct the main reflector to
achieve the desired uniform phase criterion at the aperture plane of

main reflector. A direct application of principles of geometrical
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optics in dual-reflector antenna shaping is given by [17] and is
discussed in Appendix A. For offset dual-reflector antennas, these
principles are again used to obtain partial differential equations which
are then solved numerically to obtain the surfaces [18,19,20]. Westcott
[21]} used complex coordinates to set up a Monge—Ampére type partial
differential equation, and solved this equation as a boundary value
problem to synthésize a dual-reflector antenna. He also used the same
approach to synthesize a single reflector for relating a given feed
pattern to a prescribed far-zone pattern. In the following section, a
nev approach vhich is based on the knowledge of ray behavior of the
conventional Cassegrain and Gregorian antennas is presented. Instead of
setting up differential equations or heuristically designing the
subreflectors, a set of nonlinear algebraic equations are obtained and
solved numerically to obtain the surfaces. Also the caustics of the

reflected rays from the subreflector can be obtained and examined.

3.2 Method of Synthesis

As discussed in the previous section, a focus-fed Cassegrain or
Gregorian reflector antenna will generate a uniform plane wave on the
aperture plane of the main reflector. However, for a given primary
source, the amplitude distribution of the aperture field preserves a
certain amplitude taper which is fixed when the source and the
parameters of the reflector surfaces are specified. From geometrical
optics, it is known that the amplitude of the reflected field is

dependent on the space spread factor or the location of the caustic of
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the reflected wavefront. In order to realize a given aperture amplitude
distribution for a given primary source, the incident rays on the main
reflector which are also the reflected rays from the subreflector have
to be different from those for the conventional Cassegrain and Gregorian
reflectors. Also, in order to generate a uniform plane wave, the main
reflector locally must have the properties of a pure parabola with its
axis parallel to the ray direction of the desired plane wave. Since the
caustic of the reflected ray from the subreflector is also the focus of
the main reflector, this caustic will not be a fixed point as in the
conventional Cassegrain and Gregorian antennas so that the amplitude
distribution of the aperture field can be controlled by moving the
caustic for each ray reflected from the subreflector. The formulation of
this synthesis method will be discussed in detail in this section for
two-dimensional reflectors. The general geometries are given in Figure
3.1 for both concave and convex subreflectors. The coordinate origin is
assumed at the point where the primary source is located. Although these
formulations are basically for two-dimensional geometries, they can be
easily modified for shaping of three-dimensional dual-reflector antennas
with circular symmetry.

The basic idea is that for a differential tube of rays emanating
from the primary source, the subreflector section between the
intersection of the incident ray tube and the subreflector (i.e., the
surface between (xlo,ylo) and (xl,yl)) is assumed to be either a
hyperbola or an ellipse with the two focii at the coordinate origin and

the caustic point (xc,yc). The corresponding section on the main
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reflector (i.e, the surface between (XZO'yZO) and (xz,yz)) is assumed to
be a perfect parabola with focus at (xc,yc). Also shown in Figure 3.1
is (xco’yco) which is the caustic of the previous reflected ray tube.
Based on these assumptions, one can set up a set of equations and solve
these equations to obtain a solution of (xc,yc), (xl,yl) and (xz,yz).
These solutions will be accurate as long as the width of the incident
ray tube from the primary source is small. The formulations for the
surface are given below. Note that the "old" ray in Figure 3.1 is

assumed to be known; i.e., (xlo,ylo), (x20’y20) and (xco,yco) are known.
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Figure 3.1. Geometry of shaped dual-reflector.

(a) Convex subreflector
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Figure 3.1. Continued.
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3.2.1. Formulation

A. Subreflector

The canonic form of a hyperbola as shown in Figure 3.2 can be

written as

vhere 2a is the transverse axial length, 2b is the conjugate axial

length, and b is related to a by

Note that Fc is the distance between the two focii F’ and F, and

— —

2a = F'P - FP .

The canonic form of an ellipse as shown in Figure 3.2 can be

vritten as

-] I H]
N N
+
Tl o
(]
[y

vhere 2a is the major axial length, 2b is the minor axial length. The

axial length can be related by
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(a) hyperbola

2a

ELLIPSE: X + L =)
a2 bz

(b) ellipse

Figure 3.2. Canonic form of hyperbola and ellipse.
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Also, one finds that

23=ﬁ+ P

By observing that b2 in both the concave and convex cases has the same

expression except for the sign, one can write, in general, the surface

as
2 2
a b
where b2<0 for an ellipse
2

b™>0 for a hyperbola

2a FP for an ellipse, and

"
2
2~
+

FP for a hyperbola

e ]
-]
|

2a =

From these canonic forms for the hyperbola and the ellipse, the
shaped subreflector section between (xlo,ylo) and (xl,yl) vhich is
assumed to be a hyperbola or an ellipse can be formulated by proper
rotation and translation of the corresponding canonic form. As shown in

Figure 3.3, the distance FC between the two focii for this section is

38



Figure 3.3.
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Geometry of shaped subreflector section.
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given by

2 2,172

The transverse axial length is given by

+: ellipse

28 = {(xio + yio)% + [("10 y "c]2 ¥ [ylo ) yc]’]‘b}

-: hyperbola

where (x10’y10) is assumed to be known a priori. The subreflector

surface section is then defined by

.y 2

X "
&) - &) -1
but x" = x'cos® + y’sin® and y" - -x'sin® + y’cos6.

Then, x’ and y’ are related to x and y as

»

X' = X - =<
2

and

yl

]
<
I
]

The surface in the x-y coordinate is given by
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X y 2
—17 {(x - 52] cosO + (y - 79] sine}
a

.which can be further simplified to

1 Fc 2 4 2
— 4x c0SO + ysin® - —) - —s———-— {x sind - ycosO}) =1
2 2 2 2
a . Fc - 4a

since F_cos6 = x and F siné = y .
c c c c
The unknown subreflector surface point (xl,yl) must thus satisfy the

following equation:

1 Fv2 2
=3 [xlcose + ylsine - T) -5 [xlsine - ylcose] = 1
a F"-4a
c
(3.1)
where

2 2

F~ = (xc + yc)

+: ellipse

-: hyperbola

and

41



B. Main Reflector

The canonic form of a parabola, as shown in Figure 3.4 can be

described as

»
]
Al

where F is the focal length of the parabola and can be expressed as

F = (1 - cos a)p .-

N =

Now, by assuming that (x20’y20) and (xz,yz) form a parabola with the
focus at (xc,yc) as shown in Figure 3.5, the following expression is

obtained to describe the main reflector surface:

x - froor) = aw b - v

where
F = % (1 - cos a)p
or
1
Gl (l-sec ao)(xc—xzo) if xc# %90
F =
1 l-cos o
2 s:lmaz.0 (yc_yZO) if Ye* Y20
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Figure 3.4. Canonic form of parabola.
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Therefore, the new main reflector surface point (xz,yz) must satisfy
X, - (x -F) = 5= (y,-y )" (3.2)
2 c 4F V2 7 '

Equations (3.1) and (3.2) give two equations with 6 unknowns

(xl,yl,xz,yz,xc,yc). Four more equations are required to solve for all
the unknowns. Basically equations (3.1) and (3.2) satisfy the theorem
of Malus which has been discussed earlier. The other two conditions of

geometrical optics will be used to obtain four more equations.

C. Snell’s Law of Reflection

At the point of reflection, the angles of incidence and reflection
must be equal, and the incident ray, reflected ray, and surface normal
must be coplanar. Since the antenna is assumed to be in a homogeneous
medium, the incident and the reflected rays must be straight lines as

shown in Figure 3.6. Consequently, one finds that

Yq = (tan¢)x1 = m X, (3.3)

and
(XZ_xl)(yc-yl) = (y2-y1)(xc—x1) v (3°4)

The angles of incidence and reflection will automatically be equal since
the reflection point (xl,yl) is on either the hyperbolic or the elliptic

subreflector. Snell’s law of reflection will also be satisfied

45



—

(X201 Y20)

NEW RAY

OLD RAY

PRIMARY
SOURCE

Figure 3.6. Geometry for describing the relations of various points.
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automatically on the main reflector. One more equation can be obtained
from Figure 3.6 by considering that the intersection point of the "old"

ray with the "new" ray must be (xc,yc); i.e.,

X %co _ X207*10 __1
YeVeo Y20 Y10 A" %

(3.5)

which can be rewritten as

X =X__ + Op cosa
c co (e}

and

<
H

yco + Qp s1na0
Note that Ap is the unknown distance between (xc,yc) and (xco’yco) and

can be positive or negative.

D. Conservation of Power

The major purpose of shaping the reflector is to redistribute a
given primary source pattern into the prescribed secondary aperture
distribution. Thus, conservation of power has to be satisfied.
Consider a primary source with a power density pattern F(¢) and with its
axis tilted ¢o with respect to the positive x-axis. Note that the tilt
angle ¢0 is zero for a symmetric reflector. The power between ¢=¢min
of this primary source is to be distributed over a secondary

and ¢=¢ma

aperture between Y=y,

X
in and Y=Y nax with an aperture distribution CI(y).
TheAangles ¢, ¢min and ¢max are also measured with respect to the

47



positive x-axis. The constant C is determined from the conservation of

power which states that

max max
F(¢)d¢ = C I(y)dy
¢min ymin
or
~¢max
¢ F(¢)d¢
J'min
C = Y
max
g . Tdy
J7min

Note that in this study, the aperture blockage effects from the
subreflector are not considered. It is assumed that the shaping process
begins at the point where the incident ray from the primary source is
along the feed axis ¢=¢° and the surfaces above and below this

point are shaped separately. Thus, the conservation of power relates

the feed angle ¢ and the aperture point y as

b
F(¢)d¢ = | C I(y)dy (3.6)
¢ y

o o

where Yo is the point at the aperture which corresponds to the ray which

emanates along the feed axis. The geometry of describing conservation
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of power is shown in Figure 3.7. For a given y (or ¢), the
corresponding ¢ (or y) can be solved from Equation (3.6).

The equations obtained thus far are summarized as follows:

4

1 [ FC]Z
a—2 xlcose + ylsine -5 -3

F 2

-4a

c
1 2

xz - (xC_F) = Zf (yZ'yc)

y, = (tané)x,

(xz_xl)(yc_yl) = (xc"xl)(YZ”yl)

X< ®20 *20™10 _ _12
Ye Y20 Y20 Y10 "%

and

F(¢4)d¢
F(4)d¢ = 4

‘¢max
¢min
ymax

¢ y I(y)dy

J'o J7min

in which
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[xlsine - ylcose] =1 (3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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Figure 3.7. Geometry of describing conservation of powver.
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2 2\1/2
P, - (xc " yc) (3.7)
{
4a? - ‘[x2+ 2]1/2
= %10 * Y10
\
r .
. (xm i xc)z ) (ylo i yc]2]1/2}2 +: ellipse
i -: _hyperbola

Fccose = X.» ch1n9 =Y,

and

1 .

5 (l—secao (xc-xzo) , if xc# %50
F =

1 1—(:os<:z.0

2 Tshna, (eV20) - v VR Vg

Although there are 6 equations with 7 unknowns (xl,yl,xz,yz,xc,yc,¢)
one of these unknowns will be used as an independent variable so that
the other 6 unknowns can be solved by the 6 nonlinear algebraic
equations.

It is also noted that the method of shaping discussed above will
generate uniform phase on the aperture when the primary source has a

cylindrical wavefront since the path length from the primary source to
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the aperture plane will be the same for two adjacent rays which are from

the same section of a Cassegrain or Gregorian surface.

3.2.2. Solution for the Surface Equations

It is obvious that to solve the equations obtained in the previous
section will not be easy even by numerical methods since they are
nonlinear. In this section, an approach is proposed to solve these
unknowns.

As mentioned earlier there are 6 equations with 7 unknowns;
therefore, one of the unknowns must be chosen as an independent
variable. The obvious choice will be either Yo or ¢ since once one of
these two variables is specified, the other one can be obtained from
Equation (3.6). This reduces the set of equations to five equations
with five unknowns. It is also noted that. the above equations involve
"01d" and "new" rays and in the very first stage, the "old" ray is not
defined unless one provides a set of initial points {(xlo’y1o)'(x20'yzo)

and (x )}. Once these initial points are set, the method which

co'Vco
will be discussed next can be used to solve for X11Y10XgsX Y and then,
these newly generated points will be used as the "old" ray to solve the
next "nev" ray. This process is continued until the complete surfaces
are generated.

