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1. INTRODUCTION 

This is the sixth in a series of seven reports required 
for partial fulfillment of the requirements of NASA Grant N G T -  

8001. The first report (Reference 1) presented the results of 

the Class I design for the Family of Commuter Airplanes. The 

second report (Reference 2) determined the preliminary 

structure designs and weight penalties due to commonality for 

the Family of Commuter Airplanes. The third report (Reference 

3) presented the structural component designs common to the 
Family of Commuter Airplanes. The fourth report (Reference 4) 
contained the methodology and results of a cost analysis for 

the Family of Commuter Airplanes. The fifth report (Reference 

5 )  presented a study of advanced prop fans for the Family of 

Commuter Airplanes. The seventh report (Reference 6) contains 

the Class I 1  design update for the Family of Commuter 

Airplanes. 

This report contains the methodology and results for a 

flight control design and implementation for common handling 

qualities by Separate Surface Stability Augmentation (SSSA) 

for the Family of Commuter Airplanes. 

Chapter 2 will present the open and closed loop dynamics 

and the design results of augmenting for common handling 

qualities. 
Chapter 3 will present the physical and technology 

requirements for implementing the SSSA system. 

Chapter 4 will discuss the conclusions of this report and 
recommendations for changes or improvement. 

1 . 1  Background History 

The Separate Surface Stability Augmentation (SSSA)  

concept was first implemented on a general aviation airplane 

by Donald J. Collins and Willard R. Bolton, JR. as the 
requirements for their doctoral thesis (References 7, 8 ) .  

1 



This SSSA system was originally designed to improve the 

undesirable lateral-directional handling in approach and 

cruise flight conditions and poor ride qualities in turbulence 

at all speeds. This improvement in handling and. ride 

qualities was to be gained without the mechanical feedback to 

the pilot that was inherent with traditional stability 

augmentation systems (Reference 8 ) .  The system was 

implemented by dividing the normal control surface into two 

surfaces. The larger surface was the new primary control 

surface and was connected to the pilot's controls in the 

conventional manner. The smaller surface, the SSSA surface, 

was driven by electric actuators whose signals were sent by a 

computer. The computer, in turn, derived its signals from the 

gyroscopes and from pilot commands through the pilot 

contro 1 s . In this way, the SSSA surfaces were not connected 
directly to the pilot's controls and a force feedback from the 

SSSA' system was not transmitted to the pilot (Reference 7). 

1.2 Incorporatinn Flight Control Design 

and Handlinn Quality Commonality 

In order to achieve the desired commonality goals for 

this Family of Commuter Airplanes, it was necessary not only 
to implement a common stability augmentation system, but to 

obtain through this system common hand1 ing qual ity 

characteristics throughout the family. Thus, the commonality 

goals could be met on a system level - for cost and 

maintenance purposes - and on a personnel level through cross- 

certification of the flight crews among the entire Family of 

Commuter Airplanes. 

This level of commonality, incorporating a common 

physical system that must produce stability augmentation 

tailored to the individual airplane's inherent qualities and 

to induce the airplane's response characteristics to a level 
2 



that is perceived by the pilot to be similar to the rest of 

the family's characteristics is ideal for SSSA. A common 

separate surface size could be chosen and simple changes in 

the gain required for stability augmentation could tailor the 

response of the system to each airplane. By implementing a 

desired command level into the gain of the normal feedback 

loop, this system can then be used to drive each airplane to a 

common level of handling quality characteristics. Because 

this entire system operates separate from the primary control 

surfaces, the pilot perceives that the handling qualities of 

each airplane is similar throughout the Family of Commuter 

Airplanes. 

In order to achieve a common "feel" for the forces 

required for the primary control surfaces, the stick force 

gradients of each airplane were modified through a stick force 

gain box. Because this report is focused exclusively on the 

stability augmentation system and its use to gain common 

handling quality characteristics, i t  will not present the 

methodology and results of the modification of the maneuver 

and velocity stick force gradients. These results are 

presented in Reference 6. 

1.3 Design Objectives 

It was mandatory for the augmentation system to meet 

certain minimum criteria for this design project. In the 
Longitudinal, Lateral-Directional and Roll modes, each 
airplane was required to meet the Class I handling qualities 

for all flight conditions at both the forward and aft C.G. 
1 ocat ions. In addition, this SSSA system must have sufficient 

control power to maintain these Class I handling qualitiesYn 

gust conditions for all flight phases. This requirement is to 

reduce pilot work load and to ensure that the system will be 

reliable and safe in up to 1 percent probability gusts and in 

thunderstorm g u s t  conditions. 

3 



The stick forces for the primary flight control surfaces 

must have common maneuver and velocity gradients in all flight 

conditions at the forward and aft C.G. locations. These 

conditions are presented in Reference 6. 

The physical constraints require that all SSSA surfaces 

must be of common size and geometry. The actuators for all 

control surfaces must be common; this may require that the 

surfaces requiring greater control forces for deflection will 
have a greater number of actuators. This may incur certain 

weight penalties in favor of commonality requirements. 

4 



2. DESIGN RESULTS OF AUGMENTING 

FOR COMMON HANDLING QUALITIES 

The purpose of this section is to present the un- 

augmented characteristics and the augmented design results of 
the handling qualities for the Family of Commuter Airplanes. 
These results will be presented for the Longitudinal, Lateral- 

Directional and the Roll modes. 

