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I. Introduction
The emphasis of this paper 1s determining necessary and sufficient

conditions under which the linear partial differential equation

au " & " u
(1) -2+ Z A () =S+ I B (x) 2= flx,t)
at . jk A3, ) i axr
Jak=1 3 k j=1 )
can be transformed to become either constant ceefficient or of tne holmogorov
L . o
[11 type. Here we assume that the A_}(ﬂ) and B (») are C and consider C
IR J
. g
coardinate changes on | .
Texts on partizl! differential equations develop the iieorv vl canomical
forme for secend order linear partral different el egquations ir twe varizbles

itsee  Garabedian (23 and Courant andg Hilbert [31). FExlensicns o thees
more veariables are due to Cotton [43 =2nd Fredrichks (33, Thece  (ewuiils
. . ) o . . . )

involve finding € coordinates in which the principal part coefticiente
become constant. Tnis is alwavs possible 1 two dimensions wiihh siltable
necessary and sutficient conditions in three or more dimensions. Lattle
attention is paid to the first order coefficients B (x} after the ow

3

ccordinates are introduced.

[y ¥] - R
1f there are U coordinates under which (1) hecomes constant coefficient

. n 2 n .
(2) _Z\—‘i + & a . -:——g—:ti—"z b S—A—J—”:f()(yt’ s
It . ko aw ax - j %
k=1 i ko=l j

then Fourier transforms in the spatial variablecs yield

*
Research supported by the NASA Ames Research Center under Grant NAG P-366é;
Supplement No. 1!.

(NASA-CR-1824€6) CANCEICAL CCCEDINATIES FGR N88~15170

FARTIAL LIFFEERENTIAL ECUATICKNS (Texas Univ.
at Dallas) 15 p CsCL 12A
Unclas

G3,64 0124520

ool Lo Rl Ul FoW e oo 0T



https://core.ac.uk/display/42833093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AT R SR O AR 4 I

ORIGINAL PAGE IS
OF POOR QUALITY,

» au 0 .
(3) - == 2 a T §U-3 Zb tU=F({t)
ot . ik T3tk imy 37
J’k-l J-]

an ordinary differential equation in U,

Similarly, if there are Ca)coordinates in which (1) takes the form

n e n
(4) - g% t 2 oa ESL%7“'+ Z b % 2: = fix,t)
jok=1 7 3T k=1 T T

where .a,k and b,y are constants, then Hormander [6] shows that spatial
J K

Fourier transforms lead to

au " " U
{3 - = - S oa  ggu - Z b 8 = F(E,t).
at ) ik T3k ) L s
jaok=1 7 jak=1 7
Under generic conditions, this first order linear partial differential

equation can be soclved by the method of charscteristics (1.e. ovdinare

differential equaticns: eand 1nverse Fourier transforms. The most impoytant
case involves & positive semidefinite matriw ‘&, ; of constant ranh ma andt e
]
shall call the corresponding eguat:on {4) & kolmogorov eguation. Hormance
i -
. . . . . . Lo — ag S .
writes the spatiel partial differerntial wperatar in (43 as > ¥ sy whiET e
i:! i -
R [ R & - e
X . and XO are U wvector fields on . In fact, 1f the \H_tlxﬁ: matv o~
1 AR

(1) i1s symmetric, constant rank my, and positive cemidefinite, the s3pat. ~°

operator can be written as
m
(&) Z X+ X

For general partial differential operators of the form (6) Hormander proceeds=
to prove necessary and sufficient conditions for hypoellipticity (1.e. C
right hand sides imply COE sglutions). We require that our Kolmogorov
equations be hypoelliptic. Weber [7] constructed fundamental soluticns for a
class of equations related to those in (4),

In this light the problems considered in this paper are:

i) Given the partial differential operator (6) find necessary and
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sufficient conditions sp that there exist nonsingular c” coordinate
changes (local-near the origin) on ®' under which (&) becomes a
tonstant coefficient partial differential operator. Standard
differential geometry results (e.g. Spivak [Bl) are employed and
the results are of no surprise. The conditions are derived here
for the sake of completeness.