The procedure of solving the above equations is discussed as

follows:

1) From Equation (3.3),
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yp = (tané)x; = m X, (3.7)

2) Substituting (3.7) into (3.4), one obtains

XYy ~ *¥¢

= 08
1 y2-yc—mo(x2—xc) -8

3) Substituting Equation (3.2) into Equation (3.8), one obtains

: 2 2
4F xcyz—yg [(yz—yc) + 4Fxc - 4F ]

4B (Y,y,) - mo{[(yc—yc)z + 4Fx_ - 4F2] _ 4Fxc}
(3.9)

X1

4) Substituting Equations (3.7) and (3.9) into Equation (3.1), an
equation which involves X YoMy ¥y is obtained. The resulting

equation is

2
2 2 2 ' 2 2
[(xc+moyc) - 4a (1 + mo)]{loFxcyc-yc[(yz—yc] +4Fxc - 4F ]}
2 2 2 2
- (xc+moyc] (Fc—lsa ]{4Fxcy2—yc[(y2—yc) +4FXC - 4F ]} .

{w (YZ—_yc+moxc) : "o [[Vz‘yc]z"“xc'“z]}

H
|
P

2
2 2\2 2 2
(Fc-4a ] {4F (yz—yc+moxc] —mo[(yz—yc] +4Fxc—4F ]}

(3.10)
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Although Equation (3.10) has mo,yz,F and Fc involved, it is noted that
both m, and y, are known at this point and that F and Fc are functions
of X. and Yo only.

5) There are two equations, Equations (3.5) and (3.10), with two
unknowns X, and Yo vhich can be solved. However, Equation (3.10) is
again a nonlinear equation so that it is still very difficult to solve
for X, and Yo exactly. Consequently, a numerical method has to be used
to solve for X, and Yo One can directly solve these equations

numerically, or by observing that Equation (3.5) can be written as

s
]

X + Op cosab
and

y =y._ + lp sinao (3.11)

co

in which Ap is the unknown distance between (xco,yco) and (xc,yc).

After substituting Equation (3.11) into Equation (3.10), only one .
unknown Ap is involved. But this equation is still not easy to solve.
However, it is expected that Ap will be very small when the angle ¢ (or
the aperture point yz) is changed gradually (i.e., the increment of ¢ is
very small) one can neglect the higher order terms of A4p such as (Ap)z,
(Ap)3, etc., in the newly obtained equation. After Ap is solved, all

the unknowns can be solved. The detailed procedure of solving these

unknowns is given in Appendix B.
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CHAPTER IV

EXAMPLES FOR SHAPING OF TWO-DIMENSIONAL DUAL-REFLECTOR ANTENNA

The method of synthesis for dual-reflector antennas discussed in
the previous chapter is actually quite general. For a given feed
pattern, feed location, angular range of feed pattern which will
illuminate the subreflector, and the desired aperture size and
distribution, the reflector surfaces can be generated numerically
provided that a set of appropriate initial points for the caustic,
subreflector and main reflector is given. This set of initial points
must satisfy a ray condition that the resulting aperture field obtained
by connecting the rays through these points is equal to the desired
aperture field. Two of the three initial points are chosen, the third
one can be calculated. Generally, the initial points on the
subreflector and main reflector are chosen and the initial point for the
caustic is then calculated by the formula discussed in Appendix C.
However, as it turns out, if the three initial points do not satisfy the
above ray condition, the solution for the surface itself will try to
correct the set of inappropriate initial points. This phenomenon can be
seen from the examples given later in this chapter.

Several examples of two-dimensional dual-reflector shaping are

presented in this chapter to illustrate the method of synthesis
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discussed in the previous chapter. In these examples a conventional
Gregorian or Cassegrain antenna is used as a starting point for the
reflector surface; and a magnetic line source with power radiation
intensity (cosq¢) is used as the primary source. The goal of shaping is
to modify the given reflector surfaces so that a prescribed aperture
distribution with uniform phase is achieved at the aperture of the main
reflector. The physical optics approximation is then used to calculate
the scattered field from the shaped surfaces although the geometrical
optics is used to compute the induced surface currents on the reflector
surfaces. |

In each example, the location of a "central ray" at the aperture is
assumed known where the central ray is the reflected ray from main
reflector which corresponds to the incident ray coming along the axis of
primary feed. This central ray is used to determine the initial points
of shaping. The reflector surfaces above and below the central ray are
then shaped separately. The initial points on the reflector surface can
be determined by the intersection of the central ray with the initial
Cassegrain or Gregorian reflector surface; and the initial point for the
caustic is determined by the condition given in Appendix C.

In addition, as mentioned earlier, there are six equations with
seven unknowns related to these problems. Therefore, one of the
unknowns has to be an independent variable. Consequently, the
appropriate choice is either (yz) or (¢) since these two variables are

related by the equation of conservation of power. Once one of these two
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variables is fixed, the other variable is then found. The conservation

of power principle implies that

¢
F($)d¢ = | C I(y)dy (4.1)
¢0 y0
or
F(4)d¢ = C I(y)dy (4.2)

for a differential ray tube in which Yo is the location of central ray
at the aperture plane. This corresponds to the incident ray coming
along ¢=¢° of the primary feed where ¢ is measured from the positive x-
axis. From Equation (4.2), one can determine the point by point
relation between the aperture point Yq and feed angle ¢ and thus, the
rest of the equations for the reflector surfaces are solved by the

method discussed in Chapter III and Appendix B.

4.1 Shaping of a Center-Ped Gregorian Reflector Antenna for a Uniform
Aperture Distribution
In this section, a center-fed two-dimensional Gregorian reflector
antenna is used for a starting point of shaping. The geometry of this

reflector is shown in Figure 4.1 with the following parameters:

0.6667'

Lo
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0.1667'

]
n
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Figure 4.1. A conventional Gregorian reflector antenna.
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L =-0.1/
v
D = 2.0/
m
- °
¢r = 31.42°,

These parameters are defined in Chapter II. The requirement for shaping
in this example is to spread the power of the primary feed between -¢r
and +¢r into a uniform aperture distribution between y=-1.0’ and y=+1.0’
with the central ray lécated at y=0.0’. A magnetic line source with
radiation intensity coszo¢, as shown in Figure 4.2, is used as the
primary feed. The scattered field patterns are calculated for both the
unshaped and shaped reflector for the purpose of checking the resulting
scattered fields after the reflector surfaces are shaped.

The far-zone scattered fields from the subreflector of the original
Gregorian reflector antenna calculated at 20 GHz are shown in Figure 4.3
and the near-zone scattered fields from the parabolic main reflector
which were calculated at x=2.0’ and 20 GHz are shown in Figure 4.4. 1In
Figure 4.3, 6 is the angle measured from the negative x-axis and the
phase center for the subreflector scattered fields is located at focal
point #2 of the reflector. The dashed line in these figures shows the
geometrical optics reflected field while the solid line shows the
scattered fields calculated b& the method of physical optics. The
ripple in the physical optics results is caused by the interaction of

the geometrical optics field with the edge diffracted field from the
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sharp terminations of the reflector surface. Consequently, the
geometrical optics field passes through the average of the ripple. It
can be seen from the optics field that the main reflector has an
aperture edge taper of about -14dB. It is thus expected that the
reflector surfaces have to be shaped significantly in order to achieve a
uniform amplitude distribution. Also note that the G.O. phase pattern
of the far-zone reflected fields from the subreflector is constant since
the reflected field appears to emanate from focal point #2 which is the
phase center. The phase pattern of the main reflector indicates that
the aperture field is a plane wave.

It was mentioned earlier that in order to solve for the shaped
reflector surfaces, one has to provide a set of appropriate initial
points. However, if the initial points were not provided correctly, the
resulting surfaces tend to adjust themselves in order to get the correct
surfaces. Both of these cases are given next. Example Gl uses a set of
initial points which do not satisfy the ray condition derived in
Appendix C; whereas, Example G2 uses appropriate initial points which

satisfy the ray condition.

4.1.1 Example G1

The initial points for shaping are chosen as the intersection
points of the central ray with the jnitial subreflector and main
reflector surfaces, and the initial point on caustic is the second focus
of the initial elliptic subreflector. The resulting reflector surfaces

are shown in Figure 4.5. The subreflector surface is replotted in
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Figure 4.6. The solid line shows the shaped reflectors whereas the
dashed line shows the initial Gregorian reflector. The initial points
for the shaping are indicated by small circles in these figures. Also
shown in Figure 4.5 is the caustic curve for the reflected rays from the
shaped subreflector. The upper half of the caustic curve corresponds to
the lower half of the subreflector and the upper half of the main
reflector; whereas, the lower half of the caustic curve corresponds to
the remaining reflector surfaces. As is evident in Figure 4.6, the
choice of the initial points are not quite correct. This happened
because the power of the primary feed needs to be redistributed, and
thus, the initially chosen points will not give the correct field at the
aperture. However, the results of the analysis show where the
appropriate initial points should be located since the solution tries to
adjust the incorrect initial points to fit the right surfaces. Thus,
one can choose the initial points indicated in these results and repeat
the shaping process. The resulting surfaces which are designated as
Example Gl are shown in Figures 4.7 énd 4.8, and turn out to be
identical to the previous results except for the initial points. This
illustrates one of the characteristics of this method of synthesis;
namely, that incorrect initial points on the reflector surfaces and
caustic curve will be automatically corrected.

It can be seen from Figure 4.7 that the caustic of the reflected
ray from the subreflector does not stay at a fixed point, instead, it

moves gradually near the beginning of shaping but changes rather rapidly
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Figure 4.6.
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Figure 4.8.
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toward the end of the shaping. The explanation for this behavior is that
during the shaping process the incident field which emanates from the
primary source tapers off, and thus, the reflected field from the
subreflector must also decrease unless the spread factor of the
reflected field increases. It is the magnitude of this subreflector
reflected field which determines the magnitude of the aperture field
since its magnitude does not change after reflection from the main

reflector. The spread factor for this case is given by

_Pe _

(sl'pc)
where Pe is positive and is the distance between the caustic and the
reflection point on the subreflector; and 4 is the distance between the
reflection points on the subreflector and main reflector. Thus, in
order to increase the spread factor the magnitude of P has to be
increased. Consequently, the caustic curve moves away from the

subreflector surface. Figure 4.9 shows two rays for this reflector.

The scattered fields for Example Gl which are calculated at 20 GHz

are given in Figures 4.10 and 4.11 for the far-zone subreflector and
near-zone main reflector patterns, respectively. Both of these patterns
are different from the conventional Gregorian reflector as they should
be. The resulting near-zone scattered fields from the main reflector
indicate that a uniform plane wave with a uniform amplitude distribution
is nearly obtained. Also notice that the phase pattern of the

subreflector geometrical optics scattered fields is not a constant as in
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the conventional Gregorian reflector case since the caustic of the

shaped subreflector reflected field is not a fixed point.

4.1.2 Example G2

The initial points on the subreflector and main reflector are
determined by the intersection of the central ray with the original
subreflector and main reflector of the Gregorian antenna in this
example. However, instead of using the second focus of the elliptic
subreflector as the initial point for the caustic curve, the ray
condition discussed in Appendix C is used to determine the initial point
for the caustic. The resulting surfaces which are designated as Example
G2 are given in Figures 4.12 and 4.13 for the overall system and the
subreflector, respectively. Figure 4.14 shows two rays for the shaped
reflectors. The far-zone scattered fields of the shaped subreflector
and the near-zone scattered fields of the shaped main reflector
calculated at 20 GHz are shown in Figures 4.15 and 4.16. Comparing
these results with the ones of éxample Gl, it is found that the
subreflector scattered patterns are not quite the same, but the
scattered patterns of the main reflector are identical in magnitude.
This shows the non-uniqueness of the shaping solution when the initial
points for shaping are different. The major difference in the reflector
surfaces between Examples Gl and G2 is that the subreflector surface and
the caustic curve are shifted although the overall surfaces are only

slightly different.
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4.2. Shaping of an Offset Reflector Antenna (Example G3)

In the previous section, a center-fed symmetric Gregorian antenna
was shaped to generate a uniform plane wave with a uniform aperture
distribution in which the aperture was designated between y=-1’ to
y=+1’. In this section, an offset fed Gregorian reflector is used as
another example to illustrate that the same shaping process can be
applied to an offset dual-reflector system. This example is designated
as Example G3. The geometry of the initial offset Gregorian reflector
is as follows: Fm=9.5!, Fc=8.5’, LV=—1.5’ and is shown in Figure 4.17.
The central ray of the main reflector is designated at y=8.5’. The
initial points on the subreflector and main reflector surfaces are
chosen as the intersection points between this central ray and the
initial Gregorian antenna. Consequently, the primary feed axis must be
tilted by an angle of -7.68°. The primary source is a magnetic line
source with a radiation intensity cos200¢ with respect to the feed axis.
The feed pattern is shown in Figure 4.18. A plane wave with a uniform
amplitude distribution is to be obtained between y=-1.0’ and y=18.0' by
shaping the given offset Gregorian reflector antenna. This results in
most of the power of the primary source being contained between ¢=-8.5°
and $=8.5° with respect to the tilted feed axis which illuminates the
subreflector. The feed pattern illuminates the edge of the subreflector
at about 9.6 dB below the peak of the feed pattern.

