CANONICAL COORDINATES FOR PARTIAL DIFFERENTIAL EQUATIONS

I. Introduction

The emphasis of this paper is determining necessary and sufficient conditions under which the linear partial differential equation

$$
-\frac{\partial u}{\partial t}+\sum_{j, k=1}^{n} A_{j k}(x) \frac{\sum_{j}^{2}}{\partial x_{j} j x_{k}}+\sum_{j=1}^{n} B_{j}(x) \frac{\partial u}{\partial x_{j}}=f(x, t)
$$

can be transformed to become either constant coefficient or of the kolmogorow [1] type. Here we assume that the $A_{j k}(x)$ and $B_{j}(x)$ are $C^{(i)}$ and consider $C^{(x}$ coordinate charges on πn.

Texts on partial differential equations develop the they: wi ranorirat
 ese Garabedian [2] and Courante and Hilbert [3]). Extensions to tire: more variables are due to Cotton [4] and Fredrict.s [5]. Trifle itruig involve finding $C^{\text {co }}$ coordinates in which the principal part coefficients $\hat{\text { in }}$, become constant. This is always possible in two dimension e with Eatable necessary and sufficient conditions in three or more dimensions. little attention is paid to the first order coefficients B, (x) after the five coordinates are introduced.

If there are C^{∞} coordinates under which (1) becomes constant coefficient

$$
\begin{equation*}
-\frac{\bar{\partial}}{\partial t}+\sum_{j, k=1}^{n} a j k \frac{\bar{\partial}^{2} u}{\partial x}+\sum_{j=1}^{n} b \frac{d u}{j x}=f(x, t) \tag{2}
\end{equation*}
$$

then Four jer transforms in the spatial variables yield
*Research supported by the NASA Ames Research Center under Grant NAG 2-360, Supplement No. 1.
(3)

$$
-\frac{\partial U}{\partial t}-\sum_{j, k=1}^{n} a_{j k} E_{j} \xi_{k} U-i \sum_{j=1}^{n} b_{j} \xi_{j} U=F(\xi, t)
$$

an ordinary differential equation in U.
Similarly, if there are C^{∞} coordinates in which (1) takes the form

$$
\begin{equation*}
-\frac{\partial u}{\partial t}+\sum_{j, k=1}^{n} a_{j k} \frac{\partial^{2} u}{\partial x_{j} \partial r_{k}}+\sum_{j, k=1}^{n} b_{j k} x_{j} \frac{\partial u}{\partial x_{k}}=f(x, t) \tag{4}
\end{equation*}
$$

where $a_{j k}$ and $b_{j k}$ are constants, then Hormander $[b]$ shows that spatial Fourier transforms lead to

$$
\begin{equation*}
-\frac{\bar{\partial} U}{\overline{d t}}-\sum_{j, k=1}^{n} a_{j k} \xi_{j} \xi_{k} U-\sum_{j, k=1}^{n} b_{j} \vec{j}_{j}^{n}=F(\xi, t) \tag{5}
\end{equation*}
$$

Under generic conditions, this first order imear partial differential equation cen be solyed by the method of characteristics ljef. oidirer, differential equations; ang anverse foutify tianstorms. The most inpoitant
 shall call the corresponding equation i4; a kolmogorov equatiori. Hormonce,

 (1) is symmetric, constarit rank m and positive semidefinite, the soat.m: operator can be writter as
(6)

$$
\sum_{j=1}^{m} x_{j}^{2}+x_{0}
$$

For general partial differential operators of the form \{b\} Hormander proceeds to prove necessary and sufficient conditions for hopoellipticity ij.e. C right hand sides imply $C^{\text {se }}$ solutions). We require that our kolmogorov equations be hypoelliptic. Weber $[7]$ constructed fundamental solutions for a Class of equations related to those in (4).

In this light the problems considered in this paper are:
i) Given the partial differential operator (6) find necessary and changes (local-near the origin) on \mathbb{R}^{n} under which (6) becomes a constant coefficient partial differential operator. Standard differential geometry results (e.g. Spivak [8]) are employed and the results are of no surprise. The conditions are derived here for the sake of completeness.
ii) Given the partial differential operator (6) find necessary and sufficient conditions so that there exist nonsingular C^{∞} coordinate changes (local-near the origin) on \mathbb{F}^{n} under which $x_{1}, x_{2}, \ldots, x_{n}$ in (6) are transformed to constant vector fields and X_{0} becomes a linear vector field. This makes the partial differential operater (b) of kilmogeroy type, if the hypoellipticity conditions af Hormander are satisfied.

