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A combination of several measurement techniques was used to investigate the

dielectric properties of 80 rock samples in the microwave region. The real part of the
- dielectric constant, €', was measured in 0.1 GHz steps from 0.5 GHz to 18 GHz, and the

imaginary part, ", was measured at five frequencies extending between 1.6 GHz and
16 GHz. In addition to the dielectric measurements, the bulk density was measured for

all the samples and the bulk chemical composition was determined for 56 of the
samples. This study shows that €' is frequency-independent over thie 0.5-18 GHz for
all rock samples, and that the bulk density p accounts for about 50% of the observed

variance of ¢'. For individual rock types (by genesis), about 90% of the observed

variance may be explained by the combination of density and the fractional contents of

SiO9, Fe203, MgO, and TiO2. For the loss factor €”, it was not possible to establish

statistically significant relationships between it and the measured properties of the rock

samples (density and chemical composition).
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1. INTRODUCTION

The purposae of this study is to investigate the microwave dielectric properties of
igneous and sedimentary rocks, in support of radar investigations of the Earth's

geology and of the proposed Mars Orbiting Radar and Radiometer (MORAR) mission

to Mars.
Several studies have been reported in the literature on the dielectric properties of

rocks [1-6], but in most of these studies the reported experimental measurements had
been made either at MHz or lower frequencies, or at one or very few microwave

frequencies. Thus, no continuous microwave spectra of the relative dielectric constant
€ have been reported to date. Furthermore, the majority of the reported data for the

dielectric loss factor €” is of questionable accuracy. This is because &" of most rocks is
between 0.01 and 0.1, and most dielectric measurement techniques do not have the

accuracy required for measuring values that small.

The relative dielectric constant € of a material is defined as

e=¢-j¢",
where the real part €' is the permittivity of the material (relative to that of free space)

and the imaginary part €" is its dielectric loss factor (also relative to €q of free space).

This study focuses on the spectral region extending from 0.5 GHz to 18 GHz. A

combination of several measurement techniques was used to measure & over this
frequency range. It included two probe techniques for measuring €' in steps of 0.1 GHz

from 0.5 GHz to 18 GHz, and a resonant cavity perturbation technique for measuring ¢"



at five frequencies extending from 1.6 GHz to 16 GHz. As discussed later, because
these cavity measurements are very time-consuming, it was not possible to make the
measurements at more than five frequencies (within the constraints of available
resources) without compromising measurement accuracy.

The dielectric data reported in this study were generated from measurements
performed for 80 rock samples. Each data point represents the average of several
measurements corresponding to spatially different parts of the rock sample. The
variability among measurements made for a given rock sample is an indicator of the
sample's spatial inhomogeneity. Such variations may be due to density variations or
variations in chemical composition among mineral constituents. In addition to
measuring the dielectric behavior of each sample, its density and bulk chemical
composition were measured and documented also.

This report provides listings of the measured data, analyses of the associated

measurement accuracies, and analyses relating €' and ¢ to the density p of the

measured samples and to their chemical contents.

2. DIELECTRIC PROBE MEASUREMENT TECHNIQUE

The permittivity data reported in this study are based on measurements of the
complex reflection coefficient of a coaxial probe terminated in the material under test.
Two techniques were used. The first one is based on a third-order equivalent circuit
that can be used for measuring the dielectric constant of any rock sample across the

full frequency range of interest (0.5 - 18 GHz). The second one is a simpler first-orde:



equivalent circuit, but its validity range is limited to frequencies below 10 GHz if €' is

larger than 8. For all rock samples investigated in this study, €' was found to be

approximately independent of frequency over the 0.5-18 GHz range. Because it is
simpler to use and calibrate, the first-order technique was initially used to measure ¢'

of a given sample, and if €' was found to exceed 8 over the 0.5-10 GHz range, the
sample was remeasured using the more exact third-order technique. Brief

descriptions of these two techniques are given next.

2.1 Third-Order Equivalent Clrcuit

The dielectric probe system (Fig. 1) consists of a swept RF source, a network
analyzer (HP 8510A), and associated couplers and data processing instrumentation.
Fig. 2(a) shows a cross section of the probe tip and the dimensions of two of the
probes examined in this study. The operation of open-ended coaxial lines to measure

the dielectric constant of unknown materials is well-documented in the literature [7]-[9].