The far-zone scattered field from the original subreflector

calculated at 3 GHz is shown in Figure 4.19 for 0°<0<180° where 6 is
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Figure 4.20.

Near-zone scattered fields from the main reflector of the

offset Gregorian reflector with a cos200¢ magnetic line

illumination at 3 GHz.
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measured from the negative x-axis. The near-zone scattered field of the
original main reflector calculated in the x=20.0’ plane and at 3 GHz is
shown in Figure 4.20. It can be seen from Figure 4.20 that the original
offset Gregorian reflector has an aperture edge taper of about 10 dB.
The initial point on the caustic curve is determined by the ray
condition, and the resulting shaped reflectors are given in Figures 4.21
and 4.22. Figure 4.23 shows two rays for the shaped reflectors. The
far-zone scattered fields from the shaped subreflector and the near-zone
scattered fields from the‘shaped main reflector calculated at 3 GHz are
shown in Figures 4.24 and 4.25, respectively. It is obvious that the
requirement of obtaining a uniform aperture distribution is
approximately achieved except for the ripple which is caused by the

interaction of the edge diffracted field with the reflected field.

4.3. Shaping of a Center-Fed Cassegrain Reflector Antenna for Uniform
Aperture Distribution (Example C1)
An example of shaping a center;fed Cassegrain reflector is
discussed in this section. The geometry of the original antenna is
given in Figure 4.26 with the following parameters:

F =0.6667'
m

F =0.5667'
c

L =0.1’
v
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D =200'
m
¢r=18.26°

A cos20¢ pover pattern magnetic line source is used as the primary
source. The incident field at the edge of the subreflector is 4.5 dB
down from the maximum. A uniform plane wave with a uniform amplitude is
to be generated between y=-1’ and y=1’ in which the central ray is

defined at y=0. The initial points for the shaped reflectors are chosen

at the intersection points between the central ray and the original

reflectors. The initial point on the caustic curve is thus determined.
The resulting shaped reflectors are shown in Figures 4.27 and 4.28 with
the original reflectors indicated by dashed lines and the shaped
reflectors by solid ones. The upper half of the caustic curve
corresponds to the lower half of the subreflector and main reflector;
vhereas, the lower half of the caustic curve corresponds to the
remaining surfaces. The behaviour of the caustic curve can be
explained in the same way as for the Gregorian case which is given in
Example G1. The caustic curve moves away from the subreflector surface

in order to increase the reflected caustic distance Por wvhich is given

as

Pe

(sl+°c)
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Near-zone scattered field from the main reflector of the

conventional Cassegrain reflector at 20 GHz.
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Note that Pe increases in order to increase the reflected field and thus
compensate for the taper of the primary source pattern.

The scattered fields of the original subreflector and main
reflector calculated at 20 GHz are shown in Figures 4.29 and 4.30. The
scattered fields of the shaped reflectors are shown in Figures 4.31 and
4.32. Two ray geometries for the shaped reflectors are shown in Figure

4,33.

4.4. Shaping of a Center-Fed Gregorian Reflector Antenna for Non-
Uniform Aperture Amplitude Distribution (Example G4)

In the previous examples, the purpose of shaping was to generate a
uniform amplitude distribution across a given aperture. In this
section, an example is used to illustrate that the same shaping process
can be used to generate a non-uniform amplitude distribution. The
Gregorian reflector antenna of example Gl and a magnetic line source
with cos20¢ pover pattern are used to generate the following aperture

distribution:

1 ly 0.5’

I(y) =

386.547 [ ¥22:2)8,1]-2, 17> |y [>0.5
0.8

This aperture distribution which is shown in Figure 4.34 has a -10dB

edge taper at the edge of the main reflector; i.e., y=+1.0’. The

central ray is thus at y=0'.
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The resulting shaped reflectors are given in Figures 4.35 and 4.36.
It can be seen from these results that the caustic curve has a
discontinuity. The explanation for this behavior is that since the

aperture field is a function of

(51-°c)

where Pe is the distance between caustic and the reflection point on the
subreflector, the shaping process tried to make Pe smaller in order to
generate a rapidly deéreasing subreflector reflected field and aperture
distribution. Figure 4.37 shows two rays for the shaped reflectors.

The far-zone scattered fields of the shaped subreflector are given
in Figure 4.38; while, the near-zone scattered fields calculated in the
x=2.0’ plane of the main reflector are given in Figure 4.39. These
scattered fields are calculated at 20 GHz. One can see that the
amplitude of the ripple on the near-zone scattered fields is smaller
than for the uniform aperture distribution case (i.e., Examples Gl and
G2) since the incident field at the main reflector edges is smaller, the

edge diffraction is not as significant.

4.5 Summary

Several examples are given in this chapter to demonstrate the
shaping process discussed in Chapter III. Scattered field results are
calculated for each case. These results indicate that the shaped

reflector can provide considerable improvement in obtaining the desired
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Figure 4.32.
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Figure 4.33.
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Figure 4.37.
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aperture distributions, as compared to the conventional Gregorian and
Cassegrain reflectors. The geometrical nature of the synthesis method
provides more insight into the way that the shaped reflectors work than
do the methods which depend on mathematical solutions to a coupled set
of differential equations. A major advantage is that one can determine
much about the practicality of the resulting reflector surfaces by
examining the caustic curve of the shaped subreflector. A good example
is the discontinuity in the caustic curve shown in Figure 4.36 for
Example G4. The kinks of the caustic curve indicate that the slope of
the surface curvature.of the shaped subreflector is discontinuous which
cannot easily be seen by looking directly at the subreflector.

It should also be noted that the amplitude of the resulting
secondary aperture distribution is controlled by the amplitude of the
subreflector reflected field at the main reflector surface. The main
reflector is used primarily to adjust the phase of the reflected field
such that the resulting aperture distribution is uniform in phase.

All the pattern results shown in this chapter include the
diffracted fields from the edge of the reflectors. For compact range
applications, this will not provide satisfactory performance. In the
next chapter, a physical optics analysis is used to determine the
performance of the shaped main reflector with a blended rolled edge

attachment in order to reduce the edge diffracted fields.
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CHAPTER V

ROLLED EDGE MODIFICATION FOR THE SHAPED MAIN REFLECTOR

5.1 Introduction

For far-zone scattering and antenna measurements, one is required
to have a plane wave with a uniform amplitude illuminate either the
scatterer or antenna under test. This is often achieved by using an
outdoor far-zone range to simulate the plane wave illumination. There
are some serious limitatiqns associated with outdoor measurements, such
as weather, interference, etc., which limit the accuracy of measurement.
Consequently, indoor measurement facilities are an alternative to
outdoor measurements although the uniform plane wave illumination is
still a requirement. The creation of a uniform plane wave by a focussed
parabolic reflector has been an attractive approach for indoor
measurement facilities. Conventional parabolic reflector antennas have
been used in so-called compact range measurement facilities [22].
Compact ranges are indoor facilitieé which provide the capability to
measure antenna pattern and scattering by simulating a plane wave
illumination on the test antenna or scatterer. There are basically two
dravbacks associated with the use of reflectors in compact range
applications. The first is that the plane wave reflected from the
parabola is not uniform in amplitude, as shown in Figure 5.1, due to the
illumination taper of the feed-horn and space-attenuation effects.
Consequently, the size of the available measurement volume is limited,

thus limiting the size of the test antenna or scatterer. The second
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drawback is that the abrupt termination of the reflector surface vhich
creates a very strong edge diffracted field as shown in Figure 5.2.

This diffracted field interferes with the plane wave and results in
magnitude and phase variations of the wave illuminating the test antenna
or scatterer. The measured results thus may not be accurate.

As pointed out in [2] the nonuniformity of the near-zone
distribution can be improved by using an offset reflector system such as
a Gregorian antenna with the primary feed tilted properly. It is also
conceivable that by properly shaping a dual-reflector antenna, the edge
taper problem can also be improved.

To solve the problem of edge diffractions caused by the sharp
termination of the reflector surface, one can make the reflector size as
large as possible so that the edge diffracted fields are not very strong
in the region where the antenna or scatterer under test is located so
that the resulting variations in the plane wave are not as significant.
However, this approach is very costly because it is not practical to
build such a huge reflector. The ofher way of reducing the edge
diffracted fields is to modify the sharp termination of the reflector by
adding rolled edges [23], as shown in Figure 5.3. The idea of a rolled
edge modification has been extensively studied by Burnside et al.
[1,2,3,4]. The addition of rolled edges to the reflector surface
introduces reflected fields from both the rolled edges and the
reflector. Theée two reflected fields are not continuous and there are
still diffracted fields which emanate from the junction of the rolled

edge and the reflector. However, this discontinuity in the reflected
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fields is much smaller than for the reflector with a sharp termination
since in the latter case, the GO reflected field vanishes outside the

shadow boundary of the reflector. Consequently, the variations in the
aperture fields are not as significant when the reflector is modified

with a rolled edge.

In this chapter, the rolled edge idea is implemented in the
analyses of the shaped main reflector in order to show the improvement
in the performance of the shaped dual-reflector for compact range
applications. Some examples are presented to validate this concept. In
calculating the scattered fields from the shaped main reflector and the
rolled edges, the surface currents are assumed to exist only in the
region which is illuminated by the reflected fields from the
subreflector and vanish elsewhere, as shown in Figure 5.4. This
assumption creates false diffracted fields from the points where the PO
currents vanish. The false diffracted fields also interfere with the
true scattered fields from the reflector surface. The method for
correcting this problem has beeh studied by Gupta and Burnside [3] and

is also discussed and used in this chapter.

5.2 Rolled Edge Attachment to Main Reflector

As vas discussed earlier, the purpose of adding a rolled edge to
the main reflector termination is to create a smobth transition of the
geomtrical optics reflected fields from the reflector to the rolled edge
in such a way that the diffraction from the junction of the reflector

and the rolled edge is insignificant. Using this approach, the
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resulting incident wave in the measurement zone has very small ripple.
One other requirement of the rolled edge is that the reflected fields
from the rolled edge do not enter the measurement volume fo interfere
with the reflected fields from the reflector. The detailed analysis of
a blended rolled edge attachment to the parabolic reflector can be found
in [2]. In this section, the rolled edge is used to modify the edge of
the shaped main reflector. The basic concept is still the same as for

the parabolic reflector case.

5.2.1 Elliptic Rolled Rdge

Consider an elliptic rolled edge attachment to the shaped main
reflector as shown in Figure 5.5. The shaped main reflector is
terminated at point P with surface normal ; and the ellipse is attached
at P in such a way that the tangents of the main reflector and the
ellipse are continuous. The two semi-axes of the ellipse afe given by
a, and be‘ Consider a local coordinate system for the ellipse in which
the coordinate origin is at P, and Xgr Vg are the two axes such that

- -~ ~ -~

X =N, Yy =t. The parametric equation for the ellipse is given by

X, = ae(cosv—l) (5.1)
and
Yo = besinv (5.2)
for 0<v¢v
m
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Figure 5.5.

