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SUMMARY

A numerical model based on a transformed, conservative form of the three-
dimensional Navier-Stokes equation and an analytical model based on "lumped"
fluid parameters are presented and compared with studies of modeled rotor
bearing/seal systems. The rotor destabilizing factors are related to the rota-
tive character of the flow field. It is shown that these destabilizing factors
can be reduced through a decrease in the fluid average circumferential velocity.
However, the rotative character of the flow field is a complex three-dimensional
system with bifurcated secondary flow patterns that significantly alter the
fluid circumferential velocity. By transforming the Navier-Stokes equations to
those for a rotating observer and using the numerical code PHOENICS-84 with a
nonorthogonal body-fitted grid, several numerical experiments were carried out
to demonstrate the character of this complex flow field. In general, fluid
injection and/or preswirl of the flow field opposing the shaft rotation signif-
icantly intensified these secondary recirculation zones and thus reduced the
average circumferential velocity: injection or preswirl in the direction of
rotation significantly weakened these zones. A decrease in average circumfer-
ential velocity was related to an increase in the strength of the recirculation
zones and thereby promoted stability. The influence of the axial flow was anal-
yzed. The lumped model of fluid dynamic force based on the average circumfer-
ential velocity ratio (as opposed to the bearing/seal coefficient model) well
described the results obtained for relatively large but limited ranges of
parameters. This lumped model is extremely useful in rotor bearing/seal system
dynamic analysis and should be widely recommended. Fluid dynamic forces and
leakage rates were calculated and compared with seal data where the working
fluid was bromotrifluoromethane (CBrF3). The radial and tangential force pre-
dictions were in reasonable agreement with selected experimental data. Nonsyn-
chronous perturbation provided meaningful information for system lumped-
parameter identification from numerical experiment data.



INTRODUCTION

Much of the current research on seal- or bearing-driven instabilities in
turbomachines is contained in NASA publications (refs. 1 to 5). Topics such as
seal dynamic coefficients (as measured by Childs, Benckert, Wyssman, Iwatsubo,
and others), analytical methods (Fleming, Nelson, Black, Brown, Muszynska,
Bently, and others), numerical techniques (Tam, Przekwas, Rhode, Nordmann, and
others), and practical applications (gas injection and swirl brakes) are but a
sampling of the research efforts of the past decade. For example, in the
mid-1970's seals were identified as contributors to turbomachine instabilities.
In 1977, fluid nitrogen and hydrogen data for straight and three-step cylindri-
cal space shuttle main engine (SSME) seal configurations were available over a
wide range of thermodynamic states for concentric and eccentric seals but with-
out rotation. By 1978, four basic seal configurations were targeted for investi-
gation: bore (cylindrical), face, labyrinth, and tip; honeycomb was added later.
It was thought that with a fundamental understanding of these configurations,
any type of seal (bearing) could be designed for stable operations. By 1980,
techniques were developed to cope with units that proved to be unstable, but the
degree of understanding was inadequate to design stable high-performance turboma-
chinery. Further, the stability of a new or upgraded design could only be demon-
strated by full-load operation in place (ref. 1). By 1982, several programs had
been put into place that began to systematically resolve problems of predicting
stability characteristics and experimental validation of forces that influence
rotordynamics (ref. 2). By 1984, test results were presented and new data to be
used in designing turbomachinery were available. But, as in all research fields,
with understanding comes realization of one's ignorance.

Many discrepancies now began to appear, and despite some progress, the prob-
lem of predicting and adequately modeling fluid dynamic forces applied to rotors
and predicting instabilities does not seem to be in danger of imminent extinc-
tion (ref. 3). Now more often the end user and manufacturers joined the effort
rather than pursuing the usual quick-fix and shotgun approach. Problems were
being cured directly in the field (ref. 5). By 1986, manufacturers were present-
ing results related to experience, philosophy of design, and on-line operations
of compressors. Computational fluid dynamics (CFD) was introduced in an attempt
to merge the classical dynamics approach with that of the actual flow field.
Swirl brakes and antiswirl methodology, although not entirely understood, were
being applied with significant success (refs. 4 to 11). Data providing dynamic
coefficients for turbomachine design were forthcoming from several foreign and
domestic sources (refs. 5 and 12). Of particular significance are the data of
Braun et al. (ref. 13), which quantified the flow fields near the minimum clear-
ance for both the convergent and divergent zones of a simulated bearing.

The existing fluid-force lumped model based on bearing/seal coefficients,
although mathematically simple, revealed the lack of understanding of the physi-
cal phenomena taking place in bearings and seals and proved to be insufficient
to describe these forces adequately. An advanced model based on fluid average
circumferential velocity ratio is used in this paper.

Though this review is brief, perhaps terse, one becomes aware that
although the primary function of a seal is to control leakage, a secondary but
equally important purpose is to provide (or at least not to infringe on) rotordy-
namic stability. Bearings also have a dual role, namely to support the rotor



load and provide dynamic stability. Seal and bearing combinations can be used
to enhance stability as well as to decrease bearing loads. Further, the flow
fields in bearings and seals possess similarities although with some distinct
differences. The axial pressure drop in the seal is large and the circumferen-
tial pressure drop is nominally smaller. For the bearing the opposite holds
true. Further, zones of secondary flow appear inevitable. Cavitation phenomena
can occur in both bearings and seals in the form of either gaseous cavitation
(pressure lower than atmospheric) or vaporous cavitation (pressure lower than
saturation pressure). The latter can be related to thermodynamic phase changes
due to changes in pressure and velocity at inception zones of secondary flows.
It is apparent that local bulk flow models are inadequate even though they may
serendipitously predict system dynamics and have been successfully used by many
authors. It is to this false sense of security that this paper is addressed.
It is concluded that a seal or bearing properly designed by using computational
fluid dynamics and knowledge-based methodologies can enhance turbomachine
stability.

