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CHAPTER I

INTRODUCTION

The parabolic reflector antenna is the most useful and widely used

antenna type for communications purposes at microwave frequencies. A

parabolic reflector illuminated by a feed horn located at the focus of

the parabola radiates a so-called "pencil beam" pattern which is a

requirement for point-to-point communication. The other application of

reflector antennas is in the field of radio astronomy. Normally, high

gain and low noise temperature are required of the antenna for this

application. The focus-fed parabolic reflector has limitations for

large D/X since the spillover from the feed is usually pointed toward

ground which is a high noise temperature source. Consequently, dual-

reflector antennas derived from the Cassegrain telescope have been used

for high gain and low noise temperature purposes.

The parabolic reflector antenna with a feed at the focus preserves

a fixed aperture distribution and thus, has a fixed radiation pattern

when the feed pattern and the geometry of the reflector are given. The

introduction of a second reflector in a dual-reflector system such as

the Cassegrain antenna which consists of a hyperbolic subreflector and a

parabolic main reflector or the Gregorian antenna which consists of an

elliptic subreflector and a parabolic main reflector allows for more

control over the aperture distribution of the main reflector. Although

there is an extra degree of freedom provided by the addition of the

I



second reflector, the aperture distribution still possesses a certain

amplitude taper which limits the performance of the antennas.

Recent developments in the technology of space communications

require that the antenna gain be optimized; or that the power radiation

pattern of the antenna illuminates an irregularly shaped target area,

the so called "contour beam" antenna. For an antenna to have optimal

gain, the illumination on the main reflector must be such that the

resulting aperture distribution makes maximum use of the entire

reflector surface. For an antenna to have a power radiation pattern

that follows a prescribed function in the contour beam application, the

aperture distribution must be specially designed. None of these are

provided by the conventional prime focus fed parabolic reflector or

dual-reflector such as the Cassegrain or Gregorian antennas.

Most recently, the reflector antenna is being used as a way to

generate a plane wave which illuminates a target or antenna for

measurement applications in indoor facilities. Electromagnetic

measurements require that the antenna or scatterer under test be

illuminated by a plane wave with a uniform amplitude distribution. In a

compact range this is achieved approximately by a focused parabola. The

non-uniform amplitude distribution caused by the taper of the feed-horn

and the space attenuation limits the size of antenna or scatterer that

can be measured.

In the past 20 years, considerable research has been conducted in

the area of dual-reflector antenna shaping to provide the capabilities
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that the conventional reflector antennas are not able to achieve. These

capabilities include:

1. Maximize the illumination efficiency over the reflector

aperture so that the antenna gain is optimized.

2. Maximize the spillover efficiency so that most of the microwave

power radiates in the desired direction and the power radiated

to the other directions are minimized in order to reduce the

interference between adjacent antennas and antenna noise

temperature.

3. Generate particular aperture distributions so that the

radiation patterns of the antenna follow prescribed functions.

4. Generate a plane wave which has uniform amplitude and phase

distributions over most of the aperture of a compact range

reflector so that the size of antenna and scatterer under test

can be increased.

A new approach of dual-reflector shaping is proposed and studied in

this research. The main effort is limited to two-dimensional reflectors

although the approach is demonstrated for three-dimensional shaping of a

dual-reflector with circularly symmetric surfaces. This new approach is

based on the geometrical properties of Cassegrain and Gregorian

antennas. The shaped surface equations are formulated and solved

numerically.

Most reflector analyses and designs are based on the principles of

geometrical optics. The method of physical optics is also widely used

to calculate the scattered fields from reflector surfaces. These

i



techniques are briefly reviewed in Chapter II. Also, the geometrical

properties of conventional Cassegrain and Gregorian reflectors are

addressed in this chapter.

Chapter III discusses the formulation for shaping of dual-reflector

antennas when the primary source and required aperture distribution are

given. This is the basis of this research. A set of algebraic equations

are obtained. These equations have to be solved numerically. A

numerical approximation for solving these equations is presented in the

same chapter.

Several examples are presented in Chapter IV to validate the

formulation and solution of the surface equations. A conventional

Cassegrain or Gregorian reflector and feed pattern are assumed as a

starting point, and then the reflectors are shaped to obtain a

prescribed aperture distribution. The scattered fields of the

subreflector and main reflector for both conventional and shaped dual-

reflector antennas are calculated and presented for comparison.

One problem associated with compact range reflectors is the edge

diffraction from the sharp terminations of the main reflector surface.

This diffracted field enters the area where the antenna or scatterer are

under test and interferes with the plane wave reflected from the

reflector surface. This interference causes variations on both the

amplitude and phase of the plane wave illuminating the target under test

and reduces the accuracy of the measurements. The edge diffracted

fields can be reduced by adding rolled edges [1,2] to the main reflector

surface. This modification to the edges of the shaped main reflector is

4
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discussed In Chapter V. Examples are also shown to Illustrate the

improvement of adding rolled edges. The scattered fields from the

reflectors are calculated by the method of physical optics which results

In false end-point contributions to the scattered fields. The method of

correcting the end-polnt contributions [3,4] Is also reviewed In the

same chapter.

Chapter VI demonstrates the appllcatlon of the shaping processes to

three-dimenslonal circularly symmetric dual-reflectors that are

i11uminated by a primary source with a circularly symmetric power

radiation pattern and thus the secondary aperture distribution of the

reflector is also circularly symmetric.

A summary and conclusion of the study are given in Chapter VII.

Suggestions for further studies are also addressed. Three appendices

are Included. Appendix A presents a direct application of the

principles of geometrical optics to dual-reflector shaping. Appendix B

provides the details of solving the surface equations which are

formulated in Chapter III. Finally, Appendix C shows the calculation of

the geometrical optics reflected fields for the conventional Cassegrain

and Gregorian reflector antennas.
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CHAPTER II

THEORETICAL TECHNIQUES

This chapter briefly reviews the techniques which are used in the

analysis and synthesis of shaped dual-reflector antennas. The designs

of microwave reflector antennas are basically based on the principles of

geometrical optics. As to the pattern analysis of reflector antennas,

there are many methods available such as Geometrical Theory of

Diffraction (GTD) and Physical Optics (PO). In this study, the method

of Geometrical Optics (GO) is used to calculate the incident fields and

the induced surface currents on the reflector surfaces, and then, the

method of Physical Optics is used to calculate the scattered fields from

the reflector. These methods are briefly described in this chapter.

The method of synthesis of shaped dual-reflector antennas used in

this research is based on the ray geometries of conventional Cassegraln

and Gregorian dual-reflector antenna systems. The characteristics of

the geometrical optics reflected rays of these antennas are reviewed.

Throughout this research, the electromagnetic field is assumed time

harmonic, and the ej_t time dependence is understood and suppressed.

All the reflector surfaces are perfectly conducting and exist in free

space.
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2.1 Geometrical Optics

The electromagnetic field associated with the propagation of

visible light is characterized by a very high frequency of the field or

very small wavelength. A good first order approximation to the

propagation of electromagnetic waves at very high frequencies may be

obtained by neglecting the finiteness of the wavelength. The branch of

optics which is characterized by the neglect of the wavelength is known

as Geometrical Optics. Mathematically, Geometrical Optics is the

leading term in the asymptotic high frequency solution of Maxwell's

equations and is subjected to certain geometrical laws. An excellent

reference to geometrical optics is the work by Born and Wolf [5]. Some

basic properties of the geometricaloptlcs field are

1. The time-averaged electric and magnetic energy densities are

equal, and they are each equal to one half of the total stored

energy density.

2. The average Poynting vector is in the direction of the normal

to the geometrical wavefront, and its magnitude is equal to the

product of the average energy density and the velocity v=c/n

where c is the speed of light in free space, and n is the

refractive index of the medium. In free space, n=l so that

V=C.

3. Geometrical optics is a ray tracing technique in which

geometrical rays are the family of directed curves

perpendicular to the geometrical wavefront. Geometrical rays

!



also represent the direction of energy flow at every point. In

a homogeneous medium, the geometrical rays are straight lines.

4. The geometrical optics field is a transverse electromagnetic

field (TEH), i.e., the electric and magnetic field vectors at

each point are orthogonal to each other and to the ray.

5. In a homogeneous medium the polarization of the geometrical

optics field remains constant along a ray.

6. A ray optical field can be described in terms of an astigmatic

ray tube as shown in Figure 2.1. The electric field at s

associated with ray tube is given by

_(s) = _(o) A(p l,p2,s)e-jks (2.1)

in which _(o) is the field at the reference O, A(Pl,P2,s) is the spread

factor, and Ol,p2 are the radii of curvature of the geometrical wave

front. The spread factor is given by

I ___2_
A(P I,p2 ,s) = j(Pl+S)(P2+s )

(2.2)

which results from the conservation of energy along the ray. Equation

(2.1) expressesthe intensity law of geometrical optics. Since the

geometrical optics field is TEM, the magnetic field must also follow

these laws. If one of the radii of curvature is infinity as in the two-

dimensional case, the spread factor reduces to

8
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i Figure 2.2. Geometry associated vlth the reflectlon by a surface S.
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Figure 2.3. Induced surface current in the physical optics

approximation.
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distance from reflection point to observation point and p;,p_S

are the principal radii of curvature of the reflected

vavefront at the point of reflection OR . The unit vectors

associated with the dyadic reflection coefficient are defined

as

"i
ell= unit incident vector parallel to the plane of incidence and

perpendicular to the incident ray

r

ellffi unit reflected vector parallel to the plane of incidence and

perpendicular to the reflected ray

e I = unit vector perpendicular to the plane of incidence where the

plane of incidence is defined as the plane formed by the unit

"t
vectors s and n as shown in Figure 2.2.

The general expressions for p; and p; can be found in [6].

Hoverer, for some special surface geometries, p[ and p_ can be obtained

numerically or directly from the properties of the surfaces. When one

of the radii of curvature goes to infinity, as in the two-dimensional

case, the reflected electric field becomes

Dr(s) = __i(QR) • R e-jks

J Pl +s

(2.5)

For a two-dimensional surface which is infinitely long along the z-axis,

the reflected electric field for a TE polarized incident wave (generated

by a z-directed electric line source) is given by

12



I

I

I

I
_r(s) = Er(s)z = -zEi(QR)

"----'---I

r

Pl -jks
e

r

Pl +s

(2.6)

I

I

and the reflected magnetic field for a TM polarized incident wave

(generated by a z-directed magnetic line source) is given by

I _r(s ) = Hr(s)z = zHi(QR)

I

r

Pl -j ks
e

r

Pl +s

(2.7)

I

!
I

I

One final note for the geometrical optics reflected field is that the

law of reflection is satisfied; i.e., the angle of incident Oi and the

angle of reflection e r are equal, and the incident vector s 1, the

reflected vector _r and the surface normal n are co-planar.

2.3 Physical Optics

Physical optics (PO) is also a high frequency method which uses the

I
I

I
I

integral equation representation, along with the physically reasonable

high frequency assumption that the scattered field from one point on a

body to any other point is insignificant compared to the incident field

strength. This method is based on the approximation of Stratton-Chu

Equations for the scattered field [7] and states that for scattering

from a perfectly conducting body in free space, the scattered fields are

given by

I

i
13
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and

1 (_s • V)V_] ds (2.8)

i_S = fS (_S X V*)ds. (2.9)

Note that _ is the free space Green's function, and _ is the induced
s

surface current on the scatterer surface as shown in Figure 2.3. In

general, the induced surface current _s is given by

M

= n x _I_OTAL = n x (_i + _s)
S (2.10)

in which _TOTAL is the total magnetic field on the surface of the

scatterer, _i is the incident magnetic field on the surface, and n is

the surface normal. Substituting Equation (2.10) into Equations (2.8)

and (2.9), it is apparent that the unknown field _s appears on both

sides of the equation so that a coupled set of integral equations is

obtained. Although one can solve _s by the Method of Moments, it is

very tedious and inefficient since the size of the scatterers is usually

very large in terms of a wavelength in the high frequency region.

Consequently, from the boundary conditions at the perfectly conducting

surface, one obtains that

M

n x _i = n x _s on surface S.

The induced surface currents are approximated by

14
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I

_S = {20 n x _i

on the lit side

on the shadow side

(2.11)

and the scattered fields _s and _s can be calculated by Equations (2.8)

and (2.9). This is the so-called "physical optics" approximation. The

approximation to the induced surface currents are valid when the

transverse dimensions of the surface, the radii of curvature of the

surface, and the radii of curvature of the incident wave front are all

much larger than a wavelength.

For the three-dimensional case, the free space Green's function is

-jkr
e where r is the distance from the source point to the field point

4_r

and when r_k, Equations (2.8) and (2.9) become

and

_s JkoZo I [2S- (2S" ")r] e-jkr= 4_ s r r ds (2.12)

iP_4nl ;3sX v ds. (2.13)

For the two-dimensional case, the free space Green's function is

1 "(2)(kp) where H(2)(kp) is the zero th order Hankel function of the
4-j no o

2nd kind, and the surface integral in Equations (2.8) and (2.9) should

be replaced by a line integral. There are two polarizations in the two-

dimensional problem_ one is the Transverse Electric (TE) case, and the

other is the Transverse Magnetic (TM) case. In the TE case, the

15
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incident fields are generated by an electric line source along the z-

axls_ while in the TM case, the incident field Is generated by a

magnetic llne source along the z-axis.

For an electric line source, the incident electric field is _i=zE_--

field is _i=_H_ as shown in Figure 2.4. Theand the incident magnetic

physical optics induced surface current _siS given by

= = . (2.14)_s = 2 n x _I 2 n x H = z CH zJz

I

I

I

I
I

Thus, from Equation (2.8) wlth the surface integral replaced by a line I

integral, one finds that

I

" ESz= -Jk°Z°over _ + _ (Jzz • V)V_dl (2.15) |

illuminated region

M

But _ (Jz z • V)V, = 0 since there Is no variation along z-axis, i.e.,

=0, thus
_z

kZ

ES _ 1 o(2)(kp) dI o o _ H(2) (kp)dlz = -JkoZo Jz " 4"j H = - _ Jz o

(2.16)

I

I

I

I
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Figure 2.4. TE incidence in two-dimensional case.
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For a magnetic llne source, the incident magnetic field Is _I=_ Hz;

thus, the induced surface current on the lit side is given as

= 2(n x _i)
S

or

ffi2(n x z Hz) = 1 C Hz
S

_s = 1 J1 (2.17)

A

where 1 is the unit tangent vector along the surface of the scatterer as

shown in Figure 2.5. The scattered magnetic field is then given by

_s = _i IJl x V_ dl (2.18)

in which

(; 8 1 8 ) 1 H(2)(kp)

k " d (o2)V, = + _jj p d(kp) H (kp)

or

v =+Vj p - )

k " _2)(kp)

18
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Consequently, one obtains

or

k

i_a = - _-_ J" (1 x p)J1 H_2)(kp)dl (2.19)

and the scattered magnetic field is given by

" I _ I= - _jj z z • (1 x (kp) dl. (2.20)

When the observation point is in the far-zone of the induced current the

large argument approximation of the Hankel function can be used and

Equations (2.16) and (2.20) become

I

!