2.1 Longitudinal Open and Closed LOOP Dynamics 

From Figures 2.1 and 2.2, it  can be seen that the 

for Level 1 handling and fsp critical minimum and maximumk’n 

qualities in the longitudinal mode occurs at: 
SP 

TABLE 2.1 Critical Short-Period Frequencies and 

Damping Ratios 

= 0.3 for all conditions. 
3SP 
Cruise Speed: 

Min. L’nspmax : 7.3 rad/sec 50 Pax - Fore C.G. 
Max. L!n : 1.75 rad/sec 75 Pax - Aft C.G. 

spmax . 
Min. Control Speed: 

Min. u n  3.6 rad/sec 50 P a x  - Fore C.G. 
Max. UnSpmax : 1.2 rad/sec 75 Pax - Aft C.G. 

spmax 

And from Table 2.2, it can be seen that all of the 

airplanes in the family meet the Level I handling qualities in 

the longitudinal mode in all flight conditions except for the 

50 Pax - Aft C.G. at both the cruise and min. control speed. 
Therefore, the primary requirement of the augmentation 

system was to drive the handling qualities of each airplane to 

a level of commonality. 
5 
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TABLE 2.2 Longitudinal and Lateral-Directional 

Handling Qualities 

LEVEL OF FLYING QUQLITIES 

c\ i rpl ane 

25 

.36 

so 

75 

100 

n S D  ?rp w n D 3D 'nD ?D Flight Condition w 
C. G. Locrt ion 

Level Sat irf ied 

fwd C cruise 1 1 1 1 1 
aft C cruise 1 1 1 1 1 
fwd 0 Vmc 1 1 1 1 1 
aft 8 Vmc 1 1 1 1 1 

fwd C cruise 1 1 1 1 1 
aft Q cruise 1 1 1 1 1 
fwd Q Vmc 1 1 1 1 1 
aft 8 Vmc 1 1 1 1 1 

fwd 6 cruise 1 1 1 1 1 
aft 8 cruise 2 1 1 1 1 
f w d  C Vmc 1 1 1 1 1 
aft C Vmc 2 1 1 1 1 

f w d  6 cruise 
a f t  Q cruirm 
fwd C Vmc 
aft Q Vmc 

fwd 8 cruise 
a f t  Q cruise 
fwd Q Vmc 
aft Q Vmc 

1 1 1 1 2 
1 1 1 1 1 
1 1 1 1 2 
1 1 1 1 1 

1 1 1 1 2 
1 1 i 1 1 
1 1 1 1 2 
1 1 1 1 1 
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Using the analysis presented in Appendix A for the 

longitudinal dynamics, a trade study was performed to observe 

the effects changing the design short period frequency had on 

required elevator area. The graphical results of this study 

are presented for the critical forward C.G. locations for all 

airplanes in the family in Figure 2.3. It can be seen that as 

the W n  is raised to h i g h  levels, the required elevator area 

to cause the airplane to react with the desired quickness 
increased sharply for the most critical airplane. As the w n  

SP 
was lowered to very slow response characteristics, the 

elevator area required once again began to increase as this 

control power was required to make the airplane react more 

sluggishly than its inherent short period frequency. While it 

is obvious that the minimum required elevator area occurs in 

the region of U n  = 1.5 rad/sec, this could not be chosen as 

a design point. This is because the critical maximum unspmin 

f o r  all of the airplanes is at 1.75 rad/sec for the 75 Pax 
airplane Aft C.G. at cruise speed. In order to have qualities 
that exceeded the minimum Class I handling requirements by a 

reasonable margin, a design point of W n  = 1.85 rad/sec and 

= 0.5 was chosen. The location of this design point in 
shown on the root 

SP 

SP 

SP 
7s p 

relation to the open loop characteristics is 

loci in Figures 2.4 and 2.5. 
From the spreadsheet analysis presen 

this design point resulted in minimum gain 
surface area size requirements for the 

system (Table 2.3). 

ed in Appendix A, 
and SSSA elevator 
ongitudinal SSSA 
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TABLE 2.3 Longitudinal SSSA Requirements 

for Critical Conditions 

Design d n  = 1.85 radlsec 

Des i gn 

Critical Conditions: Min. Control S.peed, 

SP 
= 0 . 5  

3SP 
= 21 fps 

%J 

25 Pax 36 Pax 50 Pax 75 Pax 100 Pax 

- Fare Aft  @ r e &  - A f t  mAft @re& 

Kp: -.314 -.261 -.I79 -.071 .642 .312 -.263 -.386 -.22!i -.407 

Kg -.146 -.180 ,189 .094 ,923 ,136 -.lo5 -.370 ,039 -.317 

Percent S required: 
E 

12.7 1.8 16.8 8.9 28.4 13.9 4.2 -8.6 9.0 -2.8 

The critical requirements occurred for the 50 Pax - Fore 
C . G .  which required 28.4 percent of the elevator to be 
designated for SSSA. This was rounded to 30 percent which 

resulted in each airplane being able to safely compensate for 

the following gust conditions at the Min. Control Speed. 