The spatial operator in (4) is a kolmogorov operator if is rivpoelliptic.

We remark that both problems il and iil can be generallzed ta me
 on the form (6). Moreover, we assume that $x_{1}, x_{2}, \ldots, x_{m}$ ore into. independent.

Dur principle tools are taken from the field of systems anc control. However, the purpose of this faper is not to oraw a parallel between controllability of Eystems of nonlinear ordinary differential equations and hypoelliplicity of partial differential equations, as this has been well established in the literature and in conference presentations.

As we mentioned previously, problem i) is straightforward. Our work on problem ij) is analogous to the study of coordinate changes to transform a nonlinear control system on $\mathbb{\pi}^{n}$,

$$
\dot{x}=f(x)+\sum_{j=1}^{m} u_{j} g_{j}(x)
$$

OE POOR QUALITX
to an n-dimensional controllable linear system

$$
\begin{equation*}
\dot{\bar{x}}=F \bar{x}+G u . \tag{8}
\end{equation*}
$$

Here $\dot{x}=\frac{d x}{d t}, f, g_{1}, g_{2}, \ldots, g_{m}$ are $C^{\text {vector fields on } R^{n}, f(0)=0, u=}$ (u, $, u_{2}, \ldots, u_{m}$) consists of real-valued functions, F is an non constant matrix, and G is an nxm constant matrix. Also f,F, and u are obviously different objects in our control discussion than in our p.d.e. discussion.

We rely heavily on the results of Krener [9] and Respondek [10], and, in fact, our research essentially moves their results from the ordinary differential equation setting to the partial differential equation settirc. Nonlinear control system (7) 15 replaced by equation (b) witt: tin, thu tha place of $g_{i}, j=1, z, \ldots$ and x_{0} tating the olarn of f. The linear gyets. (8) is replaced by the folmoourov partial difterential aperator
(9)

$$
\sum_{j=\bar{j}}^{m} \bar{z}+\bar{x}_{0}^{\bar{x}}
$$

where each $\bar{x}{ }_{j}$ is a constant vector field and x_{0} is linear. Here $\bar{x}_{i}, x_{y}, \ldots, x_{n}$ correspond to the m columns of G and \bar{X}_{0} corresponds $F \bar{x}$ in (8). We want the spari of the Lie orackets $\bar{x}_{j},\left[\bar{x}_{0}, \bar{x}_{j}\right], \ldots\left(a d^{n-1} \bar{x}_{0}, \bar{x}_{j}\right), j=1,2, \ldots$ to te fre. so we make the corresponding assumptions on the Lie brackets of vector fields in (6). As noted before we also suppose that $x_{1}, x_{2}, \ldots, x_{m}$ are linearl: independent.

Section 2 of this paper contains basic definitions and consideration of those linear partial differential operators which can be made constant coefficient. In section 3 , necessary and sufficient conditions are derived which classify those linear partial differential operators that can be moved to the Kolmogorov type.

ORIGINAL PAGE IS
 OE POOR QUALITY.

II. Constant Coefficient Operators

We begin with a set of appropriate definitions.
If X and Y are C^{∞} vector fields on \mathbb{R}^{n}, then the Lie bracket of X and Y is

$$
[X, Y]=\frac{\partial Y}{\partial x} X-\frac{\partial X}{\partial Y} Y,
$$

where $\frac{\partial y}{\partial x}$ and $\frac{\partial x}{\partial x}$ are Jacotian matrices, x being the variable for \mathbb{F}^{n}. Successive Lie brackets such as $[x,[x, y]],[y,[x, y]],[[x,[x, y]], y]$, etc. can be taken. A stendard notation is

$$
\begin{gathered}
\left\{a d^{0} x, y\right)=y \\
\left(a d^{i} x, y\right)=[x, y] \\
\left.\vdots a d^{Z}, y\right)=[x,[x, y]\} \\
\vdots \\
\left(a d^{j} x, y\right)=\left[x,\left(a d^{j-1} x, y\right)\right]
\end{gathered}
$$