SYMBOLS
A amplitude of rotor precession
b,a coefficients in the Prandtl mixing-length model
o bearing (or seal) radial clearance
D fluid radial damping
dv transformed space volume element (= 1)
dg]’2*3 transformed space arc lengths in three coordinate directions
3(31,32,33) unit vector
Fr,Ft fluid dynamic radial and tangential forces, respectively
3 gravity vector
h1,2.3 scale factors in three coordinate directions
J determinant of Jacobian matrix
i= A
K fluid radial stiffness coefficient
ny fluid tangential stiffness coefficient (cross-coupled
stiffness)
k-¢ turbulence energy production-dissipation
Q seal or bearing length
2m mixing length scale of seal



M

PinsPout

AP = Pin - Poyt

(XX

fluid inertia

inlet and outlet axial pressures
fluid pressure

seal or bearing radius

shaft radius

" fluid local radius in bearing/seal clearance

displacement vector
time
fluid velocity vector

reference frame velocity vector

reference frame circumferential and radial velocity compo-
nents, respectively

physical volume of a grid cell
axial coordinate in bearing or seal
shaft radial displacement

radial displacement magnitude of z

axial pressure drop

contravariant base vector
normal distance between housing and shaft surfaces

fluid direct dynamic stiffness
fluid quadrature dynamic stiffness

fluid average circumferential velocity ratio

preswirl-related fluid average circumferential velocity ratio
injection-related fluid average circumferential velocity ratio
turbulent viscosity

fluid kinematic viscosity

fluid density



T Stress tensor

) angular coordinate in bearing or seal

) rate of strain in Newtonian fluid

wp rotor precession (perturbation) frequency, or angular velocity
wR rotative speed

v " gradient

Superscripts:

> denotes vector

x denotes tensor

NUMERICAL APPROACH

Consider a shaft rotating clockwise at rotative speed wgp and precessing

with amplitude A (dynamic eccentricity) at rotor precession (perturbation) fre-
quency wp within a static cylindrical housing (fig. 1). The housing configura-

tion can represent a seal or a bearing. With the presence of axial pressure
drop significant Coriolis forces are generated. Additionally, centrifugal
forces at the inlet as well as convergent/divergent zones occur. These forces
are major contributors to dynamics, as illustrated below by numerical
solutions.

The problem here is that we are dealing with nonconventional flow fields in
very narrow passages and the passage geometry is changing periodically with
time. In order to adequately simulate seal or bearing flows, the fluid motion
is best described by a three-dimensional rotating coordinate frame attached to
the rotor and precessing with it at perturbation frequency wp - In this coordi-

nate system the given bearing/seal geometry is invariant in time (refs. 14 to
16) since the precession motion of the rotor center with respect to the housing
centered position (zero static eccentricity) is assumed to be restricted to a
circular orbit. It should be mentioned here that more complex assumptions con-
cerning the rotor orbit (e.g., elliptic, nonzero static eccentricity) will Tet
the flow domain become time dependent, and analysis with time-variable functions
should be performed accordingly.

In general, for an observer located in the rotating frame the relation
between absolute, relative, and grid velocity becomes

>
r

S >
~ >
U = U+ 0w x

abs 0 qp

~

>
where Uzps 1s the fluid absolute velocity, U is the fluid relative velocity,

®_ is the rotor precession (perturbation) frequency, and ¥ is the local
radius in the fluid.



Governing Equations

The subsequent equation for the conservation of mass can be written as

§— >

55 () + 7 - eI =0 (2)

where p is the fluid density and J 1is the determinant of the Jacobian
matrix (i.e., the physical volume of a grid cell in the finite difference
approach).

The Jacobiah matrix is calculated for each of the control volumes as

e X 2.) « g.=hhoho[(8, x 8. -8

J= (e xe, 3= hohslle, x e,

3]

> > . .
where € and e are the contravariant base and unit vectors, respectively,
and hy, hp, and h3 are the scale factors in three coordinate directions.
The correlation between the Jacobian matrix and the physical cell volume comes
from the definition of the volume element:

> > > 12 3 T 2 3
dv = €1 " (52 x 33)d£ dg d§ =J d§ df d§ = J dv

where dV is the physical volume element, dv is the transformed space volume
element, and dg!, d&2, and d&3 are the transformed space arc lengths along
three coordinate directions.

By using the Euler identity and assuming a small circular orbit of the
rotor precessing about the housing center, the rate change of the Jacobian
matrix can be made to vanish. As a consequence, the "quasi-steady" analysis is
valid and equation (2) takes the final form

2
V. (Ul =0 (3)

The three-dimensional turbulent time-averaged "conservative"! Navier-Stokes
(N-S) equation in the coordinate system rotating at the perturbation angular
velocity wp is

s Centrifugal Shear
e 2> > l 2 =
UL g . (ol §) = -3%p - Jlen x (@ x ) + 2pm. x U1 + IV + Jo§ (&)
at P P Py 1
Coriolis Body force

It is very important to note the centrifugal and Coriolis source terms arising

from the shaft whirling at wp'

In this equation the term VT represents combined normal and shear stress
components. In the present analysis a Newtonian fluid is assumed with a stress
tensor proportional to the rate of strain: Tij = 2p¢i.. The centrifugal and

Coriolis forces appear to be caused by the coordinate rotation and are

IConservation is respected at every grid point in the mesh; viscous fluc-
tuating terms are time averaged.
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incorporated into the computational model as additional volumetric momentum
sources.

