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Center for Turbulence Research-1987 activities (exlcuding the Summer Program) 
I 

Background: 

The Center for Turbulence Research is a research consortium for fundamental study of 
turbulent flows. It is jointly operated by NASA-Ames Research Center and Stanford 
University. The Center became operational early in 1987 at a fust year funding of 
$500,000. 

Administrative Matters: 

Currently, Parviz Moin, John Kim, and William C. Reynolds are the executive officers of 
the Center. Moin is-the Director, Kim, the Ames coordinator, and Reynolds the program 
coordinator. The Center has a Steering Committee that meets regularly to act on the 
applications for Post-Doctoral Fellowships at the Center. The current members of the 
Committee are: 

D. Chapman (Stanford) 
S. Davis (Ames) 
J. Kim (Ames) 
P. Moin (Ames/Stanford) 
W. Reynolds (AmedStanford) 
M. Rubesin (Ames) 

The Center also has a high level Advisory Committee that meets annually and reviews 
the Center’s activities and accomplishments. The Committee members represent 
government, industry, and academia. The the names of the Advisory Committee 
members are attached. Their first meeting took place on March 20-21,1988. The 
chairman of the Committee reports its findings to the Center for Turbulence Research 
officers, to the Ames Director, and to the Director of Aerophysics. 

An ofice assistant (Susan Hinton) was hired on February 1 to help with administrative 
matters. 
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Technical Activities: 

The following provides a chronology of the events and individuals who participated in 
CT’R. The individuals listed were appointed before December 1,1987. 

Dr. Tsan Shih was appointed (on April 1) as a Post-doctoral Fellow. Dr. Shih’s 
speciality is turbulence modeling and specifically, one point closures. He has worked 
closely with Nagi Mansour of Ames utilizing the direct numerical simulation databases 
for testing turbulence models. He is currently working on the near wall behavior of 
turbulence models. Shih, on partial support from Air Force Office of Scientific Research, 
has been working with Parviz Moin on modeling of threedimensional turbulent 
boundary layers. He has carried-out simulations and documented the statistical behavior 
of the channel flow subjected to imposition of pressure gradient or shear in the transverse 
direction. He is currently computing the Reynolds stress budget in this flow. 

Dr. Laurence Keefe (June 1987-Nov. 1987) has continued his work at Ames to measure 
the dimension of an attractor in low Reynolds number turbulent channel flow. Since 
December 1 he has been supported by AFOSR. The overall objective is to study the 
relevance and implications of the dynamical systems theory to open turbulent flows. 

I 



I Dr. Kevin Thompson (June 1987-present) (ID CTR support, 2/3 Ames’ Space Science 
Division) is studying turbulence in the early solar nebula. In this environment, turbulence 
is subjected to stratifkation, variable gravity, variable (Keplerian) rotation, and heat 
sources and heat loss by radiation. Thompson is currently writing and testing a code for 
simulation of compressible turbulence in three-dimensions. 

Dr. Julian Hunt (July 1987-August 1987)(Cmb1idge Univ.) spent an additional month 
beyond the summer program to continue work on space time correlations in 
homogeneous turbulence, on sel-similarity of two-point correlations in boundary layers, 
and on rapid distomon theory of near wall turbulence. 

Professor Paolo Orlandi (July 1987-Oct. 1987) continued the work on development of 
an accurate finite-difference code for simulation of incompressible Navier-Stokes 
equations in generalized geometries during three of his four months’ stay. The code is 
now tested for several well known laminar cases, and should be completed during Prof. 
Orlandi’s visit in the summer of 88. 

Professor C. Benocci (Sept. 14, 1987-0ct. 10,1987) is an assistant professor at the von 
Karman Institute in Brussels. His objective was to test phenomenological models for 
Lagrangian statistics using direct numerical simulation of forced isotropic turbulence. 
Although the generality of the results were hampered by the low Reynolds numbers in 
the simulations, some new results emerged. In particular, it was shown that contrary to 
the earlier assumptions, Lagrangian and Eulerian velocity auto-correlation are quite close 
to each other. Moreover, the autocorrelation curve does not exhibit the exponential shape 
in contrast to the solutions to the commonly used Lagrangian (Longevin) equation. It 
should be noted that Benocci used a 32x32~32 simulation at very low Reynolds numbers, 
and these results should be reexamined with higher resolution and Reynolds numbers. 