TABLE 2.4 Longitudinal SSSA Gust Performance 

SSSA SE = 30 Percent or 12.6 ftt - 25, 36, 5 0  Pax 
43 f t *  - 75, 100 P a x  

25 Pax 36 Pax 50 Par 75 Pax 100 Par 

- Fare Aft @re Aft - A f t  & A f t  @rea 
Gust Speed (fps),  

c 49.5 35.3 37.4 70.7 22.2 45.3 149.2 -73.4 69.8 -221.9 
Y 

Typical gain schedules f o r  the critical airplane - 50 Pax 
- Fore C.G. are presented f o r  Ko: in Figure 2.6 and Kq in 

Figure 2.7. 
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2.2 Lateral-Directional Open and Closed LOOP Dynamics 

The lateral directional open loop dynamics for the Family 
of Commuter Airplanes are presented f o r  forward and aft C.G. 
at cruise and min. control speed in Figures 2.8 and 2.9. From 

these figures, and from Table 2.2, it is obvious that all of 
the airplanes - in their basic state - meet the Level I 
Lateral-Directional handling requirements except for the 75 
and 100 Pax - Fore C.G. at both cruise and min. control speed. 

Due to the indirect manner in which the augmentation 

system affects the lateral directional Dutch roll frequency 

and Dutch roll damping, and because of the extensive 

interaction that occurs in this mode, it was decided to drive 

each airplane to a common Dutch roll damping and to let the 

Dutch roll frequency "fall-out" of the calculations. Using 

the spreadsheet methodology presented in Appendix B, basic 
calculations revealed that the minimum acceptable T D  that 
resulted in Class I handling qualities for all airplanes in 
all flight conditions was = 0.27. A conservative, but more 

realistic figure of 3 
The resulting handling qualities are shown in Figures 2.8 

and 2.9. The spreadsheet analysis also resulted in the 

minimum gain and SSSA rudder control surface area requirements 

for the Lateral-Directional SSSA system presented in 
Table 2.5. 

= 0.29 was chosen as the design goal. D 
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TABLE 2.5 Lateral Directional SSSA Requirements 

for Critical Conditions 

Design 3 = 0.29 
D 

Critical Conditions: Min. Control Speed, uV = 21 fps 

25 Pax 36 Pax 50 Pax 75 Pax 100 Pax 
- Fore Aft - A f t  @re& Fore Aft & A f t  

Kr .156 ,179 ,026 .OS2 -.074 .167 ,218 ,445 ,021 .319 

Percent S required: R 
15.4 24.0 20.2 15.7 20.4 

The critical requirements occurred for the 50 Pax which 

required 28.2 percent of the rudder to be designated for 

SSSA. This was rounded to 30 percent which resulted in each 
airplane being able to safely compensate f o r  the following 

gust conditions at the min. control speed. 

SSSA S = 30 percent or 18 f t z  - 25, 36, 50 Pax 
E 

3 5 - 7  ft2 - 7 5 ,  100 Pax 

25 Pax 36 Pax 50 Pax 75 Pax 100 Pax 

Gust Speed (fps), 
0 40.0 26.2 22.3 40.2 30.8 

V 

A typical gain schedule for the 50 Pax - Fore C.G. is 
presented in Figure 2.10. 
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FIGURE 2.10 Typical Kr Gain Schedule f o r  

Lateral-Directional Dynamics 

The critical open loop dynamics in t h e  Roll mode consists 

and the time primarily of the roll time constant, 

requirement to reach a minimum roll angle. These minimum 

Level I requirements are presented in Table 2.7. 

, 

Table 2.7 Roll Mode Minimum Requirements 

Phi (den) Flight Condition T (see) t (sec) 
-Rmax 

1.4 1 . B  45 Cruise 
Min. Control 1.4 1.0 30 

19 



From the spreadsheet analysis of Appendix C, these value9 

were calculated for each airplane at cruise and min. control 
speeds at fore and aft C.G. locations. The results of these 
calculations are presented in Table 2 . 8  

Table 2.8 Roll Mode Dynamics 

25 Pax 36 Pax 50 Pax 75 Pax 100 Pax 
- Fore A& F a  Aft Fore Aft Fore Aft  F a  Af t  

Cruise: 

TR, ( sec 1 ,145 .221 ,152 .267 ,305 .I57 .533 ,299 .648 .349 

Phi,(deg) 112.2 107.3 111.7 104.4 102.0 111.4 55.8 64.6 51.9 62.7 
-1 P,(sec 1 1.12 1.12 1.12 1.11 1.11 1.12 0.68 0.70 0.67 0.70 

3E-5 3E-3 7E-3 4E-5 3E-2 4E-3 5E-2 8E-3 -2 P.dot,(sec ) 2E-5 9E-4 

Hin. Control : 
T ,(sed ,223 ,341 ,234 ,411 . ,470 ,243 .E30 ,470 1.018 ,549 

P,(sec 1 -67 .67 .67 .66 .65 .67 .50 .56 -47 .55 

R 
Pbi,(deg) 60.7 56.2 60.3 53.6 51.6 59.9 34.9 44.1 31.4 41.8 

-1 

IE-3 2E-2 3E-2 1E-3 8E-2 2E-2 9E-2 4E-2 -2 P.dot,(sec 1 9E-4 1E-2 

It is apparent that within each group of airplanes with 
the same planform - single body and twin body - that these 
critical characteristics are inherently very similar. For the 
following reasons: 

1 )  The similarity of the open-loop dynamics within each 
group of common planform. 

2) The magnitude by which the family inherently exceeded 
the Level I minimum requirements. 

3) That the perception of the pilots in the twin-bodies 
would be unpredictably affected in the roll-mode due 
to their location away from the axis of rotation. 

it was decided that a roll-damper SAS would not be used in 
this Family of Commuter Airplanes. 