When the N-S equation is expressed in terms of velocity component equa-
tions (in the rotating frame), the extra source terms (Coriolis and centrifu-
gal) for u and v momentum equations (circumferential and radial) arise:

S(V) = (pmzr + 2pw_U) Vol

cell” p p cell (5)

S(W) = -2pwpv Vol

where Volcey) s the physical volume of a grid cell (from J).

Choice of Turbulence Model

A brief review of turbulence models is given in the appendix. Because
fluctuation details for high shear flows at low clearances are not yet avail-
able, the simplest of the turbulence models was selected for the present
calculations.

The characteristics of seal and bearing flows can be summarized as strong
swirl, high viscosity, and high pressure drop associated with significant wall
roughness and small clearances. As a consequence, it is more appropriate to
use a simple approach such as the zero-equation Prandtl mixing length model.
This model takes into consideration the above-mentioned factors and it has
undoubted advantages, such as (a) that it is simple and well established and
(b) that the mixing length scale is determined by the clearance. The result-
ing Navier-Stokes equations describe the time-averaged distributions of
velocity and pressure, etc. It is noted that the stress tensor introduced
earlier now also contains Reynolds stress terms involving —pU%Ui. The

turbulence model currently used in the seal/bearing flow simulation makes use
of the eddy-viscosity concept to compute the Reynolds stresses (pt = pQ$¢,

where My is the turbulent viscosity, 2 is the mixing length, and ¢

m
denotes the rate of strain).

The mixing length Qm is characterized as (ref. 17)

y/g < alb, Qm/C = by/¢, b =0.435, y/T > a/b, Qm/C =a, a=0.09

where [ 1is the normal distance measured between the stator and the rotor sur-
faces; y is the minimum local distance measured from the stator and rotor sur-
faces; and b and « are coefficients.

Solution Method

In the employed numerical method the governing transport equations are
solved simultaneously by a fully conservative, finite difference (or control
volume) approach using the SIMPLEST algorithm (ref. 18). SIMPLEST solves the
continuity equation by using a fast "whole field" solver and solves the veloc-
ity components by using Jacobi's point-by-point algorithm. A Newton-Raphson
method is used to express the convective fluxes in the continuity equation in
terms of pressure correction. Salient features of the employed method are the
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use of an upwind differencing scheme and a staggered-grid practice for the con-
vective flux calculation, as well as the integrated sources in the Newton-
Raphson linearized form. These practices are used to enhance numerical
stability.

Boundary Conditions

The boundary conditions for seal/bearing flow calculations include speci-
fied pressure at the flow inlet and outlet; circumferential velocity at the
inlet (without or with preswirl); rotor rotative speed and rotor precessional
speed; no-slip velocity condition at the rotor and stator walls:; fluid shear
stresses on the surfaces of the rotor and stator; and cyclic boundary condi-
tions in the circumferential direction. Shear stresses on the rotor and stator
surfaces are calculated on the basis of the Couette flow assumption. The uni-
versal "log-Taw" of the wall function approach is adopted. The experiments set
up by Childs et al. (refs. 1 to 4) indicate that the surface roughness treat-
ment depends on the flow direction (i.e., there is higher resistance to flow
in the axial than in the circumferential direction). Consequently different
rough-to-smooth correlations are specified in the axial and circumferential
directions (the coefficients 2.9 and 1.1 were used as multipliers in the smooth
friction relations correspondingly). These factors were determined by trial
calculations of a base case to obtain axial pressure variations similar to that
of the corresponding experiments.

Computational Grid

A three-dimensional, nonorthogonal, body-fitted computational grid up to
NX x NY x NZ = 12 x 6 x 16 = 1152 control volumes has been selected for the
computations (fig. 2). The grid allows for steep variations in physical param-
eters (fluid preswirl in particular).

Fluid Dynamic Force

The three-dimensional, flow-related local fluid dynamic forces are inte-
grally averaged over the entire configuration. It is supposed that the inte-
gral averaging procedure yields one equivalent Tumped fluid dynamic force
represented by three components: radial, tangential, and axial.

Fluid circumferential force components F. <(radial) and Ft (tangential)
are calculated from the pressure distribution:

F o= Z“prcos(cb)R. dedz  -F, =[°"[* p sin(eIR. dodz (6)
T h b ‘ t o Jo ‘

where Rj is the shaft radius, ¢ denotes bearing or seal length, and ¢ is
the angle measured (clockwise) from the position of minimum clearance.

The third component of the fluid force F, is related to the axial flow
such as that occurring in seals of pumps and compressors due to balance piston
loading. In bearings F, is usually small relative to F. and F¢, but for
seals in machines of SSME category the axial flow is large and F; has a sig-
nificant value. F, reflects the axial thrust and local changes in momentum
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and can be represented as the product of the axial pressure drop Ap and the

clearance area w(R2 - R?). However, FZ remains implicitly linked to Fr

Ft.

With the assumption of constant precession (perturbation) amplitude the
radial and tangential force component amplitudes in the rotating coordinates
have the same form as in the stationary coordinate system.

NUMERICAL RESULTS

Three-dimensional-flow numerical results show significant changes in the
local values of the fluid dynamic force along the seal (or bearing). They also
show the existence of significant secondary flows and local separations even
in case of a large axial pressure drop.

Most of the results of flow calculations pertinent to the rotor stability
(mainly the circumferential flow) are presented in the integrally averaged form
of fluid direct “p and quadrature «, dynamic stiffnesses yielded by fluid

radial Fy and tangential F¢ force components divided by precession ampli-
tude A. The dynamic stiffnesses are plotted versus perturbation frequency w

(or its modified forms which, for specific cases, are defined below). The
fluid-force components in the dynamic stiffness format are easily comparable to
experimental results for synchronous (w_ = wR) (refs. 2 and 19) as well as non-

synchronous (w_ # wR) perturbation (ref. 20). The nonsynchronous perturbation

yields the best identifiable results for building fluid-force Tumped models.
In the present study only forward perturbation was used (wp and wp in the

same direction).