Dr. James Broadwell ( a t .  87-Dec. 87) is a Sr. scientist at Cal-Tech. He is working 
closely with M. Rogers and R. Moser at Ames. The objective is to test Broadwell’s 
model for mixing. This model is based on organized structures in shear flows. This work 
has led M. Rogers to develop a new code for thedeveloping mixing layer and jets and 
is a key element for m ’ s  plans for strengthening the combustion and reacting flow 
research. 
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Professor N. Etemadi (September 1987-August 1988) (1/3 ClR support, 2.P Univ. of 
Illinois) is a mathematician from University of Illinois in Chicago. His field of speciality 
is Pmbability Theory. His appointment was based on the Center’s goal of generating new 
ideas in turbulence research. Prof. Etemadi has had no prior knowladge of fluid 
mechanics or turbulence. He has used the first half of his sabbatical in studying classical 
turbulence and turbulence terminology. It is expected that in the second half he will apply 
his expertise in probability theory to turbulence. 

Dr. George Karniadakis’s (Oct. 1987-February 1988) speciality is in application of 
spectral element method to flows in complex geometries. During his tenure at CTR the 
objective was to apply the Spectral Element Method to direct simulation of turbulence on 
a wall with riblets. It has been determined experimentally that the flow over such a wall 
has reduced skin friction despite the increase wetted area. To this end, the laminar flow 
over a triangle was computed, for code validation and the results compared well with the 
experimental results. The 2-D spectral element code was modified to three dimensions 
and preliminary runs for the channel with riblets is initiated. It is expected that these 
calculations will be continued by Dr. Karniadakis at MIT, and a graduate student will 
continue the work at CTR. 



1 Drs. Thomas, R. Osbom and Dr. Hidekatsu Yamazaki (Oct. 16,87-Nov. 16 87). The 
objective of these oceanographers from The Johns Hopkins University was to study 
encounter rates between planktonic particles in a turbulent fluid. The application is to the 
food web of oceanic plankton. Random walk was used to model planktonic motion 
relative to the turbulent flow environment which was simulated with a 64x64~64 
calculation of foxed isotropic turbulence. As expected, for the cases with least energetic 
random walks, turbulence increased the contact rates between prey and predator, and 
with the most energetic random walks, effect of turbulence was negligible. The results to 
date are very preliminary. The work is being continued at Johns Hopkins, and it is hoped 
that its eventual dissemination will attract other oceanographers to CI'R. 

Dr. Moon J. Lee (Nov. 1987-present) will continue his work on analysis of the effects of 
shear on turbulencerA simulation of a shear-free turbulent boundary layer is planned to 
complement the homogeneous shear flow simulations. 

Dr. Jonathan Watmuff (Nov. 1987-present) will conduct an experimental investigation 
of turbulent boundary layers with adverse pressure gradient. The objective is to test the 
limits of Spalan's assumptions in his direct numerical simulation code. Dr. Watmuff will 
bring a great deal of expertise in flow instrumentation to Ames' Fluid Mechanics 
Laboratory. 

Graduate Student Research Assistants: 

P. Beaudan (Oct. 1987-) 25% RA. Spectral Element Method for complex geometries. 

J. Neve (Oct. 1987-March 1988) 50% RA. Numerical simulation of an axial-flow over a 
cylinder. J. Neves will be supported by Office of Naval Research, starting April 1,1988. 

S. Sorakayalpet (Oct. 1987-March 1988) 25% RA. Space-time characteristics of wall- 
pressure fluctuations. s. Sorakayalpet will continue on an ONR contract. 

K. Squires (Oct. 1987-Sept. 1988) 50% RA. Effect of particle loading on turbulence 
structure and modeling. 
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M. Plesniak (Jan. 1988-June 1988) Experimental study of the effects of longitudinal 
curvature on mixing layers. 

