NASA
 Reference Publication 1130

1988

Galileo Probe Parachute Test Program: Wake Properties of the Galileo Probe at Mach Numbers From 0.25 to 0.95

Thomas N. Canning
Portola Valley, California
Thomas M. Edwards
Ames Research Center
Moffett Field, California

NMSn

National Aeronautics and Space Administration Information Division

GALILEO PROBE PARACHUTE TEST PROGRAM:

WAKE PROPERTIES OF THE GALILEO PROBE AT MACH NUMBERS FROM 0.25 TO 0.95

Thomas N. Canning* and Thomas M. Edwards
Ames Reséarch Center

SUMMARY

Abstract

The results of surveys of the near and far wake of the Galileo Probe are presented for Mach numbers from 0.25 to 0.95. The trends in the data resulting from changes in Mach number, radial and axial distance, angle of attack, and a small change in model shape are shown in crossplots based on the data. A rationale for selecting an operating volume suitable for parachute inflation based on low Mach number flight results is outlined.

INTRODUCTION

The deployment, inflation, performance, and stability of a parachute in the wake of a payload to which it is attached are frequently sensitive to the velocity gradients of the wake itself. This sensitivity is expected to be particularly great for cases in which the wake diameter is comparable to that of the parachute because the radial velocity gradient is largest at the periphery of the parachute before the parachute is fully open. That is to say, a very small parachute (such as a drogue) may deploy and inflate satisfactorily in a large wake (because only small differences of imposed velocity occur near it), whereas a somewhat larger parachute might inflate slowly or not at all. In contrast, the larger parachute may inflate satisfactorily in the wake of a small payload - the usual configuration employed in parachute development and structural tests. The descent parachute configuration of the Pioneer Venus Large Probe (ref. 1) is believed to have exhibited a "reluctance" to open at Mach numbers above 0.6 both for the system tests in the Earth's atmosphere and for the actual Probe during its flight in the atmosphere of Venus. The rather gradual inflation did not compromise the collection of scientific data in the Venutian atmosphere because no critical events, such as entering a recognized cloud layer, occurred before the altitude for parachute deployment and inflation. In the case of the Galileo Probe (ref. 2), on the other hand, it is most important to deploy and inflate the parachute somewhat earlier, i.e., at higher Mach number, in order to remove the instrumented descent configuration from the aeroshell and permit operation of the cloud-analysis instrument before entering the first clouds in the postulated atmosphere of Jupiter.

[^0]During Earth-based flight tests to verify adequate system behavior for the Galileo flight conditions, however, the inflation was achieved at an undesirably low Mach number; once inflation was complete, the performance and stability proved to be the same as the earlier tests and flights. Rather than accept the loss of the scientific data and the risk of even further delayed inflation for the flight in the atmosphere of Jupiter, it was decided to investigate the reasons for the marginal behavior and to seek means to ensure prompt inflation at the desired flight Mach number. In order to relate the anticipated wake-survey data to the earlier experience, tests at conditions spanning those for both Venus and Jupiter were desired. Two types of tests were believed necessary in order to guide decisions on design variations: wake-flow surveys and tests of scale model parachutes. This report describes the wake-flow study and suggests a simple rationale for employing the summary plots derived from the data. Tests of a scale model parachute are reported in reference 3.

TEST EQUIPMENT AND TEST FACILITY

Probe Models

The wakes of two one-eighth-scale models (6-in. diameter) of the Galileo Entry Probe aeroshell were surveyed in the NASA Ames 6 - by $6 . \mathrm{ft}$ transonic wind tunnel to define the initial operating environment of the descent parachute. The principal configuration represented the expected form of the "ablated" Galileo Probe deceleration-module heat shield. The second configuration represented the "ballasted" configuration to be used in a planned system drop test to verify that parachute deployment, inflation, performance, and stability were satisfactory. The two model profiles are shown in figure 1 . In addition to matching the forebody profile for the
system drop test, the model in figure 1(b) also is essentially the same as that of the Pioneer Venus Large Probe; thus the results from both programs can be directly related. The principal difference between the latter model and the Pioneer Venus Large Probe is the short cylinder between the 45° half-angle cone and the base. In neither case was the form of the afterbody (from the rim of the cylinder aft) made to simulate a real configuration because of the expected insensitivity to the afterbody of the distant wake flow and most of the reverse-flow region. At high Reynolds numbers (above critical for transition), the flow separates at the cone-cylinder junction at subsonic and transonic speed.

The models were affixed to the support structures at a pivot located 0.084 model diameter ahead of the base plane. Thus, when positive angles of attack were set, the center of the model base moved slightly in the direction of negative Z.

The area surrounding the model noses was covered by a fairly densely spaced single layer of glass spheres out to a radius of 0.167 model diameter to assure early transition to turbulent boundary-layer flow. This feature in combination with the nominal test Reynolds number 1.5 million, was used to assure good simulation of full-scale flow. A brief sequence of tests was run at $R e_{D}$ equal to 3 million and showed no alteration of flow patterns.

Model Supports

Two types of support were used during the tests. All of the data reported herein were obtained with the models supported on the sting-strut assembly shown in figure 2. A few preliminary tests were run with the ablated-form model mounted conventionally on a long slender sting equipped with a fixed rake of five pitot-pressure tubes located 2.6 model diameters from the model base. Tests were conducted with and without the strut in place about 0.3 model diameter from the base. The strut reduced the size of the wake significantly at $M=0.95$; therefore, the two-diameter extension sting was installed to reduce the interference. Subsequent surveys with the traversing survey probe described later revealed a wake profile which matched that of the sting-mounted model much more closely. Directly comparable tests using only the five-tube probe were not possible, but it was concluded that support interference was reduced to a degree which would allow accurate determination of data trends with Mach number, distance downstream and angle of attack, and model profile. The strut was stabilized with guy wires to avert possible coupled torsionbending oscillations.

Wake Survey Apparatus

All of the data presented herein were obtained using the pitot-static probe illustrated in figure 3. Included on this
probe were forward- and aft-facing pitot tubes; the forwardfacing tube incorporated a coaxial static-pressure tube as well (four orifices at 0.29 model diameter from its tip). This spacing permitted good determination of flow properties in weak and moderately strong axial pressure gradients. The aft-facing pitot tube was about 1 model diameter downstream of the static-pressure taps, so that strong gradients made interpretation of the data in the reverse-flow region difficult. After completing the far-wake survey, the forward-facing pitotstatic probe was accordingly converted to aft-facing (fig. 3(b)) by bending it through 180°. The orifice nearest the inside of this bend was sealed with epoxy to avoid the strongest aerodynamic effects of the bend. Even with this alteration, the strong pressure gradients in the reverse-flow region required that the separation between pitot and static orifices be recognized in obtaining the data. This was accomplished by traversing the probe in increments of 1.75 -in. (0.29 model diameter) and using the measurement in adjacent test sequence points to obtain spatially coincident measurements of pitot and static pressures.

The same procedure can, in effect, be achieved with the far-wake results by interpolation of the static-pressure data to obtain coincident determination of the pressures; this has not been done in reducing the data because the gradients there are an order of magnitude less severe than in the reverse-flow region.

Pitot and static-pressure measurements made using probes of this sort are degraded if the local flow is highly inclined (more than 10°) relative to the tube axis. Since this degradation is small for angles less than about 10°, the only regions in the wake where errors are expected to be large are well removed from the axis in the near wake. Approximate numerical analysis of the wake profiles downstream of the model by more than 5 model diameters indicated that radial inflow into the accelerating wake resulted in inclinations of less than 3°. Unsteadiness of the flow in the wake doubtless interfered with the static-pressure determination; since the goal of the present surveys was to determine the qualitative influence of Mach number, position, and angle of attack on dynamic-pressure distribution, the small and slowly changing bias on the static-pressure measurement was ignored in studying the data.

The pitot-static probe was located at the tip of the short radial arm so that as the survey assembly was rolled, the probe moved to the left or right to survey at positions other than the vertical plane of symmetry. The location of the roll mechanism is indicated in figure 4.

Vertical positioning of the survey probe was accomplished by translating the wind tunnel model-support body of revolution (BOR) by simultaneous operation of its two positioning screws. Streamwise positioning of the survey probe was effected by means of the linear-actuator mechanism connected between the probe arm and the roll mechanism. The maximum extension range of the linear actuator was slightly less than 4 model diameters; it was therefore necessary to
position the model-support strut at several stations along the test-section ceiling to achieve the full streamwise array of surveys desired.

Deflections of Survey Apparatus

As noted above, the entire survey apparatus was cantilevered from a large floor-to-ceiling strut located in the entrance to the wind tunnel diffuser. The maximum cantilever length is approximately 12 ft . Late in the test program it was discovered that aerodynamic loads deflected the apparatus upward by an amount that is believed to be influenced by extension length, dynamic pressure, Mach number, roll position, and position relative to the model's wake. Additionally, backlash in the vertical-positioning drive may have yielded a small irregularity in vertical position, although calibration tests without airflow revealed no such effect greater than about 0.5% of the model diameter. The aerodynamic deflection, on the other hand, produced in one case a deflection of at least 8% of the model diameter. As far as could be determined, this deflection was nearly constant for a given test condition and streamwise position of the survey probe (axial and roll), so that the shapes of the vertical profiles of dynamic pressure, Mach number, etc., were preserved, but the absolute position of the survey probe relative to the model axis was not accurately known. From a study of the flow-profile plots, the effect of the elastic deflection can be seen to yield a "movement" of the wake progressively in the $+Z$ direction as the dynamic pressure increased; i.e., increasing Mach number at constant Reynolds number. A similar lateral deflection may have occurred as well, but observation was not possible.

Interpretations of the profiles of flow properties were therefore based on the assumption that vertical deflection was constant throughout any one run, i.e., vertical traverse. Also, where effects of angle of attack were under study, it was assumed that deflection was independent of angle of attack.

TESTS

Most of the test period was spent obtaining the complete survey of the static and pitot pressure variations in the wake of the "ablated" model configuration supported on the strut. The matrix of test conditions and survey points is detailed in table 1. The abbreviated test matrix for the second, i.e., "ballasted," model consists of runs 333 through 335 . In this listing an entry is made in a column only at the run at which that parameter is changed. The special tests, designed to reveal the extent of support interference on the nominal wake properties, are not included.