The input reflection coefficient at the prober tip p is given by

Z -Z Yo - Y
L 0 0 L
(1)

Z|_+Zo Y0+YL

P

where Y = 1/2, Zg is the line impedance, and Z|_is the load impedance, which is

governed by the geometry of the probe tip and the dielectric constant of the material it

is in contact with or immersed in (for liquid materials). In general, an open-ended
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coaxial line may be described by an equivalent circuit of the form shown in Fig. 2(b).
When placed in contact with a homogeneous material whose thickness is sufficient to

simulate a slab of infinite electrical thickness, an open coaxial line has an admittance

YL (w, €) given by

YL((D' €) = Yl () + Ye((!). €) , (2)

where Yj (o) = joC; is the "internal” admittance corresponding to the fringing
capacitance C; that accounts for the fringing field in the Teflon region between the

inner and outer conductors of the line. The "external” admittance Yg, which is a
function of both ® and the complex dielectric constant € of the material under test,
consists of a frequency-dependent capacitor C(w, €) in parallel with a radiation

conductance G(w, €)

Yoo €) = joC (0, &) + G(w, 9 . (3)

The capacitor C(w, €) represents the fringing field concentration in the dielectric

medium () surrounding the probe tip, and the conductance G(w, ) represents the
radiation into the dielectric medium.
When the medium surrounding the probe tip is free space (i.e., an open-ended

line), these two equivalent-circuit elements vary according to



2
C(w.gy = Cy + Bo (4)
4
G(o ey = Ao, (5)
where Cq, B, and A are constants for a given probe-tip geometry. If the radial
dimensions of the coaxial line (namely, r1 and ro) are small compared to the

wavelength A, computations using the expressions given in Marcuvitz [10] yield values

for A and B that are sufficiently small that the external admittance may be

approximated as Yg(0, £g) = joCq. If the dielectric constant of the medium surrounding

the probe tip is not the free space value &g, however, the above simplification may lead

to unacceptably large errors. Hence, in the general case we have

| 2 . 4
Ye(m, eo) = ](o(Co + Bo) + Ao . (6)
According to the theorem developed by Deschamps [11], the input admittance of

an antenna immersed in a medium of complex dielectric constant e is related to the

input admittance in free space through

Y(m.e)=\/-§'-Y o [& 5. )
e € -] Go
0

The above expression is for materials characterized by p = pug. If we regard the

open-ended coaxial line as an antenna and henceforth abbreviate the relative

dielectric constant ratio e/eg as simply €, we can write the following expression for the



total input admittance of the probe when placed in contact with a material of relative

dielectric constant &:

YL(m, €) = iji + ijoe + ijsez + Ao)4ez'5 . (8)

With the line admittance Yo known, measurements of the amplitude and phase of p by

the network analyzer system (Fig. 1) lead to a measurement of Y. The next step is to
determine € from Y. This is accomplished by 1) calibrating the measurement probe in
order to establish the values of the constants Cj, Cq, B, and A, and 2) developing an

iterative program for finding a value for e that minimizes the error between the
measured value of Y|_ and the value calculated from the expression on the right-hand

side of (8).

A. Usable Frequency Range

The radii rq and r of the coaxial line govern three important characteristics of the

dielectric measurement system:

1) The ratio rq/ro determines the characteristic impedance Zg of the line. For
50-Q Teflon-filled lines, this ratio is approximately 0.3.

2) The difference (ro — r1) determines the cutoff wavelength of the TM modes

[10, p. 74]; the cutoff wavelength of the TMgy modesisA, =2 (r2 —ry). Table 1



Table 1.

Dimensions and cutoff wavelength i, for the TMg4 mode for

four standard-size coaxial cables.

Cable

0.09"
0.14"
0.25"
0.35"

Type

Teflon
Teflon
Teflon
Teflon

ro(mm)

0.84
1.50
2.66
3.62

rq(mm)

0.26
0.46
0.82
1.12

ro/ry

3.28
3.30
3.22
3.22

Aol

mm)

1.18
2.13
3.76
5.07



provides a list of the dimensions and cutoff wavelengths of four standard coaxial lines

used in this study. For a medium with a complex dielectric constante =¢' — je" , the

wavelength in the medium A is related to the wavelength in free space Aq by
-1/2
el
)‘e = )'OI:E (1 + sec 8)] , (9)

where & = tan-1 (e"/¢'). To avoid the propagation of TM modes, the condition Ag < Ag

should be satisfied. Because most rocks are low-loss materials and €' seldom

exceeds 10, all of the probes listed in Table 1 are appropriate for measuring €' of rocks
at frequencies below 20 GHz. In this investigation 0.14-in probes were used

exclusively.