M. Woronowicz (July 1987-Sept. 1987) This study was s p o n d  by CI'R during the 
summer of 1987 to determine whether particle simulation could be used to study low- 
speed turbulence. The method has been developed by Baganoff to simulate hypersonic 
flows. Several standard laminar flows were simulated with moderate SUCCCSS. This 
involved developing methods to measure such quantities as kinematic Viscosity from the 
particle simulations. Due to some anomalies in laminar flow calculations, no attempt was 
made to simulate turbulent flows. Presently, CTR has no plan to continue supporting this 
effort. 
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Lagrangian Statistics in Homogeneous Isotropic 
Turbulence: Comparison Between Direct 

Numerical Simulation and Random Flight Models 

By C. Benocci' 

Institut von Karman de Dynamique des Fluides 

Lagrangian techniques have found widespread application to the prediction and anderatanding 
of turbulent transport phenomena (Monin and Yaglom) and have yielded satisfactory results for 
different cases of shear flow problems (Durbin, 1983). However, it must be kept in mind that in 
most experiments what is really available are Eulerian statistics (Monin and Yaglom), and it is 
far from obvious how to extract from them the information relevant to the Lagrangian behavior of 
the flow; in consequence, Lagrangian models still include some hypothesis for which no adequate 
supporting evidence was up to now available. Direct numerical simulation of turbulence offers a new 
way to obtain Lagrangian statistics and so verify the validity of the current predictive models and 
the accuracy of their results. After the pioneering work by Riley (Riley and Patterson, 1974) in the 
70'5, some such results have just appeared in the literature (Lee et al, Yeung and Pope). The present 
contribution follows in part similar lines, but focuses upon two particle statistics and comparison 
with existing models (Durbin, 1980, Sawford and Hunt, 1985). 

1.The claeeical Lagrangian model 
In Lagrangian modeling, turbulent transport phenomena are simulated by the motion of "fluid 

particles." The fundamental variables are the position ,of the particle %(Z, t ) ,  where Z is the initial 
point of the trajectory (release point) and its velocity V(Z, t ) .  Another quite useful quantity is the 
displacement vector Y(Z, t )  defined as: 

*(Z, t )  = %(Z,t)  - 2 

V(5,t) = V(5,t) +V'(Z, t )  

Reynolds decomposition can obviously be applied to those quantities, giving, for example 

Fkom X, Y, and V the relevant statistical information could be extracted, the most important 
being the fluctuating displacement covariance tensor: 

Dlf'(t) = Yi(t)Yi(t) 

the fluctuating velocity covariance tensor: 

and the Lagrangian integral time scale: 

where R!:) is the velocity autocorrelation. Dimensional and theoretical analysis (Monin and 
Yaglom) show that: 

ILI Dij (t) - t2 t << T(L) 
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more refined formulations can be obtained, for simple flows only making sssumptions about the 
shape of the autocorrelation function R,,lL). The latter is generally (Lee et al) assumed to have an 
exponential form: 

Rif)(t) = 

Using the form above, an analytical relationship can be found for the 2nd order moments on 
the displacement (the trace of the displacement covariance tensor) for the case of homogeneous 
stationary turbulence: 

ii 

where u’, is the fluctuating Eulerian velocity and T f ’  must still be determined. To this end, it 
has generally been assumed that the Lagrangian autocorrelation be stronger than the Eulerian one, 
and a linear relationship of the type: 

has often been used (a H .4 for the atmospheric surface layer). However, in the first numerical 
results (Riley and Patterson, 1974), the sise and shape of the Lagrangian and Eulerian correlations 
were actually quite close. A similar trend is also shown by the most recent tests (Lee et al) for h e  
mogeneous decaying turbulence. In view of this discrepancy between theory and available numerical 
results, investigation of the Lagrangian velocity autocorrelation and time scale is the most urgent 
task of direct numerical simulation. 