The test sequence was dictated by the most efficient use of tunnel time, except that the special support interference
study was accomplished first to obtain early assurance that support interference would not be excessive.

While the test airflow conditions were being established, the survey apparatus was maneuvered into the desired position: for height, Z, by raising the BOR conventionally used for model support, for lateral position, Y, by rotating the roll positioner on the BOR and extending the survey apparatus linear actuator to the desired streamwise position, X. Each run thereafter consisted of a vertical traverse to all the points at which measurements were needed.

Succeeding runs were made at the remaining lateral positions desired for the same axial station before moving to the next axial station. Once the three linear dimensions had been adequately surveyed, the next Mach number was established and the desired spacial survey was completed. The time required to position the survey probe was sufficient to assure equilibration of the pressure sensors without additional delay.

The only occasions requiring breaks in the wind tunnel operation were those to adjust the streamwise location of the model-support strut and its guy wires, adjust the angle of attack of the model (by rotation about the pivot inside the model), or exchange the ablated model for the ballasted model. At each such break in the testing, the glass-bead boundary-layer trip area was inspected and refurbished as needed.

RESULTS

All of the wake-survey results for both the ablated and ballasted configurations supported on the short sting with strut are provided in table 2 . Table 2 has been subdivided into four sections. Sections 2 a and 2 c present data for the ablated model shape with the pitot-static probe facing forward. Section $2 b$ presents data for the ballasted model profile, and section 2 d presents data for the ablated shape with the pitot-static probe facing aft. Data were taken at Mach numbers of $0.25,0.60,0.80,0.85,0.90$, and 0.95 at a Reynolds number of 0.75 million based on model diameter. The pitot-static surveys yielded profiles of Mach number, dynamic pressure, velocity, and static pressure as functions of vertical position relative to the horizontal axis of the small sting at selected lateral positions and several axial stations between 1 and 11 model diameters downstream from the model base.

Definitions of column headings are presented in table 2. To preserve direct accountability of the table, the actual run numbers and order of table 1 may facilitate rapid location of a desired test listing. Gaps in the number sequence represent runs made at a Mach number of 1.1 ; these runs were deleted because of serious disturbance of the flow by the normal-shock wave upstream of the linear actuator of the survey system.

A few unexplained anomalies have been observed in individual sequence (i.e., data-point) listings. These anomalies have not been deleted.

Selected groups of runs have been plotted and crossplotted in figures 5 through 8 to reveal the shape, Mach number, distance, and angle-of-attack effects on the properties of the wake. In these plots attention is concentrated on the variation of the ratio of local dynamic pressure to freestream dynamic pressure. Other parameters, such as velocity or pitot pressure, may be as meaningful in applying the results for various purposes. Sufficient information is tabulated so that such plots may be constructed.

All of the tabulated results, with the exception of runs 367 through 390 , are presented with no post-test alteration. These exceptions are the tests made with the modified (reversed by a 180° bend) pitot-static tube. In these tests, very strong axial gradients resulted in a large static pressure difference between the positions of the pitot and static pressure orifices. Therefore, the X increment used in these tests was selected so that the static pressure determined at a particular sequence point could be used with the pitot pressure obtained at the previous sequence point. The tabulated data have been treated in this manner.

With considerable effort the same kind of correction can be applied to the data from surveys at 3.5 model diameters, and farther, behind the base. There is little to be gained, however, because the pressure gradients are an order of mag. nitude less severe than in the reverse flow near the model base.

DISCUSSION OF RESULTS

Far-Wake Region

The momentum defect in the wake of a simple nonlifting body is directly equivalent to the drag of the body. The wakes of the two aerodynamic models used in this study illustrate that the ballasted model has slightly less drag than the more bluff ablated model used in most of the tests. The profiles of dynamic pressure (fig. 5) show a smaller loss in the wake core of the ballasted model than in the wake core of the ablated model. The extent and precision of the surveys in this study are not sufficient to determine the absolute drag coefficients with great accuracy, but the difference is clear. While the two configurations showed only modest differences in dynamic pressure loss (and gradients of dynamic pressure), much greater changes were observed for the ablated model as Mach number and distance from the model to the survey station were changed. The lower portion of each part of figure 6 illustrates the rapid increase of dynamic pressure in the wake core as the survey station is moved downstream from the wake stagnation point -0 dynamic
pressure. Even as far downstream as 11 model diameters, the continued recovery toward free-stream conditions is clear.

This acceleration of the wake core is achieved at the cost of deceleration of the airflow immediately outside the wake; at all times the total loss in momentum flux must represent the model drag. This redistribution of momentum is summarized in the contour plots of constant dynamic pressure presented in the upper portions of figure 6. At some distance downstream of the body, probably about 6 model diameters from the base, the profiles become "similar." That is, when normalized to the maximum loss in velocity at the core and to the local wake diameter, the profile plots will remain unchanged. Once similarity is established, the radial gradients are seen to vary as the 1.5 power of the maximum loss at the core.

The Effects of Angle of Attack

The total drag of bodies like those tested in this study is quite insensitive to angle of attack, for angles of attack very much less than the body cone half angle; therefore the total change in loss of momentum in the wake was correspondingly slight as angle of attack increased to 20°. The generation of even a modest lift force, however, results in the discharge of a trailing vortex system which rolls up into a vortex pair at great distances downstream. This vortex system causes the wake to move in a direction opposite to that of the lift vector. This deflection of the wake is the most prominent feature in the vertical profiles of dynamic pressure ratio at angles of attack of both plus and minus 10° and 20° (fig. 7). The surveys revealed no further major changes in the dynamic pressure profiles.

Reverse-Flow Region

In deploying the Galileo Probe parachute, it is necessary first to propel a small drogue through the near wake of the probe (where the flow moves toward the base). Further, the drogue must then remove the afterbody heat shield and drag it through the volume of reverse flow before the main parachute can be drawn aft in turn. In order to permit estimation of the performance requirements placed on the drogue, the reverse-flow region was surveyed in detail using the modified pitot-static probe (runs 367 through 390). These data are summarized as contour plots of dynamic pressure in figure 8.

The length of the reverse flow increases significantly as Mach number increases from 0.25 to 0.95 . The relative severity of the reverse flow, on the other hand, diminishes.

The dynamic pressure profiles deduced (from crossplotting the data) to act along the axis of the flow core are shown in figure 8.

APPLICATION OF RESULTS TO DESIGN OF GALILEO PROBE PARACHUTE CONFIGURATION

Experience with the Pioneer Venus Large Probe (ref. 1) and with the System Drop Test Configuration for the Galileo Probe (ref. 2) suggested a "reluctance" to inflate at Mach numbers above 0.60 . In these cases the parachutes were deployed at approximately 5.5 Probe diameters behind the Probe base. The present data indicate that at this location and flight speed the loss of dynamic pressure near the wake core was severe and the wake diameter was comparable to that of the parachute itself. It is believed that these features combined to cause poor inflation. The result of increasing the Mach number was to aggravate the loss of dynamic pressure and increase the wake size. A slight aggravation was noted when the blunter shape of the Galileo (ablated form) was substituted for that of the Pioneer Venus Large Probe. In order to promote satisfactory parachute inflation for the more severe Galileo requirements, it is necessary, therefore, to find that region in the wake which appears to be more conducive to reliable inflation than that for the Pioneer Venus case at Mach 0.60.

The mixing of external-flow air with the wake is found to produce a rapidly improving wake profile with increasing distance downstream. A comparison of the appropriate profiles suggests that proper parachute inflation can be achieved for the Galileo at a Mach number of 0.80 by incorporating only a modest increase in deployment distance.

CONCLUSIONS

The wakes of the Galileo Probe and a system drop test configuration have been surveyed to determine the variation of flow properties between the model base and a station almost 11 model diameters downstream.

It was found that (compared to the Pioneer Venus Large Probe) the wake of the more bluff configuration (the shape representative of the expected ablated heat shield after entry into Jupiter) had slightly larger dynamic pressure losses and that the severity of these losses increased markedly with Mach numbers from 0.25 to 0.95 . Further, it was found that entrainment of adjacent air monotonically increased the wake size and the dynamic pressure in the core.

It was also found that the length of the reverse-flow region immediately downstream of the model increased slightly with increasing Mach number whereas the relative severity of the reverse flow diminished substantially.

A simple rationale was described whereby a region in which a parachute might be expected to inflate at high speed may be identified based on successful parachute operation at lower speed.

Ames Research Center

National Aeronautics and Space Administration Moffett Field, California, August 24, 1984

REFERENCES

1. Nolte, L. J.; and Sommer, S. C.: Probing a Planetary Atmosphere - Pioneer Venus Spacecraft Description. AIAA paper 75-1160, Sept. 1975.
2. Givens, J. J.; Nolte, L. J.; and Pochettino, L. R.: Galileo Atmospheric Entry Probe System - Design, Development, and Test. AIAA paper 83-0098, Jan. 1983.
3. Corridan, R. E.; Givens, J. G.; and Kepley, B. M.: Transonic Wind-Tunnel Investigation of the Galileo Probe Parachute Configuration. AIAA Paper 84-0823, Apr. 1984.