ELLIPSE

\SHAPED MAIN

REFLECTOR

An elliptic rolled edge attached to the shaped main

reflector.
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Note that v is the angle measured from the Xy axis, and Y is the angle
vhere the ellipse stops. In terms of the original x-y coordinate system

the surface of the ellipse can be expressed by

xellipse = ae(cosv-l)coset—besmvs1n9t+xj (5.3)

and

ae(cosv~-1)sin9t + besinvcos9t+yj (5.4)

yellipse

in which et is the angle between ; and the positive x-axis. This
defines the elliptic rolled edge attachment to one edge of the main
reflector. A similar definition can be used for the other edge. Since
the tangent at the junction of main reflector and ellipse is continuous,
the diffracted fields from this junction will be much smaller than for a
sharp termination of the main reflector. However, as seen from Figure
5.5, the main reflector is a concave surface; whereas, the ellipse is a
convex surface. The radius of curvature at P changes sign between the
main reflector and the ellipse and thus is obviously discontinuous.

This results in a discontinuity of the G.0. reflected field between the
main reflector and ellipse. Consequently, diffracted fields emanate
from this junction in order to compensate for the discontinuity in the
reflected fields. In order to further reduce this diffracted field, a
blended rolled edge which is created by blending the main reflector with
the ellipse by some functions is used to improve the performance of the

rolled edge. This is discussed in the next section.
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5.2.2. Blended Rolled Edge

As discussed in the previous section the change of surface from the
main reflector to the ellipse creates diffracted fields from the
junction. A gradual change of the surface from the main reflector to
the ellipse can further reduce the diffracted fields from the junction.
This is done by the so-called "blended" rolled edge modification. The
elliptic rolled edge discussed in the previous section is transformed
into a blended rolled edge by the following relationship:

(Vb(V) + F . (V)(1-b(V)) (3.3)

fprendt¥) = fellipse main

in which fellipse(v) is the equation of the ellipse, fmain(v) is the
equation of the main reflector extended beyond the junction and b(Vv) is
the blending function such that 0 < b(v) < 1 and b(0) = O, b(vm) = 1.
The idea of blending is shown in Figure 5.6. Note the the blended edge
is attached in the same way as the elliptic edge so that the surface at
P is smooth and continuous. |

The radius of curvature of the surface at the junction is also
continuous since the blended edge at the junction is actually the main
reflector because b(0)=0, and fblend(o) = fmain(o)' There are many

possible blending functions b(v) such as

1) b(v) = %’,— : linear blending
m
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2) b(v) = [%—]2 : square blending
m
1 ¢( nv X .
3) b(v) = 5 1 - cos v : cosine blending, and
\ m
.
4) b(v) = % 1 - cos [%2 ]]2 : cosine square blending
\ m

All of these functions satisfy the condition that 0<b(v)<1, b(0)=0
and b(vm)=1. A detailed analysis of these blending functions can be
found in [2].

In order to generate the blended edge, it is necessary to specify
the portions of the pure ellipse and the extended main reflector surface
to be used. This is done by appropriately choosing the values of the

parameters a,s b, Vo and s, as shown in Figures 5.6 and 5.7. The

e
portion of the ellipse is defined by the maximum elliptic angle Vo The
portion of the main reflector is defined by Sy the maximum distance
along the tangent of the surface at the junction point P. The point on
the ellipse which corresponds to a given point (x2,y2) on the extended

main reflector is defined as follows. The parameter s along the tangent

t is calculated first by
s = |yo-y.| |1+ L% | (5.6)
= || 1z :
M

where m, is the slope of t.
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Then, the elliptic angle v which defines a point on the ellipse is

related to a point on the extended reflector surface through the

parameter s by

S
V=gV (5.7)

From v, the point on the ellipse corresponding to X9y, can be
calculated by Equations (5.3) and (5.4). Finally, the blended rolled

edge is obtained from Equation (5.5) and is given by

Xp [1—b(\»)]x2 + b(v)[ae(cosv—l)coset - besinvsin9t+xj] (5.8)

and

Y [1—b(\»)]y2 + b(v)[ae(cosval)sinet + besinvcos9t+yj] (5.9)
Although the slope and surface radius of curvature at the junction
betwveen the main reflector and blended rolled edge are continuous, there
are higher order derivatives of the surface which are not continuous at
the junction and thus, some diffractions emanate from the junction. The
diffraction coefficient for such diffraction is not available so that
only the method of Physical Optics can be used to analyze the
performance of the reflector surface vith a blended rolled edge.
However, as mentioned earlier, the induced surface currents in the
physical optics integral are assumed zero on the shadow side of the

surface although this is not true in reality. A method for correcting
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this problem has been investigated in [3] and is discussed in the

following section.

5.3 End-Point Correction of Physical Optics

The scattered fields calculated by the method of physical optics
for a two-dimensional scatterer are given by Equations (2.21) and
(2.22). For a magnetic line source illuminating on the scatterer, the

scattered magnetic fields are given by

. - R -jkp
' S eJ"i/4 z . [}po X p] € dl (5.10)

in which 3po is the induced physical optics surface current on the
scatterer, ; is the unit vector in the observation direction from the
current and p is the distance betwveen the observation point and the
current. The physical optics current, 3po’ exists over the region
directly illuminated by the liﬁe source and is assumed to vanish on the
shadow side of the scatterer. The integration is thus performed only
over the lit side of the scatterer. By applying Equation (5.10) to the
shaped main reflector with a blended rolled edge termination on both
ends of the main reflector section, one can compute the ordinary PO

scattered fields from the entire reflector. The scattered fields

calculated this way include the following contributions:
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1. The stationary phase or reflection point contribution
wvhich is equivalent to the geometrical optics reflected
fields,

2. The two end-point contributions which result from the
sharp termination of the surface currents at each end
shadow boundary, and

3. The diffracted fields from the two junctions between the
main reflector and the blended rolled edge.

These contributions are illustrated in Figure 5.8. The end-point
contributions are incorrect contributions because surface currents still
exist on the shadow side of the rolled edge. It is stated in [3] that
these end-point contributions do not give the correct creeping wave of
the curved surface. Consequently, the end-point contributions have to
be removed from the physical optics integral. This can be accomplished
by evaluating the physical optics integral asymptotically.

Consider the integral given by

I- r r(1)edkF Mgy | (5.11)
a

The asymptotic evaluation of this integral [3] results in

) l———u JkF(1)) jn/4 sgnlf"(1)]
I m F(ls)e e

b

2 (-1)"F .
+Z —xF JKF(1) ) (5.12)
n=0
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where 1s is the stationary phase point and is assumed away from the two

end-points l=a,b. Note that Fn is defined as

(1)
d n-1
Fn = a1 [‘F'JW] >-13)
with
Fo(l) = F(1) . (5.14)

The first term in Equation (5.12) is the specular reflected field and

the second term represents the two end-point contributions. Since
Equation (5.12) is an asymptotic representation of (5.11), there are
some higher order terms which have been neglected. One of these terms
is the diffraction from the junction of the main reflector and the
blended rolled edge. Consequently, one obtains the desired result by
subtracting these end-point contributions from the PO result such that

the scattered field is given by

@

n
HS - JbF(l)ejkf(l)dl ) }E: f;fleg_ JKF)
2 n=0 I 1)

b
(5.15)

a

Thus, by numerically integrating Equation (5.11) and subtracting the end
point contributions, one obtains the geometrical optics reflected field
plus the diffracted fields from the junction of the main reflector and

rolled edge. For surfaces which can be described analytically such as a
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parabola, the end-point contributions can be calculated analytically
[2]. In this study, the surface is generated numerically, and thus, the
end-point contributions are computed numerically. The rest of this
section discusses the computation of the physical optics currents on the
shaped main reflector by geometrical optics for the cases where the
shaped subreflector is either concave or convex.

In formulating the surface equations for the shaped dual-reflector,
it is assumed that the surface points (xl,yl) and (xz,yz) are located on
either a Cassegrain or Gregorian reflector with the caustic of the
subreflector reflected field at (xc,yc). Thus, the equations for
calculating the geometrical optics reflected field of a Cassegrain or
Gregorian reflector are used to calculate the reflected field of the
shaped reflector. For the case of a shaped dual-reflector with a
concave subreflector, as shown in Figure 5.9, the surface points (xl,yl)
and (xz,yz) are located on a particular Gregorian antenna with the
caustic of the subreflector reflected field located at (xc,yc). From
Equation (C.9), the reflected field at (xz,yz) from the subreflector can

be calculated by

-P ‘Jksl

i r i c
Hz(xz’yz) = Hz(sl) = Hz(xl’yl) :;::EI e (5°16)

in which H;(xl,yl) is the incident magnetic field at (xl,yl) and Po is
the distance between (xl,yl) and (xc,yc), and 4 is the distance between

(Xl’yl) and (XZ’yZ)’ The incident magnetic field H;(xl,yl) is given by
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"jkpi

Hi(x),yp) = [PG & o8 (5.17)
i

wvhere P(¢1) is the far-zone power pattern of the magnetic line source at
angle ¢1. The phase of the far-zone field pattern of the line source is
assumed constant and suppressed. Thus, the induced physical optics

surface current on the main reflector is given by

2 ; X ﬁie(

2'Y2

" r : i
o )=2nxif(s1)=-1zﬂz(x2,y2)

or
po (5.18)
vhere
e-jkpi ~Pe -jk51
Jl = =2 P(¢1) o+ S e . (5.19)
PO e

Consequently, the PO scattered fields from the main reflector are

calculated by

_ |k . m . . - -jkp
Hi(x,y) = - Z% eJn/4 [1 z * (1x p)J1 & dl
0 )

or
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~jkpy

P

BS(x,y) = F wa r (1 x o) (-2) [FTo) S

P, e'Jksl o Jke
—pc+S1 J?

dl . (5.20)

For the surface current on the blended edge point (xb,yb), one has to
numerically find the corresponding incident ray from the subreflector;
i.e., corresponding to (xl,yl) and (xc,yc). By comparing Equations

(5.20) and (5.11), it is found that

K awar - s
P =2 ;2 Ve - x ) (5.21)

4n j—w—-\ -P S

and
f(1) = - (pi+s1+p). 4 (5.22)

Similarly, for the case of the convex subreflector, the incident
field at the main reflector is given by
. . p -jks
i r i [d 1
Hz(xz’yZ) = HZ(sl) = Hz(xlvyl) g'lsz e (5'23)
vhere (xl,yl) and (x2,y2) are the points on the particular Cassegrain
reflector with subreflector caustic located at (xc,yc) as shown in

Figure 5.10. The surface currents are then given by
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3p° =13,
with
e_Jkpi Pe 'jksl
J 2 JP(¢ ) (5.24)
1 1 I;—ﬂ S1+P.
i

Finally, the PO scattered field from the main reflector is calculated by

K m ~Jkey
BS(x,y) = VA 21 x p)(-2) TB(8))
z M 4n P 1
0 P4
Pe —jksl e—Jkp
TS e -— dl (5.25)
Pe*®1 'ry

This gives

K
F(1) = 2 J;: VA L x ) M (5.26)

]'_‘4_'

with £(1) given in Equation (5.22).

Examples are given in the next section to illustrate the
combination of a shaped dual-reflector with blended rolled edge
terminations to the main reflector. The scattered fields are calculated
for the main reflector with a blended edge. The results of the PO

integration, the PO integration with the first order end-point
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Figure 5.10.
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Surface current calculation for the case of shaped dual

reflector with convex subreflector.
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corrections, and the PO integration with the first and second orders
end-point corrections are shown to illustrate the effects of the false
end-point contributions of the ordinary physical optic; integral.
Normally, the rest of the higher order end-point contributions are very

small and thus are neglected in the following examples.

5.4. Examples of Shaped Dual-Reflectors with Blended Rolled Edge
Terminations on the Main Reflector

5.4.1. Example BL1

In this example, the Gregorian reflector antenna given in Examples
Gl and G2 of Chapter IV is used as the starting point for the shaping,
and the cosine-squared blending function is used to generate the blended
rolled edges which are attached to the main reflector at y=0.5’ and
y=-0.5’. The parameters for the blended edges are given by ae-0.2',
be=0.5', sm=1.2' and v, = 90°. Since the blended rolled edges require
an extension of the shaped main reflector, the shaping of the main
reflector is extended to y=1.3’ and y=-1.3’. The aperture field within
this region is assumed to be uniform. A magnetic line source with a
power pattern of cos20¢ is used as the primary source. The tilt angle
of the feed axis is 0° and the power between ¢=-40° and ¢=40° is
redistributed uniformly over the region between y=-1.3’ and y=1.3'.