20 



3. REQUIREMENTS OF SYSTEM IMPLEMENTATION 

The purpose of this Section is to present the physical 
and technology requirements for implementing a Separate 

Surface Stability Augmentation System. A typical arrangement 

and block diagrams for the control systems will then be 

presented. 

3.1 Separate Surface Control Surface Reauirements 

The surface areas required for the SSSA control surfaces 

in the Longitudinal, Lateral-Directional and the Roll modes 

can be summarized from Sections 2.1, 2.2, and 2.3 of the 

report as: 

TABLE 3.1 Summary of Control Surface Requirements 

Longitudinal Lateral-Directional Roll 

Elevator Area Rudder Area Aileron Area 

SSSA Percent of 
Primary Surface 30 30 N/A 

75, 100 Pax ( f t z )  43 

(Twin Bodies) 
35.7 

N/A 

N/A 

As explained earlier in this report, the design goal of 

commonality being the primary design driver rather than 

individual optimization for each airplane is the reason a 

common control surface size was chosen for each airplane. The 

selected surfaces that will be controlled by the SSSA system 

for each airplane are represented in Figures 3.1, 3.2, and 
3.3. A note for Figure 3.2, the surface areas indicated on 

the aileron or the spoiler are suggested locations that could 

21 
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be retro-fitted as SSSA control surfaces i f  pilot perceptionk 

indicate that such a system would be required to achieve 

greater common handling characteristics in the Roll mode. 

3.2 Technoloav Requirements 

In order to meet the goal of maximizing commonality 

throughout the Family of Commuter Airplanes, it was crucial 

for the entire stability and handling qualities augmentation 

system to be similar. This ruled-out the use of mechanical or 

hydraulic linkages for this system as such linkages would 

require a system specifically tailored for the physical 

constraints of each airplane. According to Reference 9, a 

control system driven by electric signals avoids the 

complexity and individual design required by a fully 

mechanical or hydraulic system. It also avoids the non- 
recurring cost required by mechanical/hydraulic systems for a 

Vehicle System Simulator (or "Iron Bird"). The result of 

using a system driven by electric signals is a decrease in the 

design and development costs as well as the installation and 
testing costs for the system. 

The ideal actuator to be used for this system, and that 

is available through current technology, would be 
electrohydrostatic actuators ( EHA ' s ) . A s  described in 

References 10 and 11, these actuators are driven by a 
localized hydraulic system pressurized by a high-power-(rare 

earth) magnet electric motor. They can be activated by 
electric or light signals and are ideal for usage with the 

primary f l i g h t  control system elements such as the elevators, 

ailerons and rudder. Figure 3.4 shows an example of an 

Electrohydrostatic actuator. 

Figures 3.5 and 3.6, courtesy of Reference 12, 

demonstrate additional characteristics of E H A ' s .  Figure 3.5 

shows typical hinge moments, rates, horsepower, estimated 

weights and electrical bus power requirements for a control 

24 
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BUS SUMMARIES 

SCTUATOR & # 

A. AILERON &. AILERON 
3. AILERON 
3. AILERON 

L. SPOILER 
L. SPOILER 
L. SPOILER 
L. SPOILER 

3. SPOILER 
3. SPOILER 
b. SPOILER 
b. SPOILER 

STABILIZER 
STABILIZER 

L. ELEVATOR 
L. ELEVATOR 
L. ELEVATOR 

R. ELEVATOR 
R. ELEVATOR 
R. ELEVATOR 

RUDDER 
RUDDER 
RUDDER 

1 
2 
1 
2 

1 
2 
3 
4 

9 
10 
11 
12 

1 
2 

1 
2 
3 

1 
2 
3 

1 
2 
3 

rotal Connected Bus H.P. 
Bus Power In kW. 
Est. Cont. Load kW 

HP = (RATE) (HM) x 60 
360 x 5252 

CONNECTED ACTUATOR 
HORSEPOWER OUTPUT 

BUS LOCATION 

L C R 

.88 

3.70 

5.35 

5.35 

3.70 

2.48 

2.48 

1.99 

088 

.88 

4.79 

4.79 

15.63 

2.48 

2.48 

1.99 

.88 

6.28 

6.28 

15.63 

2.48 

2.48 

1.99 

25.93 33.92 36.02 
26.77 35.02 37.19 
2.68 3.50 3.72 

P ~ U S  = HP x .746 = 1.033 x HP (kW) 
.85 x .85 
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system for a similar airplane. Figure 3.6 shows a comparison 

of the weight of an EHA as a function of swept volume with 
conventional hydraulic actuators. While this figure indicated 

- 11.5 lbs for a 95 in3 swept volume - appears to be high 
compared to conventional hydraulic actuators, each EHA is a 

self-contained unit and their use will save weight on the 

overall system by eliminating the need for a central hydraulic 
system and long runs of redundant high-pressure tubing 

required by conventional hydraulic systems. 

The system will also require typical controllers driven 

by electric signals. As stated previously in Section 1.2 of 
this report, simple adjustments in the gain requirements for 

these controllers can be used to tailor the handing qualities 

of each airplane to achieve the desired goal of common Level I 
handling characteristics. 

The requirements for the stick force gain box, previously 

mentioned in Section 1.3 of this report, to achieve common 

stick force gradients for the primary control surfaces are 

detailed in Reference 6. 

3.3 System Implementation 

A s  noted in Reference 12 and the characteristics 
presented in Figure 3.5, the performance of EHA's is similar 
to standard hydraulic actuators. For this reason, the concern 
noted in Section 1.3 of this report concerning the possible 

need for an undue number of actuators driving the surfaces 

requiring greater control forces is apparently unfounded. 