B. Calibration

Calibration entails finding the values of the constants Cj, Cq, B, and A of (8) for

each probe used in this study. Under ideal circumstances, one needs to determine
these constants only once and at only one frequency. The equivalent-circuit model,
however, is only approximate; hence, it is necessary to determine these constants at

each frequency that the probe is intended to be used. For example, it was found that

the constant A varies approximately at 1/w, which means that the conductance term

G(w) varies as w3, not w4.

Each dielectric probe was calibrated by measuring the complex reflection

10



coefficient under four termination conditions: 1) short circuit, 2) open circuit, 3) probe
immersed in distilled water, and 4) probe immersed in methanol. Distilled water and

methanol were used because their dispersion spectra are well known [12], [13].

2.2 First-Order Equivalent Circuit

If the diameter of the coaxial probe is much smaller than the wavelength in the

material under test, A, the equivalent-circuit admittance Y g simplifies to only one term,

joCpe, because the other two terms become negligibly small. For the 0.14-in probe

used in this study, the condition

f(GHz) < 50 /e | (10)
must be satisfied in order for the first-order model to yield accurate results. This
condition was found by comparing measurements made with this technique to
measurements made using the more-exact technique described in the previous

section.

2.2.1 Reflection Measurement Technique

For the first-order equivalent circuit, the admittance,
YL(co,e)siji+ijoe. (11)

can be determined by measuring the reflection coefficient p. The constants C; and

11



Co can be determined by measuring Y| (o, €) for two materials with known e. With the

constants known, € of an unknown materiai may be computed directly from

A
-2 -q] (12)
0 j(,) 1+p !

by measuring p. The coaxial line is a standard 50-ohm line (i.e., Yg = 1/50).

2.2.2  Group-Delay Measurement Technique

As an alternative to measuring p in order to determine g, a group-delay

technique was developed which requires calibration against only one calibration

material rather than two. For low loss materials with €" << ¢,

Y =jo(C +eCy, (13)

and the reflection coefficient

o= lpl &°

Y, =Y,
0t (14)

YG+YL

has a phase angle given by

6=2cot [50 @ (C, + € Cy] - (15)
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For the 0.141-in probe, the constants Cj and Cg are on the order of 0.02 picofarads.

Consequently, the entire quantity inside the square brackets is much smaller than 1 if

® <271 x20GHz and ¢ <10. Hence, cot'1( ) may be expanded in a Taylor series

-1
cot (x)=1r/2—x+x3/3-—..., (16)

and if we retain only the first two terms, we have
b= = - 1000)(Ci + e'CO) . (17)
The group delay 1 is defined as the change in the phase of p as a function of

frequency,

~c=§-§=-1oo (C, +€Cy) - (18)

If the group delay is measured with the probe in air (with €' = 1) and not in contact with

any other material, we get the reference group delay T,

= —100(Ci +C

% 0) .

The differential group delay is defined as

A‘t=‘t—1:0

=-100C, (e - 1), (20)

0

13



from which we obtain the expression

"2 - AT ‘
g =1 1ooco‘ (21,

The constant Cg may be determined by measuring At for one material of known ¢'.

The group delay t and 7y can be measured directly by the HP 8510A network

analyzer.
Comparison of resuits using the group-delay technique with results obtained
using the more-exact reflection coefficient technique has led to the conclusion that the

condition

f (GHz) < 30/,/; \ (2
should be satisfied in order for the approximation made in going from (16) to (17) to be

valid.

2.3 Sample Preparation For Permittivity Measurements

When using the coaxial probe to measure the permittivity of a solid material, the

following two conditions must be satisfied (in order for the measurements to produce

accurate results):
(1) The thickness of the sample must be at least equal to the probe diameter.

For the 0.14-in probe, this condition is satisfied if the thickness is greater than 4 mm.

14



(2) The surface of the sample in contact with the probe must be very smooth in
order to insure good electrical contact. This was achieved by having each rock

sample cut with a rock saw to obtain a flat surface and then the surface was smoothed

using a table-top rotary sander.