The resulting shaped reflectors are shown in Figure 5.11. Note that
these surfaces are different from those of Example G2 which are shown in
Figure 4.12. This is due to the difference in the designated aperture

size and the amount of the feed power which is redistributed. As seen
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l
)

from Figure 5.11, the caustic curve intersects the subreflector surface
so that one might think that some of the reflected field from the
subreflector will be blocked by the subreflector itself. However, it is
found by tracing the rays that only the reflected fields from the
central part of the subreflector illuminate the blended main reflector.
This is shown in Figure 5.12. Therefore, the scattered fields from the
blended main reflector can still be calculated to validate the
performance of the blended rolled edges. The near-zone scattered fields
calculated by the method of PO at 20 GHz are shown in Figure 5.13. The
scattered fields with the first order end-point corrections are shown in
Figure 5.14, and the scattered fields with both first and second order
end-point corrections are shown in Figure 5.15. One can see the effects
of the false end-point contributions by comparing these results. By
taking out these false contributions, the scattered fields within the
unblended section of the whole main reflector, i.e., y=0’ to y=0.5’ in
Figure 5.15, are very smooth and uniform. This is a significant
improvement in the ripple of the scéttered fields for compact range
applications compared to the one without blended edges. The slight
ripple shown in Figure 5.15 is caused mainly by the diffraction from the
junction of the unblended and blended sections of the main reflector.
Also note that if the "true" scattered fields from the subreflector
(i.e., not just the reflected fields from the subreflector) are used to
calculate the sufface currents on the main reflector, there will be
slovly varying ripple in addition to the scattered fields from the main

reflector.
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5.4.2. Example BL2

The same Gregorian reflector antenna used in the previous example
is also used here as the starting point for shaping. However, instead
of a uniform aperture distribution, the distribution given in Figure
4.34 of Chapter IV is used and the blended rolled edges are attached to
the main reflector at y=+0.5’. The parameters associated with blended
rolled edges, feed pattern, and feed power to be redistributed over the
designated aperture, are all the same as in the previous example.

The resulting shaped reflectors with blended rolled edge
terminations to the main reflector are shown in Figure 5.16. Again, the
section of the subreflector from which the reflected fields illuminate
the blended main reflector is replotted in Figure 5.17.

The near-zone scattered fields calculated at 20 GHz from the
blended main reflector are given in Figures 5.18 through 5.20 for the
PO, the PO with first order end-point corrections, and the PO with first
and second order end-point corrections, respectively. A very smooth
result is obtained between y=0'.and y=0.5’ when the first and second
order end-point corrections are used. However, if one compares the
pattern shown in Figures 5.15 and 5.20 where the first one is obtained
by shaping reflectors to generate a uniform aperture distribution while
the second one is obtained by shaping the reflectors to generate a non-
uniform aperture distribution, the ripple in Figure 5.20 between y=0.5’
and y=0.7' is higher than for the one in Figure 5.15. This shows that a
potential problem can occur if one tries to shape the reflectors to

generate an aperture distribution which is constant over one region and
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Figure 5.19. Near-zone scattered fields from the blended main reflector
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drops off rapidly over the other region. This can cause some
diffractions which will create significant ripple in the desired

aperture distribution.

5.4.3. Example BL3

The offset Gregorian reflector used in Example G3 of Chapter IV is
used as the starting point for shaping in this example. A uniform
aperture distribution over the region between y=-2.6' and y=18.8' is
used to generate the shaped dual reflector. The blended rolled edge
begins at y=5.5’ for the lower edge and at y=11.5’ for the upper one.
A magnetic line source with a power pattern of cos200¢ is used as the
primary source. The tilt angle of the feed axis is -7.7° so that the
central ray is located at y=8.5’. The pover between -9° and 10° with
respect to the tilted feed axis is redistributed uniformly over y=-2.6'

to y=18.8’. The parameters for the blended rolled edges are as follows:
a =0078', b =405’, S ’-'-'805', and Y = 90°
e e m m

and the cosine-squared blending function is used. The resulting
reflector surfaces are shown in Figure 5.21.

The near-zone scattered fields calculated at 3 GHz for this new
reflector system are shown in Figures 5.22 through 5.24 for the PO, the
PO with first order end-point corrections, and the PO with both the
first and second order end-point corrections, respectively. Similar

results calculated at 10 GHz are shown in Figures 5.25 through 5.27.
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The very small difference between Figure 5.26 and Figure 5.27 reveals
that the second order end-point corrections are insignificant in this
case. The ripple shown in Figure 5.27 results from the numerical

integration errors associated with the PO solution.

5.5. Summary

The addition of rolled edges to the main reflector reduces the edge
diffracted fields and consequently, reduces the ripple in the near-zone
scattered fields, as compared to the reflector with a sharp termination.
This is very helpful in improving the performance of the compact range
reflector. Several examples are used to verify this concept. The
physical optics method is used to calculate the scattered field from the
main reflector with blended rolled edges. Corrections are made for the
false end-point contributions which result from the physical optics
approximation. The resulting scattered fields of these examples show

that very good performance of the reflectors are achieved.
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CHAPTER VI

SHAPING OF THREE-DIMENSIONAL CIRCULARLY SYMMETRIC DUAL-REFLECTOR
ANTENNAS

Discussions in the previous chapters have concentrated on the
shaping of two-dimensional dual-reflector antennas. However, as was
mentioned in Chapter III, the same approach can be applied to three-
dimensional dual-reflector antennas with circular symmetry and
circularly symmetric feed pattern illuminations. The approach for
circularly symmetric shaped reflectors is discussed briefly in this

chapter.

6.1. Method of Shaping

A three-dimensional circularly symmetric surface is a body of
revolution which is generated by rotating a generating curve about its
axis of symmetry. For example, a three-dimensional circularly symmetric
Cassegrain antenna can be generated by rotating the curves shown in
Figure 2.6 about the x-axis, the axis of symmetry. By using the
conventional cylindrical coordinates (p,¢,z), one can replace the x and
y axes in PFigure 2.6 by z and p axes; respectively. Similarly, if one
defines the generating curves for a shaped dual-reflector for nggpmax,

as shown in Figure 6.1, a three-dimensional circularly symmetric shaped

dual-reflector can be found by rotating these curves about the z-axis,
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provided that the given primary source has a circularly symmetric
pattern, and the desired aperture distribution is also circularly
symmetric.

One major difference between the two-dimensional case and the
three-dimensional one is that the formula for calculating the
geometrical optics field is different. As discussed in Chapter II the
geometrical optics field is proportional to a spread factor which
involves the radius of curvature of the geometrical optics wavefront.
For the two-dimensional case, the ray tube is two-dimensional, and the
wvavefront has only one radius of curvature. For the three-dimensional
case, the ray tube is three-dimensional, and the wavefront has two radii
of curvature. Consequently. one has to integrate the power pattern of
the geometrical optics field over a surface in order to calculate the
pover contained in a three-dimensional ray tube.

Consider the shaping of a three-dimensional duval-reflector antenna
to generate a symmetric near field aperture distribution CI(p) when a
primary source with a symmetric'radiation pattern F(0) is given.

Conservation of power states that

n e n fe
r J"‘ax F(©) sin® ded¢ = r J“‘ax CI(p)pdpdéd (6.1)
(o] (o] (o] o]

in which emax is the maximum illumination angle at the subreflector
edge, and Pnax is the maximum radius of the secondary aperture as

defined in Figure 6.2. From Equation (6.1), the constant C is found as
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Figure 6.2.

Geometry for defining parameters associated with a three-

dimensional circular dual-reflector.
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0
j max F(8)sin6do
0

C = ” (6.2)
J"‘a" I(p)edp
o .
Therefore, the relationship between 6 and p is given by
emax
o F(6)sin6d® 0
[ F(0) sin6de = 2> I I(p)pdp (6.3)
0

[
° Jmax I(p)pdp
Jo

It is obvious that the tilt angle of the feed axis is 0° in the
circularly symmetric case. Equation (6.3) shows that one can use the
identical shaping process given in Chapter III to create generating
curves for three-dimensional circularly symmetric dual-reflector
antennas by using this equation as the appropriate equation for
conservation for power. The coordinates x and y used for the two-
dimensional case are changed to'z and p for the three-dimensional case.
The initial points for the shaping process have to be chosen as in
the two-dimensional case. The condition which these initial points have
to satisfy is given in Appendix C. Normally, these initial points are
located on the axis of symmetry. Also the caustic curve in the two-
dimensional case becomes a caustic surface in the three-dimensional

case.

159



Three examples are given in the next sections to illustrate the
shaping of three-dimensional circularly symmetric dual-reflector
antennas. The results of the first two examples are compared with ones
obtained via a different approach proposed by Narasimhan [24] and
Ekelman [25]. The third example is the same example used by Williams
[16]. Narasimhan modified the partial differential equation derived for
an offset dual-reflector by Lee [19] to a ordinary differential equation

which has to be solved numerically.

6.2. Examples of Shapingvof Three-Dimensional Dual-Reflector Antennas

6.2.1. Example 3D1

In this example, a shaped dual-reflector with a concave
subreflector is to be generated so that a uniform aperture distribution
is obtained at the aperture of the main reflector. The primary source
has a coszoe symmetric power pattern and is located 0.5’ from the vertex
of the shaped main reflector. The diameter of the main reflector is
2.0’. The vertex of the shaped subreflector is located 0.2667' from the
primary source. The maximum illumination angle of the primary source on

the subreflector is emax=31.42°. The initial points for the shaping are

thus given by

(Zlo, plo) = (Oo 7667, ,0.)

(0.0,0.0)

(2301 P20)
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and (zco’pco) is determined from the ray condition given in Appendix C.
The resulting shaped dual-reflector is shown in Figure 6.3. The
surfaces obtained by using the method proposed by Narasimhan [24] and
Ekelman [25] are shown in Figure 6.4. The results are in very good

agreement as can be seen by comparing Figures 6.3 and 6.4.

6.2.2. Example 3D2

This example is similar to Example 3D1 except that the subreflector
is a convex surface and the primary source is located 0.1’ from the
vertex of the main reflector. The maximum illumination angle emax is
18.26°, and the vertex of the subreflector is 0.4667’ from the primary

source. The initial points on the reflectors are

(210’910) = (0.5667',0.0)

(220’ 920) = (0'0’0'0)

and (zco,pco) is thus determined. The resulting shaped dual-reflector
is shown in Figure 6.5 and is again in very good agreement with the one
obtained by using the method of Narasimhan [24] and Ekelman [25] which

is shown in Figure 6.6.

6.2.3. Example 3D3
In this example, the conventional Cassegrain reflector used by

Williams [16] is used as the starting point of shaping. The parameters
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associated with this Cassegrain antenna are
F =2.5'
m
F =1.5'
c
- ’
Lv_0.20943

D =10.0’
m

84.5

and a point source with cos ~~© power pattern is used as the primary
feed. The secondary aperture is required to have uniform amplitude and
phase distributions. The shaped surface obtained by Williams are shown
in Figure 6.7. This is a enlarged version of Figure 3 of [16]. These
surfaces are obtained by shaping the subreflector first and the main
reflector is designed to create the desired uniform phase distribution.
Figures 6.8 and 6.9 show the shaped-reflectors calculated by the method
of Narasimhan [24] and Ekelman [25].

In order to use the approach of shaping discussed in this chapter,

the initial points for the shaping are chosen as

(zlo,plo) (2.18357,0')

(220, 920) = (—00107’ ,000')
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for the subreflector and main reflector, respectively. These points are
actually obtained from Figure 6.7 which are the intersection points of
the axis of symmetry and the shaped reflectors designed by Williams.

The initial point of the caustic surface is thus determined. The
resulting shaped surfaces are shown in Figures 6.10 and 6.11. These
results show that very good agreement has been obtained among the three

methods.

6.3. Summary

In this chapter,-the shaping process for the two-dimensional dual-
reflector was modified slightly for shaping of the three-dimensional
dual-reflector with circular symmetry. Examples were used to verify the
process. Comparisons were shown between different approaches. Although
the method of synthesis discussed in this chapter is not much simpler
than Narasimhan’s approach, one can still examine the caustic surface of
the subreflector reflected field as in the two-dimensional case. The

behavior of the shaped reflectors can be explained physically.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

A newv approach for the shaping of dual-reflector antenna systems to
generate a prescribed aperture distribution is proposed and studied in
this research. The approach is based on the geometrical optics
properties of conventional Cassegrain and Gregorian reflector antennas.
A set of algebraic equations has been obtained and solved by a numerical
method. This approach also explains how the shaped dual-reflector works
for generating a prescribed aperture distribution by examining the
behavior of the caustic curve of the shaped subreflector reflected
fields. Several two-dimensional examples are presented to validate the
formulation and solution of this new approach for shaping dual-reflector
antennas. A conventional Cassegrain or Gregorian reflector antenna is
provided as the starting point of shaping when a primary source power
pattern is given. The method of physical optics is used to calculate
the far-zone scattered fields from the subreflector and the near-zone
scattered fields from the main reflector. The results are compared
between the conventional and shaped reflectors. As expected, the shaped
reflector system provides the aperture field prescribed.