TABLE 1.- TEST CONDITION LISTING

Run No.	Mach No.	X / D_{B}	Y / D_{B}	Alpha	Run No.	Mach No.	X / D_{B}	Y / D_{B}	Alpha
144	0.95	7.0	0.02	0	194	0.95	8.5	-0.45	+20
145	1	8:5	-0.44		195	0.90	10.9	0	
146			0		196	0.90	8.5	1	
147	\downarrow	\downarrow	0.44		197	0.85	10.9		
148	0.80	7.0	0		198	0.85	8.5	\downarrow	
149		8.5	-0.44		199	0.80	10.9	0.41	
150			0		200			0	
151	\downarrow	\downarrow	0.44		201			-0.38	
152	0.60	7.0	0		202		∇	-0.48	
153		8.5	-0.44		203		8.5	0.43	
154			0		204			0	
155	\downarrow		0.44		205			-0.36	
156	0.95		-0.39		206	∇	\downarrow	-0.45	
157	1		0		207	0.60	10.9	0.41	
158		\downarrow	0.43		208			0	
159		10.5	0.41		209			-0.38	
160			0		210		\downarrow	-0.48	
161			-0.38		211		8.5	0.43	
162		\downarrow	-0.48		212			0	
163	\downarrow	10.0	0		213			-0.36	
164	0.80	10.9	0.41		214	∇	\downarrow	0.45	
165			0		215	0.25	10.9	0.41	
166			-0.38		216			0	
167		\downarrow	-0.48		217			-0.38	
168	\downarrow	10.0	0		218		\downarrow	-0.48	
169	0.60	10.9	0.41		219		8.5	0.43	
170	1		0		220			0	
171			-0.38		221			-0.36	
172		\downarrow	-0.48		222	\downarrow	\dagger	-0.45	∇
173	\downarrow	10.0	0		223	0.95	10.9	0.41	-20
174	0.90	10.9			224	1		0	
175	0.90	0.85			225			-0.38	
176	0.85	0.85			226		\downarrow	-0.48	
177	0.85	10.9	\downarrow		227		8.5	0.43	
178	0.25		0.41		228			0	
179			0		229			-0.36	
180			-0.38		230	\downarrow	\downarrow	-0.45	
181		\downarrow	-0.48		231	0.90	10.9	0	
182		10.0	0		232	0.90	8.5		
183		7.0	0		233	0.85	10.9		
184		8.5	-0.45		234	0.85	8.5	\downarrow	
185		1	0		235	0.80	10.9	0.41	
186	\downarrow	\downarrow	0.43	∇	236		0	0	
187	0.95	10.9	0.41	+20	237			-0.38	
188			0		238		\downarrow	-0.48	
189			-0.36		239		8.5	0.43	
190		\downarrow	-0.48		240			0	
191		8.5	0.43		241			-0.36	
192		1	0		242	\downarrow	\downarrow	-0.45	
193	\downarrow	\downarrow	-0.36	\downarrow	243	0.60	10.9	0.41	\downarrow

TABLE 1.- CONTINUED

Run No.	Mach No.	X / D_{B}	Y / D_{B}	Alpha	$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	Mach No.	X / D_{B}	Y / D_{B}	Alpha
244	0.60	10.9	0	-20	294	0.25	8.5	-0.45	+10
245			-0.38		295	0.95	10.9	0.41	-10
246		\dagger	-0.48		296			0	1
247		8.5	0.43		297			-0.38	
248			0		298		\dagger	-0.48	
249			-0.36		299		8.5	0.43	
250	\dagger	\dagger	-0.45		300			0	
251	0.25	10.9	0.41		301			-0.36	
252			0		302	\downarrow	\downarrow	-0.45	
253			-0.38		303	0.90	10.9	0	
254		\downarrow	-0.48		304	0.90	8.5	,	
255		8.5	0.43		305	0.85	8.5		
256			0		306	0.85	10.9	∇	
257		,	-0.36	,	307	0.80		0.41	
258	\dagger	\dagger	-0.45	\checkmark	308	1		0	
259	0.95	10.9	0.41	+10	309			-0.38	
260			0		310		\dagger	-0.48	
261		1	-0.38		311		8.5	0.43	
262		\dagger	-0.48		312)	0	
263		8.5	0.43		313	,	1	-0.36	
264			0		314	\checkmark	\dagger	-0.45	
265		1	-0.36		315	0.60	10.9	0.41	
266	\downarrow	\checkmark	-0.45		316			0	
267	0.90	10.9	0		317		,	-0.38	
268	0.90	8.5			318		\downarrow	-0.48	
269	0.85	10.9	1		319		8.5	0.43	
270	0.85	8.5	\dagger		320	1	1	0	
271	0.80	10.9	0.41		322	\dagger	\dagger	-0.45	
272			0		323	0.25	10.9	0.41	
273		1	-0.38		324			0	
274		∇	-0.48		325		1	-0.38	
275		8.5	0.43		326		\downarrow	-0.48	
276			0		327		8.5	0.43	
277			-0.36		328			0	
278	\dagger	\dagger	-0.45		329			-0.36	
279	0.60	10.9	0.41		330	\downarrow	\downarrow	-0.45	\dagger
280		1	0		333	0.95	5.5	0	0
281			-0.38		334	0.80		1	
282		\dagger	-0.48		335	0.25	\dagger		
283		8.5	0.43		340	0.95	3.5	\dagger	
284			0		341		5.5	0.44	
285			-0.36		342			0	
286	\checkmark	\downarrow	-0.45		343		\dagger	-0.44	
287	0.25	10.9	0.41		344	\downarrow	7.0	0	
288			0		345	0.90	7.0	,	
289			-0.38		346	1	5.5		
290		\downarrow	-0.48		347	\dagger	3.5		
291		8.5	0.43		349	0.85	7.0		
292	1	1	0	-	350	1	5.5	1	1
293	\downarrow	\checkmark	-0.36	∇	351	∇	3.5	\checkmark	\dagger

TABLE 1.- CONCLUDED

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	Mach No.	X / D_{B}	Y / D_{B}	Alpha	Run No.	Mach No.	X / D_{B}	Y / D_{B}	Alpha
352	0.80	3.5	0	0	372	0.90	0.25	0	0
353		5.5	0.44		373		0.40	1	
354			0		374	\downarrow	0.50		
355		\dagger	-0.44		375	0.85	0.17		
356	\dagger	7.0			376		0.25		
357	0.60	7.0	\downarrow		377		0.40		
358		5.5	0.44		378	\downarrow	0.50		
359			0		379	0.80	0.17		
360		\downarrow	-0.44		380		0.25		
361	\dagger	3.5	0		381		0.40		
362	0.25	3.5	0		382	\checkmark	0.50		
363		5.5	0.44		383	0.60	0.18		
364		1	0		384	1	0.25		
365	1	∇	-0.44		385	1	0.40		
366	\downarrow	7.0	0		386	\downarrow	0.50		
367	0.95	0.17	-		387	0.25	0.18		
368		0.25			388	,	0.25		
369		0.40			389	1	0.40	1	1
370	\downarrow	0.50	,		390	\downarrow	0.50	\downarrow	\downarrow
371	0.90	0.17	\dagger	\downarrow					

TABLE 2.- MEASURED WAKE PROPERTIES

Heading Definitions

Run: \quad Serial number within the test program.
Test P TN: Identifier for the entire test program.
CONF: Configuration of model and support system.
Ablated model mounted on short sting and strut supported from ceiling of wind tunnel test section; forwardfacing pitot-static probe. (Sections 2 a and 2c.)

Ballast-profile model supported as in 5 . (Section 2b.)
Ablated model supported as in 5 , except that pitot-static probe is bent to face downstream. (Section 2d.)
Mach: Mach number in free-stream wind tunnel flow.
RN/L: \quad Reynolds number per unit length $(1 \mathrm{ft})$ in free-stream flow.
PT:
Q:
Pressure in stagnation chamber upstream of wind tunnel test section, pounds per square foot.
Dynamic pressure of wind tunnel free-stream airflow. $\mathrm{Q}=0.7 \mathrm{M}^{2} \times \mathrm{P}$, pounds per square foot.
P: Static pressure of wind tunnel free-stream airflow, pounds per square foot.
TT: \quad Temperature of air in stagnation chamber of wind tunnel, ${ }^{\circ} \mathrm{F}$.
Alpha: Inclination of model axis to an intersecting line parallel to the free-stream direction.
Seq: \quad Serial number of data record within run.
X/DB: Distance from model base to streamwise station of pitot orifice on pitot-static tube, diameters of model base.
Y/DB: Horizontal component of distance from axis of short sting to pitot orifice on pitot static tube, diameters of model base.

Z/DB: \quad Vertical component of distance from axis of small sting to pitot orifice of pitot-static probe, diameters of model base.

MF/M: Ratio of Mach number determined from measured pitot and static pressures on the pitot-static probe to Mach.
MA/M: As above, but using the pressure acting on the aft-facing pitot probe.
QF/Q: Ratio of dynamic pressure acting on pitot-static probe to the free-stream dynamic pressure.
QA/Q: As above, but using the pressure acting on the aft-facing pitot tube.
VF/V: Ratio of air velocity deduced from pitot-static tube to free-stream velocity.
VA/V: As above but using aft-facing pitot tube.
CP: Static pressure acting on pitot-static probe minus free-stream static pressure, all divided by free-stream dynamic pressure. $\mathrm{CP}=(\mathrm{PF}-\mathrm{P}) / \mathrm{Q}$.

PF: Static pressure acting on static pressure orifices of pitot-static probe, pounds per square foot.
PF/P: \quad Ratio of static pressure acting on pitot-static probe to free-stream static pressure.

Table 2(a)

Configuration 5 - Ablated model mounted on short sting and strut supported from ceiling of wind tunnel test section: forward-facing pitot-static probe.