To avoid dielectric effects that may be caused by the possible presence of
surficial water molecules on the sample, each sample was dried in an oven for 15
minutes at 100°C prior to performing the dielectric measurements. It was found,
however, that there was very little difference, if any, between the resuits obtained after
drying the samples and those obtained on the basis of the measurements made prior

to drying the samples. An entirely different conclusion was reached for the

measurements of the dielectric loss factor €"; for some rocks, the values measured
prior to drying the sample were as much as twice the values measured for the samples

dry (Section 3.3).

2.4 Measurement Accuracy and Precision

The measurement accuracy of the probe technique was evaluated by comparing
the permittivity measured by the probe with the permittivity of standard materials. The
reference materials are homogeneous, thick blocks of solid materials, such as teflon,

whose dielectric constants had been carefully measured using waveguide techniques.

A typical comparison is shown in Fig. 3 for a material with €' = 8.0. Based on this and
other comparisons, we estimate the probe measurement accuracy to be better than

+0.03 of the measured value.

15
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Fig. 3. Comparison of the measured permittivity with the permittivity of a reference
material.
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By accuracy, we refer to the absolute level of €', whereas by precision, we refer to

the variability associated with the spatial inhomogeneity of the sample. For all rock

samples, €' was measured by applying the probe at at-least 16 spatially different

locations on the polished surface of the rock sample. In each case, we computed the
mean value of €', the associated standard deviation S, and the ratio S/ ¢'. For 79 of

the 80 samples, the ratio S/ &' was found to be smaller than 0.12, and for most the ratio

was smaller than 0.05. The one exception was rock sample PW-30 (rock samples are

identified by an identification number as shown in Table 3) for which &' varied from 6.6
to 13.2. The reason for the variability was visible on the rock's surface; Fig. 4(a) shows
a sketch of the surface of sample PW-30, which is a two-tone material comprised of a
light-tone background and darker-tone inclusions. The sketch in Fig. 4(b) shows the
permittivities measured at six locations on the surface of the sample; for locations not
including the inclusion material, the measured value was 6.6, whereas for those

partially or totally covering the inclusion material, the values were higher. Because of

this large spatial variability in €', the sample was cut and only the "homogeneous”

background portion was used in the analysis.
Figure 5 shows typical permittivity spectra for four rock samples, which exhibit no
discernible dependence on frequency. This is characteristic of all samples measured

in this study and is in agreement with previous conclusions reached by Olhoeft

et al. [2]. Hence, in all forthcoming discussions and analyses, €' will be treated as

frequency independent and will be represented by the average value measured over

17
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(a) Sketch of rock surface

T
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(b) Measured permittivity

Fig. 4.  This figure illustrates the spatial variability of the permittivity of sample
G-PW-30. The dark areas in (a) consist of high iron content inclusions, and
the circles in (b) show the locations at which the probe measurements were

made.
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the 0.5-18 GHz rangs.

3. RESONANT-CAVITY PERTURBATION TECHNIQUE

A resonant cavity is a closed volume. Metal couplers protruding slightly into the
cavity volume are used to measure the resonance characteristics of the cavity. The
diagrams in Fig. 6 show a cylindrical cavity with two magnetic loop couplers protruding
slightly into the cavity volume on the inside walls and connected to SMA connectors
on the outside walls at a height midway between the top side (the lid) and the cavity
floor. Figure 7 shows the measurement system.

With the cavity empty, if one were to connect a signal generator (HP 83508 in Fig.
7) to one of the connectors and a network analyzer to the other and then sweep the
generator frequency across the resonance region of the cavity, the output power would

be a Gaussian-like function of frequency (Fig. 8). This power spectrum is

characterized by fg, the frequency at which the power is a maximum, and by Qq, the

quality factor,

where Af is the half-power width of the power spectrum. If we insert a dislectric
material into the cavity, the spectrum will change in two ways: 1) the resonant

frequency decreases to a lower vaiue, which we shall call fg, and 2) the quality factor

decreases to a lower value Qg.