Input Parameters

The input parameters for the calculated examples are give in tables 1 and
3. Table 1 also contains the calculated total average leakage and axial force
for each case. The rest of the results are illustrated in figures 3 to 17.
Although the input data cases were quite limited, the numerical results brought
a wide spectrum of fluid dynamic phenomena that will certainly require further
investigation. Calculating cases with intermediate values of the input param-
eters and consistently using forward as well as backward nonsynchronous pertur-
bation (not to Timit studies to synchronous perturbation) seems an important
necessity before generalizations for lumped models can be completed.

Comparison With Experimental Data

Numerical results are compared in figure 3 with experimental results
obtained by Childs (refs. 2 and 19). Although there were three steps within
the length of the experimental seal the modeled seal was for simplicity consid-
ered as a straight cylindrical seal without inlet preswirl, the experiment and
the calculations qualitatively agreed. The calculated direct dynamic stiffness
decreased with speed but did not exhibit the negative values of the experimen-
tal data at elevated rotor speed. The omission of the internal steps may ac-
count for this discrepancy. The quadrature dynamic stiffness increased



with rotative speed and agreed reasonably well with the data of Childs
(ref. 2).

Lumped-Parameter Model of Fluid Circumferential Force

For certain cases the fluid circumferential force components are easily
identifiable in the lumped form model when the notion of fluid average circum-

ferential velocity ratio™ X (refs. 21 and 22) is taken into consideration as
a key parameter jn this model.

The model with fluid average circumferential velocity ratio proved to be
much more powerful and described the physical meaning of the fluid force more
accurately than traditional bearing/seal coefficient modeling (refs. 20 to 22).
This model is directly adopted from the cases in which the axial flow is uncoup-
led from the circumferential flow. It is supposed that the axial flow affects
the circumferential flow in a parametric way only (refs. 21 to 25). The impor-
tance of the model lies in its direct correlation to rotation-related circum-
ferential flow parameters, as they represent major factors in rotor stability.

The Tumped model of the fluid circumferential force is based on the
assumption that because of shaft-rotation-related fluid involvement in circum-
ferential motion, the fluid dynamic force is rotating at the angular speed me

(not a constant mR/Z, as is often assumed (refs. 23 to 25)). In the coordij-
nate system rotating at angular speed ka the fluid dynamic force has three

radial components: stiffness force (proportional to shaft radial displacement
zy), damping force (proportional to shaft radial velocity 2z,), and fluid iner-
tia (proportional to radial acceleration Z,) (refs. 21 to 26), where 2z is
complex. For clarity the additional tangential as well as nonlinear components
are omitted in this presentation. Transformation of the fluid rotating force
to the stationary inertial coordinates introduces complex expressions for
acceleration and velocity. The fluid force becomes

-F = Kz + DG - Pagd) + MCE - 2z - Aoul2)

zZ =X+ Jy, h| =\/—1, |z] = ‘VXZ + yz, - = d/dt

where K, D, and M are fluid radial stiffness, damping, and inertia

coefficients correspondingly and 2z is shaft radial displacement (conventionally,
Jwyt

x denotes horizontal, y denotes vertical), and z = ze R is the

transformation from stationary to rotating coordinates. In the bearing/seal

N

2The fluid velocity is inferred from the force calculations that represent
the interaction of local fluid forces integrally averaged over the entire con-
figuration. Local variations in forces and velocity are strong, but for model-
ing purposes single averaged values are assumed for the force and the flow
velocity. Fluid average circumferential velocity ratio X\ can be identified
as the ratio between whirling and rotative speeds ("whirl" = rotor self-excited
lateral vibrations (ref. 22)).
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coefficient format and in the chosen reference system (fig. 1) the fluid force
for clockwise rotation is as follows:

22

] -Fr —Ft X K - M wg DXwR X
T oo -F| |y i D K- Zel| |y
D 2Mawp| | M o] |X
' -2Mxop D y ! 0 M| |y ®

Note that the "cross-coupled stiffness" term is generated here by the
radial damping due to rotation and is proportional to X\ and wp - The radial

stiffness is modified by centrifugal inertia and carries the negative sign.
“Cross damping" is due to the Coriolis inertia force. The model can easily be
extended and completed with other terms such as additional tangential stiffness
Kxy (modifying Dxwp into Drwp + Kyy) -

When the shaft precessional motion is circular with frequency wp and
amplitude A, that is,
Jo _t
z=~Ae P (9)

and (eq. (9)) is substituted into (eq. (7)), the fluid force becomes

‘ ? jwpt
-F = ALK + JD(wp - XwR) - M(wp - XwR) le

The force amplitude divided by the motion amplitude A yields the complex
dynamic stiffness «:

IiEI = x =k + Ixg 2K - My - Nog)? 4 10w, - dap) (10)

with direct (real) Xp and quadrature (imaginary) KQ components.

Results of Nonsynchronous Forward Perturbation

The results of calculations for nonsynchronous perturbation cases are
shown in figures 4 to 7. The ratio of tangential force to precession amplitude
(with opposite sign), representing fluid quadrature dynamic stiffness «., is
plotted versus perturbation frequency w_ (fig. 4). From this numerical exper-
iment the result is a straight line that allows one to identify the fluid

radial damping D and the average circumferential velocity ratio A for the
Tumped model (eq. (8)) (refs. 21 and 22).