RUN	TSTp	TN C	CRNF	NACH	RN/	1 FT	6	p	TT	ALPHA				
146	5711	66	5	0.952	1.47	78688	243. 5	384	70.4	0.00				
SEG	MACH	6		$x / C B$	$Y / 0$ P	$2 / 08$	MF/N	MA/M	QF/Q	QA/Q	$V F / V$	VA/V	$C P$	PF/0
1	0.952	243.5		8.49	C. 00	-2.0?	0.895		0.807		0.909		0.014	1.009
2	0.954	244.0		8.49	0.00	-1.53	C. 928		0.870		0.938		0.015	1.010
3	0.952	243.5		8.49	0.00	-1.02	0.926		0.858		0.936		0.001	1.000
4	0.953	244.0		8.49	0.00	-0.69	C. 898		0.30 ?		0.911		-0.007	0.996
5	0.953	244.0		8.49	0.00	-0.53	0.868		0.749		0.885		-0.011	0.993
6	0.953	244. C		8.49	0.00	-0.36	0.852		C. 720		0.871		-0.014	0.991
7	0.951	243.5		8.49	0.00	-0.19	C. 819		0.664		0.841		-0.018	0.989
8	0.951	243.5		8.49	0.00	-0.02	0.819		0.660		0.840		-0.023	0.986
9	0.952	244.0		8.49	0.00	0.15	C. 756		0.625		0.820		-0.023	0. 985
10	0.952	244.0		8.49	0.00	0.31	0.801		0.630		0.824		-0.027	0. c 83
11	0.952	244.0		8.49	C. 00	0.48	0.798		0.628		0.821		-0.020	0.987
12	0.950	243.5		8.49	0.00	0.64	0.825		0.673		0.346		-0.017	0.990
13	0.949	243.0		8. 49	0.00	0.98	0.912		0.833		0.924		0.003	1.C02
14	0.949	243.0		8.49	0.00	1.48	C. 970		0.961		0.915		0.034	1.021
15	0.948	242.7		8.49	0.00	1.98	0.975		0.975		0.978		0.042	1.026

\geq
 $\begin{array}{rr}17 & A L P H A \\ 70.7 & 0.00\end{array}$
 00000000000000

a | $\ln x$ |
| :--- |
| x |
| x |

2

 ALPHA
0.00
 a a_{2}^{∞}

3
$>$

 40
$\frac{1}{2} 0$
$\frac{3}{4} 0$
NONAMmoONLNMONONN

 0
$\stackrel{+}{2}$
0
 colrarnnrimu心のonvoa
Nu $\dot{C} \dot{0} \dot{0} \dot{\text { © © }}$
$\stackrel{n}{4}$
 a mooriontrmmommsouru
 $\underset{2}{2}$

フ.
$亡$

4
10

4－

$\underset{>}{\geq}$

ALPHA

 OOOOSOOOCOOOOOB
-2
\cdots
∞
いトネ

芯

\pm
 4 แ
$\underset{\substack{2 \\ 心}}{2}$

－-1

$\stackrel{2}{2}$

- Mz
\checkmark

0

\rightarrow -

둥

$\stackrel{4}{2}$

- \rightarrow
Í

\geq

 40
T 0
4
4

1
 OOOBOOOOOOOOOCO

- NZ
ni

A $4 \sigma 0 \sigma \sigma \sigma \sigma \sigma \alpha \sigma \alpha \sigma \sigma \sigma \sigma \sigma$ $\dot{O} \dot{O} \dot{O} \dot{O} \dot{O} \dot{O} \dot{O} \dot{O}$

-

エ 0
± 0

 4
$\underset{\sim}{2}$
NNNNNNNNNNNNNNN
Zo 으NANANANANANANA
a. -1

$$
A L P H A
$$

\geq

$\stackrel{\infty}{\infty}$

\geqslant

\geq

$\begin{array}{ll}4 & 0 \\ \frac{1}{2} & 0 \\ \frac{1}{4} & 0\end{array}$
 a miz

$N \underset{1}{N}=10000$

4

1.4
4
2
4

$\underset{\sim}{a}-u$

\geqslant

 ALPHA

\geq
 ALPHA
0.00
OA/O
 000000000000000 a. $\begin{gathered}\sim \\ 0 \\ 0\end{gathered}$

\geq ALPHA
0.00

 OOUOOOOOOOOOOOO a

4
-zurunNounvNOMNm mo - Na, Nu

r

- MonominnounNwoovo t 1 110 11090
之
4

$\underset{\sim}{2}$
$\infty \infty \infty$

$\leqslant 0$

c. -1

$\frac{2}{3}$

 ALPHA
0.00

\sim
0
0
0
$\frac{\pi}{2}$
\rightarrow

へ

-8

\rightarrow
のNべ

－－
INNNNNNNNJVNNOGT

$\stackrel{0}{4}$

のaのocoonoonáa

Z 290989898908090 4000000000000000

 －$\frac{1}{2} \sigma 心 \sigma \sigma$ 0000000000000

a
 2989989899898998 4000000000000000

 ALPHA

\square
 Ψ óócíćócícóóc

 ${ }^{2}{ }^{2} \dot{0} \dot{0} 0^{\circ} \dot{0} 0000000000$ ∞

 N

 न $\underset{\sim}{\sigma} \dot{J}$ ¿ x $0 \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$
CCNF

－－
I $\omega_{0} \omega \infty \infty \infty \infty \infty \infty \infty \infty \infty$
にNエNNNNNNNNNNNNN

OCNONNNON-NOWOMN-

0 픈ㄷㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

$\stackrel{r}{2}$
concincmurnommavouvo \rightarrow
$z \ln \alpha \infty \alpha \infty \infty \alpha \infty \alpha \infty \alpha \infty \alpha \infty$ 1∞

U
 2

L. -1

 -

上2880응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

∞

$\frac{1}{2} \dot{0} \dot{0}$
-
トのめmamonountーmさめのa

さ
1

$0 \times \infty^{0} \infty^{0} \alpha^{0} \alpha^{0} \alpha^{0} \infty^{0} \alpha^{0} \infty^{0} \infty^{0} \infty^{0} \alpha^{0}$
4
CCNF

a-

ロー~

$\stackrel{4}{2}$
$\stackrel{2}{4}$
$\omega \infty \infty 山 \infty \infty \omega 山 \infty \omega 山 い い い い ~$

a -
エogogog og ofogogorooro

$V A / V$
 $\triangle L P H A$
20.00
$0 A / Q$

0
${ }_{m}^{\infty} \underset{\Sigma}{2}$
\uparrow

 N

 $之$
α 11111111

\pm

C. -

$V A / V$

ALPHA
20.00
QA/G

- $\stackrel{\infty}{m}_{\infty}^{2}$

心

 $\xrightarrow{\sim}$

 2. $-\infty \infty \infty$

$\underset{\sim}{\rightleftarrows}$

 a

 $\propto \sim$

$$
0 \begin{gathered}
+\infty \\
m \\
m \\
\\
m
\end{gathered}
$$

$V A / V$
 ALPHA
20.00

N_{2}^{2}
m
m
(F)
-2muURmonowooruvoo
 N oucuocicooúvouo
\qquad

$\pm \sim$

○入位
$4 i n$

$1 \rightarrow$

$N^{2} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$
-

$\frac{\pi}{2}$

\geq
 ALPHA

π

 ALPHA
20.00
$0 A 10$

\geq
$>$
7
 ALPHA
20.00
$0 A / Q$

- 心2
N

N

2
2
0
2
2
2
2
2
0
0

 $\backsim \uparrow \square \infty \infty$

VAIV

ALPHA
20.00

－资之

\geq
 $\begin{array}{ll}40 \\ 1 & 0 \\ 2 & 0 \\ <0 & 1\end{array}$

a
$\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{C}$

$$
\begin{aligned}
& \text { ALPHA } \\
& 70.00
\end{aligned}
$$

NONOOONOHFNHMONMNO

\geq
 ALPHA
20.00
$0 A / 0$

$$
\begin{aligned}
& \text { - - } \infty \text { ¢ }
\end{aligned}
$$ cos $\begin{aligned} & 2 \\ & 0\end{aligned}$

4

N
 ${ }_{0}^{2}$ N
 Cuvavavatuvatuatua
 エ
 ㄴ. n
$\underset{~ L}{Z}$

C.
I-
$\begin{array}{lllll}\operatorname{man} & 0 & 0 & 0 & 0 \\ m & 0 & 0 & 0 & 0 \\ m & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$

\geqslant
 40
90
40
40
 COOOOCOOOOÓOOÓO
a. 心さ
ω

r

a o o nornm-ommsoonto

 4

 48
0
0
0
0 3 080
88
$i 0$ 88
88
0. 30 8.

上） 208808080808080

\rightarrow ócóóóóócócóco
∞

c．
 さ

픈

 $0-1$

ALPHA

－2 ©uayonnwnanumunm

$\stackrel{\rightharpoonup}{*}$

 \forall

 픈
そ 「．©
 un
ㄴ

a－

ール上。́óóóóóóóóóóó

 $\dot{0} 0 \dot{0} 0 \dot{0} 0 \dot{0} 000000000$ ALPHA

 4
 N $\dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} 0 \dot{0} 0$ $\stackrel{+}{\infty}$

 4 in
$\stackrel{2}{2}$

 $\stackrel{4}{2}$

c. -4
 に-4nNNNNNNNNNNNNNNN

RUN	TST F	F TA	CCNF	$F \mathrm{NACH}$	－RN／L	PT	C	p	TT	ALPHA				
226	5711	166		50.953	31.482	689	244．C	394	69.8	－20．00				
SEQ	MACH	6		X／C．${ }^{\text {P }}$	Y／C？ 7	7／CP	MF／N	M A / M	QF／0	QA／W	VF／V	VA／V	CO	PF／P
1	0.953	244.		1C．87	－C．49－2	2．04	C． 969		0.959		0.972		0.038	1．C24
2	0.953	244．		1 C .87	－C．4e－1	1． 55	C． 368		0.959		0.972		0.038	1.024
3	0.952	243.		10.87	－0．48－1	1.04	0.953		0.919		0.959		0.020	1.013
4	0.952	243.		10.88	－0．48－0	0.71	C． 350		0.798		0.904		0.013	1．008
5	$0.95 ?$	243.		10.87	－C．48－0	0.54	C． 86 C		0.745		0.878		0.009	1.006
t	0.950	243.		10.87	$-\mathrm{C} .48-0$	0.37	C． 860		0.742		0.878		0.003	1． CO 2
7	0.950	243.		10.87	－C．4E－0	0.20	C． 841		C． 709		0.860		0.004	1.003
8	0.950	243.		10.87	－ $0.48-0$	． 04	0.855		0.734		0.873		0.006	1.004
9	0.951	243.		1 C .88	－ 0.48 O	0.13	0．859		0.739		0.877		0.003	1.002
10	0.951	243.		1 C .88	－0．48	0.29	C． 871		0.759		0.837		0.002	1．col
11	0.951	243.		1 C .88	－C．48 0	0.46	C． 895		0.806		0.909		0.007	1.005
12	0.951	242.		1 C .87	$-C .48 \quad 0$	0.64	C． 907		0.832		0.919		0.020	1.012
13	0.948	24？．		10.88	-0.480	0.97	C． 942		0.907		0.950		0.033	1．021
14	0.947	242.		10.87	$-\mathrm{C} .48 \mathrm{l}$	1.16	C．956		0.936		0.962		0.039	1．0？．4
15	0.947	242．		10.87	－0．48 1	1.47	C．961		0.952		0.967		0.049	1．C31
16	0.945	241.		$1 \mathrm{C}$.	－C．48 1	1.97	0．965		0.962		0.970		0.053	1.033