I

_.__--Zz o _ eJ_'_I_z e Jk° dl (2.21)

HSz ffi - o eJn/4 z.(1 x ;) J1 e-JkP

it F
dl (2.22)

These two equations are used in this research to calculate the scattered

fields from the shaped reflector antennas.

I

I

I

I

I
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2.4 Conventional Cassegrain Reflector Antenna

The conventional Cassegrain reflector antenna is a two-reflector

antenna which is designed in the form of a hyperbolic subreflector and a

parabolic main reflector based on the principle of the Cassegrain

optical telescope [8]. The geometry of the Cassegrain system is shown in

Figure 2.6. The feed of the antenna is usually located at the real

focal point of the hyperbolic surface while the focus of the main

reflector is matched with the virtual focal point of the hyperbolic

surface in a focused system. The surface of the subreflector can be

described by

1[ (_/]_°x = a 1 + + _-- (2.23)

and the surface of the parabolic main reflector by

2

x = 4Z_---- (Fm-Fc). (2.24)
m

The various parameters associated with the reflector surface are defined

below:

F = distance between the two focli of the hyperbolic surface
C

F = distance between the real focus and the vertex of the

hyperbolic reflector

21
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Geometry of the Cassegrain antenna system.
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L = F -F = distance between the virtual focus and the vertex of the
V C

hyperbolic surface

e = eccentricity of the hyperbolic surface -

F
C

F -2L
C V

2a = length of the transverse axis of the hyperbolic surface = F /e
C

2b = length of the conjugate axis of the hyperbolic surface

Pattern analyses of the Cassegrain antenna have been well

established such as the one in [9]. One can refer to this reference for

more detail. However, the behavior of the reflected rays from the

subreflector and main reflector will be summarized here. For a focused

hyperbolic surface illuminated by a source located at the real focus,

the reflected rays from the surface appear to emanate from the virtual

focus. Thus, the reflected field caustic distance is equal to the

distance between the virtual focus and the point of reflection on the

subreflector. The reflected rays from the main reflector are then

parallel to the reflector axis since the incident rays radiate from the

virtual focus of the subreflector; i.e., the focus of the parabola. The

ray geometry is given in Figure 2.7. This phenomenon is the basis for

the dual-reflector shaping of this research.
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Figure 2.7.

Y

v

x

Ray geometry of the Cassegrain antenna system.
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2.5 Conventional Gregorian Reflector Antenna

Similar to the Cassegrain reflector antenna, the Gregorian antenna

is also a two-reflector system but, instead of the hyperbolic

subreflector, the subreflector is an elliptical two-dimensional surface

and the focus of the main reflector lies between the two reflectors as

shown in Figure 2.8. The elliptic surface has two focii and the focus

of the main reflector is usually matched with focal point #2 while the

I primary feed is located at focal point #1 in the focused case. The

surface of the elliptic subreflector can be described by

I y2' F c

i x = a Jl - b2 + _--
(2.25)

I and the equation for the surface of the main reflector is the same as

I Equation (2.24). The parameters of the antenna are

I
I
I

I

I

I
I

F = distance between the two focii of the elliptic surface
c

F = distance between focal point #1 and the vertex of the elliptic

reflector

L = F -F
V C

F
C

e = eccentrlclty - F _2L

C V

2a = length of the major axis of the elliptic surface = Fc/e

2b = length of the minor axis of the elliptic surface = a

Note that F <F so that L is negative and e<l.
C V
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The ray geometry of the Gregorian antenna is shown in Figure 2.9.

_hen illuminated by a source located at focal point #1, the reflected

rays from the elliptic subreflector pass through focal point #2 and the

reflected rays from the main reflector are again parallel to the

reflector axis since the incident rays emanate from focal point #2. The

caustic distance of the reflected ray from the subreflector is the

distance between focal point #2 and the point of reflection on the

subreflector surface. However, this caustic distance is negative since

the reflected rays pass through it.
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Figure 2.8. Geometry of the Gregorian antenna system.
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Figure 2.9.

Y

Ray geometry of the Gregorian antenna system.

28

X

I

I
I

I

I
I

I

I
I

I
I

I

I

I

I
I

I

I

I



I

I
I

I
I

I
I

I

I
I

I
I
I
I

I

I
I

I

C_LPTER III

SYNTHESIS OF TVO-DIMENSIONAL DUAL-REFLECTOR ANTENNAS

3.1 Introduction

The design of dual-refldctor antennas, including the conventional

Cassegrain parabola-hyperbola and Gregorian parabola-ellipse antennas,

are all based on the principles of geometrical optics. Since

geometrical optics is a high frequency method, the reflectors must be
#

large and have a large radius of curvature compared to the wavelength.

The principles of geometrical optics state that:

1. Shell's law [10] must be satisfied at each reflector, that is,

the incident ray, the reflected ray, and the surface normal at

the reflection point on each reflector must be coplanar, and

the angles of incidence and reflection are equal.

2. Power flow along each differential tube of rays remains

constant, even when the tube undergoes a number of reflections

(conservation of power [11]).

3. Ray directions are normal to the surface of constant phase, and

this condition is maintained after a number of reflections

(theorem of Malus [12]).
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Conventional Cassegrain and Gregorian reflector antennas are two

examples which satisfy the above principles. The geometries of these

two antennas are shown in Figures 2.6 and 2.8 of the previous chapter.

As discussed previously, with the source which has a spherical wavefront

(or cylindrical wavefront for the two-dimensional case) and is located

at focus #I, the reflected rays from the subreflector which satisfy

Snell's law of reflection appear to emanate from the second focus and

also have a spherical wavefront (or a cylindrical wavefront). Since

the second focus is also the focus of the parabolic main reflector, the

reflected rays from the parabola which also satisfy law of reflection

form a uniform plane wave and are parallel to the axis of parabola. It

can be shown that the power contained in the ray tubes before and after

reflection are equal in order to satisfy the law of power conservation.

Also, the incident and reflected rays from each reflector are normal to

their corresponding wavefront.

In general, the geometrical optics designs of dual-reflector

antennas must satisfy the above principles either mathematically or

physically. Galindo [13] and Kinber [14] used these principles to set up

two flrst-order ordinary differential equations which can be solved

exactly, if possible, or numerically to obtain a couple of circularly

symmetric reflectors for realizing a prespecified aperture amplitude

distribution. Green [15] and Williams [16] also used these principles

to design the subreflector and then correct the main reflector to

achieve the desired uniform phase criterion at the aperture plane of

main reflector. A direct application of principles of geometrical

3O
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optics in dual-reflector antenna shaping is given by [17] and is

discussed in Appendix A. For offset dual-reflector antennas, these

principles are again used to obtain partial differential equations which

are then solved numerically to obtain the surfaces [18,19,20]. Westcott

%

[21] used complex coordinates to set up a Monge-Ampere type partial

differential equation, and solved this equation as a boundary value

problem to synthesize a dual-reflector antenna. He also used the same

approach to synthesize a single reflector for relating a given feed

pattern to a prescribed far-zone pattern. In the following section, a

new approach which is based on the knowledge of ray behavior of the

conventional Cassegrain and Gregorian antennas is presented. Instead of

setting up differential equations or heuristically designing the

subreflectors, a set of nonlinear algebraic equations are obtained and

solved numerically to obtain the surfaces. Also the caustics of the

reflected rays from the subreflector can be obtained and examined.

3.2 Method of Synthesis

As discussed in the previous section, a focus-fed Cassegrain or

Gregorian reflector antenna will generate a uniform plane wave on the

aperture plane of the main reflector. However, for a given primary

source, the amplitude distribution of the aperture field preserves a

certain amplitude taper which is fixed when the source and the

parameters of the reflector surfaces are specified. From geometrical

optics, it is known that the amplitude of the reflected field is

dependent on the space spread factor or the location of the caustic of
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the reflected wavefront. In order to realize a given aperture amplitude

distribution for a given primary source, the incident rays on the main

reflector which are also the reflected rays from the subreflector have

to be different from those for the conventional Cassegrain and Gregorian

reflectors. Also, in order to generate a uniform plane wave, the main

reflector locally must have the properties of a pure parabola with its

axis parallel to the ray direction of the desired plane wave. Since the

caustic of the reflected ray from the subreflector is also the focus of

the main reflector, this caustic will not be a fixed point as in the

conventional Cassegrain and Gregorian antennas so that the amplitude

distribution of the aperture field can be controlled by moving the

caustic for each ray reflected from the subreflector. The formulation of

this synthesis method will be discussed in detail in this section for

two-dlmensional reflectors. The general geometries are given in Figure

3.1 for both concave and convex subreflectors. The coordinate origin is

assumed at the point where the primary source is located. Although these

formulations are basically for two-dimensional geometries, they can be

easily modified for shaping of three-dimensional dual-reflector antennas

with circular symmetry.

The basic idea is that for a differential tube of rays emanating

from the primary source, the subreflector section between the

intersection of the incident ray tube and the subreflector (i.e., the

surface between (xlO,Ylo) and (xl,Yl)) is assumed to be either a

hyperbola or an ellipse with the two focii at the coordinate origin and

the caustic point (Xc,Yc). The corresponding section on the main

32
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reflector (i.e, the surface between (x20,Y20) and (x2,Y2)) is assumed to

be a perfect parabola with focus at (Xc,Yc). Also shown in Figure 3.1

is (Xco,Yco) which is the caustic of the previous reflected ray tube.

Based on these assumptions, one can set up a set of equations and solve

these equations to obtain a solution of (Xc,Yc) , (xl,Yl) and (x2,Y2).

These solutions will be accurate as long as the width of the incident

ray tube from the primary source is small. The formulations for the

surface are given below. Note that the "old" ray in Figure 3.1 is

assumed to be known; i.e., (xlo,Ylo), (x20,Y20) and (Xco,Yco) are known.
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Figure 3.1. Geometry of shaped dual-reflector.
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Figure 3.1. Continued.
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3.2.1. Formulatlon

A. Subreflector

The canonic form of a hyperbola as shown In Figure 3.2 can be

written as

2 2
x_._ _Z_ =1

a 2 b2

where 2a is the transverse axial length, 2b is the conjugate axial

length, and b is related to a by

F2 _ 4a2

b2 = c
4

Note that F is the distance between the two focii F' and F, and
C

2a = F'P - FP .

The canonic form of an e11Ipse as shown In Figure 3.2 can be

written as

2 2

x--_+ =1
a

where 2a is the major axial length, 2b is the minor axial length. The

axial length can be related by
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Canonic form of hyperbola and ellipse.
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2 4a2-F2c F2c-4a2 l

b -_=- _- . I

Also, one finds that I

2a = F-Tp + F"P I

By observing that b 2 in both the concave and convex cases has the same i

expression except for the sign, one can write, in general, the surface

as I

2 2 I

I
where b2<O for an ellipse

b2>O for a hyperbola

m

2a = F'P + FP for an ellipse, and

m m

2a = F'P - FP for a hyperbola

From these canonic forms for the hyperbola and the ellipse, the

shaped subreflector section between (xlo,Ylo) and (xl,Yl) which is

assumed to be a hyperbola or an ellipse can be formulated by proper

rotation and translation of the corresponding canonic form. As shown in

Figure 3.3, the distance Fc between the two focii for this section is
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(a) convex

y ##
NEW RAY
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, l \ \k/',=,,_>/
\ \ .--\i,,,y,I\

(b) concave

Figure 3.3. Geometry of shaped subreflector section.
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given by

I
I

I

The transverse axial length is given by

{I X2 2 1 [IX_ - 12 IY 12]_}+ - YC +: ellipse II2a = 10 + YlO + 10 Xc 10 -: hyperbola

where (xlO,Yl0) is assumed to be known a priori.

surface section is then defined by

2

_)2_)i

The subreflector I
I
I

but x" = x'cose + y'slne and y" = -x'sinO + y'cosO.

Then, x' and y' are related to x and y as

and

X
C

X t ffi X - _-

YC

yt __ y _ _-- •

The surface in the x-y coordinate is given by

40
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i

I

i

i
I Ix-÷/,_o_+/_- oo_,_-_

I vhich can be further simplified to

cose + ysine - F2 4a 2
C

I

I

x sine - ycose}2= 1

since Fccose = Xcand Fcsine = Yc"

The unknown subreflector surface point (xl,Y 1) must thus satisfy the

following equation:

I

I
4

- F2_4a2
C

xlsinO - YlCOSe) 2
=1

(3.1)

I
I

I

vhere

_x 2]F2 = 2 + YcC C

4a2 = 10 + YlO + lO-Xc + IO-Yc

+: ellipse

-: hyperbola

I and

I

I
['°Ie = tan-1 Xcc .
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B. Maln Reflector

The canonic form of a parabola, as shown in Figure 3.4 can be

described as

2
x Y

= 4F

where F is the focal length of the parabola and can be expressed as

1
F =_ (1 - cos =)p •

Now, by assuming that (x20,Y20) and (x2,Y 2) form a parabola with the

focus at (Xc,Y c) as shown in Figure 3.5, the following expression is

obtained to describe the main reflector surface:

Xc_F) 1x - = _-_ (y - yc) 2

where

1
F = _ (1 - cos _)p

or

l-sec c_o)l(Xc-X20)

F = 1 1 1-cos _
_-2 s-_d (Yc-Y20)

0

if Xc_ x20

if yc _ Y20
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43

cr

_---X

FOCUS

I



Y

(Xzo,Yzo)/_
I

I

/
I

I
/

I
I
I
I
I
I

/ t(Xc_ F, Yc
VERTEX I

OF _
PARABOLA

/.,_.....--PARAB 0 LA
I

I

AXIS.OF" PARABOLA (Xe,Y c)

F _

Figure 3.5. Geometry of shaped main reflector.
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I

I

I Therefore, the new main reflector surface point (x2,Y2) must satisfy

I 1 (y2_Yc)2x2 - (Xc-F) = _-_ (3.2)

I
Equations (3.1) and (3.2) give two equations with 6 unknowns

I
I

I
I

(xl,Yl,X2,Y2,Xc,Yc). Four more equations are required to solve for all

the unknowns. Basically equations (3.1) and (3.2) satisfy the theorem

of Malus which has been discussed earlier. The other two conditions of

geometrical optics will be used to obtain four more equations.