20
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Fig. 7. Block diagram of the system used to measure the cavity transmission spectn
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Fig. 8. When a sample is inserted in the cavity, its transmission spectrum changes:
the resonant frequency shifts from fg to fg and the spectrum becomes
broader.
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In order to maintain Qg large (i.e., maintain a resonant-like spectrum), the

volume of the material inserted into the cavity must be kept small relative to the cavity

volume. When this is the case, the resonant-cavity perturbation technique [14] may be

used to determine €' and €" of a dielectric material from measurement of fq, f5, Q.

and Qg.
For a cylindrical cavity with radius a and height d < 2a oscillating in the TMg1¢

mode and containing a needle-shaped dielectric material oriented along the vertical
axis of the cylinder, the shift in the resonant frequency is
t - f

S_ 0 _1855VE - 1) (24)

]

if the volume fraction V is small. If the material has a dielectric loss factor ¢", it can be

shown [14, p. 373] that

f 1 1
. (e =1) 0 —_—-—

e" = 25
> fo =1 Q, Q, (25)

Solving (24) for ¢’ we get

f.-f

, 0 S
e=1+ T8551_V - (26)

These expressions are valid only if V is very small, and (24) is valid only if the

24



dielectric material is approximately needle shaped and oriented vertically. One of the
major problems associated with using this method to determine €' and €" is the need to
know V very accurately (" depends on (€' — 1) which, in tumn, depends directly on 1/V).
In our case, however, we did not need to know V exactly because we already know ¢’

from the probe measurements discussed in the previous section. Hence, €" could be

determined from (25) without the need to measure V. This procedure of using

dielectric probes to measure &' and resonant cavities to measure ¢" proved extremely
effective because the errors associated with the handling and the measuring of the
weight and volume of very small rock samples were intolerably high. As will be
discussed below, a desirable value for V is about 0.5 percent. For a cavity volume of
2.5 cm3 (which was the volume of one of the cavities used in this study), V would have

to be about 1.25 x 10-2 cm3 and the corresponding weight would be about 31 mg (for

a typical density of 2.5 g/cm3).

3.1 Measurement Accuracy and Precision

By way of evaluating the measurement technique as well as establishing the

range of validity of (25) as a function of V, we conducted a carefully designed

experiment in which €" of plexiglass was measured as a function of V for values of V

extending from 10-3 percent to 10.1 percent. We chose plexiglass because its

complex dielectric constant is well known (e = 2.55 - j 0.0165) and its dielectric loss

factor is small. The results of the experiment are shown in Fig. 9. The measurement

25
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technique predicated the correct value for ¢” within a rms error of 0.001 for the range

0.01 percent S V < 1 percent, and with a slightly larger error up to 5 percent. A detailed

analysis of the errors associated with the measurements of the quantities fg, fs, Qg,

and Qg led to the conclusion that the optimum range of V is between 0.5 percent and

1 percent, and that if V is in this range the minimum measurable value of €" is around

0.002.

The data tabulated in Table 3 are each an average of measurements conducted

for five small samples of the parent sample.

3.2 Cavity Characteristics

Five cylindrical cavities were used in this study, with center frequencies ranging
from 1.6 GHz to 16 GHz. Table 2 provides a listing of their pertinent characteristics. Of
particular note is the cavity volume, ranging from approximately 1000 cm3 for the

1.6 GHz cavity to only 1 cm3 for the 16 GHz cavity.

3.3 Effects of Surficlal Water

The data provided in Section 4 are based on measurements conducted after

drying each rock sample in an oven at 100°C for 24 hours. The samples were dried to
avoid the effects of surficial water on €". For most of the samples, no discernible

difference in &" was observed between measurements made before and after drying

the sample (Fig. 10(a)), while for some the difference was quite significant (Fig. 10(b)).
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Table 2. Characteristics of resonant cavities.

Cavity Frequency (GHz) 1.6 5 7.8 11.4 16
Resonant Frequency (GHz) 1.64 498 7.87 11.44 15.93
Qq (empty cavity) 3000 1150 480 270 55
Height (cm) 6.34 2.06 1.25 0.82 0.65
Diameter (cm) 13.93 457 2.91 1.97 1.43
Volume of cavity (cm3) 966.5 33.75 8.3 25 1.05
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Fig. 10. Whereas oven-drying sample PW-36B had no influence on its €",ithad a
large effect on sample WRB 85-14.
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For a few of the measured samples, £" was observed to exhibit no discernible

dependence on frequency. For most samples, however, " decreased with increasing
frequency over the 1.6 GHz - 16 GHz range. Typical examples of these two types of

spectra are shown in Fig. 11.