\geq
 40
$\frac{1}{2} 0$
a
4
4
1

0

u

 ∞

$\stackrel{\sim}{\wedge}$

IN

 $\underline{4}$ in
こ

C．-
エNNNーーNNNーがのNトNo

a. mix_{2}

0

∞

$$
\ln ^{n}
$$

ــ

2
2
2
2
2
2
2
2

O. -

$>$
$>$
 $\mathbb{4} 0$
$\frac{1}{2} 0$
$\frac{1}{4} 0$
1
1

$\stackrel{2}{2}$

$$
\frac{\Delta}{\frac{1}{2}}
$$

$0 \underset{2}{2 n}$
$+$

 $-{ }_{0}^{n}$
－

$\underset{z}{2}$

4
2
 4 in

c．

a

3

$$
\triangle L P H A
$$

$$
\begin{aligned}
& 89 \\
& \underset{1}{2} \underset{4}{9}
\end{aligned}
$$

上
a．～～～
ח

 ω

 \rightarrow N

㐫心

0
0
$\stackrel{0}{2} \geq$
2
0

N
 $之$
 ró00000000000000 エ O

 2
2
0

200
10

a．

RUN	TST	TA	NAC	RA	L PT	6	p	TT	ALPHA				
237	571	166	5 C .8 C	C 1.5	12757	222.5	497	70.8	-20.00				
SEC	MACH	G	x/cra	Y/D8	Z/C?	MF/M	MA/M	QF/Q	QA/Q	VF/V	VANV	CP	PF/D
1	C. 800	22?.5	1 C .87	-0. 28	-2.04	C. 971		0.962		0.974		0.044	1.020
2	0.799	222.6	$1 \mathrm{C}$.	-C. 38	-1. 54	C. 972		0.959		0.975		0.035	1.015
3	0.798	222.C	1 C .87	-0.38	-1.05	0.958		0.924		0.902		0.016	1.007
4	0.799	222.t	1 C .87	-0.38	-0.71	C.90t		0.825		0.916		0.009	1.004
5	0.798	22?.0	1 C .87	-0.38	-0.54	0.881		0.778		0.893		0.004	1.002
6	0.799	222.C	1 C .87	-0.38	-0.37	0.877		C. 770		0.889		0.001	1.001
7	0.800	222.5	1 C .87	-0.38	-0. 19	0.86?		0.747		0.876		0.006	1.003
8	0.800	222.5	1 C .87	-0.38	-0.03	C. 870		0.762		0.883		0.013	1.006
9	0.799	222.t	1 C .87	-0.38	0.13	C. 8 E 5		0.754		0.878		0.018	1.008
10	C. 799	222.t	1 C .87	-0.38	0.30	C. 880		0.777		0.891		0.007	1.003
11	C. 800	223.1	1 C .87	-0.38	0.47	C. 883		0.787		0.894		0.023	1.010
12	0.801	223.6	1 C .87	-0.38	0.63	C.9C7		0.828		0.916		0.016	1.007
13	0.759	22?.6	1 C .87	-C.38	0.96	0.939		0.8 .91		0.946		0.022	$1 . \mathrm{Cl} 10$
14	0.800	22?.	1C.87	-0.38	1.17	C. 964		0.935		0.908		0.015	1.007
15	C.800	222.5	1 C .87	-0.38	1.47	0.987		0.981		0.989		0.013	1.006
16	C. 803	223.5	10.87	-C. 38	1.96	0.988		0.982		0.989		0.016	1.007

$>$
$>$
 $\begin{array}{ll}48 \\ 1 & 0 \\ a & 0 \\ 4 & 0 \\ 1 & 0\end{array}$

Homrnoonowrononntom

 $N^{2} \dot{O} \dot{0} \dot{0} \dot{0} 0 \dot{O} \dot{0} \dot{0}$ ∞

\checkmark
$\underset{\sim}{2}$

خ $\dot{1} \dot{O} \dot{O} \dot{O} \dot{O} \dot{O} \dot{O} \dot{O} \dot{O}$
亡す

4 n
2
$\leqslant \infty$

$4-$

\geq
$>$
$>$

c

\sim
\vdots
\vdots

w
 べ
 $-\mathrm{in}$
MamNmunoanvNaumamm

－

± 0
خícípicicicípípípí

a－

2
$>$

40
0
B
i
1

 Fレi

$\begin{array}{ll}\ln 2 \\ 0 & 2 \\ 0\end{array}$

 － نicióóicicicí －

1
－

$\stackrel{1}{4}$
$4 \infty \propto \alpha \infty N+N+N$

c

－

$0 \begin{aligned} & 6 \\ & 0 \\ & 0 \\ & 2\end{aligned}$
n

下

- onmmmunounu-w onama

$\checkmark \stackrel{m}{0}$

10
U0

4
는
NMNNNNNNNNNNNNか心

い -

$$
\triangle L P H A
$$

- $\begin{array}{r}6 \\ 0 \\ 0\end{array}$

 $0 ゙ 0$
0
0
0
0 go
No
0
0
0 go
合
0
0
0
0 σ.
o
0
0
0 a
g
$\stackrel{y}{0}$
0

 ipioi i i i i i i i iipi 20ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ $\gg 000000000000000$

 $00^{\circ} 0 \mathrm{Z}$
$\forall H \mathrm{C}$

 0
 ∞
$\dot{C}_{\frac{2}{2}}^{2}$

 $\geq v$ 11111111

 フOOOD000 00000000 エO
 $\times \infty \propto \infty \infty \infty \infty \infty \infty \propto \infty \infty \infty \infty \infty$ 4
L
に $0-$

工ogocoogoのo

ORIGINAL PAGE IS OE POOR QUALITY

©

4000000000000000
$>\dot{>} \dot{\circ} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$

30000000000000000
ALPHA
F

$-$

$\stackrel{v}{5}$

-
<

を

4
2
$\because \because \infty+\infty \cdots \cdots \cdots \cdots \cdots \cdots \cdots ?$

ロー

にN4NNNNNNNNNNNNNN

は N

\geq
 ALPHA
10. VO
QA／G

－ $\begin{gathered}2 \\ m \\ \end{gathered}$

2
$>$
$>$
 40
$\frac{1}{2} 0$
$\frac{1}{4}-\frac{1}{6}$
 a
0

 ∞

$\stackrel{y}{2}$

4 ル
$\underset{U}{\longleftrightarrow}$

$0-$

\geq

 ALPHA

 Mu
 N

VAIV
 ALPHA

4

へ1 $\frac{1}{2} \sigma \infty \infty \infty \infty \infty \infty \infty \infty$
－
ーNoNmmomoontnatonma
argonownnmommswonv心
Nítioioioiócocomin
＜io

いか
ふocogoogoogoogoogogo

$x \omega \omega \infty \propto \infty \omega \alpha \omega \infty \infty \propto \alpha \infty \propto \infty$岂い

 いN トル上 óócóóócócócóo

$>$
 ALPHA
10.00

c in sis
い
Grizuntanmanownumumi
 r ${ }^{2} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$
ir

arccucontinnonntownto
 ご

む
■ $\infty \times \infty \infty$ © $\times \dot{1} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{\infty} \dot{0} \dot{\infty}$
忌
 ≤ 00

c．

minsócócóóócócóóóo

$\underset{>}{2}$
 ALPHA
 C.
∞
$\stackrel{\infty}{\infty} \geq$
\vdots
0

- ${ }_{\sim}^{\circ} \mathrm{O}$

$>$

ALPHA

$-{ }^{m}$

mutoonn－moocomnn

 49
$\frac{1}{2} 0$
$\frac{1}{4} 9$
4 SO 000000000000000

-120000000000000000

N

∞

or

amoonomurinunnvounto
 －

$1-2$

$0-1$

NMNOOOOM－OM－WNON －小NmmmmramNnammn c． iopocơiciócicióóóó
 －0000000000000000
＞$\dot{0} \dot{0} \dot{j} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$
 ALPHA
10.00

n

 N

 －
$\underset{c}{<}$
 ammmmmmmmMmmmm
 エO
 415
$\underset{\sim}{2}$
があがいいいいいいいいいいいいい
 0．-
m－IOGOOOOOOOOOOOOOO
いN\＆NNNNNNNNNNNNNNNな

 N－NOOOOOOOOCH$\infty \infty$ －NNmNmmmmmmmnNNの

$\stackrel{0}{4}$

 icioiciiciiciicioi≥ 089089080800808080 40000000000000000

[^1]
 o NoNNMMMNNNNNNmOM
ipililililililililil

 ∞

 $\stackrel{-}{2}$

응으응으느으으응응
> $\dot{0} \dot{j} \dot{0} \dot{j} \dot{0} \dot{0} \dot{j} \dot{0} \dot{j} \dot{j} \dot{j} \dot{j} \dot{0}$

ALPHA

$\stackrel{2}{2}$

\triangle LPHA

- NE
v

-

- oconorimmNoーNけwのれはの

$\stackrel{\square}{\omega}$

工

$\times \dot{4} \dot{4} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$
$\stackrel{4}{2}$

VAノ!