We let «•, \rangle denote the dual product of one forms and vertor fieids. Given a C^{∞} function h on $f^{\prime \prime}$ we defane the Lie derivative of 11 with respect to the vector field x as

$$
L_{x} h=\langle d h, f\rangle
$$

Successive Lie derivatives are

$$
\begin{gathered}
L_{x}^{0} n=H_{1} \\
L_{x}^{3} n=L_{x}^{n} \\
L_{x}^{2} n=L_{x} L_{x}^{n} \\
\vdots \\
L_{x}^{3} n=L_{x} L_{x}^{j-1} n .
\end{gathered}
$$

Moreover, the Lie derivative of the one form oh with respect to x is

ORIGINAL PAGE IS

OF POOR QUALITY

$$
L_{x}(\partial h)=\left[\frac{\partial(\partial h)^{*}}{\partial x}\right]^{*}+(\Delta h) \frac{\partial x}{\partial x}
$$

where * denotes transpose.
The three types of Lie derivatives satisfy the formula
(10)

$$
L_{X}\langle d h, y\rangle=\left\langle L_{X}(d h), Y\right\rangle+\langle d h,[X, \gamma]\rangle .
$$

We motivate our study by the following example.
Example 2.1. Consider the partial alfferential operator

$$
\begin{equation*}
\left(1+x_{1} y^{2} \frac{y^{2}}{\partial x_{1}}+\left(1+x_{1}\right) \frac{a}{\partial x_{1}}+2 x_{3} \frac{\partial^{2}}{\partial x_{2}}+\frac{a}{\partial x_{1}}\right. \tag{11}
\end{equation*}
$$

or F^{3}. The local coordiriate change (near the origan)
(12)

$$
\begin{aligned}
& y_{1}=\theta_{1}\left(1+x_{1}^{\prime}\right. \\
& y_{2}=x_{2}-y_{2} \\
& y_{3}=y_{2}
\end{aligned}
$$

moves (il to the constant cofficuert form

$$
\begin{equation*}
\frac{\dot{q}^{\bar{c}}}{\partial y_{1}}+\frac{\dot{y}}{\partial v_{3}} \tag{13}
\end{equation*}
$$

This is discovered in the following way. First we mite il: at
(14)

$$
\left(1+x_{1}\right) \frac{\partial}{\partial x_{1}}\left|\left(1+x_{1}\right) \frac{\partial}{\partial x_{1}}\right|+2 x_{3} \frac{\dot{d}}{\overrightarrow{d x_{2}}}+\frac{\dot{\theta}}{\partial x_{3}}
$$

and set
(15)

$$
x_{1}=\left[\begin{array}{c}
1+x_{1} \\
0 \\
0
\end{array}\right], \quad x_{0}=\left[\begin{array}{c}
0 \\
2 x_{3} \\
1
\end{array}\right]
$$

Thus (11) becomes
(16)

$$
x_{1}^{2}+x_{0}
$$

Since X_{1} and X_{0} are linearly independent and the Lie bracket $\left[X_{1}\right.$, X_{0}] $\equiv 0$, standard differential geometry results (see [8]) imfly that the transformation (12) takes

$$
x_{1} \text { to }\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { and } x_{0} \text { to }\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

```
Hence, the partial differential operator (11) is moved to the constant
coefficient form (13).
```

We now prove our result concerning transformation to constant coefficient operators. Again, this result is trivial from the differential geometry viewpoint.

Theorem 2.1. Given the $C^{c \infty}$ partial differential operator on \mathbb{F}^{n}

$$
\begin{equation*}
\sum_{j=1}^{m} x_{j}^{2}+x_{0}, \tag{17}
\end{equation*}
$$

where $x_{0}, x_{1}, x_{2}, \ldots x_{m}$, are linearlv independent for mon ard $x_{1}, x_{2}, \ldots, x_{m}$ are linearly independent for $m=r$, there exists a non-singular (lacal) coordinate change on \mathbb{F}^{n} under which $x_{0}, x_{1}, \ldots, x_{m}$ become constant vector fields if art only if

18

$$
\ddot{x}_{r}, x_{s}=0 \text { for al] } 0 \leq r, s m
$$

Frocf. It nisn lesults from [8] indicate there are nonsingular coordinatr

taking

$$
x_{0} t o\left[\begin{array}{c}
0 \\
\vdots \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]-(n-m-1)^{t h} \text { place }
$$

if and only if (18) is satisfied.