11) Given the partial differential operator (&) find necessary and

sufficient conditions so that there exist nonsingular t” coordinate
changes (local-near the origin) on ' under which Xl'xP""'Xm in

(&) are transformed to constant vector fields and XO becomes a

linear vector field. This makes the partial differential operator

(6) of keclmogerov typey, 1f  the hypoellipticity conditions of

Hormander are satisfied,
The spatieal cperator in (4} 1is a Kolmogorov operator i
hypoelliptic.

We remark that both problems 1! and 11} can be qeneralized Lu  ng

paertial di1fferential operators I X - ¥ + %.5 but we shall concentraic

on the foarm &), Moreover, we eassume that xl,xa,...,xm STT 3y el |
1ndependent.

Our principle teools are taken from the field of systems and control.
However, the purgose of this rpaper 1 wot to draw a parallel between
controllability of =systems of nonlinear ardinary differential equations and
hypoelliplicity of partial differential eguations, as this has been well
established in the literature and in conference presentations.

As we mentioned previously, problem i) is straightforward. Our work on

problem ii) is analogous to the study of coordinate changes to transform a

. n
nonlinear control system on & ,
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7 = fix) + Zu.g (x) .
j=1

to an n-~dimensional controllable linear system

(8) x = Fx + Gu.

Here x = Eﬁ_, £,9,+0,y...5g_ are C vector fields on R, f(0) = 0, u =
dt 1°°2 m

(ul,ua,...,um) consists of real-valued functions, F is an nxn constant

matrix, and G is an nxm constant matrix. Also f,Fy and u are obviously
different objects in our control discussion than in our p.d.e. discussion.
We rely heavily on the results of Krener [9] and Respondek [103. and, in

fact, our research essentially auves their results from the ordinarvy

differential equation setting to the partial differential equatior cettinc.
Nonlinear control system (7) 18 replaced by eguation (&) with ¥ tabina the
place of g+ 3 = ly5s...m. and X“ taking the olace of f. The linear cyeter
3 )
(8) 1s replaced by tre rolmogorov partial differential coperator
m <
{9) z X
O
j=2 !
where each X is a constant vector field and XO i linear. Here }..Y'.,.,;;V
J + 1S o
correspond to the m columns of G and ;O corresponds Fx in (8). e wuant the
: . - iR n-1- - o
span of the Lie brackete X ,[XO,X_],....(ad X, oX )y j=12y....m te te & .
3 3 N

so we make the corresponding assumptions on the Lie brackets of vector fields
in (6). As noted before we alsc suppose that X]'XE""’xm are linearl.
independent.

Section 2 of this paper contains basic definitions and consideration of
those linear partial differential operatorse which can be made constant
coefficient. In section 3, necessary and sufficient conditions are derived
which classify those linear partial differential operators that can be moved

to the Kolmogorov type.

-4~
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11. Constant Coefficient Oberators
We begin with a set of appropriate definitions.
If X and Y are c” vector fields on Wp, then the Lie bracket of X and Y
is
crvr = g Xy

.

ay aX . . . . ] rn
where ™ and 3= are Jacobian matrices, x being the variable for ¥ .
(] 204 -

1 [ i 1]
Successive Lie brackets such as {X» {Xy¥1 i‘ {Y, {X,¥v] ], I[X‘ [x,v1 ]ij;
) { ]
etc. can be taken. A standard notation is

(adOX;Y) =¥

i
(adAX;Y) = [X|YJ

o

' i
{ad AsY) = ’)1[y5\/}:

} . -1
(ad¥X,¥) = [¥,(ad’ "X,¥)1
We let <e,¢> denote the duel product of one forme ang vector faieids.

. o . g _ N L
Given & C function h on R we define the Lie derivative of h with respect to

the vector field X as
Lyh = <dh.,f>.