ALPHA
-10.00
QA/0

C $\begin{gathered}\rightarrow 2 \\ M\end{gathered}$

RUN	TST	F TA	CCNF	F NaCl	- RN / l	1 PT	6	p	TT	ALPHA				
298	571	166		50.952	21.48	3692	245.1	386	71.6	-10.00				
SFE	MACH	0		x / CB	$Y /{ }^{\text {P }}$	$2 / 08$	MF/N	MA/M	QF/0	OA/Q	VF/V	va/v	CP	pr/p
1	0.952	245.1		1 C .87	-C.48	-2.04	C. 970		0.963		0.975		0.036	1.023
2	0.952	245.1		10.87	-0.48	-1.54	c.973		0.966		0.977		0.031	1.019
3	0.954	245.7		1 C .87	-0.48	-1.04	0.959		0.931		0.965		0.019	1.C!2
4	0.954	245.7		1 C .87	-C.48	-0.71	0.904		0.820		0.917		0.007	1.005
5	0.954	245.7		10.87	-C.48	-0.54	0.886		0.790		0.901		0.010	1. cot
6	0.954	245.7		$1 \mathrm{C}$.	-C.48	-0.38	0.875		0.766		0.891		0.002	1.001
7	0.954	245.7		10.87	-C.48	-0.20	0.868		0.751		0.885		-0.004	0.998
8	0.954	245.7		1 C .87	-0.48	-0.04	0.857		0.733		0.875		-0.004	ก. 598
9	0.954	245.7		10.87	-0.48	0.12	0.859		0.736		0.876		-0.00?	0.999
10	0.954	245.7		10.87	-0.48	0.28	C. 86 C		0.741		0.378		0.032	1.001
11	0.954	245.7		10.87	-0.48	0.46	C. 869		0.757		0.386		0.005	1. CO 3
12	0.952	245.1		10.87	-C.48	0.63	0.897		0. 809		0.911		0.006	1.004
13	0.954	245.7		1 C .87	-0.48	0.96	0.946		0.904		0.954		0.016	1.010
14	0.952	245.1		10.87	-0.48	1.16	C. 954		0.930		0.961		0.033	1.021
15	0.951	244.6		10.87	-0.48	1.46	C. 964		C. 956		0.969		0.045	1.028
16	0.949	244.2		10.87	-C.48	1.97	c.968		0.969		0.973		0.053	1.034

RUN	TST	TN	CCNF	var．h	H RA／	／PT	6	D	TT	ALPHA				
302	571	166		0.95	31.48	8269	24 E． 3	$3 \varepsilon 7$	73.6	－10．00				
SFG	MACH	6		x / CR	Y／CB	I／Ca	MF／N	MA／M	QF／0	QA／Q	VF／V	vas	C°	DF／D
1	0.953	246.3		ع． 48	－0．45	-2.03	C．970		0.961		0.974		0.033	1.021
$?$	0.954	246.8		8.48	－0．45	－1．52	0.975		0.969		0.978		0.031	1.070
3	0.954	246.8		8.48	－0．45	－1．03	0.371		0.953		0.975		0.016	1.010
4	0.954	246.8		8.48	－0．45	－0．68	c． 911		0.831		0.923		0.002	1.001
5	0.954	246.8		8.48	－0．45	－0．52	0.881		0.774		0.897		－0．005	0.997
6	0.953	246． 8		8.48	－0．45	－0．36	0.859		0.733		0.377		－0．011	0.993
7	0.953	246.8		8.48	－0．45	－0．18	0.845		0.707		0.864		－0．015	0.990
ε	0.952	246．3		$\varepsilon .48$	－0．45	－0．03	0.825		0.671		0.846		－0．021	0.986
9	0.953	246.8		8.48	－0．45	0.13	0.824		0.672		0.345		－0．018	0.988
10	0.953	246.8		8.48	－0．45	0.31	0.842		0.701		0.862		－0．018	0.588
11	0.953	24 ¢． 8		8.48	－0．45	0.48	0.862		0.735		0.879		－0．015	0.990
12	0.952	246.3		8.48	－0．45	0.64	0.886		0.783		0.901		－0．003	0.998
13	C．950	245.8		8.43	－0．45	0.98	C． 950		0.907		0.957		0.009	1.006
14	0.950	$245 . \varepsilon$		8.48	－C．45	1.18	C． 9 ¢9		0.954		0.973		0.026	1.017
15	0.950	245.8		8.48	－0．45	1.49	0.970		0.965		0.975		0.039	1． 025
16	0.949	245.4		8.48	－0．45	1.95	C． 973		0.974		0.977		0.045	1.028

VA／V

ALPHA
-10.00

$>$

89
10
-2
10

 $\therefore \dot{\circ} \dot{0} \dot{0} \dot{0} 0 \dot{0} 0 \dot{0} 0 \dot{0} \dot{\circ}$
－電妾
∞

ตリののの

o

arcowortmmommonomata

$\stackrel{\sim}{2}$
＜vamnemmmmmmmmmmm －ㄷOOOOOGOOOUCOUOOO
± 0
 － $1 \omega \infty \omega \infty \omega \omega \omega \infty \infty \infty \omega \infty \infty \infty \infty$

a－

2
$>$
$>$
 43
20
20

3 0 0 i

 0
0
0
t
3

$\xrightarrow[\sim]{\sim}$

$\pm \infty$
 $x \dot{\omega} \dot{\infty} \dot{\omega} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\omega} \dot{\omega} \dot{山}$
44
2

C.

 an

$V A / V$

40
$\frac{1}{2} 0$
$\frac{1}{4} 0$
1

co

RUN	TST	F TA	CCNF	MACH	H PN/L	$1 \quad \mathrm{PT}$	6	P	TT	ALPHA				
312	571	66	5	C. 800	01.521	1774	22.7 .4	507	77.2	-10.00				
SFG	MACH	9		$\times / 08$	Y/CD	$2 / 08$	MF/N	M $4 / \mathrm{M}$	OF/O	Qa/Q	VF/V	VAIV	C^{p}	Pr/p
1	0. 800	227.4		8.49	-0.01	-2.02	0.896		0.810		0.906		0.019	1.COR
2	0.800	227.4		8.49	-C.Cl	-1.53	0.913		0.839		0.922		0.015	$1 . \operatorname{CO7}$
3	0.800	227.4		8.49	-0.01	-1.02	C. 909		0.830		0.918		0.010	1.005
4	0.800	227.4		8.49	-C.C1	-0.69	C. 877		0.769		0.389		0.000	1.000
5	ก. 800	227.4		8.49	-0.01	-0. 53	c. 8 ¢0		0.737		0.373		-0.007	0.997
6	C. 800	227.4		8.48	-0.01	-0. 36	0.839		0.702		0.854		-0.009	0.596
7	0.800	227.4		8.48	-C.Cl	-0.19	C. 913		0.661		0.829		0.000	1.000
8	0. 800	227.4		8.49	-0.01	-0.02	0.827		0.683		0.842		-0.004	0.998
9	0.800	227.4		8.48	-C.C1	0.14	C. 834		0.696		0.849		-0.001	1.000
10	0.799	226.9		8.48	-0.01	0.32	C. 820		0.673		0.835		0.00?	1.001
11	C.757	226.4		8.49	-0.01	0.49	0.856		0.732		0.869		-0.00?	0.999
12	0.799	226.9		8.49	-0.C1	0.65	C. 875		0.773		0.891		-0.001	1.000
13	0.799	22t.9		8.48	-0.01	0.98	0.943		0.889		0.949		0.001	1.000
14	0.804	228. 5		8.48	-0.01	1.17	0.981		0.961		0.983		-0.001	0.999
15	0.805	228.8		8.48	-0.01	1.48	$0.98 t$		0.975		0.968		0.007	1.003
16	0.964	227.7		8.48	-0.01	1.98	0.982		0.976		0.934		0.027	1.012

\geq
$>$

 a. $\begin{gathered}\mathrm{O} \\ \operatorname{in}= \\ 5\end{gathered}$
坛出

\geqslant ALPHA
-10.00
$0 A / 0$
 －$\stackrel{\omega}{2}$

 \cdots
 －••••••••••••••• 2
2
20
2
2 $\infty \infty \infty \infty \omega \infty \omega \infty \infty \infty \infty \propto \infty \infty$己

a

$>$

 000000000000 -

$>\dot{\circ} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} 0 \dot{0} \dot{0} 0$

$>\dot{\circ} \dot{0} \dot{0}$

0

$\stackrel{\leftarrow}{0}$

$\underset{0}{3}$

IU

≥ 0008000000000000

 ALPHA -

 N

$-\pi$
a cowortmounnmmonvo

 \backsim

$\underset{2}{2}$
Nrunumanninnumummu

c.

10000000000000cua

 0 m

≥ 0008080080900808

 $>\dot{O} \dot{O} \dot{O} \dot{O} 0 \dot{O} 0 \dot{O} \dot{O} \dot{O} 0 \dot{0}$

70000000000000000
$\pm \stackrel{\circ}{\mathbf{v}}$

4 un
$\stackrel{\leftrightarrow}{L}$

- -

ancon

TABLE 2(b)

Configuration 6 - Ballast-profile model as supported in Configuration 5.

Table 2(c)

Configuration 5 - Ablated model mounted on short sting and strut supported from ceiling of wind tunnel test section: forward-facing pitot-static probe.

\geq

－．${\underset{M}{\infty}}_{\infty}^{\infty}$
「

in
 Nóco $\underbrace{\circ}_{0}$
KNCNONONNONOU

CCNF

い

2
$>$
 $\frac{\leq}{9}$ 은

～2

い

 $\underset{\alpha}{<}$

エ
ミ

い
는
c

a－

\geq

\geq
$>$

ALPHA
0.00

\geq
 ALPHA
0.00
0.10

－$\underset{x}{2}$

N
－MavevmosNu
N $\because 0.000000$
$\stackrel{\rightharpoonup}{2}$

工
E
 4

2
$>$

\geq
$>$

c. $0^{3} \mathrm{~L}$

40
$\frac{1}{2} 0$
$\frac{1}{4} 0$

v
 Nu

v
-

N
$\frac{2}{2}$
 4
2

-

acter

2
$>$

\geq $>$ $>$

TT ALPHA

a. 82

$\stackrel{r}{*}$
ro

$\underset{\sim}{2}$
 44
艺

VA／V

VA／V
 ALPHA
0.00
$0 A / Q$

aç

$\frac{4}{2}$

0 －

c．${\underset{\sim}{\circ}}_{\infty}^{\infty}$
41

OOOOÓOO
5
$\stackrel{-1}{\infty}$

PN／L
0.0800080
>000000000
$\stackrel{1}{2}$

un in
己
ninumumum
<00
a
エーームーー
$\cdots \sim=0$

の心

- - - 000 ज6088 \qquad $\infty<\infty$ mminmNN 00000 00000

 óóóóóóóo
₹ 89.8089090
<000000080
>0000000000
 ALPHA

 4
L
に

マ 2989888
$\checkmark 00000000$
>00000000

 ＜＂，＂09089080

$$
x_{L}
$$

$$
{ }_{N}{ }^{2} \dot{0} \dot{0} \dot{0} \dot{0}
$$

岂

a
innnanaoo

Table 2(d)

Configuration 7 - Ablated model mounted on short sting and strut supported from ceiling of wind tunnel test section aft-facing pitot-static probe.