$$
\text { If } m=n \text {, we can move }
$$

ORIGINAL PAGE IS
OF. POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

$$
x_{1} \text { to }\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] x_{2} \text { to }\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right], \ldots, x_{m} \text { to }\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

if and only if $\left[X_{r}, x_{5}\right] \equiv 0$ for all $1 \leq r, s \leq m$. Setting

$$
x_{0}=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
n
\end{array}\right]
$$

we find the only possible nonzero colum of
 $\equiv 0,1=1, e, \ldots, n$.
:

We now study our problem ii), the main consideration of this nape:

III. Kolmogorov Operators

We examine the partial oifferential operator (6) $\sum_{i=1}^{m} x_{j}^{2}+x_{i}$ where $x_{1}, x_{2}, \ldots, x_{m}$ are linearly independent and x_{0} venishes at the origiri m ${ }^{11}$. We derive conditions under wiich C^{c} coordinate changes (local-near the origin) exist taking (6) to the kolmogorov operator (9).

As stressed in the introduction, the main contribution of this paper is
realizing that the results of Krener [9] and Fespondet [90] in the nonlinear systems (o.d.e.) and control area can be applied to partial differeritial

operators

(19)

$$
\sum_{j, k=1}^{n} A_{j k}(x) \frac{\partial^{2}}{\partial x_{j} \partial x_{k}}+\sum_{j=1}^{n} B_{j}(x) \frac{\partial}{\partial x_{j}} .
$$

The linear controllable system
(20)

$$
\dot{\bar{x}}=F \bar{x}+G u
$$

is replaced by the hypoelliptic Kolmogorov partial differential operator (with $a_{j k}$ and $b_{j k}$ constant)
(21)

$$
\sum_{j, k=1}^{n} a j \frac{\lambda^{2}}{\vec{y} x_{j} k}+\sum_{j, k=1}^{n} 0 k_{j} \frac{a}{\partial k} .
$$

Of course we shall study operators (19) and (21) in our vector field notation. First we wish to examine paralleis between syston \cos aid operator i己l).

For the controi svstem (حO) the kronecker indices and eiqenvalues of tre F matrices are invariants under coordinate changes. For tre operator iel: w introduce kolmogorov indices and note that these and the eigenvelues if the i: matrix are irvariants. Canonical forms which peraliel controllatit ammoiba: forms for (20) will occur in our work.

If the matriy $A=\left(a_{j k}\right)$ in (21) has rank m, let $\bar{x}_{0}, \bar{x}_{1}, \bar{x}_{z}, \ldots, \bar{x}_{m}, \operatorname{arm}_{1}$ linearly independerit vector fields so that (2l) becomes $\underset{j=1}{m} \bar{x}_{j}^{2}+\bar{x}_{j}$. We set B $=$ Jacotian matrix of the vector field $\bar{x}_{\text {G }}$. If the partial differential
 1,2,...m, span \mathbb{R}^{n}; we introduce the following process:

1) Write out the grid

theorem we present an example.

Example 3.1. Consider the partial differential operator
(22) $4 x_{3}^{2} \frac{\partial^{2}}{\partial x_{2}^{2}}+4 x_{3} \frac{\partial^{2}}{\partial x_{2} \partial x_{3}}+\frac{\partial^{2}}{\partial x_{3}^{2}}+\left(2+x_{3}\right) \frac{\partial}{\partial x_{3}}+\left[x_{2}-x_{3}^{2}+2\left(x_{2}-x_{3}^{2}\right) x_{3}\right] \frac{\partial}{\partial x_{1}}$
on \mathbb{R}^{3}. We write this as
(23) $\left[2 x_{3} \frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{3}}\right]\left[2 x_{3} \frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{3}}\right]+\left[x_{2}-x_{3}^{2}+2\left(x_{5}-x_{3}^{2}\right)^{x}\right] \frac{\partial}{\partial x_{1}}+x_{3} \frac{\partial}{\partial x_{2}}$.

Letting

$$
x_{1}=\left[\begin{array}{c}
0 \\
2 x_{3} \\
1
\end{array}\right], x_{0}=\left[\begin{array}{c}
x_{5}^{-x} \frac{2}{3}+2\left(x_{2}-x_{3}^{2}\right) x_{3} \\
x_{3} \\
0
\end{array}\right]
$$

we find (23) tecomes
(24) $\quad x_{1}^{2}+x_{0}$.