2. The random walk model of Lagrangian transport 
Simplified relationships of the type presented in the previous section are available only for some 

very simple cades of turbulent flow; for all the others, numerical solutions have to be sought. To 
this end, the turbulent Eulerian velocity field is taken as a random process and replaced by a known 
stochastic process of similar statistics. For a turbulent low having a finite time scale and high 
turbulent Reynolds number, it ia assumed that the turbulent acceleration is uncorrelated and can 
be simulated with a Gaussian random walk process. Under this hypothesis, the infinitesimal change 
of Lagrangian velocity du over the time dt is given by the Lagrangian equation (Durbin, 1983): 

I 

where dwt is a step in a random walk process having a Gaussian pdf of mean 0 and variance dt. 
The Lagrangian equation automatically imposes the exponential form of the Lagrangian autocorre- 
lation. In practice a discrete procese is used and the particle is advanced in time with an explicit 
technique: 

&? = XY-’ + V,n-lAt 

where n is the current time step. The above technique has two main weak points: the first lies in 
the fact that the trajectory of each particle is generated by an independent random process and is, 
therefore, entirely uncorrelated with respect to other trajectories, while in reality particles moving in 
a correlated Eulerian velocity field have to be correlated with each other; the second (and related) is 
that the velocity field so generated does not respect continuity. The first difficulty is removed by two 
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particle models (Durbin, 1980, Sawford and Hunt, 1985) where the basic "event" is the correlated 
motion of one pair of particles. The two particles are moved with a law of the type: 

dx1 = (OU' + @U")dt 

d x a  = (aU" + DU')dt 

where a and @ are functions of the pair separation S, defined as (Durbin, 1980): 

and the Lagrangian - length scale: - 
J, = (#)1/2T(L) 

while the U' and U" velocities are respectively: 

V1 and V2 being generated through two independent random processes obeying the Lagrangian 
equation. The issue of continuity can be addressed only by treating reverse dispersion problems (Saw- 
ford and Hunt, 1985) (Le. finding the source which corresponds to a given marker's distribution). 
This makes the approach unpractical for real prediction work. Comparison with direct numerical 
simulation should give an evaluation of the size of the errors due to the unphysical features of the 
velocity fields. 

8. Direct simulation of Lagrangian motion 
In this initial phase,the study of Lagrangian statistics was limited to the case of isotropic homo- 

geneous stationary turbulence with no mean velocity. The corresponding Eulerian velocity field was 
generated with the Rogallo code (Lee and Reynolds, 1985); stationarity in absence of a mean shear 
gradient was achieved by adding a forcing term on the lowest wavenumber. Most of the simulations 
made were for a 323 mesh. The relevant quantities of the Eulerian flowfield are: 

v = 0.1 

ut2 = 2.25 (deviation 5%) 
- 

c = 8.5 

Therefore, the Kolmogorov microscale is: 

q = (;)I/. = 0.104 

- and the Taylor microscale: 
X = (15u" E)'/' = 0.945 

C 

correspondhg to a turbulence Reynolds number & e  = 21.26. The separation between the two 
scales is, therefore, too small for the existence of a developed inertial subrange. The theoretical 
relationship: 

A 
15 L'E1 = -XReA 

gives a value of 1.07 for the Eulerian macroscale L'El compared to about 1.25 for the simulation. 
The turbulent Reynolds number based upon the length scale lies therefore in the 25-30 range. It has 
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to be remarked that the effect of the forcing is to introduce a large scale perturbation which cannot 
be removed from the results: the Eulerian correlation does not, therefore, go down to 0 (Figure 1), 
and the overall concept of macroscale remains vague. Before passing to the analysis of the results, 
it must be remarked again that the Lagrangian equation model requires the turbulent acceleration 
to be uncorrelated i.e. the acceleration time T, scale to be much smaller than the velocity one, as: 

1 

This given for the present simulation: 

T, N 0.2T(L) 

We are, therefore, at the very limit of the region of applicability of the model. The results of the 
present comparison cannot, therefore, be taken as final until confirmed by tests at higher Re’s. 