ALPHA
0.00
$\cap A / Q$

 1∞

m^{n}
-2

$\begin{array}{ll}1 \\ < & 0 \\ <\end{array}$

$\underline{\sim}$
$\underset{6}{2}$
$<$

RUN	TST	f TA C	CCNF	NaCH	FA/L	-T	6	\bigcirc	TT	ALPHA				
269	571	66	7	0.950	01.485	685	243.5	395	68.8	0.00				
SES	NaCH	5		x / C^{8}	Y/0 ${ }^{\text {a }}$	z/CP	MF/M	MA/M	DF/0	QA/Q	VF/V	VA/V	CP	F
1	0.950	243.5		C. 53	C. Cl	0.40	0.267	0.184	0.053	0.025	0.289	$0.1 ¢ 9$	-0.407	0.743
2	0.949	243.0		0.8 ?	$0 . \mathrm{Cl}$	0.40	C. 265	0.600	0.051	C. 000	0.286	0.000	-0.441	0.727
3	0.949	243.0		1.11	0.00	0.40	0.251		0.044		0.272		-0.485	0.694
4	0.949	243.1		1.41	0.00	0.39	0.165	0.000	0.020	0.000	0.184	0.080	-0.495	0.688
5	0.949	243.1		1.69	-0.00	0.39	C. 204	0.173	0.029	0.021	0.221	0.187	-0.485	0.694
6	0.949	243.1		1.99	-C.01	0.39	0.268	0.299	0.052	0.005	0.239	$0.32 ?$	-0.437	0. 725
7	0.949	243.6		2.27	-C.CI	0.39	0.242	0.296	C. 046	C. 063	0.263	0.319	-0.358	0.774
9	0.949	243.6		2.56	-C.Cl	0.39	0.177	0.233	0.026	0.046	0.191	0.252	-0.246	0.245
9	0.349	243.6		2.85	-C.Cl	0.38	0.CEC	0.13 C	0.003	C. 015	0.065	0.141	-0.147	0.907
10	0.949	243.0		3.14	-0.02	0.39	C.OCC	C.ccc	0.000	0.000	0.000	0.060	-0.074	0.953
11	0.950	243.0		3.44	-C.C2	0.38	C.OCC	0.000	0.000	0.000	0.000	-. OCO	-0.009	C. 995
12	0.952	243.5		3.73	-C.C2	0.38							0.029	1.019
13	0. 952	243.5		4.02	-0.03	0.38	0.000		0.000		0.000		0.029	1.C19

8
8
0
8

 NOOOOOOOCO0000 マ

 4 r

- -

ALPHA

$\underset{y}{2}$

c.oncrowncomonown urrrrrruadoo.oce m-nromrrommoo igtt.t.tMr-gogo. oóoceocióoooo $>\dot{O} \dot{O} \dot{O} \dot{0} \dot{0} \dot{O}$	

Oanumivavytammmm

RUN	TST	- 10		NAC	RA	PT	6	0	TT	ALPHA				
373	571	136	7	0.899	91.4	702	235.0	415	70.9	U.co				
SFG	MACH	6		X/CR	Y/CP	2108	MF/N	MA/M	QF/0	DA/G	VF/V	V $4 / V$	Co	F/0
1	0.899	235. C		C. 53	C. 01	0.40	C. 279	0.184	0.061	$0.0<7$	0.299	0.1c8	-0.381	0.785
2	C.900	235.5		C. 82	0.01	0.40	C. 276		0.058		0.295		-0.419	0.762
3	0.900	235.5		1.11	0.00	0.40	c.297		0.065		0.318		-0.46t	0.736
4	0.900	235.5		1.41	0.00	0.40	0.293	0.039	0.062	0.001	0.314	0.04 ?	-0.49?	0.720
5	0.900	235.5		1.69	-0.00	0.39	c.2ts	0.278	0.052	0.038	0.238	0.244	-0.481	0.727
6	0.902	235.s		1.98	-0.01	0.39	0.243	0.306	0.044	0.070	0.200	0.327	-0.436	0.752
7	0.900	234.9		2.27	-C.Cl	0.39	C. 192	0.278	C. 030	0.063	0.206	0.298	-0.340	0.807
8	0.900	234.9		2.56	-0.01	0.39	C. 175	0.241	C. 028	C. 050	0.193	0. 258	-0.229	0. 870
9	0.900	234.9		2.85	-C.Cl	0.39	c.000	0.113	0.000	0.012	0.000	0.122	-0.115	c. 535
10	0.901	235.4		3.14	-C.C2	0.38		c. 000		0.000		0.000	-0.025	0.986
11	0.901	235.4		3.44	-C.02	0.38							0.033	1.619
12	C.901	235.4		3.73	-C.C?	0.38							0.058	1.033
13	0.898	234.5		4.01	-C.C?	0.38	C.OC0		C.000		0.000		0.055	1.031

 a．

$$
\begin{aligned}
& \frac{1}{2}
\end{aligned}
$$

－

－

2
 NOOOOOOOOOOOOO之
工
艺
 zocóióo
a -
IONNNNONOOOWの

RUN	TSTI	P TA	CCNF	NaCl	F RA／L	FT	6	\bigcirc	TT	ALPHA				
$37 t$	571	166	7	0.848	81.497	731	229.9	457	71.6	0.00				
SFG	MACH	C		x／re	Y／CB	2／Eㅁ	MF／N	MA／M	QF／0	0a／6	VF／V	VA／V	C^{P}	PF／$/ \mathrm{P}$
1	0.848	229.5		C． 53	0.01	0.25	0.254	0.254	0.052	0.052	0.270	0.271	－0．394	0.802
2	0.350	230.7		C． 80	0.01	0.25	0.340	0.248	C． 090	0.048	0.361	0.264	－0．433	0.781
3	0.851	230.6		1.11	C． 00	0.25	0.365	0.169	0.101	0.022	0.387	0．181	－0．472	0.761
4	0.852	230.9		i． 41	C． 00	0.34	0.409	0.255	0.126	0.049	0.432	0.271	－0．483	0.754
5	0.851	230.6		1.69	－0．00	0.24	0.469	0.321	0.167	C．078	0.494	0.341	－0．476	0.759
6	0．852	230.5		1.98	－C．Cl	0.24	0.457	0.338	0.164	0.090	0.481	0.359	－0．424	0.785
7	0.852	230.9		2.27	－C．C 1	0.24	C．4c6	0.351	0.137	0.103	0.429	0.373	－0．327	0.834
8	0.853	231．3		2.56	－c．cl	0.24	0.288	0.284	0.074	0.072	0.307	0．3C2	－0．207	0.894
9	0.854	731.2		2.85	－C．Cl	0.24	c． 125	0.123	C． 018	0.015	0.145	0.131	－0．070	0.964
10	0.851	230.5		3.13	－0．0？	0.23	c．0cc	0.04 C	C． 000	c． 002	0.000	0.043	0.012	1.006
11	0.851	230.6		3.44	－C．C？	0.23	C．000		0.000		0.000		0.048	1.024
12	0.851	231.0		3.73	－C．02	0.23	C．OCC		0.000		0.000		0.065	1.033
13	0.851	230.6		4.01	－C．03	0.23							0.059	1.030

RUN	TST	in 0	CrNf	nar	H RA	ft	r	p	TT	ALPHA				
377	571	165	7	0.85	31.50	727	230.1	452	69.0	0.00				
SFG	MACH	0		x / CB	Y / D°	2/00	MF/N	Ma/M	CF/O	Qa/Q	VF/V	va/v	C. ${ }^{\text {P }}$	PF/P
2	0.853	230.1		C. 53	C.Cl	0.40	C. 25.1	0.174	c. 051	C. 025	0.267	0.186	-0.374	0.810
	C. 850	22.9 .4		C. 81	O.Cl	0.40	C. 222	0.000	0.030	0.000	0.237	0.000	-0.418	0.789
4	0.848	228.6		1.10	c.co	0.40	0.271	0.075	0.056	0.004	0.288	0.080	-0.465	0.766
5	0.848	728.6		1.41	0.00	0.40	C. 266	0.000	0.053	C. 000	0.283	0.0c0	-0.498	0.749
6	0.850	229.0		1.69	-c.00	0.39	c. 320	0.145	0.078	0.016	0.340	0.155	-0.48?	0.756
7	0.850	229.0		1.98	-C.Cl	0.39	C. $3 \mathrm{C} /$	2.303	C. C 72	c. 0.072	0.323	0.322	-0.429	0.783
8	0. 850	228.9		2.?7	-0.01	0.39	0.263	0.311	0.658	0.001	0.280	0.330	-0.324	0.836
9	0.851	229.3		?. 56	-C.01	0.39	0.140	0.243	0.018	0.053	0.150	0.258	-0.1.98	0.900
10	0.851	229.3		2.85	-0.01	0.38	C.ce4	0.169	C.CC7	c. 027	0.089	0.180	-0.088	0.956
11	0.852	229.8		3.13	-c. 02	0.38					0.	O.	0.006	1.003
12	0.85 ?	229.8		2.44	-C.c2	0.38							0.045	1.023
13	0.952	229.8		3.72	-C.02	0.38							0.058	1.c29
14	0.85c	229.0		4.01	-0.c3	0.38							0.055	1.028

PUN	TST F	ta	CTNF	NaCH	H DM/L	PT	6	P	TT	ALPHA				
378	5711	66	7	C. 849	91.494	126	228.5	453	69.8	0.00				
SFO	MACH	6		$\mathrm{X} / \mathrm{C}^{\text {P }}$	y/re	Z/DR	me / N	M A /	QF/0	0A/O	VF/V	VAN	C°	DF/D
1	0.849	228.5		C. 53	C. 01	0.50	0.124		0.013		0.133		-0.368	0.814
2	0.848	228.6		C. 81	C. Cl	0.50	c. 225		0.040		0.240		-0.414	0.792
3	0.849	229.1		1.11	c. 00	0.50	0.203		0.032		0.216		-0.461	0.767
4	0.854	230.5		1.49	c.cc	0.50	0.199		0.029		0.212		-0.500	0.745
5	0.854	230.5		1.69	-C.CO	0.49	0.114	0.000	0.010	0.000	0.122	0.000	-0.474	0.758
6	0.854	230.0		1.98	-C.Cl	0.49	0.163	0.234	0.021	0.043	0.174	0.249	-0.413	0.789
7	0.852	229.7		2.27	-C.Cl	0.49	0.156	0.249	0.021	0.052	0.167	0.266	-0.312	0.841
8	0.952	229.8		2.55	-C.01	0.49	0.03?	0.114	C.CCl	c. 012	0.035	0.122	-0.185	0.906
9	0.852	229.7		2.85	-C.Cl	0.49		0.000		0.000		0.000	-0.090	0.954
10	0.852	230.3		3.14	-C.C2	0.48							-0.011	0.995
11	0.851	230.0		3.44	-0.0?	0.48							0.040	1.020
12	0.851	230.C		3.73	-C.02	0.48							0.045	1.023
13	0.853	230.2		'.Cl -	-0.03	0.48							0.039	1.020