Figure 3.7 demonstrates a typical physical arrangement of 

actuators, controllers and control surface areas f.or a 

horizontal tail. 

Figures 3.8, 3.9 and 3.10 represent the block diagrams 

for the controllers. They are for an angle of attack 

controller, pitch damper and yaw damper respectively. 
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FIGURE 3.8 SSSA Angle of Attack Compensator 
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4. CONCLUSIONS AND RECOMMENDATIONS 

The purpose of this report was to present the results of 

a design study for implementing a flight controller and 

achieving handling quality commonality by Separate Surface 

Stability Augmentation for a Family of Commuter Airplanes. 

Stabi 1 ity 

4.1 Conclusions 

Stability augmentation by independently 

surfaces is a feasible manner to achieve Leve 
contro 1 ed 

I hand ing 
qualities and to tailor the performance of each airplane to 

achieve common handling qualities throughout the Family of 

Commuter Airplanes. It was also demonstrated that this system 

was robust, for the most critical airplane and flight 

condition it can safely handle gusts up to thunderstorm 

intensity. 

This form of stability and performance augmentation is a 

unique method to achieve commonality on a system and personnel 

level throughout the Family. Variations of the gain schedule 

allows for the use of common control surface sizes and common 

handling qualities allows for cross-certification of flight 

crews throughout the Family of Airplane. Acquisition and 
design costs are decreased due to the design flexibility 

allowed by a system driven by electric signals. These costs 

are further decreased due to the use of Electrohydrostatic 
actuators, which eliminate the need for a central hydraulics 

system and the complex tubing a central hydraulics system 
would require. . Maintenance costs are also decreased as each 

surface is driven by a common actuator that is a self- 

contained uni t. 
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4.2 Recommendations 

While this designer believes that the results and 

conclusions reached through this study generally indicated the 

feasibility and advantages that use of a Separate Surface 

Stability Augmentation system could gain in terms of system, 

personnel a n d .  handling qual i ty commona 1 i ty, some 

recommendations for future consideration are in order. 
A detailed analysis of the control forces required to 

drive the larger control surfaces would be required 

to ascertain whether these surfaces would need a 

disproportionate number of EHA's. 

Tests would be needed to ensure that the primary 
control surfaces have enough control power to 

maintain acceptable handling qualities in the event 

of a hard-over system failure in any of the modes 
augmented. 

A more detailed analysis couid be done to augment for 

a common Dutch-roll frequency in addition to the 

common Dutch-roll damping achieved in this study. 

A more advanced study using all six degrees of 

freedom rather than the approximations used in this 

study would provide definitive conclusions concerning 

the feasibility and advantages of using this form of 
stability augmentation and handling characteristics 
tailoring. 

Pilot reactions to the roll mode will be needed to 

determine i f  a roll damper will be required to drive 
these characteristics to a closer level of 

commonality. In particular, the pilot's perception 

of the differences in Lateral acceleration in the 

roll mode between the single body airplanes and the 

twin-body airplanes will be required. 
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APPENDIX A: SEPARATE SURFACE CALCULATIONS 
FOR LONGITUDINAL DYNAMICS 

The purpose of this Appendix is to present a summary of 
the method and results used to determine the elevator area and 
gain requirements for a SSSA system to achieve the commonality 

design goals. 

A.1 Annie of Attack and Pitch Rate Gain Requirements 

From Section 6.2.3 of Reference 13, the 2-Dimensional 
short period approximation was found to be: 

W n  = Z a M q  / U l  - M a  (A. 1 )  
(A.2) 

SP 
= -(Mq + za/Ul + M a )  / 2 h S p  

Where M a  is the dominant term for s h o r t  period frequency and 
M q  is the dominant term for short period damping. 

3 SP 

From Table 6.3 of Reference 13, 

M a  = S Z Cmlu / ~ y y  (sec (A.3) 

( A . 4 )  Mq = q S 7 5 2  Cmq / 2 Iyy Ul (sec 1 

-2 
-1 c. 

The relationships for angle of attack and pitch rate gains 

were found in Reference 13 to be: 

K a  = ACma / Cm6E 
Kq = (ACmq 1 Cm6E) E/2Ui 

where Cma was determined as: 

and 
+ Z a/Ul + M u >  

(A.5) 
(A.6) 

( A .  7) 

(A. 8 )  

where '7sp=fspdes -7spbasic 
when either is and ljsp The inter-related nature of W n s p  

modified was ignored for simplicity of the model. 

These gains were calculated based upon the normal control 

surface sizes and must be multiplied to account for the ratio 

of Separate Surface sizes to the primary control surface 

sizes. 
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A . 2  SSSA Longitudinal Surface Sizing Requirements 

The minimum required surface areas were determined for 

one percent probability and thunderstorm gusts. Using the 

VonKarman scales in Section 9.8.1 of Reference 14, the root- 

mean-square gust intensity and the resulting change in angle 

of attack due to gust perturbation were determined to be: 

TABLE A.1: Longitudinal Gust and Perturbations 

Clear A i r  Thunderstorm 

Cruise Min.Contro1 Cruise Min.Contro1 
* * 

u (fps) 4.6 6.6 21 21 
W' 
a gust' (rad) .0066 .0318 .0302 . l o12  

it At 500 ft. altitude 

It is obvious that the critical flight condition that 

will sire the surface required for the SSSA system is for a 

thunderstorm gust at min. control speed. The required 

elevator area was determined according to the method of 

balancing moments in the longitudinal axis as presented in 

Section 6.6.5 of Reference 13. 