The local coordinate changes

$$
\begin{aligned}
& \bar{x}_{1}=x_{1}-x_{2}^{3}+2 x_{2} x_{3}^{2}-x_{3}^{4} \\
& \bar{x}_{2}=x_{2}-x_{3}^{2}=L_{x_{0}} \bar{x}_{1} \\
& \bar{x}_{3}=x_{3}=L_{x_{0}} \bar{x}_{2}
\end{aligned}
$$

take (24) to
ORIGINAL PAGE IS
OE POOR QUALITY
(25) $\bar{x}_{1}^{2}+\bar{x}_{0}$.
where $\quad \bar{x}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ and $\bar{x}_{0}=\left[\begin{array}{l}\bar{x}_{2} \\ \bar{x}_{3} \\ 0\end{array}\right]$.
This yields the Kolmogorov partial differential operator
(26)

$$
\frac{\partial^{2}}{\overline{d x}_{3}^{2}}+\bar{x}_{2} \frac{\partial}{\overline{d x}_{1}}+\bar{x}_{3} \frac{a}{\partial \bar{x}_{2}}
$$

Since

ORIGINAL PAGF, IS OE POOR QU:T:

$$
B=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

$\bar{X}_{1}, B \bar{x}_{1}, B^{2} \bar{x}_{1}$ span \mathbb{R}^{3}, and the single kolmogorov index is $\ell_{1}=3=n$. In equation (24) we remark that

$$
x_{1},\left[x_{0}, x_{1}\right],\left(\operatorname{ad}^{2} x_{0} \cdot x_{1}\right) \operatorname{span} \mathbb{F}^{3}(\text { near }(0,0,0))
$$

and

$$
\left[\left(\operatorname{ad}^{r} x_{0}, x_{1}\right),\left(\operatorname{ad}^{5} x_{0}, x_{1}\right)\right] \equiv \text { for } 0 \leq, \leq \leq
$$

We now state and prove our main result. The general proof will follow from analogous results from [9] and [10], but we shall present a proof in the case $m_{1}=3$ for some sort of completeness.

Theorem 3.1. The linear partial differential oferator (6) $\sum_{j=1}^{m} x_{i}^{e}+x_{0}$, with $x_{1}, x_{2}, \ldots, x_{i m}$ linearly independent on $\mathfrak{i n}^{n}$ ard $x_{0}(0)=0$, cari be transformed by nonsingular coordinate changes docal-near the origin) to the kolmogorov
 and only if

$$
\begin{aligned}
& \therefore \text { the set }\left\{x_{1},\left[x_{0}, x_{1}\right], \ldots, \text { ad }{ }^{\varepsilon^{i}} x_{0}, x_{1} ;, x_{2},\left[x_{0}, x_{2}\right], \ldots,\right. \\
& \left.\quad \text { (ad } e^{-1} x_{0}, x_{2}\right), \ldots, x_{m},\left[x_{0}, x_{m}\right], \ldots,\left(a d^{-1} x_{0}, x_{m}\right\} \\
& \quad \text { is linearly independent. }
\end{aligned}
$$

and (3) the Lie brackets of every pail of vectors fielos in

$$
\begin{aligned}
& \left\{x_{1},\left[x_{0}, x_{1}\right], \ldots,\left(\operatorname{ad}{ }^{1} x_{0}, x_{1}\right), x_{2},\left[x_{0}, x_{2} j, \ldots,\left(\operatorname{ad}^{\varepsilon_{2}} x_{0}, x_{2}\right) \ldots .\right.\right. \\
& \left.x_{m},\left[x_{0}, x_{m}\right], \ldots,\left(\operatorname{ad}^{k} \pi_{0} x_{0}, x_{m}\right)\right\} \text { is zero. }
\end{aligned}
$$

Proof. (For $\pi_{1}=1, \ell_{1}=n$, and the operator $x_{1}^{2}+x_{0}$):
Since $x_{1},\left[x_{0}, x_{1}\right], \ldots,\left(a d^{n-1} x_{0}, x_{1}\right)$ are linearly independent and have zero