KQ = D(wp - XwR) an

aa



The identified ratio X\ can then be used to modify the abscissa for the
direct dynamic stiffness results (fig. 5). Instead of o, the expression

(o, - ka)Z for each corresponding rotative speed wp has been used. The

ra%io of radial force to precession amplitude (with opposite sign) has been
identified as

) .
Kp = K - M(wp - )\wR) (12)

where K and M are the fluid radial stiffness and inertia, respectively.

The direct dynamic stiffness versus modified perturbation frequency is again a

straight Tine allowing for easy identification of the parameters (fig. 5).

The form of the fluid dynamic force model (eq. (7)) has been identified
through experimental nonsynchronous perturbation testing (ref. 20). A quanti-
tative comparison of experimental and numerical results has not been done,
since such a numerical case, which should include rotor parameters, has not yet
been calculated. Qualitatively, however, the numerical results for considered
cases reflect good adequacy of the lumped model (eq. (7)), which emphasizes the
role of rotation-generated circumferential flow. Note the high value of the
fluid inertia, M = 4.63 kg (fig. 5). It exceeds about 400 times the fluid mass
in the seal (data from tables 2 and 3). The relatively low value of X\ iden-
tified from the numerical experiment may be due to lack of rotor dynamic param-
eters in the model.

Nonlinear Considerations

Nonlinearity of the fluid dynamic force should be taken into consideration
in more advanced lumped models. K and D as well as X are nonlinear func-
tions of shaft eccentricity. Figure 6 illustrates the effect of nonlinearity.
For A = 0.5c (where ¢ 1is bearing or seal radial clearance) the dynamic stiff-
nesses are higher than for A = 0.24c. Their shapes, however, are very close
(except for low rotative speed). MWhen the same fluid force models (egs. (7)
and (8)) are used as previously, the results mean that the fluid radial stiff-
ness K is a nonlinear increasing function of shaft eccentricity (the most
pronounced effect) and that fluid average circumferential velocity ratio 2
is a decreasing function of eccentricity (lesser effect). The effect of eccen-
tricity on the fluid radial damping D and the fluid inertia in the consid-
ered range of parameters is not very high.

- Seal Secondary Flow

Figure 7 presents the influence of rotation and perturbation speeds on
the secondary flow patterns in seal flows. Lower rotative speed and higher
perturbation speed intensified the secondary flow zones and by lowering the
average circumferential velocity enhanced rotor stability. For the assumed
geometry and the considered range of pressure drop (17 bars) the secondary flow
zone occurred just in front of the minimum clearance or convergence zone. Note

that this zone rotates with frequency -

12



Preswirl and Pressure Drop Effects

Figures 8 and 9 show results of calculations for the seal flow with pre-
swirl for two values of the axial pressure drop. The preswirl was imposed at
the seal inlet in either the forward or backward circumferential direction in
the following form:

Vps = Riwp [1 - r/R11/3 (13)

where Vjyg is the preswirl circumferential velocity at radius r; Ry and R
are shaft and seal radii correspondingly. The preswirl clearly modifies the
fluid average circumferential velocity ratio A and is introduced to the model
previously discussed in the form of an average value xe which is negative for

the preswirl against the direction of rotation (resultant X is lower) and
positive for the preswirl in the direction of rotation. 1In the latter case the
circumferential mass flow and fluid velocity are clearly intensified and A
increases.

In this numerical case the perturbation was synchronous (w_ = wR); there-

fore full identification of the model parameters was not possib?e (figs. 8
and 9).

For higher axial pressure drop the fluid force components exhibited linear
relationships with perturbation frequency and perturbation frequency squared
correspondingly (again for direct dynamic stiffness the perturbation frequency
was modified by using the same algorithm as in the previous case, illustrated
in figure 5, now with w_ = “R taken into account, fig. 8). For lower pres-

sure drop the fluid force components exhibited higher 2\ (circumferential flow
intensified), lower D, K, and M, and more nonlinear character versus wi and

wg correspondingly (figs. 8 and 9). High pressure drop means that there is a

significant axial flow in the seal. Higher values of fluid radial stiffness,
damping, and inertia in this case are intuitively easily understood (if one
neglects the secondary flows). The lower average circumferential velocity
ratio for higher axial pressure drop also fits well with the physical interpre-
tation of the phenomenon: The axial flow is dominant and the circumferential
flow is reduced (fig. 10).

When the data were extrapolated (fig. 9), a slight discrepancy between
ratios of xe to (1 - A) was identified from direct and quadrature dynamic

stiffnesses, and the additional cross-coupled term Ky, (tangential component
in the model of the form -ijyz when added to eq. (7)¥ appeared. This will
require further investigations, using in particular the nonsynchronous
perturbation.

Figure 11 illustrates the influence of the inlet preswirl on the secondary
(backward) circumferential flow field. It is evident that the preswirl inten-
sifies the recirculation zone if it is introduced in the direction opposite to
rotation (lower resultant A, higher rotor stability). Preswirl in the direc-
tion of rotation weakens the recirculation zone and intensifies forward circum-
ferential flow (higher resultant ).
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Fluid Injection Effects

Figures 12 to 14 illustrate the influence of fluid injection on dynamic
stiffnesses. Three cases with injection were considered: radial, in the direc-
direction of rotation, and against rotation. Figure 12 gives the corresponding
angular relations. Injection rate was proportional to rotative speed (table
1. ’

In comparison to the case with no injection, the resultant dynamic stiffnesses
were considerably modified. A1l parameters exhibited nonlinear character, as
functions of rotative speed. Fluid radial stiffness increased and fluid iner-
tia decreased. TFollowing the previously discussed model, the fluid effective
damping D(1 - X + xi) increased when injection was against rotation (XA, < O,

where ki is the injection-related average circumferential velocity ratio) and
decreased when injection was in the direction of rotation (xi > 0). The radial

injection caused a higher radial stiffness K and a lower X than in the
no-injection case, which is a very important observation for pressurized, fluid-
lTubricated bearings as well as for "anti-swirl" seal techniques.