C. Snell's Lay of Reflection

At the point of reflection, the angles of incidence and reflection

I
I

I

must be equal, and the incident ray, reflected ray, and surface normal

must be coplanar. Since the antenna is assumed to be in a homogeneous

medium, the incident and the reflected rays must be straight lines as

shown in Figure 3.6. Consequently, one finds that

I and Yl = (tan@)xl = moXl

(3.3)

I
I

I
I

(x2-xl)(yc-y 1) = (y2-Yl)(Xc-X 1) (3.4)

The angles of incidence and reflection will automatically be equal since

the reflection point (xl,Yl) is on either the hyperbolic or the elliptic

subreflector. Snell's law of reflection will also be satisfied

I
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Figure 3.6.

(Xz,Y z )

(Xzo, Yzo)

NEW RAY

OLD RAY

(X,o,Y,o)
_----X

PRIMARY ( Xc ° ,Yco ) CloSOURCE

(Xc,Yc)

Geometry for describing the relations of various points.
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I

I

I

I

I

automatically on the main reflector. One more equation can be obtained

from Figure 3.6 by considering that the intersection point of the "old"

ray with the "new" ray must be (Xc,Yc); i.e.,

Xc-Xco x20-xlO 1

yc-Yco Y20-Ylo tan c_°
(3.5)

which can be rewritten as

and

x = x + _p COS_
C CO 0

Yc = Yco + 4p sin_ o

Note that 6p is the unknown distance between (Xc,Yc) and (Xco,Yco) and

can be positive or negative.

D. Conservation of Power

The major purpose of shaping the reflector is to redistribute a

given primary source pattern into the prescribed secondary aperture

distribution. Thus, conservation of power has to be satisfied.

Consider a primary source with a power density pattern F(#) and with its

axis tilted _o with respect to the positive x-axis. Note that the tilt

angle _o is zero for a symmetric reflector. The power between _bf-_min

and _b=-#max of this primary source is to be distributed over a secondary

aperture between Y=Ymin and Y=Ymax with an aperture distribution CI(y).

The angles _, #min and @max are also measured with respect to the
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positive x-axis. The constant C is determined from the conservation of

power which states that

"_max

_min

F(@)d@ =

_max

C I(y)dy

Ymin

or

_max

C = J_min

F(_)d_

maX I(y)dy
min

Note that in this study, the aperture blockage effects from the

subreflector are not considered. It is assumed that the shaping process

begins at the point where the incident ray from the primary source is

along the feed axis _=-_o and the surfaces above and below this

point are shaped separately. Thus, the conservation of power relates

the feed angle @ and the aperture point y as

F(@)d_ = C I(y)dy

_o o

(3.6)

where Yo is the point at the aperture which corresponds to the ray which

emanates along the feed axis. The geometry of describing conservation
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I

l

I

l

of power is shown in Figure 3.7. For a given y (or 4), the

corresponding 4 (or y) can be solved from Equation (3.6).

The equations obtained thus far are summarized as follows:

a + F2-4a 2 -

! °

i
1

x2 - (Xc-F) = _ (Y2-Yc)2

i Yl = (tan4)xl

l
(x2-xl)(yc-y 1) = (Xc-Xl)(y2-y 1)

I

l and

Xc-X20 x20-xlO 1

Yc-Y20 Y20-Ylo tan_o

I

I
I

I

I

'4

F(4)d4 =

4 o

in which

_max

iYmin I(y)dy

Y2

I(y)dy

YO

I

I 49

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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Figure 3.7.

Y

FEED AXIS

Y = Ymox

Y =Yo

-.----Ira, x

Y = Ymin

Geometry of describing conservation of power.
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x 2'_1/2Fc ffi c + Yc} (3.7)

IIx 2 2 _1/24a2 = 10 + YlO)

1211 '2I, .,-:e-,,,,,se+ 10 - Xc + 10 - Yc
-" _yperbola

0 = tan -1 Yl_-_e/

FcCOSO = Xc, FcsinO = Yc

and

-i0-sect°)(xcx2°)F = l_cos_ °

sin_o (Yc-Y20)

, if Xc# x20

, if yc _ Y20"

Although there are 6 equations with 7 unknowns (xl,Yl,X2,Y2,Xc,Yc,@)

one of these unknowns will be used as an independent variable so that

the other 6 unknowns can be solved by the 6 nonlinear algebraic

equations.

It is also noted that the method of shaping discussed above will

generate uniform phase on the aperture when the primary source has a

cylindrical wavefront since the path length from the primary source to
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the aperture plane will be the same for two adjacent rays which are from

the same section of a Cassegrain or Gregorian surface.

3.2.2. Solution for the Surface Equations

It is obvious that to solve the equations obtained in the previous

section will not be easy even by numerical methods since they are

nonlinear. In this section, an approach is proposed to solve these

unknowns.

As mentioned earlier there are 6 equations with 7 unknowns;

therefore, one of the unknowns must be chosen as an independent

variable. The obvious choice will be either Y2 or @ since once one of

these two variables is specified, the other one can be obtained from

Equation (3.6). This reduces the set of equations to five equations

with five unknowns. It is also noted that the above equations involve

"old" and "new" rays and in the very first stage, the "old" ray is not

defined unless one provides a set of initial points _(xlO,Ylo),(x20,Y20)

(Xco,Yco)). Once these initial points are set, the method whichand

will be discussed next can be used to solve for Xl,Yl,X2,Xc,Y c and then,

these newly generated points will be used as the "old" ray to solve the

next "new" ray. This process is continued until the complete surfaces

are generated.

The procedure of solving the above equations is discussed as

follows:

1) From Equation (3.3),
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I

I Yl = (tan@)xl = moXl (3.7)

I 2) Substituting (3.7) into (3.4), one obtains

I
I

I

I Xl ffi

I

XcY 2 - x2Y c

xI = y2_Yc_mo(X2_Xc )
(3.8)

3) Substituting Equation (3.2) into Equation (3.8), one obtains

4F XcY2-y c [(y2-Yc)2 + 4Fx c - 4F2]

,_<,__o>mo_[(_o_o)_÷,Fxo,F2],Fxc)
(3.9)

I

I

I

4) Substituting Equations (3.7) and (3.9) into Equation (3.1), an

equation vhich involves Xc,Yc,m o, Y2 is obtained.

equation is

The resulting

+4Fx c - 4F2]12

I

I
I 14F lY2,Yc+moXc) " mo [IY2-Yc]2+4FXc-4F2] 1

I

I
=-1 (F2c-4a21214FIY2-Yc+moXcl-mo[lY2-Yc)2+4FXc-4F2]} 2

(3.10)
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Although Equation (3.10) has mo,Y2,F and Fc involved, it is noted that

both m° and Y2 are known at this point and that F and Fc are functions

of x c and Yc only.

5) There are two equations, Equations (3.5) and (3.10), with two

unknowns x c and Yc which can be solved. However, Equation (3.10) is

again a nonlinear equation so that it is still very difficult to solve

for x c and Yc exactly. Consequently, a numerical method has to be used

to solve for x c and Yc" One can directly solve these equations

numerically, or by observing that Equation (3.5) can be written as

and

X = X + Ap COS(X
C CO 0

Yc = Yco + Ap sinc_o (3.11)

in which Ap is the unknown distance between (Xco,Yco) and (Xc,Yc).

After substituting Equation (3.11) into Equation (3.10), only one
\

unknown Ap is involved. But this equation is still not easy to solve.

However, it is expected that Ap wlll be very small when the angle _ (or

the aperture point y2 ) Is changed gradually (i.e., the increment of _ is

very small) one can neglect the higher order terms of 6p such as (Ap)2,

(Ap)3, etc., in the newly obtained equation. After Ap Is solved, all

the unknowns can be solved. The detailed procedure of solving these

unknowns is given in Appendix B.
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CIIAP'rER IV

EXAMPLES FOR S_.PING OF _O-DIMENSIONAL DUAL-P_FLECTOR ANTMA

The method of synthesis for dual-reflector antennas discussed in

the previous chapter is actually quite general. For a given feed

pattern, feed location, angular range of feed pattern which will

illuminate the subreflector, and the desired aperture size and

distribution, the reflector surfaces can be generated numerically

provided that a set of appropriate initial points for the caustic,

subreflector and main reflector is given. This set of initial points

must satisfy a ray condition that the resulting aperture field obtained

by connecting the rays through these points is equal to the desired

aperture field. Two of the three initial points are chosen, the third

one can be calculated. Generally, the initial points on the

subreflector and main reflector are chosen and the initial point for the

caustic is then calculated by the formula discussed in Appendix C.

However, as it turns out, if the three initial points do not satisfy the

above ray condition, the solution for the surface itself will try to

correct the set of inappropriate initial points. This phenomenon can be

seen from the examples given later in this chapter.

Several examples of two-dimensional dual-reflector shaping are

presented in this chapter to illustrate the method of synthesis
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discussed in the previous chapter. In these examples a conventional

Gregorian or Cassegrain antenna is used as a starting point for the

reflector surface; and a magnetic line source with power radiation

intensity (cosq_) is used as the primary source. The goal of shaping is

to modify the given reflector surfaces so that a prescribed aperture

distribution with uniform phase is achieved at the aperture of the main

reflector. The physical optics approximation is then used to calculate

the scattered field from the shaped surfaces although the geometrical

optics is used to compute the induced surface currents on the reflector

surfaces.

In each example, the location of a "central ray" at the aperture is

assumed known where the central ray is the reflected ray from main

reflector which corresponds to the incident ray coming along the axis of

primary feed. This central ray is used to determine the initial points

of shaping. The reflector surfaces above and below the central ray are

then shaped separately. The initial points on the reflector surface can

be determined by the intersection of the central ray with the initial

Cassegrain or Gregorian reflector surface; and the initial point for the

caustic is determined by the condition given in Appendix C.

In addition, as mentioned earlier, there are six equations with

seven unknowns related to these problems. Therefore, one of the

unknowns has to be an independent variable. Consequently, the

appropriate choice is either (y2) or (4) since these two variables are

related by the equation of conservation of power. Once one of these two
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variables is fixed, the other variable is then found. The conservation

of power principle implies that

or

@ F(@)d@ = I C I(y)dy

_o o

F(@)d@ = C I(y)dy

(4.1)

(4.2)

for a differential ray tube in which Yo is the location of central ray

at the aperture plane. This corresponds to the incident ray coming

along _=@o of the primary feed where @ is measured from the positive x-

axis. From Equation (4.2), one can determine the point by point

relation between the aperture point Y2 and feed angle _ and thus, the

rest of the equations for the reflector surfaces are solved by the

method discussed in Chapter III and Appendix B.

4.1 Shaping of a Center-Fed Gregorian Reflector Antenna for a Uniform

Aperture Distribution

In this section, a center-fed two-dimensional Gregorian reflector

antenna is used for a starting point of shaping. The geometry of this

reflector is shown in Figure 4.1 with the following parameters:

F = 0.6667'
m

F = 0.1667'
C
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Figure 4.1. A conventional Gregorian reflector antenna.
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L = -0.1'
V

D = 2.0'
m

%r = 31"42°"

These parameters are defined in Chapter II. The requirement for shaping

in this example is to spread the power of the primary feed between -_r

and +_r into a uniform aperture distribution between y=-l.0' and yffi+l.0'

with the central ray located at y=O.O'. A magnetic line source with

radiation intensity cos20@, as shown in Figure 4.2, is used as the

primary feed. The scattered field patterns are calculated for both the

unshaped and shaped reflector for the purpose of checking the resulting

scattered fields after the reflector surfaces are shaped.

The far-zone scattered fields from the subreflector of the original

Gregorian reflector antenna calculated at 20 GHz are shown in Figure 4.3

and the near-zone scattered fields from the parabolic main reflector

which were calculated at x=2.0' and 20 GHz are shown in Figure 4.4. In

Figure 4.3, e is the angle measured from the negative x-axis and the

phase center for the subreflector scattered fields is located at focal

point #2 of the reflector. The dashed line in these figures shows the

geometrical optics reflected field while the solid line shows the

scattered fields calculated by the method of physical optics. The

ripple in the physical optics results is caused by the interaction of

the geometrical optics field with the edge diffracted field from the
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Figure 4.2. A cos20_ pover distribution.
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Figure 4.3. Far-zone scattered field of the subreflector for the

conventional Gregorian reflector at 20 GHz.
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Figure 4.4. Near-zone scattered fields of the main reflector for the

conventional Gregorian reflector at 20 GHz.
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sharp terminations of the reflector surface. Consequently, the

geometrical optics field passes through the average of the ripple. It

can be seen from the optics field that the main reflector has an

aperture edge taper of about -14dB. It is thus expected that the

reflector surfaces have to be shaped significantly in order to achieve a

uniform amplitude distribution. Also note that the G.O. phase pattern

of the far-zone reflected fields from the subreflector is constant since

the reflected field appears to emanate from focal point #2 which is the

phase center. The phase pattern of the main reflector indicates that

the aperture field is a plane wave.

It was mentioned earlier that in order to solve for the shaped

reflector surfaces, one has to provide a set of appropriate initial

points. However, if the initial points were not provided correctly, the

resulting surfaces tend to adjust themselves in order to get the correct

surfaces. Both of these cases are given next. Example G1 uses a set of

initial points vhich do not satisfy the ray condition derived in

Appendix C; whereas, Example G2 uses appropriate initial points which

satisfy the ray condition.