Successive Lie derivatives are

Lgh = h
Lk o= Lon
2
Lih = L,Lyh
Un o= Loui iy
X

Moreover, the Lie derivative of the one form dh with respect to X 1s

s
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éfgﬁlix}* «
dx ax

[

Lx(dh) =

where * denotes transpose.
The three types of Lie derivatives satisfy the formula

Lx<dh,Y> = <Lx(dh),Y> + <dh,{X,Y1>.

We motivate our study by the following example.

{10)
Examgle 2.1. Consider the partial differenti1al operator
2 4,2 K IS A
(11) (] + w0 e+ (1) o+ 2 —_—
1 o I ! ax 3 ax AL
o
3 ‘ .
or 7. The local coordinate change {(near trne origin)
vl = én(1+x1
C‘_)
{1e) VE = XE - w;'
Y3 =y
moves 11 to the constant coefficient form
(13) > o
—— -+ ———
ay & BV3
i
This is discovered in the following way. First we write (1ii}
L ) I i 1 1 _ 4;fr .:?
(14) «1+x1) 3 ](1+x1 - l *oany * =
£ 1 (A5 s 4 A,
Ay 1 ¢ it ¥ 1 \(a AR 3
and set
Frew | i -
x| o]
(13) X1 = ¢ y XO = Exa
0 1
Thus (11) becomes
(16) X5 o« ox
1 0
Since X1 and XO are linearly independent and the Lie bracket [X .,
= 0y standard differential geometry results (see ([81) that
transformation (12) takes
1 0
Xl to 0 and XO to 0
0 1

imply

%o

]

the




Hence, the partial differential operator (li) is moved to the constant
coefficient form (13),

We now prove our result concerning transformation to constant
coefficient operators. Again, this result is trivial from the differential
geometry viewpoint.

Theorem 2.1. Given the Cm’part1a1 differential cperator on i

1]
(17) = x,8+ X
3} Q
1=1
where X_ X, yX_y...X , are linearlv independent for mdn and X yX_ s...s% are
0 1 c m 1 c m

linearly independent for m=n, there exists a non-singular {(lccal) cocordinate

n . . . ‘
change on F under which XO’Xl""’Xm become concstant vector fields 1f and
oniy 17

. . | " - .
g [ 3 X ; = G for all Odrys.m.
i s - -
Froof. I mdn vesults from (81 1ndicate there are nonsingular cuordinate
taking
! r Fe
o s [
| ool
O v P
b : Lo l e
X otoo | Po. X to . s X to b ednmme plave
i i | IS m Pl
o 1 o
Dol G ! ol
{ i L LY
-
O
i th
X. to —{n-m-1) place .
QO 1
0

if and only if (18) is satisfied.

If m = n, we can move
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0 0 0
X1 to ; XE to ; ,...,Xm to E
0 1 0
1 0 0
if and only if [xr,xs] =z 0 for all ldr,sd<m. GSetting
[ "]
v
e
XO = 2 . ' s
;ﬂ 1
we find the only possible nonzero column of
!' d?l ]‘
ax |
3o
gY_ 1
( . | ¢
| I A i
In X 1 gs ’1)4) ;
L3 -
R
—_— e}
awo
i L
[ i
tor i = 1,2s...5m. Then X, 15 @ constant vecter faeld if and onlv 14 gx o
o
Z 0y 3 T 1yEy...n. s

We now study our problem i1i), the main consideration of this pape:.
II1. Kolmogorov Operators
We examine the partial differential operator (6) X + X where

x],xa,,..,xm are linearly 1independent and XO vanishes at the origin in '
We derive conditions under which (  coordinate changes  {local-near the
origin) exist taking (&) to the Kolmogorov operator (9).

As stressed in the i1ntroduction, the main contribution of this paper is

realizing that the results of Krener [9] and Respondek [101 in the nonlinea

systems (o.d.e.) and control ares can be applied to partial differential

A AR S S R o R L e SO A

B T R R S e oL 10 o ¥ S RV o SO S S
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operators

{19) ; A (%) —_EE__.+ ; B (x) —2— .
j,k=13k dxjdxk i=1 j axj

The linear controllable system

(20) ¥ = FX + 6Bu

is replaced by the hypoelliptic Kolmogorov partial differential operator

twith a. and b, constant)
) J

1k k
n . N N
. a a
iak=1 90 T T k= T Ty
0f course we shall study operators (19) and (21) in our vector Tield

notation. First we wish to examine paralleis bhbetween systen 120 and
operator (cli).