Here again, the application of synchronous perturbation only (as opposed
to nonsynchronous) did not allow for the full identification of the parameters.

Average Leakage

Results of the leakage calculation are presented in table 1. The effect
of rotation and perturbation speed on the leakage value was most pronounced
when the axial pressure drop was assumed Tow. Increasing rotative speed
reduced leakage (more fluid involved in circumferential motion). Increasing
perturbation speed increased leakage (pumping effect). In cases with fluid
injection the highest leakage occurred when injection was in the direction of
rotation. Injection against rotation reduced the leakage by about 7 percent.

Circumferential Force Versus Axial Force

In all calculated cases the pressure drop was relatively low. The result-
ing axial forces did not exceed 300 N (table 1). For the assumed precessional
amplitudes the maximum circumferential forces were usually much higher, espe-
cially their tangential components (Fy pax = 750 N in case 2, Ft max = 600 N
in case 4b, Ft max = 800 N in case 5). Maximum radial force was usually about
50 percent smaller than the maximum tangential force.

BEARING FLOWS
Bearing flows were numerically simulated by assuming higher fluid viscos-
ity and low axial pressure drops (tables 1 to 3).
Bearing Secondary Flow
Figure 15 illustrates the influence of rotation and perturbation speed on
the secondary flow patterns in bearing flows. For this case the axial pressure

drop was low (Ap = 0.3 bars). Compared to figure 7, where axial pressure drop
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lack of rotordynamic parameters in the model. By maintaining the clear physi-
cal interpretation this model represents a significant refinement of the
bearing/seal coefficients. Furthermore, since the lumped parametric forms also
agree with experimental results, the model can be adjusted so that the numeri-
cal experiments and the physical experiments agree. The nonsynchronous pertur-
bation proved to be very efficient in identifying lumped model parameters from
numerical and experimental (ref. 20) data.

The numerical experiments delineated reg1ons of secondary flows. These
zones were intensified with preswirl opposing shaft rotation. In terms of the
proposed lumped model the integrally averaged fluid circumferential velocity
ratio decreased; this implied a stabilizing influence for rotors. Numerical
experiments with fluid injection indicate a similar response, which is of sig-
nificance not only to pressurized fluid-lubricated bearing designs, but to
"antiswirl" controls as well. Furthermore, calculated primary and secondary
circumferential flows in a simulated bear1ng were found to be in good agreement
with physical experiments.

For further studies the current version of the computer code should be
expanded to include the energy equation, rotor static eccentricity, and ellip-
tic perturbation orbits, as well as rotor mechanical parameters. Although
these additions will require time-dependent solutions of the transformed
Navier-Stokes equations (i.e., much more complex numerical algorithms), the
results would begin to properly simulate reality.

16



was higher (more like that taking place in seals), the secondary flows occurred
at a high clearance region and were less intense than in the "seal" case.

Axial Versus Circumferential Flow

Figures 16 and 17 present the relationships between the circumferential
and axial nonwhirling flows in an oil bearing with large clearance (table 3).
To model the oil bearing case, w_ was set to zero; A became the static eccen-

tricity; the source terms S(U) and S(V), equation (5), were zero and the
governing equations (4) reverted to unmodified cylindrical form. The figures
illustrate axial flow velocity and circumferential flow patterns frozen at the
shaft's Towest vertical position and at several axial locations. The axial
pressure drop proved to be a very important factor in reducing the secondary
flows. For case 7 (fig. 16) the pressure drop was zero. At the smallest
clearance the axial flow velocity was consistently zero, but the oil was
axially pumped out of and into the bearing in the convergent and divergent
zones, respectively. The secondary flow zones existed in the high clearance
area along the entire axial length of the bearing. During flow visualization
experiments (Braun, et al.) such "stagnation" zones were clearly observed
(ref. 13).

The existence of a tiny axial pressure drop (ap = 0.1 bar, fig. 17) sig-
nificantly changed the flow pattern. Secondary flows were much smaller and
appeared just before the narrowest clearance and only on the bearing inlet
side. The axial flow was not uniform through the bearing. Regions of axial
flow reversal (negative velocity) developed just in front of the narrowest
clearance. Note that in figures 16 and 17 the shaft was actually rotating at
the frequency (with w_ = 0) and in both considered cases the ratio of bearing

clearance to shaft radius was very high. The flow pattern for more realistic
bearing parameters may look significantly different. The preliminary calcula-
tions do illustrate the persistence of secondary flows in bearings with conven-
tional clearance-to-radius ratios. These flows exhibit, however, lower
intensity than for bearings with large clearances and without perturbation
velocity w_ . Furthermore, extremely fine grids should be used in order to

delineate f?ow field details.