4.1.1 Example G1

The initial points for shaping are chosen as the intersection

points of the central ray vith the initial subreflector and main

reflector surfaces, and the initial point on caustic is the second focus

of the initial elliptic subreflector. The resulting reflector surfaces

are shown in Figure 4.5. The subreflector surface is replotted in
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Figure 4.6. The solid llne shows the shaped reflectors whereas the

dashed line shows the initial Gregorian reflector. The initial points

for the shaping are indicated by small circles in these figures. Also

shown in Figure 4.5 is the caustic curve for the reflected rays from the

shaped subreflector. The upper half of the caustic curve corresponds to

the lower half of the subreflector and the upper half of the main

reflector; whereas, the lower half of the caustic curve corresponds to

the remaining reflector surfaces. As is evident in Figure 4.6, the

choice of the initial points are not quite correct. This happened

because the power of the primary feed needs to be redistributed, and

thus, the initially chosen points will not give the correct field at the

aperture. However, the results of the analysis show where the

appropriate initial points should be located since the solution tries to

adjust the incorrect initial points to fit the right surfaces. Thus,

one can choose the initial points indicated in these results and repeat

the shaping process. The resulting surfaces which are designated as

Example G1 are shown in Figures 4.7 and 4.8, and turn out to be

identical to the previous results except for the initial points. This

illustrates one of the characteristics of this method of synthesis;

namely, that incorrect initial points on the reflector surfaces and

caustic curve will be automatically corrected.

It can be seen from Figure 4.7 that the caustic of the reflected

ray from the subreflector does not stay at a fixed point, instead, it

moves gradually near the beginning of shaping but changes rather rapidly
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Figure 4.6.
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Subreflector and caustics for the shaped dual-reflector

with inappropriate initial points of Example G1.
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Figure 4.7. Improved shaped dual-reflector of Example G1.
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Figure 4.8.
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Subreflector and caustics of the improved shaped dual-

reflector of Example G1.
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toward the end of the shaping. The explanation for this behavior is that

during the shaping process the incident field which emanates from the

primary source tapers off, and thus, the reflected field from the

subreflector must also decrease unless the spread factor of the

reflected field increases. It is the magnitude of this subreflector

reflected field which determines the magnitude of the aperture field

since its magnitude does not change after reflection from the main

reflector. The spread factor for this case is given by

I '-PC

where Pc is positive and is the distance between the caustic and the

reflection point on the subreflector; and s 1 is the distance between the

reflection points on the subreflector and main reflector. Thus, in

order to increase the spread factor the magnitude of oc has to be

increased. Consequently, the caustic curve moves away from the

subreflector surface. Figure 4.9 shows two rays for this reflector.

The scattered fields for Example G1 which are calculated at 20 GHz

are given in Figures 4.10 and 4.11 for the far-zone subreflector and

near-zone main reflector patterns, respectively. Both of these patterns

are different from the conventional Gregorian reflector as they should

be. The resulting near-zone scattered fields from the main reflector

indicate that a uniform plane wave with a uniform amplitude distribution

is nearly obtained. Also notice that the phase pattern of the

subreflector geometrical optics scattered fields is not a constant as in
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the conventional Gregorian reflector case since the caustic of the

shaped subreflector reflected field is not a fixed point.

4.1.2 Example G2

The initial points on the subreflector and main reflector are

determined by the intersection of the central ray with the original

subreflector and main reflector of the Gregorian antenna in this

example. However, instead of using the second focus of the elliptic

subreflector as the initial point for the caustic curve, the ray

condition discussed in Appendix C is used to determine the initial point

for the caustic. The resulting surfaces which are designated as Example

G2 are given in Figures 4.12 and 4.13 for the overall system and the

subreflector, respectively. Figure 4.14 shows two rays for the shaped

reflectors. The far-zone scattered fields of the shaped subreflector

and the near-zone scattered fields of the shaped main reflector

calculated at 20 GHz are shown in Figures 4.15 and 4.16. Comparing

these results with the ones of example G1, it is found that the

subreflector scattered patterns are not quite the same, but the

scattered patterns of the main reflector are identical in magnitude.

This shows the non-uniqueness of the shaping solution when the initial

points for shaping are different. The major difference in the reflector

surfaces between Examples G1 and G2 is that the subreflector surface and

the caustic curve are shifted although the overall surfaces are only

slightly different.
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4.2. Shaping of an Offset Reflector Antenna (Example G3)

In the previous section, a center-fed symmetric Gregorian antenna

was shaped to generate a uniform plane wave with a uniform aperture

distribution in which the aperture was designated between y=-l' to

y=+l'. In this section, an offset fed Gregorian reflector is used as

another example to illustrate that the same shaping process can be

applied to an offset dual-reflector system. This example is designated

as Example G3. The geometry of the initial offset Gregorian reflector

is as follows: F =9.5,, F =8.5', L =-1.5' and is shown in Figure 4.17.
m c v

The central ray of the main reflector is designated at y=8.5'. The

initial points on the subreflector and main reflector surfaces are

chosen as the intersection points between this central ray and the

initial Gregorian antenna. Consequently, the primary feed axis must be

tilted by an angle of -7.68 °. The primary source is a magnetic line

source wlth a radiation intensity cos200@ with respect to the feed axis.

The feed pattern is shown in Figure 4.18. A plane wave with a uniform

amplitude distribution is to be obtained between y=-l.0' and y=18.0' by

shaping the given offset Gregorian reflector antenna. This results in

most of the power of the primary source being contained between @=-8.5 °

and _=8.5 ° with respect to the tilted feed axis which illuminates the

subreflector. The feed pattern illuminates the edge of the subreflector

at about 9.6 dB below the peak of the feed pattern.

The far-zone scattered field from the original subreflector

calculated at 3 GHz is shown in Figure 4.19 for 0o<e_180 ° where e is
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measured from the negative x-axis. The near-zone scattered field of the

original main reflector calculated in the x=20.O' plane and at 3 GHz is

shown in Figure 4.20. It can be seen from Figure 4.20 that the original

offset Gregorian reflector has an aperture edge taper of about 10 dB.

The initial point on the caustic curve is determined by the ray

condition, and the resulting shaped reflectors are given in Figures 4.21

and 4.22. Figure 4.23 shows two rays for the shaped reflectors. The

far-zone scattered fields from the shaped subreflector and the near-zone

scattered fields from the shaped main reflector calculated at 3 GHz are

shown in Figures 4.24 and 4.25, respectively. It is obvious that the

requirement of obtaining a uniform aperture distribution is

approximately achieved except for the ripple which is caused by the

interaction of the edge diffracted field with the reflected field.

4.3. Shaping of a Center-Fed Cassegrain Reflector Antenna for Uniform

Aperture Distribution (Example C1)

An example of shaping a center-fed Cassegrain reflector is

discussed in this section. The geometry of the original antenna is

given in Figure 4.26 with the following parameters:

F =0.6667'
m

F =0.5667'
C

L =0.1'
V
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D =2.0'
m

@r=18.26 °

A cos20_ power pattern magnetic line source is used as the primary

source. The incident field at the edge of the subreflector is 4.5 dB

down from the maximum. A uniform plane wave with a uniform amplitude is

to be generated between y=-l' and y=l' in which the central ray is

defined at y=0. The initial points for the shaped reflectors are chosen

at the intersection points between the central ray and the original

reflectors. The initial point on the caustic curve is thus determined,

The resulting shaped reflectors are shown in Figures 4.27 and 4.28 with

the original reflectors indicated by dashed lines and the shaped

reflectors by solid ones. The upper half of the caustic curve

corresponds to the lower half of the subreflector and maln reflector;

whereas, the lower half of the caustic curve corresponds to the

remaining surfaces. The behaviour of the caustic curve can be

explained in the same way as for the Gregorian case which is given In

Example GI. The caustic curve moves away from the subreflector surface

in order to increase the reflected caustic distance Pc' which is given

as

i i

PC

Sl+ Pc)
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Note that Pc increases in order to increase the reflected field and thus I

compensate for the taper of the primary source pattern.

The scattered fields of the original subreflector and main n

reflector calculated at 20 GHz are shown in Figures 4.29 and 4.30. The
a

scattered fields of the shaped reflectors are shown in Figures 4.31 and I

4.32. Two ray geometries for the shaped reflectors are shown in Figure I
q

4.33.

I
4.4. Shaping of a Center-Fed Gregorian Reflector Antenna for Non-

Uniform Aperture Amplitude Distribution (Example G4) N

In the previous examples, the purpose of shaping was to generate a
i

uniform amplitude distribution across a given aperture. In this U

section, an example is used to illustrate that the same shaping process |
can be used to generate a non-uniform amplitude distribution. The

reflector antenna of example GI and a magnetic line source IGregorian

I
with cos20# power pattern are used to generate the following aperture

distribution: I

I

This aperture distribution which is shown in Figure 4.34 has a -lOdB

edge taper at the edge of the main reflector; i.e., y=±l.0'. The

central ray is thus at y=O'.
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The resulting shaped reflectors are given in Figures 4.35 and 4.36.

It can be seen from these results that the caustic curve has a

discontinuity. The explanation for this behavior is that since the

aperture field is a function of

I - Pc

where Pc is the distance between caustic and the reflection point on the

subreflector, the shaping process tried to make Pc smaller in order to

generate a rapidly decreasing subreflector reflected field and aperture

distribution. Figure 4.37 shows two rays for the shaped reflectors.

The far-zone scattered fields of the shaped subreflector are given

in Figure 4.38; while, the near-zone scattered fields calculated in the

x=2.0' plane of the main reflector are given in Figure 4.39. These

scattered fields are calculated at 20 GHz. One can see that the

amplitude of the ripple on the near-zone scattered fields is smaller

than for the uniform aperture distribution case (i.e., Examples G1 and

G2) since the incident field at the main reflector edges is smaller, the

edge diffraction is not as significant.

4.5 Summary

Several examples are given in this chapter to demonstrate the

shaping process discussed in Chapter III. Scattered field results are

calculated for each case. These results indicate that the shaped

reflector can provide considerable improvement in obtaining the desired
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Figure 4.32. Near-zone scattered field from the main reflector of the

shaped dual-reflector of Example C1 at 20 GHz.
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Figure 4.34. Desired near-zone aperture distribution of Example G4.
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Figure 4.37.
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aperture distributions, as compared to the conventional Gregorian and

Cassegrain reflectors. The geometrical nature of the synthesis method

provides more insight into the way that the shaped reflectors work than

do the methods which depend on mathematical solutions to a coupled set

of differential equations. A major advantage is that one can determine

much about the practicality of the resulting reflector surfaces by

examining the caustic curve of the shaped subreflector. A good example

is the discontinuity in the caustic curve shown in Figure 4.36 for

Example G4. The kinks of the caustic curve indicate that the slope of

the surface curvature of the shaped subreflector is discontinuous which

cannot easily be seen by looking directly at the subreflector.

It should also be noted that the amplitude of the resulting

secondary aperture distribution is controlled by the amplitude of the

subreflector reflected field at the main reflector surface. The main

reflector is used primarily to adjust the phase of the reflected field

such that the resulting aperture distribution is uniform in phase.

All the pattern results shown in this chapter include the

diffracted fields from the edge of the reflectors. For compact range

applications, this will not provide satisfactory performance. In the

next chapter, a physical optics analysis is used to determine the

performance of the shaped main reflector with a blended rolled edge

attachment in order to reduce the edge diffracted fields.
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CHAPTER V

ROLLED EDGE MODIFICATION FOR THE SHAPED MAIN REFLECTOR

5.1 Introduction

For far-zone scattering and antenna measurements, one is required

to have a plane wave with a uniform amplitude illuminate either the

scatterer or antenna under test. This is often achieved by using an

outdoor far-zone range to simulate the plane wave illumination. There

are some serious limitations associated with outdoor measurements, such

as weather, interference, etc., which limit the accuracy of measurement.

Consequently, indoor measurement facilities are an alternative to

outdoor measurements although the uniform plane wave illumination is

still a requirement. The creation of a uniform plane wave by a focussed

parabolic reflector has been an attractive approach for indoor

measurement facilities. Conventional parabolic reflector antennas have

been used in so-called compact range measurement facilities [22].

Compact ranges are indoor facilities which provide the capability to

measure antenna pattern and scattering by simulating a plane wave

illumination on the test antenna or scatterer. There are basically two

drawbacks associated with the use of reflectors in compact range

applications. The first is that the plane wave reflected from the

parabola is not uniform in amplitude, as shown in Figure 5.1, due to the

illumination taper of the feed-horn and space-attenuation effects.

Consequently, the size of the available measurement volume is limited,

thus limiting the size of the test antenna or scatterer. The second
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drawback is that the abrupt termination of the reflector surface which

creates a very strong edge diffracted field as shown in Figure 5.2.

This diffracted field interferes with the plane wave and results in

magnitude and phase variations of the wave illuminating the test antenna

or scatterer. The measured results thus may not be accurate.

As pointed out in [2] the nonuniformity of the near-zone

distribution can be improved by using an offset reflector system such as

a Gregorian antenna vlth the primary feed tilted properly. It is also

conceivable that by properly shaping a dual-reflector antenna, the edge

taper problem can also be improved.

To solve the problem of edge diffractions caused by the sharp

termination of the reflector surface, one can make the reflector size as

large as possible so that the edge diffracted fields are not very strong

in the region where the antenna or scatterer under test is located so

that the resulting variations in the plane wave are not as significant.

However, this approach is very costly because it is not practical to

build such a huge reflector. The other way of reducing the edge

diffracted fields is to modify the sharp termination of the reflector by

adding rolled edges [23], as shown in Figure 5.3. The idea of a rolled

edge modification has been extensively studied by Burnside et al.

[1,2,3,4]. The addition of rolled edges to the reflector surface

introduces reflected fields from both the rolled edges and the

reflector. These two reflected fields are not continuous and there are

still diffracted fields which emanate from the junction of the rolled

edge and the reflector. However, this discontinuity in the reflected
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fields is much smaller than for the reflector with a sharp termination

since in the latter case, the GO reflected field vanishes outside the

shadow boundary of the reflector. Consequently, the variations in the

aperture fields are not as significant when the reflector is modified

with a rolled edge.