For the controi system (20) the kronecker indices and eigenvalues ot ihe
F matrices are invariants under ccordinate changes. For the cperator (1

introduce kolmogorov indices and note that these and the eilgenveiuves of ins

matrix are invariants. Canonical ferms which perallel contrellebiv tanniios!

torms Tor (20) will occur in our work.

If the matrivx A = (a ) in (21) has rank m, let X ai ,i,,...,ﬁ fie
3k o 1 ¢ m
m _E B
linearly independent vector fields =o that (21) becomes 2 X + XJ. We set B
=t 1
= Jacobian matrix of the vector field iﬂ. If the partial differential
. ) . ) - - -1 .
operator n (21) 15  hypoelliptic (in this case X ,BX ,....B oy =
) ) R

1,25...5m5 span R we introduce the following process:
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1) UWrite out the grid

Xl X8 e e . Xm

BX1 BXE e e e BXm
e 2= =

B X1 B XE s e B Xm
n-1- n-1- n-1-

B X1 B Xe . . . B m

2) Start at il and move left to right across the first row, then start

at Bil and move across the second row, etc.

3) Throw out any vector field that is a linear combination ot the
preceding vector fields in the grid. Discard all vecter faelds in

the column below th:s vector field.

q) Continue until n linearly independent vector fielids ave found and

all others have heen discaerded.

.. . . th
3 Let ¢ = number of entries remaining 11 the ; column of the o
J

3= LsCy.naym,

) Renumber X ,%_,..,.sX » 17 necescary, so that &, ¢ _ ... 0 .
172 m t— e -

[

Lef. The integers ¢ .¢€_,...,% are called the toclmogorov indices ot the

1 c m

partial differential operator (21). [If the vector field notation for (21) ig

m c
(G Z X+ iO we also have the integers EI,EE,...,Cm ascsociated with (9.
1
1=t
By ass t1 £+ +,..10 = n.
Y umption i 68 n n
"oz
We ask if the partial differential operator (6) Z X+ XO is a
=1 ]

coordinate change away from the Kolmogorov partial differential operator (9)

m

-2 - . . L . .
z X‘j + XO having given indices 61.02,...,£m. Before stating the genersi
=1

-

e =10

S

b, : L )
KB v i T AR T

D S VS T F P S PP



theorem we present an example.

Example 3.1. Consider the par

tial differential operator

2 =4 c
e a a é a e e a
— — - -x)
(22) Qxa 5 + st 3 an + 5 + (E+x3) 3 + [XE x3 + E(XE xa XB] 5
ax 2 '3 ax 3 1
c 3
3 . .
on K. We write this as
] K] a & a’ 2 2 3
(23) 2¥ + ][éx - + %, o= xS 4+ 20X X ) % ] X,
] 3 &xa Gxa_ ! 3 dxa Gxa_ c 3 e 3 3 dy1 3 dxe
Letting
0 2 2
_ Exg . - xe—x3+8ixe~x3)x3
1 ) > "o 3
0

we find (23) becomes

(24} Xf + Xﬁ

The local coordinate changes

-)-( = %, - 3 + 2 )/E -
R T *a™3
- E -
Yo = ¥ =%, = L ¥
1
2 2 3 XO
; = ¥ = | :

take (24) to

..E -
{(23) S P

Xl + XO

-_ O -
where X] = O and XO =

(26)

Since

w £
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il’ Bil, Bail span Ra, and the single Kolmogorov index is 81 = 3 = n.