Cmoc  bagust = Cm 6E 
where: A E m a x  = i 20 deg. 

A 6E ( A . 9 )  

Cma = Cmabasic + Cm'des 
From Reference 13, Section 4.1.4, the relationship of the 

elevator to the affected horizontal tail area was determined 

to be: - 
Cm6E = - C L d  nH Sh/S ('jlach - Xcg) t, (A. 10) 

From this, it is obvious that the percentage of required 
elevator area that must be dedicated to SSSA is: 

Percent S = - (  CmdEreq 1 (Sh/S)/C (Fach-xcg) (CLaH) (QH) (Z,) 3 (A. 1 1 )  E 
where: CmSE = C m a ( ~ r X ~ ~ ~ ~  / A  6E) 

req 
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For a chosen elevator size for the SSSA control surface', 

the maximum gust intensity that the system can overcome was 

found as: 
Q ( *6Emax/hCm R 1 ( -CL M)flH ( Sh/S 1 (XacH-Tcg 1& ( A .  21 1 wMax req 
From these relationships, a spreadsheet analysis was 

defined to show simultaneously the effect of design choices on 

the requirements for all of the airplanes. This facilitated 
the trade study shown in Section 2.1 of this report, from 

which the design point was chosen. A sample spreadsheet is 

presented for the design point at the critical min. control 

speed in Table A . 2 .  
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' TABLE A . 2  Sample Spreadsheet f o r  Longitudinal Dynamics 

d.ha.des 3455 4774 I ;4w . 1 3  -1,5551 -.m ,5968 I.:.! .m4 1*=341 
K-a -.3142 -.2607 - . 1 X  -.0710 .M20 ,3121 -.:c25 -.m -.DE - .w2 

d.h. a.req -.76r"J -.lFA -1.1255 -.5131 -2.3417 -1,1307 -.74¶? ,9651 -!.23?5 ,701 



APPENDIX B: SSSA CALCULATIONS FOR 

LATERAL-DIRECTIONAL DYNAMICS 

The purpose of this Appendix is to present a'summary of 

the method and results used to determine the rudder area and 
gain requirements for a SSSA system to achieve the commonality 

design goals. 

B . 1  Yaw Rate Gain Requirements 

From Section 6.3.5 of Reference 13, the Dutch Roll 

approximation f o r  Lateral-Directional dynamic stability was 

found to be: 

W n  = dilu1 (YBNr t NpU1 - NpYr)l (B. 1) 
( B . 2 )  

D 
= -i/2dnD (Nr t Y W I )  3 D  

Because of the inter-related nature of the Dutch roll damping 

and frequency and the rather common usage of yaw rate sensors, 

it was decided to choose a design damping ratio and to allow 

the Dutch roll frequency to result from the nature of the 

equations. 

With the yaw rate as the measured quantity, its 

relationship to Dutch roll damping and frequency through the 

dimensional derivative, Nr, was found in Table 6.8 of 
Reference 13 to be: 

Nr = S b 2  Cnr / 2 Izz Ui (B, 3) 
The relationship for the yaw rate gain was found in Reference 

13 to be: 

Kr = (hCnr / CnhR) ( b  2 ui) (B.4) 
where: ACnr = -2 Izt Ul/q S b 2 ( 2 W n  63 t y p / u i )  (8.5) 

where: 
D D  - 

''JD - 3Ddesign - 3Dbasic 
This gain was calculated based upon the normal control surface 

sizes and must be multiplied to account for the ratio of the 

Separate Surface size to the primary control surface size. 
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The change in the dimensional derivative, Nr, required & 

recalculation of the resulting Dutch roll frequency by 

Equation ( B . 1 ) .  The relationships of D, n and nD were 

then checked to insure all airplanes met Level 1 handling 

requirements at all flight conditions and C.G. locations for 

the chosen design point. 

B.2 SSSA Lateral-Directional Surface Sirinn Requirements 

The minimum required surface area for the rudder was 

determined for one percent probability and thunderstorm 

gusts. Using the VonKarman scales of Section 9 . 8 . 1  of 

Reference 14, the root-mean-square gust intensity and the 

resulting change in sideslip due to gust perturbation was 

found to be: 

TABLE B . 1  Lateral-Directional Gusts and Perturbations 

Clear A i r  Thunderstorm 

Cruise Min.Control* Cruise Min. Contro 1 * 
0"' (f ps 1 4 . 6  0.71 21 21 

(rad) .0066 .0419 .0302 . lo12  Pgust' 

* at 500 ft. altitude 

It is obvious that the critical flight condition that 

will size the surface required for t.he SSSA system is for a 
thunderstorm gust at min. control speed. The required rudder 

area was determined according to the method of balancing 

moments in the Lateral-directional axis. 