Rolled edge treatment to the shaped dual-reflector is also studied.
The addition.of the rolled edges to the shaped main reflector can reduce
the edge diffracted fields and consequently, the ripple in the near-zone

scattered fields. This improvement is especially important in the
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application of compact range reflectors because creating a uniform plane
wave illumination is a strict requirement. Corrections are made for the
false end-point contributions of the rolled edges which are caused by
the sharp termination of physical optics currents. By removing the
false end-point contributions from the physical optics integration
results, a more accurate representation of the scattered fields from
reflector surfaces is obtained. Examples are also presented to show the
improvement of adding blended rolled edges to the shaped main reflector.

The shaping of three-dimensional circularly symmetric dual-
reflectors is achieved by a simple modification of the two-dimensional
case. The reflectors are illuminated by primary sources with circularly
symmetric power patterns and the secondary aperture distributions also
have the property of circular symmetry. Examples are presented and
compared with the results obtained by other approaches.

Throughout this study, a numerical method is used to approximately
solve for the surface equations. Different numerical methods could be
used to solve these equations. |

Although some research has been done in the past for the shaping of
dual-reflector antennas, only the shapes of the reflector surfaces were
examined by most people. By using the method of shaping proposed in
this study, one can clearly understand the detail of how the shaped
reflector works to transform a given primary feed pattern into a
prescribed aperture distribution. This is accomplished by examining the
behavior of the caustic curve for the fields reflected from the shaped

subreflector. Consequently, some potential problems associated with the
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shaped reflectors can be disclosed through unusual properties of the
caustic curve, such as a discontinuity in its slope. These possible
problems affect the performance of the shaped reflectors especially in
the compact range applications.

Further study is recommended for applying the shaping approach
proposed in this research to three-dimensional offset dual-reflectors.
Unlike the circularly symmetric case tor which the shaping can be done
on a two-dimensional basis, the offset dual-reflector has to be shaped

on a three—dimensiongl basis. It is pointed out in [14] and [26] that

the exact solution to the dual-reflector synthesis does not exist in

general. Consequently, an approximate solution must be sought when an
exact solution cannot be found. Further investigation will have to be

done on this topic.
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APPENDIX A

DIRECT APPLICATION OF PRINCIPLES OF GEOMETRICAL OPTICS

TO DUAL-REFLECTOR ANTENNA SHAPING

In this appendix, the principles of geometrical optics mentioned in
Chapter III are used directly to generate a two-reflector antenna system

from which a prescribed secondary aperture distribution is obtained.

A.1. Formulation

Consider the geometry shown in Figure A.l1 where a given primary
source is located at the coordinate origin. Assume that the points
(xlo,ylo) on the subreflector and (x20’y20) on the main reflector are

also known. For a given ray y=m.x which emanates from the primary

0
source, the corresponding reflected ray from the main reflector, y=Y2,
is to be generated and is parallel to the x-axis. The unknown point
(Xl’Yl) on the subreflector is assuﬁed to be located on a line which
passes through (x10’y10) and has the slope m, . Similarly, the unknown
point (X2,Y2) on the main reflector is located on a line which passes
through (XZO’YZO) and has slope m, . These assumptions are valid when
the surface points are very close to each other. From the application

of the principles of geometrical optics and the above assumptions, a set

of algebraic equations is generated and solved to obtain the surfaces.
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A

UNKNOWN LINE: Y -Y,,=m,(X=X,.), M, UNKNOWN
|NTERSECTIYON
POlN{‘ (y
(= -
GIVEN RAY: y=Y,
/! PARALLEL TO X-AXIS
KNOWN
POINT
(X,00Y20]! CONNECTING |
RAY: y-Y =mc(x-X,)
m._= Y2-Yi
€ Xa-%
LINE y-Yo* m,(x-xlo),
- m, UNKNOWN
GIVEN RAY : '«—UNKNOWN INTERSECTION
y=moX POINT (xl Y, )

KNOWvN\POINl (x )
IO'yIO X

PRIMARY
SOURCE

Figure A.1. Geometry for direct application of principles of

geometrical optics to dual-reflector shaping.
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At the first reflector (i.e. the subreflector), which is given in

-

Figure A.2, the incident ray, reflected ray, and surface normal n

1
satisfy Snell’s law of reflection, in other words,
90—91 = el-ec (A.1)
or
291 = e°+ec (A.2)

By taking tangent on both sides of Equation (A.2), one finds that
tan(291) = tan(9°+0c) . (A.3)

From the identity

tana + tanf

tan(o+f) = 7— tanatanp

Equation (A.3) results in

2tan91 tan90+tan9c

1—tan291 1—tan90tan6c

(A.4)

but,

178



ﬁ y=Y,=m (x=-X,)

ﬂl Bl
&
8,
(X,Y.)
% RS
= Vo
) ‘\W"yw =m.(x-xm)
(xlo'yto)
PRIMARY
SOURCE

Figure A.2. Snell’s law on the subreflector.
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tan® =m
() (o)
tan® =m
c c
1
tane1 = -0

[y

Consequently, Equation (A.4) becomes

—2m1 mo+mc .
7, " Tonm (4.3)

For the main reflector, as shown in Figure A.3, Snell’s law states that

e; - 20, (A.6)
in which
' (o}
ec = 180" - ec (A.7)

Substituting (A.7) into (A.6) and taking the tangent on both sides of

the equation, the following equation is obtained:

-2m

(A.8)
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2 20

Figure A.3. Snell’s law on the main reflector.
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Also notice that Xl’ Y1 have to satisfy
Y1 = moxl (A.9)
Yl—y10 = ml(Xl—xlo) (A.10)
and X2 has to satisfy
Y2-y20 = mz(xz—xzo). (A.11)
In the above formulations, m, and Y2 are assumed known so there are

six unknowns xl’Yl’XZ’ml'mZ’mc’ with six equations which are summarized

as follows:

1 0o ¢
5 = oo (A.12)
m1—1 ocC
—2m2
m, == (A.13)
m,-1
Y,-Y
271
m = (A.14)
c X2-X1
Y1 = moX1 (A.15)
Yl-ylo = ml(Xl—xlo) (A.16)
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Y2—y20 = mZ(Xz—xzo) (A.17)

It is apparent that the above equations have to be solved numerically in
order to obtain the surface of the reflectors. In the next section, a

perturbation method is presented to solve the above equations.

A.2. Method of Solution

From Equations (A.15) and (A.16), it is found that

Y10™™*10

L R lr-ger-y (A.18)

o 1

mO

N = a2 G10™*10) (4.19)
o 1

From Equation (A.17),
X, = 1 (Yo-y. +mox,.) | (A.20)
2 m, ‘02 Y201 M2%20 y

Substituting (A.18), (A.19), and (A.20) into (A.14), the following

equation is obtained,

mo [(my-my ) (Yo-yoqtmyXyg) - my(yyq-myX;4)]

= mz(mofml)Y2 - momz(ylo—mlxlo) (A.21)
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Equations (A.12), (A.13), and (A.21) involve the unknowns my My, and m.
and are very difficult to solve exactly. Consequently, a perturbation

method which assumes that

m =m_ + Om (A.22)
c co c

my =My + Aml (A.23)

my = My, + 4m, v (A.24)

is used to solve My, My, and m, numerically. In Equations (A.22)

through (A.24), M.’ Mg and My are the corresponding slopes m,» My

and m, for the previous ray and surfaces; Amc, Aml, and Am2 are small
perturbation of m,y My, and m, . By substituting these three equations
into Equations (A.12), (A.13), and (A.21) and neglecting the higher
order terms such as Achml, Achmz, AmlAmz, etc., the following three
linear equations in Amc, Aml, and Am2 are obtained.

AllAmc + AlZAm1 + A13Am2 = B1 (A.25)
A21Amc + A22Am1 + A23Am2 = B2 (A.26)
A316mc + A32Am1 + A33Am2 = B3 (A.27)
where
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2

Ajp =1+ 2mmy - mo,

A12=2mm

o co-momlo-mlomco_l)

A, =0

13

2
Bl = 2m10 (l—momco) + (mo+mco) (mlo-l)

2

Ay1 = my

-1

A,, =0

22
A23 = 2(Meomy0*?)

By = Mg (1-mgg) - 2my,

31 = ("™10) (Yz'yzo+mzoxéo) = M20 ("10™10%10)

32 = "eo[™20%10 = (Y27Y20"™20%20)] * ™0 (F2Mo¥10)

433 = Meo [20 ("™™10)~ 10™10%10) ]~ [(%6~™10) Y2 = ™o (10-™10%10) ]
By = [“‘éo (Mo~™10)Y2 = ™20 (V10 "™0%10)]

™ Mo [(Mo™10) (F27¥20*20%20) = ™20 (10"™10%10) ]
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The above equations are solved for Amc, Aml, and Am2 as

BygAy3B3Ag3h59By-A  A44B)

Am = (A.28)
¢ AggA1ahgaAygBy3hsy-Agphs A,
Am-l—(BAmnj (A.29)
1 A 17711 ¢ *
12
Am=1—(B-A m] (A.30)
2 A 27217 ¢ )
23
and the unknowns xl’Yl’XZ’ml’mZ’mc are obtained.
It is noted that the above method is valid provided that Mo* Myg?

m., are known and Aml, Am2, Am3 are very small. There is a difficulty
associated with this approach. When the initial slopes are very large,
the changes of the slopes Aml, Amz, or Amc are not small and the

solutions are not accurate. Another method for solving the surface

equations might have to be used.
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APPENDIX B

NUMERICAL METHOD FOR SOLVING THE SURFACE EQUATIONS

As discussed in Chapter III the equations related to the shaped
reflector, i.e., Equations (3.1) through (3.6) in that chapter, can be

reduced to
2 2( 2 2 21)2
[(xc+moyc] -4a (1+mo]] 4F xcyc-yc[(Yz—yc] +4F xc—AF ]
2,2 2 2
- (xc+m°yc] (Fc—loa ){41“ chz-yc[(Yz-yc] +4F xc-4F ]}

2 2
{4F (Yz—yc+moxc]—mo[(Y2—yc] +4F x_~4F ]}

2

il
|
=

2, 2)2 2 2
(Fc-4a ) {4F [Yz—yc+moxc]—mo[(Y2—yc] +4F x -4F ]}

(B.1)

where all the variables have been defined in Chapter III. In Equation
(B.1), m and Y2 are known and, F and FC are functions of X, and Yo

only. In addition, X, and Y. are related to oo and Yeo by

X =X + cosa_QOp
c co 0

<
]

Yeo! sinaoAp

(B.2)
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where Ap is the unknown distance between (xco’yco) and (xc,yc) and o is
the angle of the old ray with respect to the positive x-axis which is
defined in Chapter III.

By substituting Equation (B.2) into (B.1l), an Bth order polynomial
equation in Ap has to be solved numerically. Although one can try to
solve 8p numerically directly from the polynomial equation, it is still
very tedious. A method which assumes Ap is small is used in this study
to solve 8p. This assumption is an appropriate one since that the
incremental ray tube formed by the old and new rays is very small so
that one will expect that variation of Ap is very small. Consequently,
the higher order terms such as (Ap)z,(Ap)3,...,etc., in the polynomial
equation are neglected so that a linear equation in Ap is obtained and
solved. In the following, different terms in Equation (B.1) are
discussed separately by substituting Equation (B.2) for X, and Yo into

Equation (B.1). Also notice that

(1'se°°‘o) ("c‘xzo]

o |
n
N =

or

F=- 1 tan 39 ( -y )
=72 z PVeY20

0N

2 2
Fc=xc+y

The first expression of F is used in the following analyses.