In this chapter, the rolled edge idea Is Implemented in the

analyses of the shaped main reflector in order to show the improvement

in the performance of the shaped dual-reflector for compact range

applications. Some examples are presented to validate this concept. In

calculating the scattered fields from the shaped main reflector and the

rolled edges, the surface currents are assumed to exist only In the

region which Is Illuminated by the reflected fields from the

subreflector and vanish elsewhere, as shown In Figure 5.4. This

assumption creates false diffracted fields from the points where the PO

currents vanish. The false diffracted fields also interfere with the

true scattered fields from the reflector surface. The method for

correcting this problem has been studied by Gupta and Burnside [3] and

is also discussed and used in this chapter.

5.2 Rolled Edge Attachment to Main Reflector

As was discussed earlier, the purpose of adding a rolled edge to

the main reflector termination is to create a smooth transition of the

geomtrlcal optics reflected fields from the reflector to the rolled edge

in such a way that the diffraction from the junction of the reflector

and the rolled edge is insignificant. Using this approach, the
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resulting incident wave in the measurement zone has very small ripple.

One other requirement of the rolled edge is that the reflected fields

from the rolled edge do not enter the measurement volume to interfere

with the reflected fields from the reflector. The detailed analysis of

a blended rolled edge attachment to the parabolic reflector can be found

in [2]. In this section, the rolled edge is used to modify the edge of

the shaped main reflector. The basic concept is still the same as for

the parabolic reflector case.

5.2.1 Elliptic Rolled Edge

Consider an elliptic rolled edge attachment to the shaped main

reflector as shown in Figure 5.5. The shaped main reflector is

terminated at point P with surface normal n and the ellipse is attached

at P in such a way that the tangents of the main reflector and the

ellipse are continuous. The two semi-axes of the ellipse are given by

ae and be . Consider a local coordinate system for the ellipse in which

the coordinate origin is at P, and Xe, Ye are the two axes such that
M A _ M

Xe=n, Ye=t. The parametric equation for the ellipse is given by

and

xe = ae(COS_-i ) (5.1)

Ye = besin_ (5.2)

for 0<v<_
u m m
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Figure 5.5.
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Note that _ is the angle measured from the x e axis, and _m is the angle

where the ellipse stops. In terms of the original x-y coordinate system

the surface of the ellipse can be expressed by

and

Xellips e = ae(COs_-l)cosO_-b sin_sinO_+x.t e c 3
(5.3)

Yellipse = ae(C°s_-l)sinet + besin_c°sOt+YJ (5.4)

in which et is the angle between n and the positive x-axis. This

defines the elliptic rolled edge attachment to one edge of the main

reflector. A similar definition can be used for the other edge. Since

the tangent at the junction of main reflector and ellipse is continuous,

the diffracted fields from this junction will be much smaller than for a

sharp termination of the main reflector. However, as seen from Figure

5.5, the main reflector is a concave surface; whereas, the ellipse is a

convex surface. The radius of curvature at P changes sign between the

main reflector and the e111pse and thus is obvlously discontinuous.

This results in a discontinuity of the G.O. reflected field between the

main reflector and ellipse. Consequently, diffracted fields emanate

from this junction in order to compensate for the discontinuity in the

reflected fields. In order to further reduce this diffracted field, a

blended rolled edge which is created by blending the main reflector with

the ellipse by some functions is used to improve the performance of the

rolled edge. This is discussed in the next section.
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5.2.2. Blended Rolled Edge

As discussed in the previous section the change of surface from the

main reflector to the ellipse creates diffracted fields from the

junction. A gradual change of the surface from the main reflector to

the ellipse can further reduce the diffracted fields from the junction.

This is done by the so-called "blended" rolled edge modification. The

elliptic rolled edge discussed in the previous section is transformed

into a blended rolled edge by the following relationship:

_blend(_) = _elltpse(_)b(_) + _main(_)(1-b(_)) (5.5)

in which _ellipse(_) is the equation of the ellipse, _main(_) is the

equation of the main reflector extended beyond the Junction and b(_) is

the blending function such that 0 _ b(_) _ 1 and b(O) = O, b(_m) = 1.

The idea of blending is shown in Figure 5.6. Note the the blended edge

is attached in the same way as the elliptic edge so that the surface at

P is smooth and continuous.
¢

The radius of curvature of the surface at the junction is also

continuous since the blended edge at the junction is actually the main

reflector because b(O)=O, and _blend(O) = _main(O). There are many

possible blending functions b(_) such as

I) b(_,) - _
m

: linear blending
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: square blending

3) b(v) = _ I - cos _mm
: cosine blending, and

4) b(_) = _ 1 - cos : cosine square blending

All of these functions satisfy the condition that O<b(n)_l, b(O)=0

and b(_m)=l. A detailed analysis of these blending functions can be

found in [2].

In order to generate the blended edge, it is necessary to specify

the portions of the pure ellipse and the extended main reflector surface

to be used. This is done by appropriately choosing the values of the

parameters ae, be, _m' and sm as shown in Figures 5.6 and 5.7. The

portion of the ellipse is defined by the maximum elliptic angle _m" The

portion of the main reflector is defined by Sm, the maximum distance

along the tangent of the surface at the junction point P. The point on

the ellipse which corresponds to a given point (x2,Y2) on the extended

main reflector is defined as follows. The parameter s along the tangent

t is calculated first by

1s = [y2-Yj[ 1 + _t (5.6)

where mt is the slope of t.
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Then, the elliptic angle _ which defines a point on the ellipse is

related to a point on the extended reflector surface through the

parameter s by

S

s m
m

From _, the point on the ellipse corresponding to x2,Y 2 can be

calculated by Equations (5.3) and (5.4). Finally, the blended rolled

edge is obtained from Equation (5.5) and is given by

xb = [1-b(_)]x 2 + b(v)[ae(COSV-1)cos8 t - besln_slnOt+x j] (5.8)

and

Yb = [1-b(_)]Y2 + b(_)[ae(C°s_-l)sinSt + besin_Jc°sSt+Yj] (5.9)

Although the slope and surface radius of curvature at the junction

between the main reflector and blended rolled edge are continuous, there

are higher order derivatives of the surface which are not continuous at

the junction and thus, some diffractions emanate from the junction. The

diffraction coefficient for such diffraction is not available so that

only the method of Physical Optics can be used to analyze the

performance of the reflector surface with a blended rolled edge.

However, as mentioned earlier, the induced surface currents in the

physical optics integral are assumed zero on the shadow side of the

surface although this is not true in reality. A method for correcting
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this problem has been investigated in [3] and is discussed in the

following section.

5.3 End-Point Correction of Physical Optics

The scattered fields calculated by the method of physical optics

for a two-dimenslonal scatterer are given by Equations (2.21) and

(2.22). For a magnetic llne source illuminating on the scatterer, the

scattered magnetic fields are given by

Hs o eJ,/4 z • x

z po

-- dl (5.10)

in which _ is the induced physical optics surface current on the
po

M

scatterer, p is the unit vector in the observation direction from the

current and p is the distance between the observation point and the

The physical optics current, _po' exists over the regioncurrent.

directly illuminated by the line source and is assumed to vanish on the

shadow side of the scatterer. The integration is thus performed only

over the lit side of the scatterer. By applying Equation (5.10) to the

shaped main reflector with a blended rolled edge termination on both

ends of the main reflector section, one can compute the ordinary PO

scattered fields from the entire reflector. The scattered fields

calculated this way include the following contributions:
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1. The stationary phase or reflection point contribution

which is equivalent to the geometrical optics reflected

fields,

2. The two end-polnt contributions which result from the

sharp termination of the surface currents at each end

shadow boundary, and

3. The diffracted fields from the two junctions between the

main reflector and the blended rolled edge.

These contributions are illustrated in Figure 5.8. The end-polnt

contributions are incorrect contributions because surface currents still

exist on the shadow side of the rolled edge. It is stated in [3] that

these end-point contributions do not give the correct creeping wave of

the curved surface. Consequently, the end-point contributions have to

be removed from the physical optics integral. This can be accomplished

by evaluating the physical optics integral asymptotically.

Consider the integral given by

I = _a F(1)eJk_(1)dl " (5.11)

The asymptotic evaluation of this integral [3] results in

2_

I ~ ]k[f,,(is) [

jkf(ls) jK/4 sgn[f"(ls)]

F(is)e e

(_l)nF n eJky(l )Iba+ jky'

n=O

(5.12)
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where 1 is the stationary phase point and is assumed away from the two
S

end-points l=a,b. Note that Fn is defined as

d .[In-l(1) .]
Fn - dl Ljky'(1)J (5.13)

I
I

I
with

Fo(l ) = F(1) .
(5.14)

The first term in Equation (5.12) is the specular reflected field and

the second term represents the two end-point contributions. Since

Equation (5.12) is an asymptotic representation of (5.11), there are

some higher order terms which have been neglected. One of these terms

is the diffraction from the junction of the main reflector and the

blended rolled edge. Consequently, one obtains the desired result by

subtracting these end-point contributions from the PO result such that

the scattered field is given by

 n'nHS = _F(1)eJkf(1)dl- ---- (5.15)

ja = Jkf' (i) I

Thus, by numerically integrating Equation (5.11) and subtracting the end

point contributions, one obtains the geometrical optics reflected field

plus the diffracted fields from the junction of the main reflector and

rolled edge. For surfaces which can be described analytically such as a

I

I

I
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parabola, the end-point contributions can be calculated analytically

[2]. In this study, the surface is'generated numerically, and thus, the

end-point contributions are computed numerically. The rest of this

section discusses the computation of the physical optics currents on the

shaped main reflector by geometrical optics for the cases where the

shaped subreflector is either concave or convex.

In formulating the surface equations for the shaped dual-reflector,

it Is assumed that the surface points (xl,Yl) and (x2,Y2) are located on

either a Cassegrain or Gregorian reflector with the caustic of the

subreflector reflected field at (Xc,Yc). Thus, the equations for

calculating the geometrical optics reflected field of a Cassegraln or

Gregorian reflector are used to calculate the reflected field of the

shaped reflector. For the case of a shaped dual-reflector with a

concave subreflector, as shown in Figure 5.9, the surface points (xl,Yl)

and (x2,Y2) are located on a particular Gregorian antenna with the

caustic of the subreflector reflected field located at (Xc,Yc). From

Equation (C.9), the reflected field at (x2,Y2) from the subreflector can

be calculated by

-Pc ' -jksl (5.16)

In which Hi(xl'Yl)z is the incident magnetic field at (xl,Y 1) and Pc is

the distance between (xl,Yl) and (Xc,Yc) , and sI is the distance between

(xl,Y 1) and (x2,Y2). The incident magnetic field H_(xl,Yl) is given by
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-jkp i

Xi(xl'Yl)z = _ P(¢1 )' e (5.17)

where P(¢I ) is the far-zone power pattern of the magnetic llne source at

angle ¢1" The phase of the far-zone field pattern of the line source is

assumed constant and suppressed. Thus, the induced physical optics

surface current on the main reflector is given by

_o 2. _ _i(x2,y2): 2. _ _:(h) : -i 2 .i: z(_2,y2)

or

_po = 1 J1 (5.18)

where

e-jkpi J -Pc

-jks 1
e • (5.19)

Consequently, the PO scattered fields from the main reflector are

calculated by

H_(x,y) 4J-_--_eJR/4 _io. "

-jkp

(1 x P)J1 e dl

or
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_-_ ,. (1 x p)(-2) pT_-_Lpl_ i

Pc ' -jkSl e -jkpe

Pc+Sl
dl • (5.20)

For the surface current on the blended edge point (xb,Yb), one has to

numerically find the corresponding incident ray from the subreflector;

i.e., corresponding to (Xl,Y 1) and (Xc,Yc). By comparing Equations

(5.20) and (5.11), it is found that

and

|

1
(5.21)

f(1) = - (pi+Sl+P).
(5.22)

Similarly, for the case of the convex subreflector, the incident

field at the main reflector is given by

• ' / Pc ' -jkSl
(5.23)

where (xl,Y 1) and (x2,Y 2) are the points on the particular Cassegrain

reflector with subreflector caustic located at (Xc,Y c) as shown in

Figure 5.10. The surface currents are then given by
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_po = 1 Jl

with

-jkPi ] Pc ' -jkSl

jl = _2 _ e JSTPc e
(5.24)

Finally, the PO scattered field from the main reflector is calculated by

im -JkPi.S(x,_)_-_ oej_4 ;.(ix0)(-2)_ e

This gives

-jkp
-jkSl e

-- e

%+Sl J_p
-- dl (5.25)

" " " 1 1 | Pc

/

(5.26)F(1) = 2 0 ejll/4 z • (1 x p) _ ----
Pc+Sljoi_o

with f(1) given in Equation (5.22).

Examples are given in the next section to illustrate the

combination of a shaped dual-reflector with blended rolled edge

terminations to the main reflector. The scattered fields are calculated

for the main reflector with a blended edge. The results of the PO

integration, the PO integration with the first order end-point
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Figure 5.10. Surface current calculation for the case of shaped dual

reflector with convex subreflector.
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corrections, and the PO integration with the first and second orders

end-point corrections are, shown to illustrate the effects of the false
i

end-point contributions of the ordinary physical optics integral.

Normally, the rest of the higher order end-point contributions are very

small and thus are neglected in the following examples.

5.4. Examples of Shaped Dual-Reflectors with Blended Rolled Edge

Terminations on the Main Reflector

5.4.1. Example BL1

In this example, the Gregorian reflector antenna given in Examples

G1 and G2 of Chapter IV is used as the starting point for the shaping,

and the cosine-squared blending function is used to generate the blended

rolled edges which are attached to the main reflector at y=0.5' and

. -0.2',y=-0.5' The parameters for the blended edges are given by ae

b =0.5', s =1.2' and _ = 90°. Since the blended rolled edges require
e m m

an extension of the shaped main reflector, the shaping of the main

reflector is extended to y=1.3' and y=-1.3'. The aperture field within

this region is assumed to be uniform. A magnetic llne source with a

power pattern of cos20@ is used as the primary source. The tilt angle

of the feed axis is 0° and the power between _b=-40° and _=-40° is

redistributed uniformly over the region between y=-1.3' and y=1.3'.

The resulting shaped reflectors are shown in Figure 5.11. Note that

these surfaces are different from those of Example G2 which are shown in

Figure 4.12. This is due to the difference in the designated aperture

size and the amount of the feed power which is redistributed. As seen
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from Figure 5.11, the caustic curve intersects the subreflector surface

so that one might think that some of the reflected field from the

subreflector will be blocked by the subreflector itself. However, it is

found by tracing the rays that only the reflected fields from the

central part of the subreflector illuminate the blended main reflector.