4. MEASURED DATA

The measured dielectric data is given in Table 3. The entries include 1) rock

type, 2) rock #, which designates the source (G = NASA/GSFC, J = NASA/JPL, and
E = ERIM) and associated numbers, 3) density, 4) €' (average value over the
0.5 - 18 GHz range), 5) S/¢', the standard derivation-to-mean ratio of the measured

value of ¢', and 6-10) are entries for €" at 1.6, 5.0, 7.8, 11.4, and 16.0 GHz.

Table 4 lists the bulk chemical properties of the rock samples from x-ray
fluorescence. The properties of samples with a G designation were measured by or
for NASA/GSFC, and the properties of those with a J designation were measured by

the Geology Department at the University of Michigan. To date 56 of the 80 rock

samples have been analyzed for mineral composition.

5. ANALYSIS OF PERMITTIVITY DATA
5.1 Distribution of Measured Data

Among the 80 rock samples, the measured value of €' ranged between 2.5 and

8.3. These values are presented in horizontal bar-chart format in Fig. 12, and a similar
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Dielectric Loss Factor

Fig. 11.
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Typical examples of the measured spectra of the dielectric loss factor €.
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presentation is given in Fig. 13 for the rock groups identified in Tables 3 and 4.

5.2 Dependence on Density

According to previous studies [1-6], the density p(g/cm3) is the single most
important parameter governing the magnitude of €. One of the commonly used

formulas relating €' to p is based on a simple model relating eb of a powder

material of density Pp to that of the parent (solid) rock material of permittivity € and
density p through

1/pa

1/,
" )

p

1/p
(€) = (g)

p
@, | (27)

where g5 =1 and p, = 1 are the permittivity and density of air. Campbell and Ulrichs

[1] conducted measurements for a large number of powdered rocks, all at a density

3
pp= 1 g/cm , and found that e'p varied over the narrow range between 1.9 and 2.1 for
most of the 25 different types of powdered rocks measured and that the mean value is

around 2.0. Upon setting p o= 1g/cm3 and e'p =2in (27), we get
g =2P . (28)

This result is in close agreement with the formula used by Olhoeft and Strangway (4],

g = (1.93 £ 0.17)P , (29)

in their analysis of moon rocks. For the data measured in the present study, an

equation of the form €' = AP was used to fit the data and the value A = 1.96 was found
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to give the minimum mean-square-error. The function

g = 1.96° , (30)
is shown in Fig. 14, together with the measured data. The linear correlation coefficient

between the values predicted by (30) and the measured values of ¢ is R=0.72. The

data scatter about the regression curve is attributed to the dependence of €' on the

mineral composition of the rocks.

Also, the data was used to generate first-, second-, and third-order polynomial

regressions relating (¢' - 1) to p. The results are:

e-1=186p , (31a)
-1 = 0.61p+0.49p° , (31b)
g-1=10p-0.11 p3 , (31c)

and in all cases the linear correlation coefficient between the measured value of ¢'

and the value predicted by any of the above equations was R =0.73. Thus,

statistically speaking, the model given by (30) offers a fit to the data comparable to that

provided by the simple linear model given by (31a), which is shown in Fig. 15.

The variation of €' with p is shown in Fig. 16 for individual rock types. The

carbonates exhibit the narrowest density range, followed by the igneous plutonic

silicates, and then by the igneous volcanic silicates and the sedimentary silicates. The

igneous volcanic silicates have the strongest slope for &' versus p.
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Measured and Predicted (1.96p) vs. Density
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(a) € versus density

| Predict ed (1 .96P) vs. Measured Permittivity
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1 (b) ep versus €n

Fig. 14. Measured permittivity e;n and predicted permittivity eb = 1.96" , both

plotted against density in (a) and against each other in (b).
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Measured and Predicted (1 + 1.86p) vs. Density

Permittivity
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(a) € versus density
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(b) sp versus e'm

Fig. 15.  Measured permittivity € and predicted permittivity e'p =1+ 1.86p, both

plotted against density in (a) and against each other in (b).
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Permittivity versus Density
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Fig. 16. Permittivity versus density for individual rock types.
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5.3 Dependence on Mineral Composition

Stepwise multivariate regression analysis was performed (using BMDP) to

evaluate the statistical correlation between the measured €' of the rock samples and
their bulk chemical composition. The analysis was performed for individual types of

rocks as well as for combinations of rock types.