188



2
(yco + sinaoAp - YZ) + 2[1—seca°) (xco + cosaoAp - XZO)

(x + cosa Ap] - (1—seca )z(x + coso Bp - X )2
co (W) 4} co 0 20

2 . . 2 2
= (yco—YZ) + 2 sine (yco—Yz)Ap + sin ao(Ap) + 2(1—secao)

2 2
[xco (xco-xzo] + (xco—xzo]cosqup + xcocosaoAp + cos ozo(Ap) ]
- (l—secao]z[(xco-x20)2+2cosao [xco—xzo)Ap + coszao(Ap)z]

2 2 2
= {(yco—Yz] + 2(1—secao)xco (xco-xzo] - (l—secozo] (xco—xzo] }

+ 24sina (y -Y ) + (1—seccz )(Zx -X ]cosu - cosa (l-secu )2 .
olUco "2 o co 20 o o o

(xco-xzo]}Ap + {sin2a°+2 coszczzo (l-secao) - <:oszmo (l—secozo)z}(t\p)2
It can be shown that the coefficient of (Ar.»)2 is zero. Thus,

2 2
(Yz—yc) + 4F xc—4F = Z1 + Zsz (B.3)

in which

2 2 2
Z1 = [yco_YZ) + 2(1—secao]xco [xco—xzo) - (l—secao] (XCO_XZO]
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Z2 =2 sinozb

| (2) 4a2 = {(x§0+

{ ("io"

but

Thus,

; i? - { (e

wvhen secab<0,

xlo—xc<0

xlo—xc>0

vhen secao>0,

[yco—Yz) + (cosao—l] ((l+secao)xco—x20secao)

yio)mi [(xlo‘xc]z * (ym'yc)z}

2 )1/2+ . x
Y10) % [*107%c
o

[o]

2 )1/2 . x
Y10) * [*107%c

for hyperbola

for ellipse
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xlo—xc>0 for hyperbola
xlo-xc<0 for ellipse

Consequently,

4a2 = {[x2 + 2 )1/2+ (x -X )seca }2
= 1%10* Y10 < *10 o

The geometry for the above analysis is shown in Figure B.1.

(3) F_ - 4a

[(x +coso A ]2 + ( +s‘ina A )2]
co 0P yco o°P

- [(x2 + 2 ]1/2 + (x ~X ]seca] + cosa_seca Op ?
10 * Y10 co *10 ) 0°%“%

2 2 2 2
xco+ 2 xcocosaoAp + COS uo(Ap) * Vo * 2 ycosinaoAp

+ sinzu (a )2 - [(xz + 2 ]1/2 + (x -X )seca ]2
o\ P 10 * Y10 co 10 o

2 2 Y172 2
-2 [[xlo + le) + (xco—xlo)secao]t\p - (Bp)
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(X, + ¥y
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]
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/ e -x
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x
(xc.yc)

(

x20 ' yZO

)

A

NEW RAY

/< —
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(Xe1Ye)

a /( XcoYeo !

Figure B.1. Geometry for analysis of 4a”.

(X101 Y1)

2
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= 2 +ZAp

in which
Z x2 2 [(x2 + 2 )1/2 (x X ]sec ]2
3% *c0*Veo” %10 * Y10 * Feo*10)5%%

A —2{x coso +y sinu—[(xz +y2 )1/2+(x -X ]seca ]}
4 co 0 “co (o} 10 10 co 10 (s}

(4) X +my, (xco+cosaobp) +m [yco+s1naoAp]

= Z5 + Z6 bdp
where Z5 = X0 * " Voo
Z6 = cosa_ + m Sina
(o] o (0]

2 2 21172 2
(5) From (2), 4a“ = {(x10+y10] + (xc—xlo)secao}

(2 2 \1/2 2
= {[("10+y10] * ("co"‘w]sec“o] + A"}

[[xz 2)1/2 (x < ]Sec ]2
10"10 * Feo*10)58%
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+ 2[(xi0+yio)1/2 + (xco—xlo]secao]l.\p + (Ap)2

Z7 + 28 dp

wvhere

_ [(xz 2)1/2 (x < ) ]2
7 = {*10"Y10 * Xeo*10)58C%

= 2[[x2 + 2 )1/2 + (x -X )seca]
8 = 10vY10) co *10 o

(6) l»Fch2 = 2(1-secao) [xc—xzo]ch2
= 2(1-seca°)Y2 (xco+ cosaOAp-xzo] (xco+cosaoAp)
= 2(1—seo::mo)Y2{xco (Xco_*ZOJ + (2xco—x20]cosaoAp
+ coszao(Ap)z}
- 29 + ZlO dp
vwhere

Zg = 2(1'sec°‘o]Y2 Xeco (Xco'xzo]
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Z10 =2 (l—secao]Yz (Zxco—xzo)cosao

(7) 4 (Y,y, + mx,)
= 2(1—secao] [xc—xzo) [Yz—yc + moxc]
= 2(1—secuo) [(xco—x20)+ cos«oép] (Y2+moxco_yco]
+ (mocOSuo —sihuo)Ap]
=2 [1—seca0){[xco_x20] (YZJ'moxco_y co)

+ [(xco-xzo] (mocosao -sinuo]+cosao (Y2+moxco—yco]]6p

2
+ cosa [mocosao-sinao)(Ap) }
= 211+ leAp
where
211 =2 (l—secao) [xco'x20] (Y2+moxco_yco]

le = 2 (l-secao] [(xco—xzo) [mocosao—sinao)wosao (Y2+moxco
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(8) (xc+moyc)2-4a2 (1+m§]

(ZS+Z6Ap)2 - (Z7+28Ap) [1+m(2)]

~ [52 2 2
[25 - Z7 [1+m0]] + [22526 - [1+m0)28]Ap

V1+V2

Op

wvhere

]
N
N
N
|

7 -
+
=
N

N’
™~

[o=]

| 2 2
(9) 4Fx Y, - yc[(Yz-yc] + 4Fx_-4F ]

29+ZloAp - [yco+sinaoAp) [Zl+Z2Ap]

2
Z9+ZloAp - [ycozl+ (ycoZZ+ sinaozl]Ap + sinaOZZ(Ap) ]

?

[zg-ycozl] + {Z1o - (ywz2 + sinaozl]}Ap

vV, + W

3 *+ V00

n
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in which

(10)

2 2
4F(Y2-yc+moxc] - mo[(Yz-yc] + 4Fxc - 4F ]

= le + leAp - my [Zl + ZzAp)

- (211 - mozl] + (le—mozz]bp

= Vg + Wbp
in which
Vg =297 - M2
V., =2 -m2

By substituting (1) — (10) into Equation (B.1):

lst

term of lefthand side of (B.1):
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2
(Vl + VZAp] [VB + V4Ap]

2 2 2
(Vl + V2Ap] (VS + 2W WV, 0p + W4(Ap) ]

374
‘ ”V1+V2Ap
where
2
V1 = Wl V3
vV, = 2W, V. W +VV2
2 17374 273

2™ term of lefthand side of (B.1):
= (Zs*“zs“"] (Z3*24A"] (Va*"z.“’) (‘.’5*"6“"]
V3+V4Ap
wvhere

= Z325V.3W5

w
I

V4 = Z325 (V3V6+W4V5) + V3V5 [Z3Z6+Z425]
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Righthand side of (B.1):

(Z3+Z4Ap)2 (W5+W6ApJ 2

|
H=

T VeV

5+Vglp

where

n
1
N =

2 2
czszaws + z3"5"6]

Finally, from Equation (B.1)

(V1+V2Ap] - (V3+V4Ap) - V5+V6Ap
thus

-(V;-V5-V5)

V2—V4—V6

Ap=

From Ap, the surfaces of the reflector and the caustic curve are solved.
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APPENDIX C

GEOMETRICAL OPTICS REFLECTED FIELDS

FOR CASSEGRAIN AND GREGORIAN REFLECTOR ANTENNAS

In this appendix, the geometrical optics reflected fields for the
Cassegrain and Gregorian reflector antennas are calculated. In
addition, the conditions which the jnitial points on the subreflector,
main reflector, and caustics curve for the shaped dual-reflector must

satisfy are derived in this appendix.

C.1. Reflected Fields for the Two-Dimensional Cassegrain Reflector

Antenna

The geometry of a Cassegrain reflector antenna is given in Figure
2.6 of Chapter II. As discussed in Chapter II, for a source located at
the real focus of the subreflector; the reflected field from the
subreflector appears to emanate from the virtual focus. In other words,
the virtual focus is the caustic of the subreflector reflected fields.
Assuming that the primary source is a magnetic line source, the

reflected magnetic field is calculated as

r —.kS
1 355,

= e (c.1)
p1+51

4 Z
H (Sl) = Hi(Ql)
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in which Hi(ol) is the incident magnetic field at the point of
reflection on the subreflector, pi is the reflected field caustic
distance and sS4 is the distance from the point of reflection to the
field point. In this case, pi is the distance between the virtual focus
and the point of reflection, i.e., pi=pc as shown in Figure C.1. The

far-zone reflected field is calculated by letting sl+w and is given as

—jks1
2 2 e
H (s9®) = H;(Q,) IF(‘: (C.2)

[s1

The reflected field from the parabolic main reflector is calculated by

or -jks
2 o 2 (c.3)

b4 V4
Hm(sz) = Hi(oz)
p2 +Sz

in which H;(Qz) is the incident magnetic field at the reflection point
02, p; is the reflected field caustic distance, and S, is the distance
from the point of reflection Q2 to the point of observation. For a
focussed parabola, the reflected field caustic distance p; is infinite
and the reflected ray is parallel to the axis of symmetry.
Consequently,

—Jks2

z z
Hm(sz) = Hi(QZ)e (C.4)
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OBSERVATION
POINT

REAL FOCUS
VIRTUAL FOCUS

Figure C.1. Geometrical optics reflected field from a hyperbolic

subreflector.
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For the Cassegrain reflector, the incident field H:(QZ) is the reflected

field of the subreflector and is given by

P -jks
~E e 1 (C.5)
c 1

4 V4
Hi(OZ) = Hi(Ql)

where sS4 is the distance between 01 and 02 as shown in Figure C.2.

Thus, the reflected field of the parabolic reflector is given by

P -jk(s,+s,)
b4 p4 c 1'72
Hm(sz) = Hi(Ql) Pc+51 e (C‘6)

If the magnetic line source has a far-zone pattern of F(¢),

_jkpi
B (0)) = [F($) *— (c.7)
I
Thus,
. "’jkpi s
P -jk(s +s,)
H:(sz) = [F(3; & - fs e 1772 (C.8)
PO T B
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y
PARABOLIC
REFLECTOR
Q, / S = OBSERVATION

POINT

REAL | VIRTUAL
FOCUS ¢ FOCUS

HYPERBOLIC
REFLECTOR

Figure C.2. Ray geometry of a Cassegrain reflector for calculation of

reflected fields.
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C.2. Reflected Fields for the Two-Dimensional Gregorian Reflector

Antenna

The geometry of a Gregorian reflector antenna is given in Figure
2.8 of Chapter II. For a line source located at the first focus of the
elliptic subreflector, the reflected field from the subreflector appears
to emanate from the second focus. Thus, the second focus is the caustic
of the subreflector reflected field. The reflected field from the
subreflector is calculated by Equation (C.1), except that the reflected
field caustic distance is negative since the caustic is located in
between the points of reflection and observation as shown in Figure c.3.

Thus,

=P -jks,q

—_ (c.9)
—pc+ Sl

Z
Hs(s

4
‘1) = Hi(Ql)

where Pe is the distance between 01 and the caustic and is positive.

The far-zone reflected field is given as

-jks1
HZ(s;>) = H{(Q)) [p ' 2 | (C.10)

[s1

Similar to the Cassegrain case, the reflected field from the parabolic

reflector is given by
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Figure C.3.

OBSERVATION
POINT

FOCAL POINT #2

FOCAL POINT #I

Geometrical optics reflected field from an elliptic

subreflector.
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-ikey _jk(s,+5.)
Bi(s,) = [F(o) & ‘ c e 1772 (€.11)
m -2 1 W -P.t S5y

The ray geometry of this Gregorian antenna is shown in Figure C.4 where
s; is the distance between 01 and 02 and Pe is the distance between 01

and the second focus.

C.3. Relationship of Initial Points For Shaping of Two-Dimensional

Dual-Reflector Antenna

It is mentioned in Chapters III and IV that in order to solve the
surface equations, a set of initial points on the subreflector, main
reflector, and caustic curve must be provided a priori. For given
primary source and secondary aperture distributions, these initial
points have to satisfy a ray condition. This condition is derived in
this section for a dual-reflector with either a convex or concave

subreflector.