In equation (24) we remark that

c 3 .
Xl,{XO,X]], {ad XO'XI) span W (near {(0,0,0)?

r s . -
and {(ad XO’XI)' (ad XO’XI) ] = for 0grye <3

We now state and prove our main result. The general proof will follow

from analogous results from (9] and (101, but we shall present a proof in

the case m = 1 for some sort of completeness.
{ -

Theorem 3.1. The linear partial differential operator (&) = X+ XO, with
=i

X o9X_ seuask linearly independent on i and X“(O) = O, can be transformed b

1o

M

nonsingular coordinate changes (local-near the origin) to the tolmogorow

c - . . . .
+ Xw having 1i1ndices + ¢ _,...49% 1f
C d

partial differential operator (9) X RN @

it pq 3

and only if

~ the set /{Yl‘[xo’}:ll’"-.’ (ac Xoa).l)’ XP’ O
£_-1 € ~1

=
(ad X X P X X dy.o..s o
=t Oy E)’ ;me[ (), mJ ad

15 linearly i1ndependent.

and /3 the Lie brackets of every paiv of vectors fields in
) i L
Y L0x ,x3 Cad DX X )y Xa (X (ad “x_yx_) .
(R0 VAR S A T A o'te T
<
X 0% 4% ] (ad ™ X 1} is zero
-m9 'O)vm IR Oy m f 4 .
. e ‘
Proof. (For m = 1, €1=n, anc the operator ¥, = + xo):

1

Since X],[XO,XIJ,...,(adn_ X are linearly i1ndependent and have zevc

o Xy

-1e-
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Lie brackets, we have coordinates so that

C o ]
_ 0
X1 becomes X1 = .
(. 1 -l
o
0
[xO'XIJ becomes [kO,XIJ = ;
o ]
B
0
n~1 n-1= = 3 .
(ad X X, ) becomes (ad X $X, ) = .
0 1 1
0
. . L O]
&>
&
2
If ;O = : sy then (;O);lj = O 1mplies —:—l— = 041=13@y .. . 1m0y
&;n*l ”l”"n
/.;-n ]
o ad
fad x.pX,» = 0 amplies “flm“': 0,121, ... an=2y 01,y
h v
i 4
(28)
n-i- = , - o Ty
{ad XO,Xl) = Q 1mp1185 — = Jao 1 T dyds yNy ——— =
o "’3
bl [t
2.
- _ _ a Ll
NOW [(ad X(,-X, ),Xl] = 0 ylEldE, ST = U 1y v * 1’& DR
- SIS T
o
=
& &

L(ad”‘?.o,)? Yo IX3X 31 = 0 yields ————u= Oy i3] = 1,2s...90.

x 1

% &
j n-i

i o
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2
n- - n-1- a 6i
[(ad X y X )9 {ad X X, )1 =0 yle]dS —_—— Osiyj'_'l)ay---vﬁ
0 1 0 1 -
ax  ax.
i1
s . . . . = c - .
Hence XO is a linear vector field as promised and X1 + XO is a Kolmogorov
partial differential operator. a
In the above proof
i (A ¢ T B N B ]
. °1 1
o b O 1 ... 0 X
l 21 e
_ } 0 -
(30) X, = . and X = . ! : '
i l . 0 . .
0 b ) 0 . H X
] (n-1)1 n-1
1 -
i b O O . ) ¥
i ni n i
and ;} + ;0 1s 1n a cananical farm. 17 we sel
7, = %
i i
:2 = L')'(A :
¥
2 = L= P .
R »\',,) (!
we have a canonical form 1 which the matri- defined 5 the new iﬂ 1S i
rational caronical form and i, 1e as before. I7 mil. we get the analogue of
centrellable canornical form.
We have developed a theory giving necessarvy  and sufficient conditions
that a seccnd order linear partial differential operator bhe a coordinate

change away from a Kelmogorov operator.
Future research will be in two directions:
1) Expand the transformations used to include "appropriate types" of
feedback. This research is presently underway, and first thoughts
were to include results in this paper. However, the process of

feedback, as applied in transformation theory, is not well




addressed in the partial differenfial. equation litefature, where
coordinate changes are standard fare. Therefore, we decided that
separate papers are appropriate.

2) Extend all results to the discrete setting. A Ph.D. student of the

first author is currently working on this project.
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