C n g  Aggust = C n 6 ~  A &R,,, 
or 

CnSR = Cng (Aggust / A 6Rmax) 
= i 40 deg A sRmax where: 

( B . 6 )  

40 



From Reference 15, Sections 12.1 and 12.3, the relationship o'f 

the rudder to the affected vertical tail area was determined 

to be: 

)ASv(Lvcos cx+Zvsindb) (B. 7 )  6Rbasic/Svbas ic 
Cn6R = - 

From this it is obvious that the percentage of the required 
rudder area that must be dedicated to SSSA is: 

X SR=(-I/CY~R 1 (b/Lvcos a+Zvsina) (CnpApgust /46Rmax) ( B . 8 )  basic 
For a chosen rudder size for the SSSA control surface, the 

maximum gust intensity that the system can overcome was found 
as : (B.9) 

U 6R /CnP) (-CydRbasic/SVbasic 1 (Sv) (Lvcos a+Zvsin#/b) 
From these relationships, a spreadsheet analysis was 

defined to show simultaneously the effect of design choices on 
the requirements for all of the airplanes. A sample 

spreadsheet is presented for the design point at the critical 

min. control speed in Table B . 2 .  

vmax max 
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I TABLE B . 2  S a m p l e  S p r e a d s h e e t  for L a t e r a l - D i r e c t i o n a l  D y n a m i c s  
! 

HIW.MmM Z-Fm a - A f t  S-Fm % - A f t  5 0 - F W  3 - M t  75-F0n 75-Aft 100-F~r l00-Afk 
Lat-Dirut 
lkl 
S 
sv 
b 

nlpbcdeg) 
Lv,Zv,Alpha 

122, 

Height 
r 

N,B.basic 
N.r.basic 
Y.B.basic 
Y.r.basic 
Cn. B. basic 
Cn.r.basic 
Cy.dR.basic 
Cn.a 

Zeta.D. basic 
n. D. basic 
Zeta. M.D 

207.5000 207.5000 207.5000 207.5000 207.5000 207.5000 207.5000 207.5000 207.5000 207.5000 
59z.oooo 592.oooo 592.oooo 59z.m 592.oooo !moo00 1182.m lltp.oo00 11ezm 1182.m 
170.oooO 170.oooO 170.oooO 170.oooO 170.oo00 170.oooO 34O.oooO 34O.oooO 34O.oooO 34O.ooO 
84.3OOo 81.3ooo 81.3OOo M.3OOo M.3I100 M.3OOo 132.500 132,5900 132.5ooo 132.5ooo 
51.1700 51.1700 51.1700 51.1700 51.1700 51.1700 51.1700 51.1700 51.1700 51.1700 
9.oooo 9.oooO 9.oooo 9 . m  9.oo00 9.oooo 9.oooo 9.oooO 9.oooo 9. oooo 

23.9500 23.9500 28.3900 28.3900 37.4700 37.4700 26.8600 26.8600 34.8200 34.8200 
24739.oooO 23361.ooOO N334.oooO 28574.oooO 43141.oooO 25978.oooO 71419.oooO 148M.oooO 85044.ooOO 50666.oOO 
768.2919 726.1180 942,0497 881.3913 1339.7826 806.7702 2217.9814 1391,4286 2641.1180 1573.4783 

177066.oooO 18063).ooOO 2BiuZ4.oooO 310361.oooO 5BOO46.oooO 451113.oooO 1779161,oooO 1324871.oooO 2328189.oooO 14S?SO5.oooO 

1.4120 1.3840 
-.w -.4m 

-46.5sio -51340 
4.3040 4.m 
.m ,0380 
-.1530 -.1530 
-.3240 -.E40 
,0920 ,0920 

Basic Class h e  U l i t i e s  
2eta.D - rin yes yes 
n.D - rin yes yes 
Zetailh.Dlin yes y# 

Zeta. D. des ,2900 .m 
d.Zeta.D ,0110 .ooLo 
d.Cn.r ,0707 .OB11 
N. r.ml t -.2412 -.iW 

1.6230 
-310 

-39.5030 
4.1m 
,1810 
-.2150 
-.3240 
I lop0 

,2260 
1,2900 
,2915 

yn 
yes 
yes 

,2900 
.wo 
,0141 -. 3665 

1.4870 
-.m 

-42.0210 
4.4160 
,1810 
-.2150 
-a40 
,1090 

.mo 
1.23bO 
.m 

yes 
yes 
Yc5 

.m 
,0630 
.m 
-.3126 

1.2310 -. 3340 
3.8600 
,2800 
-.3740 
-.E40 
,1440 

.m 
1.1190 
,2339 

yes 
yes 
yes 

.zwo 
,0810 
-.m 
-316 

-n.m 
1.5620 -. 4240 

-46.2200 
6.4100 
,2800 
-.3740 
-.3240 
,1440 

.m 
1.2680 
.m 

yes 
yw 
yes 

,2900 
,0350 
,1181 
-304 

,3210 -. 1120 
-29. m 
3.330 
,0710 

-I 0780 
-.3240 
.w 

,2220 
.57M 
,1279 

yes 
y# 
I 

,2900 
0 0 6 9 0  

,0451 -. 0473 

so70 -. 1770 
-47.38130 

5.3290 
,0710 
-.Om 
-.3240 

,0660 

,2770 
,7310 
.na 

yes 
yes 
w 

,2900 
,0130 
.m 
,0319 

.w 
-,1430 

-24.5320 
3.6080 
,1200 -. 1310 
-.3240 
.m 

.m 

.M50 
1309 

yes 
ycs 
no 

,2900 
.@70 
,0056 -. l3ao 

.m 
-.a 

-41.1780 
6.0510 . lzoo -. 1310 
-.m 
,0650 

.2#10 

.azo 
,2137 

yes 
yes 
yes 

Kr ,1561 ,1791 ,0262 .05p - .OM4 . lbbb ,2184 .us2 .oms 391 

Zeta. 0. des ,2900 ,2900 
Lh.D.cc 1.1996 1.1852 
Zeta. Iwn. D 3 7 9  ,3137 

Zeta.D - rin yes yes 
h.D - rin yes yes 
ZetaihD-rin yes yes 

s1\6 - Class One U l i t i e s  

Gust Response 
6ust speed 21.oooo 21.oooo 
d.B. gust-rad ,1012 ,1012 
D.dR.nxdeg 4Q.oooO 40.oooO 