C.3.1. Dual-Reflector with Convex Subreflector

The basic assumption in this research for dual-reflector shaping is
that the corresponding points on the subreflector, main reflector and
caustic curve are points on a Cassegrain or Gregorian antenna.
Connecting these points forms a ray such that the reflected field at the

corresponding aperture point is given by
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/’ARABOUC REF LECTOR

0, / S2 . OBSERVATION
POINT

FOCAL POINT #2

N\

FOCAL POINT #I ELLIPTIC

REFLECTOR

Figure C.4. Ray geometry of Gregorian reflector for calculation of

reflected fields.
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-jkpi s
P -jk(s;+s,)
i = {F(9)" & I C__ o 172 (C.12)
m S.+0
Ipi 1 "c

vhen the subreflector is a convex surface. Assuming that the aperture

distribution corresponding to this ray is known as Uo' then

2

e‘jk°i ) “jk(s +s,)
[F(& i . (€.13)
|pi "1 Te

which simplifies to

]
[=]

1
= = U (C.14)
p; P +s1 o

Im)

This is the condition that each ray has to follow. In Equation (C.14),
Pir Py and s, are functions of (xl,yl), (xz,yz) and (xc,yc) and Uo is a
function of Yo- The initial points (x10’y10)’ (x20’y20) and (xco’yco)

have to follow Equation (C.14) also. In this study, it is assumed that

the shaping process starts along the primary feed axis which is tilted

by ¢o. Consequently, one can assume that IF(¢°)| = 1 and we obtain
1 e
— = .15
by Pts U, (¥50) (C.15)
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Although there are many ways to determine the initial points from
(C.15), it is noted that Y20 has to be known in order to determine U0
and also (x10'y10) has to be on the primary source axis. Thus,
(xlo,ylo) and (x20’y20) are assumed and (xco,yco) is solved from (C.15),
as shown below.

Since (XIO’ylo) and (XZO'yZO) are known, Py and s, are known for

the initial ray. From Equation (C.15) one finds that

< i | (C.16)

From the geometry shown in Figure C.5, it is found that

X010 Yo V10 P

m S ¥y " . (C.17)
10 720 10 720 1
Consequently, X0 and Yoo €3N be calculated from
piuo
%o = Topy0, 107207 * *10 (C.18)
p,U
1o | (C.19)

Yeo = TopyU, (Y107Y20? * Y10

From these initial points, one can start shaping the reflector above and

below the ray which is formed by connecting these initial points.
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i
(Xa0 Yp0! S2 » CENTRAL
RAY
> (%Yo
Pi \\ P
¢O \\‘ X
X
(xco'yco)
P >0

Figure C.5. Relation of initial points for a shaped dual reflector with

a convex subreflector.

y
A
Ao'yw ) S2 > CENTRAL
é . RAY
S,
(Xeo1¥eo )
- X
Po ]
(xlo 'ylo)
Pc >0

Figure C.6. Relation of initial points for a shaped dual reflector with

a concave subreflector.
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C.3.2. Dual-Reflector with Concave Subreflector

Similar to the convex subreflector case, the corresponding points
on the subreflector, main reflector and caustic curve for this case are
on a Gregorian reflector. The reflected field at the corresponding

aperture point is given by

_Jkpi

-p -jk(s,+s,)
HE - JF(9) S - 1772 (C.20)
Ip. 1" Pc
1
where pc>0. Thus, one finds that
2
To. " -jke;  -ik(s+s,)
[F(9)" L C e le 17727 Ly (C.21)
J_p_._' 517P¢ °
1
or
1 pc
F _— =U C.22
| (¢)| o, Si-p, o ( )

Again, by assuming that the shaping starts along the feed axis with a

tilt angle ¢ and |F(¢ )|=1, the following relationship is obtained:
0 o

=0 (C.23)
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From the same assumption that (xlo,ylo) and (x20’y20) are fixed so that

Py and s; are known, then
[ p;U
c i’o
=~ - =32 (C.24)
g 1+piUo
and
X0*10 Yo Y10 Pe
20 710 20 710 1
Thus,
piuo
*eo =~ TrpU (%107%90) * *19 (C.26)
piUo
Yeo =~ Tapu. 107207 * Y10 (c.27)

C.4. Relationship of Initial Points for the Shaping of A Three-
Dimensional Circularly Symmetric Dual-Reflector
The major difference between the two-dimensional and three-
dimensional case is that the spread factor of the reflected field in the
three—dimengional case is dependent on the two radii of curvature since
the ray tube is three-dimensional. By simple modification of the two-
dimensional case, the condition which the initial points have to satisfy

for the three-dimensional case can be obtained.
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C.4.1. Dual-Reflector with Convex Surface
For a point source with radiation power density F(9,¢) illuminating
the subreflector of the dual-reflector, the reflected field at the

aperture of the main reflector is calculated by

-Jkpy o Py ' -ik(sp+sy)

pi (p1+sl)(p2+sl) (C.28)

ot = {F(6,9)

in which Py is the distance between the primary source and the point of
reflection on the subreflector, P and p, are the subreflector reflected
field caustic distances, Sq is the distance between the point of
reflection of the subreflector and main reflector, and Sy is the
distance from the point of reflection on the main reflector to the
aperture.

For the shaped dual-reflector with a convex subreflector, the
corresponding points on the subreflector and main reflector are assumed
to be located on a particular Cassegrain reflector; consequently, the
two radii of curvature 1 and p, are the same and are equal to the
distance Pe between the caustic and point of reflection on the

subreflector, thus, Equation (C.28) becomes:

(C.29)

u’ = JF(6,9) S . ¢

-jkop, .
Jkey [ P ] —Jk(sl+s2)
e
i Pe*S1
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It is assumed that the power density at the aperture point is given by

Uo’ and is related to u_ as

C
pc+Sl

{F(6, )

=U (C.30)

-jkp, . 2

Jkey [ 0 ] “jk(s,+s,)
e

(o]

Py

Assume that the shaping begins from the axis of symmetry, thus, let

F(6,4¢) = F(0,0)=1, one finds that

1 P | [0 " (C.31)
Py P*Sq o '

Comparing Equation (C.31) with (C.15), the condition that the initial

caustic point has to satisfy is given by

%JT

P =————— (P1n=Pyn) + P (C.32)
co 10 "20 10
1_pijuo '
- ——pilU° (240-2.-) + 2 (C.33)
co 10 “20 10 *

1—pi|Uo
provided that (zlo,plo) and (zzo,pzo), the initial points on the

subreflector and main reflector are known. Note that the coordinates in

the three-dimensional case are (z,p).
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C.4.2. Dual-Reflector with Concave Subreflector

The difference between this case and the convex subreflector case
is that the subreflector reflected field caustic distance is negative,
i.e.,
pl = p2 = —pc (C034)
in wvhich Pe is the distance between the caustic and the point of

reflection on the concave subreflector. Thus, from Equation (C.28), it

is found that

—jkpi :
-p -jk(s +s,)
ot = {F(6,9) & ¢ 172 (C.35)
pi ("pc+sl)
Consequently,
-jko, .
i -p -jk(s,+s,)
{F(6,9) & C_e 172 =U (C.36)
P -p +8 o
i ¢ 1
or, by letting F(6,¢) = F(0,0)=1,
1 P N (C.37)
i S17Pc . VO

Thus,
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co

Z
co

"

°iIﬁ;ﬂ

Leoy [T,

piJﬁ;ﬂ

L+py U,

(P197P20) *+ P10

(2197290) *+ 219
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(C.39)



(1]

[2]

[3]

[4]

(5]

(6]

[7]

(8]

9]

(10]

[11]
(12]
[13]

REFERENCES

M.D. Rader, "A Cassegrain Reflector System for Compact Range
Reflector," M.Sc. thesis, The Ohio State University, Department of
Electrical Engineering, Columbus, Ohio, 1985.

C.V. Pistorius, "New Main Reflector, Subreflector and Dual Chamber
Concepts for Compact Range Applications," Ph.D. dissertation, The
Ohio State University, Department of Electrical Engineering,
Columbus, Ohio, 1986.

I.J. Gupta and W.D. Burnside, "A Physical Optics Correction for
Backscattering from Curved Surfaces," accepted for publication in
IEEE Trans. on Antennas and Propagation.

I.J. Gupta and V.D. Burnside, "Electromagnetic Performance Study
of a New Compact Range Reflector," The Ohio State University
ElectroScience Laboratory, Technical Report 718331-1, June, 1986.

M. Born and E. Wolf, Principles of Optics, Chapter 3, Pergamon
Press, New York, 1959.

R.G. Kouyoumjian and P. Pathak, "A Uniform Geometrical Theory of
Diffraction for an Edge of a Perfectly Conducting Surface," Proc.
IEEE, Vol. 62, No. 11, pp. 1448-1461, November 1974.

J.A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company,
New York, 1941.

P.V. Hannan, "Microwave Antennas Derived from the Cassegrain
Telescope," IRE Trans. on Antennas and Propagation, Vol. AP-9, pp.
140-153, March 1961.

T.H. Lee, "Geometrical Optics and GTD Analysis of Subreflectors in
Cassegrain and Gregorian Reflector Antennas," M.Sc. thesis, The
Ohio State University, Department of Electrical Engineering,
Columbus, Ohio, 1984.

S. Silver (ed.), Microwave Antenna Theory and Design, McGraw-Hill
Book Company, New York, Section 4.8, 1949.

Ibid., sec. 4.4.
Ibid., sec. 4.9.
V. Galindo, "Design of Dual-Reflector Antennas with Arbitrary

Phase and Amplitude Distribution," IEEE Trans. on Antennas and
Propagation, Vol. AP-12, pp. 403-408, July 1964.

218



[14]}

[15]

(16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

B. Ye. Kinber, "On Two-Reflector Antennas,” Radio Eng. Electron.
Phys., Vol. 6, pp. 914-921, June 1962.

K.A. Green, "Modified Cassegrain Antenna for Arbitrary Aperture
Illumination," IEEE Trans. on Antennas and Propagation, Vol. AP-
11, pp. 589-590, September 1963.

W.F. Williams, "High Efficiency Antenna Reflector," Microwave
Journal, Vol. 8, pp. 79-82, July 1965.

R.L. Barger, personal note.

V. Galindo-Israel, R. Mittra and A.G. Cha, "Aperture Amplitude and
Phase Control of Offset Dual Reflectors," IEEE Trans. on Antennas
and Propagation, Vol. AP-27, No. 2, pp. 154-164, March 1979.

J.J. Lee, L.I. Parad, and R.S. Chu, "A Shaped Offset-Fed Dual-
Reflector Antenna," IEEE Trans. on Antennas and Propagation, Vol.
AP-27, No. 2, pp. 165-171, March 1979.

R. Mittra, F. Hyjazie and V. Galindo-Israel, "Synthesis of Offset
Dual-Reflector Antenna Transforming a Given Feed Illumination
Pattern into a Specified Aperture Distribution," IEEE Trans. on
Antennas and Propagation, Vol. AP-30, No. 2, pp. 251-259, March
1982.

B.S. Westcott, Shaped Reflector Antenna Design, Research Studies
Press, Ltd., Letchworth, Hertfordshire, England, 1983.

R.C. Johnson, H.A. Ecker, and R.A. Moore, "Compact Range
Techniques and Measurements," IEEE Trans. on Antennas and
Propagation, Vol. AP-17, No. 5, pp. 568-576, September 1969.

W.D. Burnside, "Reflector Edge, Target Support and Feed Antenna
Design for Compact Range," Internal notes of The Ohio State
University ElectroScience Laboratory.

M.S. Narasimhan, V. Anantharam and K.M. Prasad, "A Note on the
Shaping of Dual Reflector Antenna," IEEE Trans. on Antennas and
Propagation, Vol. AP-29, No. 3, pp. 551-552, May 1981.

E.P. Ekelman and S.W. Gilmore, "Comments on A Note on the Shaping
of Dual-Reflector Antenna," IEEE Trans. on Antennas and
Propagation, Vol. AP-34, No. 1, pp. 123-125, January 1986.

R. Mittra and F. Hyjazie, "A Method for Synthesizing Offset, Dual

Reflector Antennas," Proc. IEEE/AP and USNC/URSI Symposium, p.
243, 1978.

219