This is shown in Figure 5.12. Therefore, the scattered fields from the

blended main reflector can still be calculated to validate the

performance of the blended rolled edges. The near-zone scattered fields

calculated by the method of PO at 20 GHz are shown in Figure 5.13. The

scattered fields with the first order end-point corrections are shown in

Figure 5.14, and the scattered fields with both first and second order

end-point corrections are shown in Figure 5.15. One can see the effects

of the false end-point contributions by comparing these results. By

taking out these false contributions, the scattered fields within the

unblended section of the whole main reflector, i.e., y=o' to y=0.5' in

Figure 5.15, are very smooth and uniform. This is a significant

improvement in the ripple of the scattered fields for compact range

applications compared to the one without blended edges. The slight

ripple shown in Figure 5.15 is caused mainly by the diffraction from the

junction of the unblended and blended sections of the main reflector.

Also note that if the "true" scattered fields from the subreflector

(i.e., not just the reflected fields from the subreflector) are used to

calculate the surface currents on the main reflector, there will be

slowly varying ripple in addition to the scattered fields from the main

reflector.
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5.4.2. Rxanple BL2

The same Gregorian reflector antenna used in the previous example

is also used here as the starting point for shaping. However, instead

of a uniform aperture distribution, the distribution given in Figure

4.34 of Chapter IV is used and the blended rolled edges are attached to

the main reflector at y=±0.5'. The parameters associated with blended

rolled edges, feed pattern, and feed power to be redistributed over the

designated aperture, are all the same as in the previous example.

The resulting shaped reflectors with blended rolled edge

terminations to the main reflector are shown in Figure 5.16. Again, the

section of the subreflector from which the reflected fields illuminate

the blended main reflector is replotted in Figure 5.17.

The near-zone scattered fields calculated at 20 GHz from the

blended main reflector are given in Figures 5.18 through 5.20 for the

PO, the PO wlth first order end-point corrections, and the PO vlth first

and second order end-point corrections, respectively. A very smooth

result is obtained between y=O' and y=0.5' when the first and second

order end-polnt corrections are used. However, if one compares the

pattern shown in Figures 5.15 and 5.20 where the first one is obtained

by shaping reflectors to generate a uniform aperture distribution while

the second one is obtained by shaping the reflectors to generate a non-

uniform aperture distribution, the ripple in Figure 5.20 between y=0.5'

and y=0.7' is higher than for the one in Figure 5.15. This shows that a

potential problem can occur if one tries to shape the reflectors to

generate an aperture distribution which is constant over one region and
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Figure 5.13. Near-zone scattered fields from the blended main reflector

of Example BL-I at 20 GHz using PO alone.
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drops off rapidly over the other region. This can cause some

diffractions which will create significant ripple in the desired

aperture distribution.

5.4.3. Example BL3

The offset Gregorian reflector used in Example G3 of Chapter IV is

used as the starting point for shaping in this example. A uniform

aperture distribution over the region between y=-2.6' and y=18.8' is

used to generate the shaped dual reflector. The blended rolled edge

begins at y=5.5' for the lower edge and at y=11.5' for the upper one.

A magnetic line source with a power pattern of cos200_ is used as the

primary source. The tilt angle of the feed axis is -7.7 ° so that the

central ray is located at y=8.5'. The power between -9 ° and i0 ° with

respect to the tilted feed axis is redistributed uniformly over y=-2.6'

to yz18.8'. The parameters for the blended rolled edges are as follows:

a =0.78', b =4.5', s =8.5', and _ = 900
e e m m

and the cosine-squared blending function is used. The resulting

reflector surfaces are shown in Figure 5.21.

The near-zone scattered fields calculated at 3 GHz for this new

reflector system are shown in Figures 5.22 through 5.24 for the PO, the

PO with first order end-point corrections, and the PO with both the

first and second order end-point corrections, respectively. Similar

results calculated at 10 GHz are shown in Figures 5.25 through 5.27.
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Figure 5.27. Near-zone scattered fields from the blended main reflector

of example BL-3 at 10 GHz using PO with first and second

order end-point corrections.
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The very small difference between Figure 5.26 and Figure 5.27 reveals

that the second order end-point corrections are insignificant in this

case. The ripple shown in Figure 5.27 results from the numerical

integration errors associated with the PO solution.

5.5. Summary

The addition of rolled edges to the main reflector reduces the edge

diffracted fields and consequently, reduces the ripple in the near-zone

scattered fields, as compared to the reflector with a sharp termination.

This is very helpful in improving the performance of the compact range

reflector. Several examples are used to verify this concept. The

physical optics method is used to calculate the scattered field from the

main reflector with blended rolled edges. Corrections are made for the

false end-point contributions which result from the physical optics

approximation. The resulting scattered fields of these examples show

that very good performance of the reflectors are achieved.
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SHAPING OF THREE-DIMENSIONAL CIRCULARLY SYMMETRIC DUAL-REFLECTOR

,_'TENNAS

Discussions in the previous chapters have concentrated on the

shaping of two-dimensional dual-reflector antennas. However, as was

mentioned in Chapter III, the same approach can be applied to three-

dimensional dual-reflector antennas with circular symmetry and

circularly symmetric feed pattern illuminations. The approach for

circularly symmetric shaped reflectors is discussed briefly in this

chapter.

6.1. Method of Shaping

A three-dimensional circularly symmetric surface is a body of

revolution which is generated by rotating a generating curve about its

axis of symmetry. For example, a three-dimensional circularly symmetric

Cassegrain antenna can be generated by rotating the curves shown in

Figure 2.6 about the x-axis, the axis of symmetry. By using the

conventional cylindrical coordinates (0,_,z), one can replace the x and

y axes in Figure 2.6 by z and p axes, respectively. Similarly, if one

defines the generating curves for a shaped dual-reflector for O<P<Pma x,

as shown in Figure 6.1, a three-dimensional circularly symmetric shaped

dual-reflector can be found by rotating these curves about the z-axis,
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Figure 6.1.

p=o

D

GENERATING

CURVE

AXIS OF SYMMETRY

_Z

Generating curve and axis of symmetry for surface of

revolution.
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provided that the given primary source has a circularly symmetric

pattern, and the desired aperture distribution is also circularly

symmetric.

One major difference between the two-dimensional case and the

three-dimenslonal one is that the formula for calculating the

geometrical optics field is different. As discussed in Chapter II the

geometrical optics field is proportional to a spread factor which

involves the radius of curvature of the geometrical optics wavefront.

For the two-dlmensional case, the ray tube is two-dimensional, and the

wavefront has only one radius of curvature. For the three-dlmensional

case, the ray tube is three-dlmensional, and the wavefront has two radii

of curvature. Consequently. one has to integrate the power pattern of

the geometrical optics field over a surface in order to calculate the

power contained in a three-dimensional ray tube.

Consider the shaping of a three-dimensional dual-reflector antenna

to generate a symmetric near field aperture distribution CI(p) when a

primary source with a symmetric radiation pattern F(O) is given.

Conservation of power states that

F(e) sine ded@ = max CI(p) pdpd@ (6.1)

in which emax is the maximum illumination angle at the subreflector

edge, and Pmax is the maximum radius of the secondary aperture as

defined in Figure 6.2. From Equation (6.1), the constant C is found as
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P =Pmax= Dm/?-

PT
dp

_Z

Figure 6.2. Geometry for defining parameters associated with a three-

dimensional circular dual-reflector.
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C =c

max F(e)sinede

max I (p) pd p

(6.2)

Therefore, the relationship between e and p is given by

max F(e)sinede

I_ F(e) sinede =

I_ max I (p) pdp

(6.3)

It is obvious that the tilt angle of the feed axis is 0 ° in the

circularly symmetric case. Equation (6.3) shows that one can use the

identical shaping process given in Chapter III to create generating

curves for three-dimensional circularly symmetric dual-reflector

antennas by using this equation as the appropriate equation for

conservation for power. The coordinates x and y used for the two-

dimensional case are changed to z and p for the three-dimensional case.

The initial points for the shaping process have to be chosen as in

the two-dimensional case. The condition which these initial points have

to satisfy is given in Appendix C. Normally, these initial points are

located on the axis of symmetry. Also the caustic curve in the two-

dimensional case becomes a caustic surface in the three-dimensional

case.
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Three examples are given in the next sections to illustrate the

shaping of three-dlmensional circularly symmetric dual-reflector

antennas. The results of the first two examples are compared with ones

obtained via a different approach proposed by Narasimhan [24] and

Ekelman [25]. The third example is the same example used by Williams

[16]. Narasimhan modified the partial differential equation derived for

an offset dual-reflector by Lee [19] to a ordinary differential equation

which has to be solved numerically.

6.2. Examples of Shaping of Three-Dlmensional Dual-Reflector Antennas

6.2.1. Example 3D1

In this example, a shaped dual-reflector with a concave

subreflector is to be generated so that a uniform aperture distribution

is obtained at the aperture of the main reflector. The primary source

has a cos208 symmetric power pattern and is located 0.5' from the vertex

of the shaped main reflector. The diameter of the main reflector is

2.0'. The vertex of the shaped subreflector is located 0.2667' from the

primary source. The maximum illumination angle of the primary source on

the subreflector is 8max=31.42 °. The initial points for the shaping are

thus given by

(zlO, PlO) = (0.7667',0.)

(z20, P20) = (0.0,0.0)
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Figure 6.4.

I

i

! • ,

• i t i
0.0 0.1 0.2 0.3 O.q 0.5 0.6 0.7 0.8

Z [FEET)

Shaped dual-reflector of example 3D1 obtained by

of Narasimhan [24] and Ekelman [25].
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and (Zco,Pco) is determined from the ray condition given in Appendix C.

The resulting shaped dual-reflector is shown in Figure 6.3. The

surfaces obtained by using the method proposed by Narasimhan [24] and

Ekelman [25] are shown in Figure 6.4. The results are in very good

agreement as can be seen by comparing Figures 6.3 and 6.4.

6.2.2. Example 3D2

This example is similar to Example 3DI except that the subreflector

is a convex surface and the primary source is located 0.1' from the

vertex of the main reflector. The maximum illumination angle e is
max

18.26", and the vertex of the subreflector is 0.4667' from the primary

source. The initial points on the reflectors are

(Zl0, Pl0 ) = (0.5667',0.0)

(z20, P20) = (0.0,0.0)

and (Zco, Pco ) is thus determined. The resulting shaped dual-reflector

is shown in Figure 6.5 and is again in very good agreement with the one

obtained by using the method of Narasimhan [24] and Ekelman [25] which

is shown in Figure 6.6.

6.2.3. Example 3D3

In this example, the conventional Cassegrain reflector used by

Williams [16] is used as the starting point of shaping. The parameters
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Figure 6

......................_........................................_......................_.....................:......................_......................,......................_.....................
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i _ s . !

.1 0.0 0.1 0.2 0.3 O.tt 0.5 0.6 0.7 0.8
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.5. Shaped dual-reflector of example 3D2.
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6.6. Shaped dual-reflector of example 3D2 obtained by the

of Narasinham [24] and Ekelman [25].
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associated with this Cassegrain antenna are

F =2.5'
m

F =1.5'
C

L =0.20943'
V

D =I0.0'
m

and a point source with cos84"50 power pattern is used as the primary

feed. The secondary aperture is required to have uniform amplitude and

phase distributions. The shaped surface obtained by Williams are shown

in Figure 6.7. This is a enlarged version of Figure 3 of [16]. These

surfaces are obtained by shaping the subreflector first and the main

reflector Is designed to create the desired uniform phase distribution.

Figures 6.8 and 6.9 show the shaped reflectors calculated by the method

of Narasimhan [24] and Ekelman [25].

In order to use the approach of shaping discussed in this chapter,

the initial points for the shaping are chosen as

(Zl0, Pl0 ) = (2.18357',0')

(z20, P20) = (-0.i07',0.0')
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for the subreflector and main reflector, respectively. These points are

actually obtained from Figure 6.7 which are the intersection points of

the axls of symmetry and the shaped reflectors designed by Williams.

The initial point of the caustic surface is thus determined. The

resulting shaped surfaces are shown in Figures 6.10 and 6.11. These

results show that very good agreement has been obtained among the three

methods.

6.3. Summary

In this chapter, the shaping process for the two-dimenslonal dual-

reflector was modified slightly for shaping of the three-dimensional

dual-reflector with circular symmetry. Examples were used to verify the

process. Comparisons were shown between different approaches. Although

the method of synthesis discussed in this chapter is not much simpler

than Naraslmhan's approach, one can still examine the caustic surface of

the subreflector reflected field as in the two-dimenslonal case. The

behavior of the shaped reflectors can be explained physically.
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Figure 6.7. Shaped 3-dimensional circular symmetric dual-reflector from

[16].
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Figure 6.8. Shaped dual-reflector of example 3D3 obtained by the method

of Naraslmhan [24] and Ekelman [25].
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Figure 6.9. Shaped subreflector of example 3D3 obtained by the method

of Narasimhan [24] and Ekelman [25].
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Figure 6.11. Shaped subreflector of example 3D3 obtained by the new

approach.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

A new approach for the shaping of dual-reflector antenna systems to

generate a prescribed aperture distribution is proposed and studied in

this research. The approach is based on the geometrical optics

properties of conventional Cassegrain and Gregorian reflector antennas.

A set of algebraic equations has been obtained and solved by a numerical

method. This approach also explains how the shaped dual-reflector works

for generating a prescribed aperture distribution by examining the

behavior of the caustic curve of the shaped subreflector reflected

fields. Several two-dimensional examples are presented to validate the

formulation and solution of this new approach for shaping dual-reflector

antennas. A conventional Cassegrain or Gregorian reflector antenna is

provided as the starting point of shaping when a primary source power

pattern is given, The method of physical optics is used to calculate

the far-zone scattered fields from the subreflector and the near-zone

scattered fields from the main reflector. The results are compared

between the conventional and shaped reflectors. As expected, the shaped

reflector system provides the aperture field prescribed.

Rolled edge treatment to the shaped dual-reflector is also studied.