RUN	TST	TA	CONF	Nat	R RN/L	PT	6	P	TT	ALPHA				
383	571	166	7	0.60	11.513	S00	178.5	705	70.3	0.00				
SEO	MACH	G		x/[3	y/re	Z/DB	MF/N	MA/M	OF 10	0a/0	VFIV	VAN	CD	P/0
	0.601	178.5		C. 53	C. Cl	0.18	0.298	0.244	0.080	0.054	0.308	0.252	-0.382	0.903
2	0.599	177.3		C. 8 ?	C.Cl	0.18	0.410	0.360	0. 148	0.114	0.422	0.371	-0.466	0.883
3	0.597	176.7		1.10	0.00	0.18	C. 502	0.370	C. 221	C. 120	0.515	0.381	-0.496	0.876
4	0.597	176.7		1.41	0.00	0.19	C. 536	0.394	0.253	0.137	0.549	0.405	-0.486	0.879
5	0.597	176.7		1.69	-C.CO	0.18	C. 494	0.375	C. 220	0.126	0.507	0.386	-0.401	0.900
6	0.597	176.7		1.99	-0.01	0.18	0.373	0.340	0.130	C. 109	0.384	0.351	-0.252	0.937
7	0.600	177.9		2.26	-C.Cl	0.17	0.140	0.159	0.019	0.025	0.145	0.165	-0.090	0.977
8	0.599	177.3		2.56	-C.01	0.17	c.00c	0.1000	C. 000	C. 000	0.000	0.060	0.015	1.004
9	0.599	177.3		2.85	$-\mathrm{C.Cl}$	0.17	c.000	0.000	0.000	C. 000	0.000	0.000	0.048	1.C12
10	0.600	177.9		3.13	-C.c2	0.17	C.OCC		C. 000		0.000		0.043	1.011
11	0.600	177.9		3.43	-0.02	0.17	C. 000		0.000		0.000		0.023	1.00t
12	0.601	178.5		3.72	-C.c2	0.16							0.030	1.008
13	0.600	177.9		$4 . C 1$	-0.03	0.16							-0.001	1.000

RUN	TST	TA	CCNF	NaCt	EA/L	PT	6	\bigcirc	TT	ALPHA				
384	571	66	7	0.600	1.511	$\varepsilon 99$	177.s	705	70.0	0.00				
SFG	MarH	G		$x /{ }^{\text {P }}$	$Y / 0^{\circ}$	$2 / 0^{\circ}$	ve/n	va/n	CF/Q	0410	VF/V	vas	CP	PF/P
1	0.600	177.9		C. 53	C. 01	0.25	C. 271	0.191	0.066	0.032	0.280	0.197	-0.435	0.890
2.	0.60?	178.5		C. 8 ?	0.01	0.25	$0.3 \in 1$	0.236	0.115	c. 049	0.372	0.244	-0.474	0.880
3	C.6Cl	178.5		1.11	C.CC	0.25	C. 490	0.294	0.209	0.075	0.503	0.304	-0.510	0.871
4	0.601	178.5		1.41	c.00	0.24	C.453	0.362	0.213	0.115	0.506	0.373	-0.494	0.875
5	0.600	177.5		1.69	-0.00	0.24	0.446	0.313	0.180	0.088	0.459	0.323	-0.388	0.902
6	0.590	177.3		1.98	C.Cl	0.24	C. 324	0.331	0.098	0.103	0.334	0.341	-0.245	0.939
7	0.599	177.3		2.27	-0.Cl	0.24	0.165	0.299	0.026	C. 087	0.170	0.369	-0.115	0.971
8	0.597	176.7		2.56	C. Cl 1	0.24	c.cco	0.000	0.000	0.000	0.000	0.000	0.008	1.002
9	0.600	177.9		2.85	C.Cl	0.24	0.00C	0.000	c. 000	0.000	0.000	0.0CO	0.038	1.010
10	0.600	177.9		3.13	-0.02	0.23	C.000		0.000		0.000		0.047	1.012
11	0.6 Cl	178.5		2.44	- .0 .2	0.23	C.OCC		C. 060		0.000		0.041	1.010
12	0.600	177.9		3.73	-0.02	0.23	0.000		0.000		0.000		0.011	1.003
12	$0.6 C 2$	178.5		4.01	-C.C3	0.23							0.011	1.003

ORIGINAL PAGE IS OF POOR QUALITY

RUN	TST	TN C	F	NaCH	H RN/L	Pr	6	${ }^{\circ}$	TT	AL				
389	5711	66	7	0.252	21.524	1884	8 C .1	$180 ?$	65.4	. 00			co	ρ
SEC	MACH	Q		$x /{ }^{\text {R }}$	$Y / \Gamma \mathrm{P}$	$2 / 10$	MF/N	MA/M	CF	A				
1	0.252	80.1		C. 53	C. 01	0.40	C.11C	0.219	0	ก.		1		
2	0.252	80.1		0.82	0.01	0.40	C. 3 C 7	0.1800	C. 092	C.040	201	0.012 0.134	. 607	c.73
3	0.251	75.5		1.11	0.00	0.40	C. 260	0.133 0.396	-.066	0.15	0.201 0.310	0. 359	-0.555	6
4	0.751	79.5		1.40	0.00	0.40	0.204	0.396 0.371	0.0642 0.041	C. 136	0.206	0.373	-0.34?	0. 585
5	0.250	78.8 78.8		1.48 1.98	-0.00 -0.01	n.39	C. 120	0.23?	0.014	C. 053	0.121	0.233	-0.155	93
7	0.751	79.5		2.27	-0.01	0.35	c.0cc	0.000	C. 200	C. 000	0.000	- 0.00	-0.010	-000
8	0.251	79.5		2.56	-C.Cl	0.35	0.000	0.000	0.000	0.000	0.000	C	17	
9	0.251	79		2.85	$\mathrm{C} . \mathrm{Cl}$	0.39	O.OCC	$0 . C O C$	C. 000	c. 000	0.000	0.0ch	0.019	
,	0.250	78.8		3.13	. 02	. 38	c	$0 . \mathrm{cos}$						

ORIGINAL PAGE IS OF POOR QUALITY

ALL DIMENSIONS NORMALIZED TO MODEL DIAMETER MODEL DIAMETER $=6 \mathrm{in}$.

Figure 1.- Scale models tested in 6 - by 6 - ft transonic wind tunnel. (a) Ablated configuration. (b) Ballasted configuration.

ALL DIMENSIONS NORMALIZED TO MODEL DIAMETER MODEL DIAMETER = 6 in.

Figure 2.- Model and sting-strut support.

a) FAR-WAKE CONFIGURATION

b) NEAR-WAKE CONFIGURATION (CONFIGURATION "A" MODIFIED BY BENDING)

Figure 3.- Pitot-static probe.

Figure 4.- Test setup.

Figure 5.- Radial profiles of dynamic pressure. $X / D_{B}=5.5, Y / D_{B}=0, R=0.75$ million, $\alpha=0^{\circ}$.

Figure 6.- Axial profile and spatial contours of dynamic pressure in wake of ablated Galileo probe. $\alpha=0.0^{\circ}$, $R_{D}=0.75$ Million.

Figure 6.- Concluded.

Figure 7.- Effect of angle of attack on dynamic-pressure profiles, $X / D_{B}=8.5, M=0.80, R_{D}=0.75$ million.

Figure 8.- Contours of constant reverse dynamic pressure in near wake of ablated model, $\alpha=0, R_{D}=0.75$ million, $Y / D_{B}=0$.

Figure 8.- Continued.

Figure 8.- Concluded.

Report Documentation Page		
1. Report No. NASA RP-1130	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle Galileo Probe Parachute Test Program: Wake Properties of the Galileo Probe at Mach Numbers From 0.25 to 0.95		5. Report Date April 1988
		6. Performing Organization Code
7. Author(s) Thomas N. Canning (Portola Valley, CA) and Thomas M. Edwards		8. Performing Organization Report No. A-9643
		10. Work Unit No.
9. Performing Organization Name and Address Ames Research Center Moffett Field, CA 94035		
		11. Contract or Grant No.
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546-0001		Reference Publication
		14. Sponsoring Agency Code

15. Supplementary Notes

Point of Contact: John Givens, Ames Research Center, MS 244-14, Moffett Field, CA 94035
(415) 694-5696 or FTS 464-5696

16. Abstract

The results of surveys of the near and far wake of the Galileo Probe are presented for Mach numbers from 0.25 to 0.95 . The trends in the data resulting from changes in Mach number, radial and axial distance, angle of attack, and a small change in model shape are shown in crossplots based on the data. A rationale for selecting an operating volume suitable for parachute inflation based on low Mach number flight results is outlined.

| 17. Key Words (Suggested by Author(s))
 Blunt body aerodynamics
 Transonic wake characteristics
 Parachute performance, Transonic flow
 Wind tunnel tests | 18. Distribution Statement
 Unclassified - Unlimited | |
| :--- | :--- | :--- | :--- |
| 19. Security Classif. (of this report)
 Unclassified | 20. Security Classif. (of this page)
 Unclassified | Subject Category - |

[^0]: *Mechanical Engineer, 276 La Cuesta Drive, Portola Valley, CA 94025.

[^1]:

 い

 －

 $N \mathrm{NM} 1111011$
 $\underset{0}{2}$

 －

 い い
 는

 a -1
 IOOOOOOOONGOの日Gのの

 anv