5.3.1 Igneous Volcanic Silicates

For the 20 silicate samples classified as igneous volcanic rocks, the stepwise
regression analysis selected density as the most important variable. According to

Table 5, density accounts for 76% of the total variance (see the R-squared entry in the
table), the combination of density and Si02 content accounts for 88% of the variancs,
and the other elements are each responsible for small incremental improvements in

the variance. With density and Si02 content, we obtain a linear correlation coefficient

of 0.94 between the measured value of €' and the value computed using the linear

regression equation given in Fig. 17(a).

53.2  |lgneous Plutonic Silicates

A similar analysis conducted for the igneous plutonic silicate samples gives the
results tabulated in Table 6. Due to the high correlation between iron content and

density, density was not selected directly as a significant variate. Figure 17(b) shows

the results of regressing €' against a linear equation containing total iron oxide

content (FeoOg3T), Nas0, and Si02, as parameters. The plutonic results in Table 6
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8
1 lgneous Volcanic
a ﬂ
"1 N=20
> | R=0094
>
E 64
g
QO
Q.
i 5
Q n
e
Q
4 -
3 r i
3 4 5 6 7 8
Measured Permittivity
eb = 3.5161 + 1.9394 (Density) — 0.0405 (SiO2)

(a) Igneous Volcanics

Fig. 17.  Computed permittivity versus measured permittivity for (a) igneous volcanics
and (b) igeneous plutonics.
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Igneous Plutonic

84 N=14

R=0.82

Predicted Permittivity

4 5 6 7

—
8
Measured Permittivity

e = 2.5657 +0.2443(Fe203T) + 0.1753(Na20) + 0.0255(Si02)

(b) Igneous Plutonics
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show that the mass percentages of a greater number of cations are significant in

determination of €' than was found to be the case for the volcanics in Table 5. This

implies that mineralogy plays an important, through possibly secondary role to density,

in determining €'

5.3.3  Igneous Silicates

If we combine all 34 igneous silicates into a single class, application of stepwise

multivariate regression analysis provides the results given in Table 7 and Fig. 18.

5.3.4  Sedimentary Silicates
For the 20 sedimentary silicate samples, Mgo content was selected by the stepwise
regression program as the most important variable, followed by Si0o, Al»,03, TiO2, and

density. Results of the regression analysis are given in Table 8 and Fig. 19. Table 8a
and Fig. 19a shows the results obtained when density and oxides are included in the
analysis. These results are changed dramatically by inclusion of LOI (loss on ignition to
1,000°C) in the analysis as shown by Table 8b and Fig. 19b. Loss on ignition is related
to the vaporization of volatiles, including chemically bound water, during sample

preparation for x-ray fluorescence studies. It is probable that the large amount of

variance in €' explained by LOI (56%) for the sedimentary silicates is related to the

presence of chemically bound water in the sediments. |t is interesting to note that

inclusion of LOI in the analyses of €' for the igneous silicates did not statistically alter the

results.
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Fig. 18.

9
1 All Igneous (Silicates)
8 o
N=34
1 [ ]
> 74R=092 .
=
.‘é
@ 6
2
9
2 54
[«
4 -
3 T
3 4 5 6 7 8 9

Measured Permittivity

ep = 2.0387 + 0.1154(Fe203T) + 2.0947(Density) — 0.0591(Mg O)

Computed permittivity versus measured permittivity for all igneous silicates
combined.
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7
Silicate Sedimentary
64 N=20 a
R=0.85
P
E
Q
g )
J:
Q.
3 4
2 T - - '
2 3 4 5 6 7
Measured Permittivity
e'p = 6.2882 + 1.6235(MgO) - 0.0461 (Si02) + 0.3820(AI203)
- 2.2819(1102)

(a) Without including LOI (loss on ignition) in analysis

Fig. 19. Computed permittivity versus measured permittivity for sedimentary silicates
(a) without including LOI (loss on ignition) in analysis and (b) including LOI
in analysis.
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Predicted Permittivity

Silicate Sedimentary
N=20
6 -
R=0.85 o

-y
o

Measured Permittivity

eb = —1.7925 + 0.3173(LOI) - 0.1224(Ca0) + 0.4442(Na20)
+ 2.0452(density)

(b) Including LOI in analysis
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5.3.5 All Silicates

Of the total of 54 silicate samples, 34 were igneous and 20 were sedimentary.
The combined analysis in Table 9a shows density, aluminum and iron content to be
the most significant variates. Not suprisingly, a significant portion of the variance

within each of the silicate subgroups is explained by one or more of these variates.
Figure 20 shows a plot of a linear regression equation relating €' to density and bulk

chemical properties for the silicate samples. It is apparent that €' is dominated by the
density of the rock and is secondarily influenced by the chemistry of the sample as a

consequence of its mineralogy. Inclusion of LOI in this analysis does not significantly

alter these results as shown by Table 9b.