CLOSING REMARKS

Significant progress in computer technology now allows for high-speed,
highly accurate calculations of three-dimensional fluid flows at relatively low
costs. This paper advances a numerical model based on the transformed three-
dimensional, turbulent, conservative Navier-Stokes equations that is applicable
to seals and bearings. Leakages and fluid dynamic forces were calculated and
found in good agreement with selected data of Childs (refs. 2 and 19). Several
numerical experiments were performed and related to a lumped-parameter model
that a priori assumes the existence of an integrally averaged circumferential
velocity representative of the configuration flow field. Rotor stability is
directly correlated with circumferential flow (ref. 26). The fluid average
velocity ratio is an effective measure of the circumferential flow and thus
represents a meaningful parameter for rotordynamics. To the first order,
Tumped parameters were extracted from the numerical experiments. Relatively
low values of the circumferential velocity ratio can be associated with the

15



au., du.\ du.
De_ 3 (Ptae ) e B A I B
P Dt T (ce 8x1> K [C1“t (8x. ¥ ax.) 3%, Cope

j i i
Total Diffusion Production Dissipation
derivative
of turbulence
dissipation
C pk2

Heff = H * e

Effective Molecular Turbulent

viscosity viscosity viscosity

(iv) Multiequation of Reynolds-stresses model (e.g., tranport equations for
the turbulent stresses containing triple correlation of fluctuating velocities

2 2

provided for uiui, u% , u%ui , and e):
Duiu!
11 - _

Dt = Py ¥ i3 + Dy ©i 3
Total Generation Pressure Diffusion Viscous
derivative tensor strain dissipation
of individual (redistribution)

Reynolds stress
Effective Molecular Turbulent
viscosity viscosity viscosity

There is a considerable amount of evidence that one-, two-, or multiequa-
tion models of turbulence are still not satisfactory for flows that exhibit
strong swirl, curvature, highly viscous, and low-Reynolds-number effects
(ref. 17). Some researchers claim, however, successful application of the k-¢
model to seal flows (e.g., ref. 10).
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APPENDIX - TURBULENCE MODELS

A fluid motion is described as turbulent if it is rotational, intermit-
tent, highly disordered, diffusive, and dissipative. The turbulence quantities
based on the Reynolds equation and the Reynolds stress term can be modeled by
using the second-order closure form of their balance equations and generally
can be expressed in terms of time-averaged variables. There are several turbu-
lence models that can be used to simulate the turbulent flow using Navier-

Stokes equations (for comprehensive review see ref. 17).
The main classes of turbulence models are as follows:

(i) Zero-equation (e.g., Prandtl mixing length model):

2
Heff = M + PLnd
Effective Molecular Turbulent
viscosity viscosity viscosity

(i1) One-equation model of turbulence (e.g., turbulence kinetic energy k):

au,
Dk O | = T = (_1} _
POt = 3x; (Puik t P “1) - PU;U5 (axj>

Total Diffusion Production
derivative

of turbulence

kinetic energy

Voff = |3 + CPP \/EQ'
Effective  Molecular Turbulent
viscosity viscosity viscosity

(iii) Two-equation model of turbulence (e.g., k-e model):

5 Ok =_a_(“_t_¢)+ p(aﬁjiﬁ)ﬂ’i
Dt ax1 o axi t axj axi 8xi
Total Diffusion Production
derivative

of turbulence
kinetic energy

2

ij i

Dissipation

Dissipation
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TABLE II. - FLUID PROPERTIES USED IN

NUMERICAL CALCULATIONS

Fluid Density, | Kinematic Cases
P, viscosity,
kg/m3 v
m2/s
Bromotri- 1570 10-7 1to 6
fluoromethane
0il 800 6x10~> 7 and 8

TABLE III. - GEOMETRIC PARAMETERS USED IN

NUMERICAL CALCULATIONS

Parameter Fluid
Bromotri- 0il
fluoromethane
Seal or bearing length, 48.29x10~3 76.2x1073
2, m
Shaft radius, Rj, m 49.6528x10"3 | 38.1x1073
Seal or bearing radius, 50.1478x10-3 76.2x10~3
R,m
Radial clearance ¢, m 495x10~6 38.1x1073
Ratio of clearance to 9.8x10™3 1
shaft radius, c/R;
SHAFT

FIGURE 1. - SEAL OR BEARING CONFIGURATION IN A
CONSTANT AXIAL PLANE Z.
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FIGURE 2. - SHAFT/HOUSING CONFIGURATION AND FLUID FLOW GRID DISTRIBUTION.
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FIGURE 3. - FLUID DIRECT AND QUADRATURE DYNAMIC STIFFNESSES VERSUS ROTOR
SPEED FOR TWO AXIAL REYNOLDS NUMBERS. A COMPARISON OF CALCULATIONS AND
MEASUREMENTS BY CHILDS [2, 191.
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QUADRATURE DYNAMIC STIFFNESS, Xq

CASE 2

A —F¢rN
— 6
3] = [—x108]
O Wgr = 1442 RPM
¥ WR = 3252 RPM
2 IDENTIFIED MODEL
Xao = D((l)P“)\(l)R)zkxy
g
D = 8860 - A = ¢/2
11 A = 0125 Ap = 17 bars
— — —EXTRAPOLATED
7
A
i .
7 3 5 5
PERTURBATION FREQUENCY Wp [KRPM]

FIGURE 4. - QUADRATURE DYNAMIC STIFFNESS VERSUS PERTUR-
BATION FREQUENCY. IDENTIFICATION OF FLUID RADIAL DAMP-
ING D AND FLUID AVERAGE CIRCUMFERENTIAL VELOCITY
RATIO A.

CASE 2

3 © Wg = 1442 RPM

) A —FrrN 6 _

ﬁ — L X 106] * Wr = 3252 RPM

i ol A = ¢/2

(i';, ap = 17 bars

§ IDENTIFIED MODEL:

3 Xp = K-M(Wp-AWR)?

51'5' K = 2.04 X 106 =

o M = 4.63 kg

S A = 0.125 -

S o 2 4 6 8
MODIFIED PERTURBATION FREQUENCY

(Wp ~AWR)2 [RPM2 X 106]

FIGURE 5. ~ DIRECT DYNAMIC STIFFNESS VERSUS MODIFIED
PERTURBATION FREQUENCY. IDENTIFICATION OF FLUID RA-
DIAL STIFFNESS K AND FLUID INERTIA M.
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FIGURE 6. - DIRECT AND QUADRATURE DYNAMIC STIFFNESSES VERSUS RATIO OF PERTURBATION
TO ROTATION FREQUENCY FOR A = 0.5c AND A = 0.24c. EFFECT OF NONLINEARITY.