The addition of the rolled edges to the shaped main reflector can reduce

the edge diffracted fields and consequently, the ripple in the near-zone

scattered fields. This improvement is especially important in the
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application of compact range reflectors because creating a uniform plane

wave illumination is a strict requirement. Corrections are made for the

false end-point contributions of the rolled edges which are caused by

the sharp termination of physical optics currents. By removing the

false end-point contributions from the physical optics integration

results, a more accurate representation of the scattered fields from

reflector surfaces is obtained. Examples are also presented to show the

improvement of adding blended rolled edges to the shaped main reflector.

The shaping of three-dimensional circularly symmetric dual-

reflectors is achieved by a simple modification of the two-dimensional

case. The reflectors are illuminated by primary sources with circularly

symmetric power patterns and the secondary aperture distributions also

have the property of circular symmetry. Examples are presented and

compared with the results obtained by other approaches.

Throughout this study, a numerical method is used to approximately

solve for the surface equations. Different numerical methods could be

used to solve these equations.

Although some research has been done in the past for the shaping of

dual-reflector antennas, only the shapes of the reflector surfaces were

examined by most people. By using the method of shaping proposed in

this study, one can clearly understand the detail of how the shaped

reflector works to transform a given primary feed pattern into a

prescribed aperture distribution. This is accomplished by examining the

behavior of the caustic curve for the fields reflected from the shaped

subreflector. Consequently, some potential problems associated with the
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shaped reflectors can be disclosed through unusual properties of the

caustic curve, such as a discontinuity in its slope. These possible

problems affect the performance of the shaped reflectors especially in

the compact range applications.

Further study is recommended for applying the shaping approach

proposed in this research to three-dimenslonal offset dual-reflectors.

Unlike the circularly symmetric case _or which the shaping can be done

on a two-dimensional basis, the offset dual-reflector has to be shaped

on a three-dimensional basis. It is pointed out in [14] and [26] that

the exact solution to the dual-reflector synthesis does not exist in

general. Consequently, an approximate solution must be sought when an

exact solution cannot be found. Further investigation will have to be

done on this topic.
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APPENDIX A

DIRECT APPLICATION OF PRINCIPLES OF GEOMETRICAL OPTICS

TO DUAL-REFLECTOR ANTENNA SHAPING

In this appendix, the principles of geometrical optics mentioned in

Chapter III are used directly to generate a two-reflector antenna system

from which a prescribed secondary aperture distribution is obtained.

A.1. Formulation

Consider the geometry shown in Figure A.1 where a given primary

source is located at the coordinate origin. Assume that the points

(Xl0,Yl0) on the subreflector and (x20,Y20) on the main reflector are

also known. For a given ray Y=moX which emanates from the primary

source, the corresponding reflected ray from the main reflector, Y=Y2'

is to be generated and is parallel to the x-axis. The unknown point

(Xl,Y1) on the subreflector is assumed to be located on a line which

passes through (xlO,Yl0) and has the slope m1. Similarly, the unknown

point (X2,Y2) on the main reflector is located on a line which passes

through (x20,Y20) and has slope m2. These assumptions are valid when

the surface points are very close to each other. From the application

of the principles of geometrical optics and the above assumptions, a set

of algebraic equations is generated and solved to obtain the surfaces.
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Figure A.I.
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POINT
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t==._
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RAY: Y-YI = mc (x-X I)
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me= Xz_Xt

LI NE y- Ylo = m= ( x - x._),
m='_NKNOWN

GIVEN RAY ; KNOWN INTERSECTION

y=mox POINT (X 'YI )

KNOWN POINT (Xlo,Ylo)

-....
[ PRIMARY

SOURCE

Geometry for direct application of principles of

geometrical optics to dual-reflector shaping.
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At the first reflector (i.e. the subreflector), which is given in

Figure A.2, the incident ray, reflected ray, and surface normal n 1

satisfy Snell's law of reflection, in other words,

Oo-O1 = el-e c (A.1)

or

2e I = eo+ec (A.2)

By taking tangent on both sides of Equation (A.2), one finds that

tan(2e 1) = tan(eo+ec) . (A.3)

From the identity

tan_ + tanO
tan(e+_) = 1 - tanetanO

Equation (A.3) results in

2tane 1 taneo+tane c

l_tan2el - l_taneotanec
(A.4)

but,
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Figure A.2. Snell's law on the subreflector.
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tanO = m
0 0

tan8 = m
C C

1

tanOl = - _11

Consequently, Equation (A.4) becomes

I

I
I

-2m I mo+m c

m1-1 = l_momc (A.5) I

For the main reflector, as shown in Figure A.3, Snell's law states that

e'-- |
c 202 (A.6)

!
in which

t

e c = 180° - ec (A.7)

Substituting (A.7) into (A.6) and taking the tangent on both sides of

the equation, the following equation is obtained:

-2m 2

mc - 2 (A.8)
m2 -1

I
I

I
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y-Y, = mc(x-X ,)

Figure A.3. Snell's law on the main reflector.
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Also notice that Xl, Y1 have to satisfy

Y1 = moXl (A.9)

YI-Yl0 = ml(Xl-Xl0) (A.10)

and X2 has to satisfy

Y2-Y20 = m2(X2-x20). (A.I1)

In the above formulations, m° and Y2 are assumed known so there are

six unknowns Xl,Yl,X2,ml,m2,m c, with six equations which are summarized

as follows:

-2m I mo+m c

m_-i l-momc

(A.12)

m
c

-2m 2
(A.13)

m
c

Y2-YI
(A.14)

Y1 = moXl (A.15)

YI-Yl0 = ml(Xl-Xl0) (A.16)
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Y2-Y20 = m2(X2-x20) (A.17)

It is apparent that the above equations have to be solved numerically in

order to obtain the surface of the reflectors. In the next section, a

perturbation method is presented to solve the above equations.

A.2. Method of Solution

From Equations (A.15) and (A.16), it is found that

Ylo-mlxlO

X1 - mo_m I (A.18)

m
o

Y1 - mo-m I (Yl0-mlXl0)
(A.19)

From Equation (A.17),

1

X2 - m2 (Y2-Y20+m2x20) (A.20)

Substituting (A.18), (A.19), and (A.20) into (A.14), the following

equation is obtained,

mc[(mo-ml)(Y2-Y20+m2x20 ) - m2(Yl0-mlXl0)]

= m2(mo-ml)Y 2 - mom2(Yl0-mlXl0) (A.21)
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Equations (A.12), (A.13), and (A.21) involve the unknowns ml,m 2, and mc

and are very difficult to solve exactly. Consequently, a perturbation

method which assumes that

m --m + _n
c co c

(A.22)

mI = mlO + AmI
(A.23)

m2 = m20 + Am2
(A.24)

Is used to solve ml, m2, and mc numerically. In Equations (A.22)

through (A.24), mco, mlO, and m20 are the corresponding slopes mc, m1

and m2 for the previous ray and surfaces; Amc, AmI, and _m2 are small

perturbation of mc, m1, and m2. By substituting these three equations

into Equations (A.12), (A.13), and (A.21) and neglecting the higher

order terms such as AmcAm I, Amc_m 2, _mlAm 2, etc., the following three

linear equations in Amc, Am1, and Am2 are obtained.

AIIAm c + AI2Aml + Al3Am2 = B1
(A.25)

A21Amc + A22Aml + A23_m2 = B2
(A.26)

A31_mc + A32Aml + A33_m2 = B3
(A.27)

where
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2
All = 1 + 2moml0 - ml0

AI2 = 2(momco-moml0-ml0mco-1)

A13 = 0

_i--2"ioCI-'o'co)÷(°o+°_o)(°_o-I)

2
A21 = m20-1

A22 = 0

A23 = 2 _com20+1)

2
B2 = mcoCl-m20) - 2m20

'31: (°o-'1o)C_2-y2o+'2oX2o)-'2o(y_o-'_o_o)

A32 =mco [m20xl0 - (Y2-Y20+m20x20)] + m20 (Y2-moXl0)

A33--"oo[X2o('o-'1o)-(ylo-'1oX1o)]-[('o-_Io)_2-°o(yIo-°io_io)]

B3 = [m20(mo-mlo)Y2- mom20(Y10-mlOxlO)]

-"co[(°o-°zo)C_2-_2o+_2oX2o)-m20(_Io-°Io_Io)]
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The above equations are solved for Amc, Am1, and Am2 as

Am = AI2A23B3-A23A32B1-A12A33B2

c A31AI2A23-A11A23A32-A12A21A33
(A.28)

AmI _ A121 (B1_A11Amc I (A.29)

Am2 ffiA231----"IB2_A21Amc I (A.30)

and the unknowns Xl,Y1,X2,ml,m 2,m c are obtained.

It is noted that the above method is valid provided that mlO , m20 ,

mco are known and Am1, Am2, Am3 are very small. There is a difficulty

associated with this approach. When the initial slopes are very large,

the changes of the slopes Am1, Am2, or Amc are not small and the

solutions are not accurate. Another method for solving the surface

equations might have to be used.
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APPENDIX B

NUMERICAL METHOD FOR SOLVING THE SURFACE EQUATIONS

As discussed in Chapter III the equations related to the shaped

reflector, i.e., Equations (3.1) through (3.5) in that chapter, can be

reduced to

-(Xc+moyc) (F2c-4a2) t4F XcY2-Yc [ (Y2-Yc/2+4F Xc-4F2] } •

_F_2yo+moXo)°oI_2yo)2+'Fxo,F2]t

=-1 (F2c-4a2)2{4F(Y2-Yc+moXc/-mo[/Y2-Yc)2+4F Xc-4F2]}2

(B.I)

where all the variables have been defined in Chapter III. In Equation

(B.1), m° and Y2 are known and, F and Fc are functions of Xc and Yc

only. In addition, x c and Yc are related to Xco and Yco by

= x + cos= Ap
XC CO 0

Yc = Yco + sinao5P

(B.2)
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where 5p is the unknown distance between (Xco,Yco) and (Xc,Yc) and _o is

the angle of the old ray with respect to the positive x-axis which is

defined in Chapter III.

By substituting Equation (B.2) into (B.1), an 8 th order polynomial

equation in _O has to be solved numerically. Although one can try to

solve bp numerically directly from the polynomial equation, it is still

very tedious. A method which assumes _p is small is used in this study

to solve _p. This assumption is an appropriate one since that the

incremental ray tube formed by the old and new rays is very small so

that one will expect that variation of _p is very small. Consequently,

the higher order terms such as (_p)2,(_p)3,...,etc., in the polynomial

equation are neglected so that a linear equation in bp is obtained and

solved. In the following, different terms in Equation (B.1) are

discussed separately by substituting Equation (B.2) for x c and Yc into

Equation (B.1). Also notice that

F=_

or

F = - _ tan _- c-Y20

F2= X2c+ y2c
C

The first expression of F is used in the following analyses.
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I

¥ 12 - 4F2(1) 2-Yc + 4F xc

--(_oo+s_o-ooo-_)_+_I_-_°_'o)(_o•oO_°o_O-_o)

IXoo+_O..o_O)-(_-_e°'o)_(Xoo__O_'o_-_01_

= co-Y2 + 2 sin_ o co-Y2 Ap + sin 2

_(,__.O.o)'[[_oo-_o)_+_oO_-o(_.o-_o)_oòo,_-o,_,_]

:{(,oo-,_)_._(_-,eO-o)Xoo(Xoo-'_0)-('-'°°'o)_(Xco-'_-o)_-)

+'{""'o('_o-'_)+('-'eO_o)("co-'_o)°°"o-_O"o('-'e°'o)'"

It can be shown that the coefficient of (A@)2 is zero. Thus,

Y ]2 -4F2 = Z1 + Z26p2-y c + 4F xc

(B.3)

in which

,,--(,oo-,_)_-+_(_-_._-oI'_o(.oo-X_0)-(_-.,_-oI_(Xco-'_0)_
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".2--2_iO_o(,oo-Y2)+(cos_o-1)(/l+se°_o)Xoo-X20se°_o)

(2) 4a2 = {(X_o+ Y_0)1/2+- [(xlO_Xc)2 2}2 +: ellipse+ _lO-Yc ' -: hyperbola

but

YlO-Yc
= tan

0xlo-x c

Thus,

4a2 = {Ix20 + Y_O) I/2+ IxlO-XcllSeC_ol} 2

when seCO_o<O,

xlo-Xc<O for hyperbola

xlO-Xc>O for ellipse

when seCCto>O,
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xlO-Xc>O for hyperbola

xlO-Xc<O for ellipse

Consequently,

4a 2 = {/X_o+ Y_O) 1/2+ /Xc-Xlo/SeC_o> 2

The geometry for the above analysis is shown in Figure B.I.