6. ANALYSIS OF DIELECTRIC-LOSS DATA
6.1 Frequence Varlation

The dielectric loss factor " was measured for 72 rock samples at five frequencies
extending between 1.6 GHz and 16 GHz. Figure 21(a) shows plots of " versus

frequency for four rock groups. Each data point represents the average value of €" at

that frequency for all rock samples belonging to that group. An overall-average plot for

all 72 samples is shown in Fig. 21(b). The plots in Fig. 21 indicate that €" decreases
with increasing frequency between 1.6 GHz and 5 GHz and then it levels off at higher
frequencies. Among the rock groups shown, the carborates exhibit the lowest loss and

the igneous volcanics exhibit the highest loss.
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1 Al Silicates
{ N=54

Predicted Permittivity

Measured Permittivity

g =-1.9468 + 2.4689(Density) + 0.0786(A1203) + 0.0438(Fe203T) +
0.0441(Ca0) - 0.3575(Ti02)

Fig. 20. Predicted versus measured permittivity for all silicate rocks.
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The loss factor ¢" may be modeled as the sum of a conductive component eé and
a frequency-independent residual component e'r',

e"(f) = e; + e;': ()

= e"+ —_—

r 21tfeo
A (32)
= P1 + P2/f

where ¢ is the conductivity, and P1 and P2 are abbreviations for e'r' and coneo,

respectively. For each of the measured samples, the values of P4 and P, were
determined by fitting the measured data to a linear function of the form given by (32).
The frequency was expressed in GHz, which makes P2 have units of GHz"1.

Figure 22 presents the data measured at 1.6 GHz and 16 GHz in bar-chart format,

arranged according to the magnitude of €" at 1.6 GHz, starting with the largest at the
bottom of the left-hand chart and ending with the smallest value at the top of the

right-hand chart. Note that the scale is different for the two charts. At 1.6 GHz, the

magnitude of " extends between a high of 0.24 and a low of less than 0.002.

The constant P2 of a given sample is proportional to its conductivity . The
values of Py and P2 determined by the 72 rock samples are arranged in bar-chart

format in Fig. 23 according to the magnitude of P2.
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6.2 Dependence on Density

Unlike & which exhibits a strong dependence on bulk density, the loss factor &"

does not appear to be correlated with p (Fig. 24). The same conclusion applies to P

and P> (Fig. 25).

6.3 Dependence on Mineral Composition

Because ¢" is a function of frequency, it was decided to apply the stepwise linear

regression analysis on Py and P2 individually, rather than on €". The results are
tabulated in Tables 10-14 and in Figs. 26-30. Among the 11 Vériables examinéd,
Feo 03 was found to be the most important single variate for the igneous rocks (Table

12), but that was not the case for the sedimentary rocks (Table 13).

7. CONCLUSIONS

The analysis of microwave dielectric measurements conducted for 80 rock

samples has led to the foilowing conclusions:

(1) The permittivity €' is frequency-independent over the 0.5-18 GHz range.
(2) The dielectric loss factor " exhibits a frequency dependence of the form

e" = Pq + P2/ {. For most samples, the second term is significant for f <5 GHz, and

may be ignored above 5 GHz.
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Fig. 26. Predicted versus measured dielectric loss factor of igneous volcanic rocks.
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Fig. 27. Predicted versus measured dielectric loss factor of igneous plutonic rocks.
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(3) The bulk density p accounts for about 50% of the variance of &'. For

individual rock types (by genesis), about 90% of the observed variance of & may be

explained by the combination of density, S;02 content, Fe203 content, MgO content,
and Tj 0o content.
(4) The loss factor €" appears to be statistically uncorrelated with density.

(5) Although multivariate regression equations were generated to relate €" to

bulk sample chemistry, the results are not considered very significant (statistically)

because the correlation coefficient between the measured and computed values of ¢"
is poor.
(6) Additional tests are needed to determine the dependence of £ on mineral

compaosition.
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