Ap = 17 bars A = 0.24c Z/1 = 0.25 CASE 3

FIGURE 7. - INFLUENCE OF ROTATION AND PERTURBATION SPEED ON SECONDARY
FLOW PATTERNS (SHADOWED AREAS) IN SEAL FLOWS.
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DIRECT DYNAMIC STIFFNESS, Xp

CASE 4

IDENTIFIED MODEL:
Xp = K - MW3(1-A-Ae)?
Xp = K- MWZ(1-A)?
Xp = K - MWZ(1-A +Ae)?

M(1-A)2 = 0.0648 kg
K = 1.98 X 10‘SE
m

Ae = 0.111(1-
5, \e (1-A)

-0.5-

X NO PRESWIRL
O PRESWIRL IN DIRECTION OF ROTATION

28

FIGURE 8. - DIRECT DYNAMIC STIFFNESS VERSUS ROTATIVE SPEED SQUARED (SYNCHRONOUS

PERTURBATION). NOTE INFLUENCE OF PRESWIRL ON AVERAGE CIRCUMFERENTIAL VELOCITY RATIO.
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N
— 5 —
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Kxy

2.5
ROTATIVE SPEED, Wg [kRPM]

FIGURE 9. - QUADRATURE DYNAMIC STIFFNESS VERSUS ROTATIVE SPEED (SYNCHRONOUS
PERTURBATION). NOTE INFLUENCE OF PRESWIRL ON AVERAGE CIRCUMFERENTIAL

VELOCITY RATIO.

FIGURE 10. - INTERPRETATION OF AXIAL AND CIRCUMFERENTIAL FLOW RESULTING IN “SPIRAL” FLOW.

Sefine

(A) HIGH PRESSURE DROP.

(B) LOW PRESSURE DROP.
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E SECTION A \ E SECTION B \

FIGURE 11. - INFLUENCE OF PRESWIRL ON CIRCUMFERENTIAL FLOW
FIELD. SHADOWED AREAS INDICATE SECONDARY FLOWS.
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o WITH ROTATION y = arctan (3)
* RADIAL INJECTION Y 0
v AGAINST ROTATION y = arctan (-3)

FIGURE 12. - INJECTION GEOMETRY.
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FIGURE 13. - DIRECT AND QUADRATURE DYNAMIC STIFFNESSES VERSUS ROTATIVE
SPEED FOR CASES WITH FLUID INJECTION (SYNCHRONOUS PERTURBATION).
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FIGURE 14. - DIRECT DYNAMIC STIFFNESS VERSUS
ROTATIVE SPEED FOR CASES WITH AND WITHOUT
FLUID INJECTION (DIFFERENT SCALE THAN IN
FIG. 13).
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ap = 0.3 bars A = 0.24c¢c Z/1 = 0.25 CASE 6

FIGURE 15. - INFLUENCE OF ROTATION AND PERTURBATION SPEED ON SECOND-
ARY FLOW PATTERNS (SHADOWED AREAS) IN BEARING FLOWS. COMPARE WITH

FIGURE 7.



AXIAL FLOW VELOCITY, V, [Im/s] CASE 7
Va
0.2 Va V,
0.1 0.1 0.1
_1'-[\4 IRV LR it
Z/IL=0.1 ZILl=0.2 Z/1=0.3

Va
Lo

-t ]l T
Z1=0.5

Z/1=0.4

V,
24

T T -
Z1=0.7

Va
0.1

r

- Tt
Z1=0.8
n M= 0.9

FIGURE 16. - MEAN AXIAL FLOW DISTRIBUTION ALONG UN-
WRAPPED CIRCUMFERENTIAL DIRECTION AND SECONDARY
FLOW PATTERNS OF A BEARING AT VARIOUS AXIAL PLANES.
PRESSURE DROP Ap = 0 BAR, (wp = 0).
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AXIAL FLOW VELOCITY, V, [m/s] CASE 8
Va

AN

3

TT -Tt Tt
Z/l—07 Z1=0.9

FIGURE 17. - MEAN AXIAL FLOW DISTRIBUTION ALONG UNWRAPPED CIR-
CUMFERENTIAL DIRECTION AND SECONDARY FLOW PATTERNS OF A BEAR-
ING AT VARIOUS AXTAL PLANES. PRESSURE DROP Ap = 0.1 BAR.

((Jp = 0).
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fitted grid, several numerical experiments were carried out to demonstrate the character of this com—
plex flow field. In general, fluid injection and/or preswirl of the flow field opposing the shaft
rotation significantly intensified these secondary recirculation zones and thus reduced the average
circumferential velocity; injection or preswirl in the direction of rotation significantly weakened
these zones. A decrease in average circumferential velocity was related to an increase in the strength
of the recirculation zones and thereby promoted stability. The influence of the axial flow was ana—
lyzed. The Tumped model of fluid dynamic force based on the average circumferential velocity ratio
(as opposed to the bearing/seal coefficient model) well described the obtained results for relatively
large but Timited ranges of parameters. This lumped model is extremely useful in rotor bearing/seal
system dynamic analysis and should be widely recommended. Fluid dynamic forces and Teakage rates
were calculated and compared with seal data where the working fluid was bromotrifluoromethane
(CBrf3). The radial and tangential force predictions were in reasonable agreement with selected
experimental data. Nonsynchronous perturbation provided meaningful information for system lumped-
parameter identification from numerical experiment data.
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