(3) F2 - 4a 2
C

= c + Yc - 10 + Yl0 + c-Xlo seC=o

= [(Xco+COS=oAp)2 + lYco+Sin=oAP) 2]

{[Ix'+,_0)_ ] }'- 10 + (Xco-Xlo)SeCC_O + c°S=oSeC_oAP

2 2 Ap)2 2 YcoSt n= Xco+ 2 XcoCOSaonp + cos =o ( + Yco + 2 =oAp

+_*n_(_0)_[C._ _)_ C* ) ]_=o - I0 + YlO + co-Xlo seCCXo

- +YlO)+IXco-Xlo)SeC_o]Ap-(Ap)2
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( Xc,Y c )
/ Xco'Yco)

Figure B.I. Geometry for analysis of 4a2.
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= Z3 + Z4Ap

in which

[(x (x) ]_Z3 2 2 2 2 hl/2 seCC_o= Xco+Yco- I0 + YlOJ + co-Xlo

-- +,,oj+IXoo-X,o)-O_o])

(4) Xc+moYc = IXco+COS_o_@)+ m° lYco+Sin_oAp)

= Z5 + Z6 Ap

where Z5 = Xco + moYco

Z6 = cos_ ° + moSince o

(5) From (2), 4a2 ffi{(2[x10+Ylo)2_i/2 + IXc_Xlo)SeC_o>2

--[tXlo+_1o)+(_o-X_o)

( 2 2 _1/2= [Xlo+Ylo j + (Xco-Xlo) seC_o] 2

193

I



where

2 2 ++_[[_lO.y_o)_'_(Xoo-xlo)_O_o]_O.<_o_

~ Z7 + Z8 _0

Cx ) ]2r( 2 2 _1/2 secaoz 7 = L_xlo+Ylo) + co-Xlo

2 2".:_[[_IO+,1o)_'_"[_oo-_o)_O_o]

where

:_[_-_OO_oI'_[_o"oO_o_O-_o][_oo.OOS_o_O)

= 2(1-seC=o)Y2{XcolXco-X201 + (2Xco-X2olCOS=oAP

2
+ cos ao(Ap)2 }

~ Z9 + ZIO dP

7.,:,[i-_O_o),__o0[Xoo-_o)
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(7),F_2-yc÷°o.o)

*_I_-,°°_]I.o-._ol[_-_°÷°o.o]

= 211-seCCXo)[IXco-X20) + coSCXoAP] IY2+moXco-Yco)

+[(*oo-*_0)(Oo_O_o-°_n_o)+°°_oI*,_+°o*oo-Yoo)]_'

= Zl1+ Z12_P

where
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_8_(xo+°oyo)2-,a2I1_m_oJ

(_Z600)2-_7_Zs_0J(1_mo_J

= W1 + W2AP

where

W1 = Z52 - Z711+mo2J

W2 = 2Z5Z 6 - (l+m2o)Z8

(9) 4FXcY 2 - yc[(Y2-Yc)2 + 4FXc-4F2 j

-[_._-_oo__]+{__0-(_co__+_'O_o_))_0

= W3 + W4AP
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in which

W3 = Z9-YcoZ I

W4 = Z10 - YcoZ2 - sinaoZ 1

(10) 4F(¥2-Yc+moXc) - mo[(¥2-Yc) 2 + 4Fx c - 4F2]

ffiZll + Z12dP - too(Z1 + Z2APj

ffiW5 + W6_p

in which

W5 = Zll - moZ 1

W6 = Z12 - moZ 2

By substituting (I) - (I0) into Equation (B.I):

Ist term of lefthand side of (B.I):
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where

2 2
= (_1 + W2API(W_ + 2W3W4&P + W4(AP))

~ V1 + V2aP

V2 = 2WIW3W 4 + W2W _

2nd term of lefthand side of (B.1):

~ V3+V4d p

where

V3 = Z3ZsN3W 5
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Righthand side of (B.1):

= _

~ V5+V6A p

where

1 22
v5 = _ _ z3w5

1 (Z3Z4W2 Z_W5W6)V6 = - _ +

Finally, from Equation (B.1)

IVI+V2_¢ 1 - (V3+V4AP) ~ V5÷V650

thus

-(VI-V3-V 5)
5p =

V2-V4-V 6

From Ap, the surfaces of the reflector and the caustic curve are solved.
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APPENDIX C

GEOMETRICAL OPTICS REFLECTED FIELDS

FOR CASSEGRAIN AND GREGORIAN REFLECTOR ANTENNAS

In this appendix, the geometrical optics reflected fields for the

Cassegrain and Gregorian reflector antennas are calculated. In

addition, the conditions which the initial points on the subreflector,

main reflector, and caustics curve for the shaped dual-reflector must

satisfy are derived In this appendix.

C.l. Reflected Fields for the Two-Dimensional Cassegrain Reflector

Antenna

The geometry of a Cassegrain reflector antenna is given in Figure

2.6 of Chapter II. As discussed in Chapter II, for a source located at

the real focus of the subreflector, the reflected field from the

subreflector appears to emanate from the virtual focus. In other words,

the virtual focus is the caustic of the subreflector reflected fields.

Assuming that the primary source is a magnetic line source, the

reflected magnetic field is calculated as

Hz(sl) = H_(QI)

r

Pl -jkSl
-- e (c.l)
r

Pl+S1
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in which H_(QI) is the incident magnetic field at the point of

reflection on the subreflector, p_ is the reflected field caustic

distance and sI is the distance from the point of reflection to the

field point. In this case, p_ is the distance between the virtual focus

r
and the point of reflection, i.e., pl=Pc as shown in Figure C.I. The

far-zone reflected field is calculated by letting Sl+® and is given as

-j kSl

HsZ(S_)= HZ(QI ) _c e (C.2)

The reflected field from the parabolic main reflector Is calculated by

HZ(s2) = HZ(Q2 )

r

P2 -jks2
e (c.3)

r

P2 +s2

in which H_(O2) Is the incident magnetic field at the reflection point

O2, p_ is the reflected field caustic distance, and s2 is the distance

from the point of reflection 02 to the point of observation. For a

focussed parabola, the reflected field caustic distance p_ is infinite

and the reflected ray is parallel to the axis of symmetry.

Consequently,

H_(s 2) = HZ -jks2i(Q2)e (C.4)
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Figure C.1.
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VIRTUAL FOCUS

Geometrical optics reflected field from a hyperbolic

subreflector.
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the incident field H;(Q 2) is the reflectedFor the Cassegrain reflector,

field of the subreflector and is given by

HZ(Q2 ) = HZ(Q1 ) P_ e-jkSl
(c.5)

where sI is the distance between Q1 and Q2 as shown in Figure C.2.

Thus, the reflected field of the parabolic reflector is given by

HZ(s2 ) ffi HZ(Q1 ) J PC
PC+s i

-jk(Sl+S 2)
e (C.6)

If the magnetic line source has a far-zone pattern of F(@),

-jkp i

HZ(Q1 )= _[_T e (c.7)

Thus,

-jk0 i

H:(s2) = _q-_e

-=---------1

Pc -jk(Sl+S2)
e

Pc+Sl
(c.8)
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Figure C.2.

I
I

I
I

, I

l '
%/I s2 _ OSSERVA'rION

_ POINT -- I
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Ray geometry of a Cassegrain reflector for calculation of

reflected fields.
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C.2.

I Antenna

he geom,

I 2.8 of Chapter II.

i elliptic subrelec
to emanate from the second focus.

I of the subreflector reflected field.

subreflector is cal ulated by Equati

I field caustic dista ce is negative s
between the points f reflection and

I Thus,

l
Hz's " Hz.^ . [ -Pc e-3kSl

I s' _i) = i'Ul) J-Pc+ Sl

I where Pc is the distance between O1

I The far-zone reflected field is giv,

-jks 1

l
i Similar to the Cassegrain case,

Reflected Fields for the Tvo-Dimensional Gregorian Reflector

The geometry of a Gregorian reflector antenna is given in Figure

For a line source located at the first focus of the

elliptic subreflector, the reflected field from the subreflector appears

Thus, the second focus is the caustic

The reflected field from the

subreflector is calculated by Equation (C.I), except that the reflected

field caustic distance is negative since the caustic is located in

between the points of reflection and observation as shown in Figure C.3.

(c.9)

is the distance between 01 and the caustic and is positive.

The far-zone reflected field is given as

(C.10)

reflector is given by

the reflected field from the parabolic

I

I
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Figure C.3. Geometrical optics reflected field from an elliptic

subreflector.
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e-jkpi J -Pc

' _jk(Sl+S2 )
e (C.11)

The ray geometry of this Gregorian antenna is shown in Figure C.4 where

sI is the distance between O1 and Q2 and Pc is the distance between O1

and the second focus.

C.3. Relationship of Initial Points For Shaping of Two-Dimensional

Dual-Reflector Antenna

It is mentioned in Chapters III and IV that in order to solve the

surface equations, a set of initial points on the subreflector, main

reflector, and caustic curve must be provided a priori. For given

primary source and secondary aperture distributions, these initial

points have to satisfy a ray condition. This condition is derived in

this section for a dual-reflector with either a convex or concave

subreflector.

C.3.1. Dual-Reflector with Convex Subreflector

The basic assumption in this research for dual-reflector shaping is

that the corresponding points on the subreflector, main reflector and

caustic curve are points on a Cassegrain or Gregorian antenna.

Connecting these points forms a ray such that the reflected field at the

corresponding aperture point is given by
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PARABOLIC REFLECTOR

QZ ,_ Sz _ OBSERVAT ION
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QI

REFLECTOR

\
Figure C.4. Ray geometry of Gregorian reflector for calculation of

reflected fields.
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-jkPi
HZ = _ e Pc e-Jk(Sl+S2) (c.12)

when the subreflector is a convex surface. Assuming that the aperture

distribution corresponding to this ray is known as Uo, then

I J Je -jkpi Pc ' -jk(Sl+S2)
= u (c.13)

o

which simplifies to

F<*)I U <c.14)
1 Pc

Pi Pc+Sl o

This is the condition that each ray has to follow. In Equation (C.14),

Pi' Pc and sI are functions of (xl,Yl) , (x2,Y2) and (Xc,Yc) and U° Is a

function of Y2" The initial points (xlO,Ylo), (x20,Y20) and (Xco,Yco)

have to follow Equation (C.14) also. In this study, it is assumed that

the shaping process starts along the primary feed axis which is tilted

by 40. Consequently, one can assume that IF(@o) l = 1 and we obtain

1 PC

Pi Pc+S1 - Uo(Y20) (C.15)
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Although there are many ways to determine the initial points from

(C.15), it is noted that Y20 has to be known in order to determine U°

and also (Xl0,Yl0) has to be on the primary source axis. Thus,

(xl0,Yl0) and (x20,Y20) are assumed and (Xco,Yco) is solved from (C.15),

as shown below.

Since (Xl0,Yl0) and (x20,Y20) are known, Pi and s I are known for

the initial ray. From Equation (C.15) one finds that

Pc PiUo

Sl - l_PiUo
(C.16)

From the geometry shown in Figure C.5, it is found that

Xco-Xlo Yco-Ylo Pc

xlo-x20 Ylo-Y20 s I
(C.17)

Consequently, Xco and Yco can be calculated from

PiUo

Xco - l_PiUo (xlo-x20) + xlO
(C.18)

PtUo

Yco - 1-PiU ° (Ylo-Y20) + YlO (C.19)

From these initial points, one can start shaping the reflector above and

below the ray which is formed by connecting these initial points.
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Figure C.5.

Figure C.6.

/
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v
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•'- Xr'

Pc >o

Relation of initial points for a shaped dual reflector with

a convex subreflector.

Y

(/x zo,Yzo) sz
CENTRAL
RAY

" St

Xco'Yco)
_---x

_X,o,Y,o )

P >o
Relation of initial points for a shaped dual reflector with

a concave subreflector.
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C.3.2. Dual-Reflector with Concave Subreflector

Similar to the convex subreflector case, the corresponding points

on the subreflector, main reflector and caustic curve for this case are

on a Gregorian reflector. The reflected field at the corresponding

aperture point is given by

-JkPi
Hz = _ e -Pc e-Jk(Sl+S2) (C.20)

where Pc>O. Thus, one finds that

1 -Pc -jkPi

e-Jk(Sl+S2 ) 12
= U (C.21)

0

or

Pc1
IF(_) [ - UPi Sl-Pc o

(C.22)

Again, by assuming that the shaping starts along the feed axis with a

tilt angle t ° and I[F(¢°) I[=l' the following relationship is obtained:

1 Pc

Pi Sl- Pc
- U (C.23)

0
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From the same assumption that (xlO,Ylo) and (x20,Y20) are fixed so that

Pi and si are known, then

Pc PtUo

_11 = l+PiUo
(c.24)

and

Xco-Xlo Yco-Ylo Pc

x20-xlO Y20-Ylo s 1
(C.25)

Thus,

PiUo

Xco = l+PiUo (xlo-x20) + xlO (C.26)

PiUo

Yco = l+PtU ° (Ylo-Y20) + YlO (C.27)

C.4. Relationship of Initial Points for the Shaping of A Three-

Dimensional Circularly Symmetric Dual-Reflector

The major difference between the two-dimensional and three-

dimensional case is that the spread factor of the reflected field in the

three-dimensional case is dependent on the two radii of curvature since

the ray tube is three-dimensional. By simple modification of the two-

dimensional case, the condition which the initial points have to satisfy

for the three-dimensional case can be obtained.
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C.4.1. Dual-Reflector with Convex Surface

For a point source with radiation power density F(e,_) illuminating

the subreflector of the dual-reflector, the reflected field at the

aperture of the main reflector is calculated by

r . e-jkpi J PlO2 ' -jk(Sl+S2)u = 4F(e,@) Pi (p1+sl)(P2+Sl) e (C.28)

in which Pi is the distance between the primary source and the point of

reflection on the subreflector, Pl and P2 are the subreflector reflected

field caustic distances, sI is the distance between the point of

reflection of the subreflector and main reflector, and s2 is the

distance from the point of reflection on the main reflector to the

aperture.

For the shaped dual-reflector with a convex subreflector, the

corresponding points on the subreflector and main reflector are assumed

to be located on a particular Cassegrain reflector; consequently, the

two radii of curvature Pl and P2 are the same and are equal to the

distance Pc between the caustic and point of reflection on the

subreflector, thus, Equation (C.28) becomes:

-jkPi P[P--_I] -jk(Sl+S2)ur = 4F(e,_)'e e
Pi

(C.29)
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It is assumed that the power density at the aperture point is given by

Uo, and is related to u r as

4F(e,_)' e Pc e = U
Pi o

(C.30)

Assume that the shaping begins from the axis of symmetry, thus, let

F(O,@) = F(O,0)=I, one finds that

1 Pc

Pi Pc+S1 - _o
(C.31)

Comparing Equation (C.31) with (C.15), the condition that the initial

caustic point has to satisfy is given by

(PlO-P20) + PlO (C.32)

Pi_o

Zco = 1-Pi_o (zlo-z20) + zlO (C.33)

provided that (zlO, PlO) and (z20, P20), the initial points on the

subreflector and main reflector are known. Note that the coordinates in

the three-dimensional case are (z,p).
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C.4.2. Dual-Reflector vith Concave Subreflector

The difference between this case and the convex subreflector case

is that the subreflector reflected field caustic distance is negative,

i.e.,

Pl = P2 = -Pc
(C.34)

in which Pc is the distance between the caustic and the point of

reflection on the concave subreflector. Thus, from Equation (C.28), it

is found that

r . e-jkpl -Pc -jk(Sl+S2)
u = _F(O,_b) e (C.35)

Pi (-Pc+S1)

Consequently,

-jkp i

4F(e, @) ' e
Pt

-Pc "jk(Sl+S2)
e

-Pc+S1

2

=U
O

(C.36)

or, by letting F(8,@) = F(O,O)=I,

1 Pc

Pi Sl-Pc - _o
(C.37)

Thus,
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PCO =

Z

CO

(Plo-P20) + PlO

(zlo-z20) + zlO
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