,2900 
1.2886 
.m 

yes 
yes 
yn 

21.oooo 
,1012 

40. oooo 

,2900 
1.2323 
,3574 

F -  
yes 
F 

21.oooo 
,1012 

40. oooo 

.m ,2900 .2900 .m .m ,2900 
1.1222 1.m ,5680 ,6976 ,6444 .m 
,3254 .w3 .1M7 .m ,1869 ,2331 

yes yes yes yes yes Y E  
yes yes yes yes yes FS 
yes Yes yes r# yes yes 

21.oooo 21.oooo 21.oooo 21.oooo 21.oooo 21.oooo 
,1012 ,1012 ,1012 1012 ,1012 ,1012 

4o.oooo 4o.oooo lo.w 1o.oooo 40.oooo 4o.oooo 

D. Sv. req 26.2371 26.2371 40.879 40.8798 47.9148 47.9148 53.28(13 53.2803 69.1651 69.1651 

Percent - sv 30.m 3o.oooo 3o.w 3o.oooo 50,ooOo 3o.oooO 3o.oooo 3o.oooo 3o.oooo 3o.oooo 
Sv.nx 51.oooO 51.oooO 51.ooOO 51.oooO S1.W 51.oooO 102.W 102.W 102,oooO 102.oooO 

6USt - MX 40.8200 40.8200 26.1988 26.1988 22.3522 22.3522 40.X'5 10.2025 30.8356 30.8356 
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APPENDIX C: CALCULATIONS FOR ROLL MODE DYNAMICS 

The purpose of this Appendix is to present a summary of 

the method and results used to determine the aileron area and 

gain requirements f o r  a SSSA system to achieve the commonality 

design goals. 

From Section 6.6.3 of Reference 13, the Rolling 

approximation was found to be: 

TR = -1 / Lp (C. 1 )  
And, 

- 1) (C.2) 
LPt Phi(t) = -L6A 6A/Lp t + L6A 6A/Lp2 (e 

The roll rate and the roll acceleration were also 

calculated for all airplanes, and the lateral acceleration for 

the twin-bodies was determined. 

P(t) = -L6A 6A/Lp (1 - e LPt) (C.3) 
(C.4) LPt P.dot(t) = L ~ A  &A e 

and the lateral acceleration was: 
Lat.acc = (y)CP.dot(t)I ( C . 5 )  

where y = fuselage distance from Centerline 

y = 289 in. 
Due to the nearness of the grouping of time constants and 

roll rates within each group of similar planform, and the 

magnitude that these values exceeded the m i n i m u m  Level I 

requirements, and augmentation system was not designed for the 
Roll mode. 

These calculations were made in a spreadsheet analysis. 

A sample spreadsheet demonstrating Level I requirements is 
demonstrated in Table C.1. 
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TABLE C . 1  Sample Spyoadsheet f o r  R o l l  Mode Dynamics I 

CRUISE * 
4 
L.da 
dr (deg) 
Time(sec) 

IcH"I 

Fa7 
Lwel One 

m o r e  25dft &-Fore 36-Aft 5o-fore %-Aft 75-Fore 75-Aft 1OMore lOOdft ---------- 
-6.9196 -4.5205 -6.5766 -3.7529 -3.2809 -6.3444 -1.8765 -3.3409 -1.5435 -2.8611 
88.4574 57.788 84.0728 47.976 41.9419 81.1047 15.1456 26.9658 12.1659 23.1075 

s S 5 5 5 5 5 5 5 5 
1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 

112.2070 107.3068 111.7255 104.4271 102.0010 111.3701 55.7787 64.6199 51.9564 62.6734 
Y- yes Y e  yes y# Y K  YK yes Y e s  rn 

P (rad/sec) 1.1155 1.1153 1.1155 1.1146 1.1133 1.113 .6844 ,7031 ,6672 .7017 
P . h t  ,00002 ,00094 .oooO3 .0033S .00718 .00004 ,05138 ,00412 ,05793 ,00878 
Lat k c e l  (ft/s#"2) ,9003 ,0992 1.3952 .2116 

llPPRmm* 

4 
L. da 
da (deg) 
T i r e  

Phi (deg) 
Level me 

- 
clllc 

25-Fore ZSdft &Fore 36-w 50-Fon M t  75-Forr M t  1 W O r e  1OOdft ---------- 
-4.4867 -2.9311 -4.2643 -2.4334 -2.1274 -4.1138 -1.1936 -2.125 -.9816 -1.8196 
17.2738 11.2847 16.4176 9.3687 8.1903 1 J . m  2.619l' 4.6632 2.1551 3.996 

10 10 10 10 10 10 15 15 15 15 
1.8 1.8 1.8 1.8 1.9 1.8 1.8 1.8 1.8 1.8 

P (rd/s#) ,6717 .&E5 ,6716 .b#X ,6513 ,6715 .SO74 ,5619 ,4767 .SZQ 
P.&t ,00094 .01007 ,00133 ,02048 .03105 .00168 .07999 .02663 .09642 ,039235 
Lat k c e l  (ft/s#"2) 1.9265 ,6414 2.3222 .9525 