Lie brackets, we have coordinates so that

$$
\begin{aligned}
& x_{1} \text { tecomes } \bar{x}_{1}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] \\
& {\left[x_{0}, x_{1}\right] \text { becomes }\left[\bar{x}_{0}, \bar{x}_{1}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right]} \\
& \left(\operatorname{ad}^{n-1} x_{0}, x_{1}\right) \text { becomes }\left(a^{n-1} \bar{x}^{n}, \bar{x}_{1}\right)=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (28) } \\
& \left(a d^{n-1} \bar{x}_{0}, \bar{x}_{1}\right)=0 \operatorname{implaes} \frac{1}{-r_{2}}=0,1=0,3, \ldots, n, \frac{1}{-1}=1 .
\end{aligned}
$$

$$
\left[\left(a d^{n} \bar{x}_{0}, \bar{x}_{1}\right),\left(a d^{n-1} \bar{x}_{0}, x_{j}\right)\right]=0 \text { yjelds } \frac{\partial^{2} \delta_{i}}{\partial \bar{x}_{j} \partial \bar{x}_{i}}=0, i, j=1,2, \ldots, n
$$

Hence \bar{x}_{0} is a linear vector field as promised and $\bar{x}_{1}^{2}+\bar{x}_{0}$ is a Kolmogorov partial differential operator.

In the above proof

$$
\bar{x}_{1}=\left[\begin{array}{c}
0 \tag{30}\\
0 \\
\vdots \\
0 \\
1
\end{array}\right] \text { and } \bar{x}_{0}=\left[\begin{array}{ccccc}
b_{11} & 1 & 0 & \ldots & 0 \\
b_{21} & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & & \\
b_{(n-1)} & 0 & 0 & \ldots & 1 \\
0 & \vdots 1 & \vdots & 0 & \ldots \\
\vdots & \vdots \\
\bar{x}_{2} \\
\vdots \\
x_{n} \\
x_{n} \\
r_{n}
\end{array}\right]
$$

and $\bar{x}_{1}^{2}+\bar{x}_{0}$ is in a canonical form. It we set

$$
\begin{gathered}
z_{1}=x_{1} \\
z_{2}=L_{0} \quad \vdots \\
\vdots \\
z_{1}=L_{i} \quad \therefore \quad i
\end{gathered}
$$

 rational caronical form and y, s as hefore. It mi, we qet the analogue af controllable canomical formi.

We have developed a theorv aiving mecessary and sufficient coriditionis that a second order linear partial differential operator he a conrdinate change away from a kolmogorov operator.

Future research will be in two directions:

1) Expand the transformations used to include "appropriate types" of feedback. This research is presently underway, and first thoughts were to include results in this paper. However, the process of feedback, as applied in transformation theory, is not well

addressed in the partial differential equation literature, where coordinate changes are standard fare. Therefore, we decided that separate papers are appropriate.
 2)
 Extend all results to the discrete setting. A Ph.D. student of the first author is currently working on this project.

REFERENCES

[1] A. N. Kolmogorov, Zufallige benpongen, Ann. of Math. 35 , 116-117, 1934.
[2] P. R. Garabedian, Fartial Differential Equations, John Wiley and Sons, 1964.
[3] R. Courant and D. Hilbert, Motixds in Mathemation] Plow j. : Yol. II, Fartiai [ifferential Equatsus. Interscience, Wew rort, 1962.
[4] E. Cotton, Sur les mvariuts inientutiels le queluse
 Ann. Sci. Ecale Norm. Sup. 17, 1900, 211-244.
[5] G. A. Fredricks, The geometry of second order linear bitiz] differential operators, Comm. Partial Diff. Equas., E. Wo. t. 1983, 643-655.
[6] L. Hormander, Hypelliptic ascon orde dafterential sybetmas Acta Math. 119, 1967, 147-171.
[7] M. Weber, The fundamental solution of a degenerate partial differential equätion of parabolic tyre, Trans. Amer. Matt. Soc. 71, 1951, 24-37.
[8] M. Spivak, A Gomprehnsive Introduction te pitferential Gecmetry, Vol. II, Publish or Perish, Berkeley, 1970.
[9] A. J. Krener, Gin the equivalence of control systems and the linearization of nonlinear systems, SlAM J. Control 11, 1973, 670-676.
[10] W. Respondek, Geometric methods in linearization of control systems, in "Banach Center Publications," Semester on Control Theory, Sept.-Dec., 1980, Warsaw.