4. Influence of the number of markers 
The 323 simulations were run with 4,096 particles; the number was chosen to keep the CPU time 

requirement to a manageable amount (= 5 sec per time step). As stochastic methods are relatively 
slow to converge (error size decreases with N-’12 where N is the number of events), the first task was 
to verify whether the sample was good enough to give reliable results. To this end the full results 
were compared with the ones obtained by sampling one ‘event” (particle or pair of particles) out 
of two and out of four. Some relevant comparisons are presented in Figure 2 in the form of relative 
difference between the two results, i.e.: 

Result 1 - Result 2 
(Result 1 + Result 2)/2 output = 

Figure 2 compares the predicted 2nd order moment of the displacement of single particles for 4,096 
and 2,048 event: maxiniuin relative error is less than lo-’, showing that the present distribution 
is adequate for single particle statistics. Figure 3 show the same comparison for the second order 
moments of the separation of a pair of particles (2,048 versus 1,024) events) and the increase in error 
is quite visible for rmall separation times; where the effect of the initial position of the marker is felt; 
for separation times higher than 2 ( ~  4TlL)), the error is still low. As can be expected, much higher 
errors will be encountered when considering the separation velocity tu = ds /d t ,  which is computed 
numerically from the separation; the separation velocity rms difference is shown in Figure 4. It can 
be seen from the figure that differences are of the order of lo-’ Therefore, results for the separation 
velocity are to be considered as qualitative only. Reducing again by half the number of samples, the 
errors increase by nearly one order of magnitude. It is somewhat surprising to find good convergence 
with BO limited a number of events (most two particle simulations w 10‘ events (Sawford and Hunt, 
1985)). This M due to the fact that the sample is stiU generated &om a correct velocity field. 

5. Influence of the initial distribution 
As previously mentioned, two tests were performed: the 6rst case used a separation between 

markers of order of 2A and the second case used a separation of the order of A. Consistent with the 
effect of the number of markers on the results, differences in single-particle statistics between cases 
using different initial distributions were negligible. Differences in tweparticle statistics, however, 
are affected by the initial distribution, with the difference becoming negligible after the particles 
motion becomes uncorrelated (Figure 5). In conclusion, the two cases can be used indifferently to 
discuss all the statistics with the exception of the ones related to separation. 

6. Single particle Lagrangian statistics 
As it was shown in a previous paragraph, the present simulations 1 and 2 can be taken to represent 

fully converged and equivalent solutions of the Lagrangian problem as far as one particle statistics 
are concerned. Therefore, all the pertinent data will be examined together in the present paragraph. 
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Based upon the average of six results (3 components * 2 cases), the Lagrangian time scale takes the 
value : 

T(L' = 0.526 

with a 5% dispersion for individual data. The corresponding length scale L is given by: 

quite close to the value of the Eulerian macroscale (see paragraph 4). The present results, there- 
fore, agree with the previous ones (Riley and Patterson, 1974, Lee et al, Yeung and Pope) in 
indicating that the Lagrangian and Eulerian correlations are quite close. Whether these results are 
of general value or are due to the low Reynolds number of the simulation is an open question which 
can only be answered by further tests. A remarkable result of the present tests is the discrepancy 
between the computed Lagrangian autocorrelation and the theoretical exponential shape (Figure 6). 
It can be shown that the numerical solution of the Lagrangian equation will yield the exponential 
form for the autocorrelation. Similar trends are made evident by a comparison of the displacement 
p.d.f. (Figure 19). As an obvious consequence, the results of the direct simulation do not fit well 
with the already discussed theoretical results: 

for the 2nd order moment of the displacement. As it can be observed in Figure 8, the numerical 
results diverge from the previous relationship as soon as the initial development F2 - t2 is over, and 
become parallel to the theoretical curve only for t > 16TIL). By contrast, the numerical solution of 
the Lagrangian equation fits the theory perfectly (Figure 9). To conclude, it must be remarked again 
that the present calculations have been made at the very lowest edge of the Reynolds number region 
where the Lagrangian equation can be applied, and, therefore, the above discussed results are not 
enough to draw a conclusion upon the overall validity of the model. Surely it draws the attention 
over a quite peculiar behavior of the Lagrangian variables at low turbulent Reynolds numbers and 
puts in evidence the need for both tests at higher Re and further tests in the same range to develop 
a suitable understanding of such a regime. 

7. Two particle statistics 
As it was already remarked, the statistics of a pair of particles are potentially the ones most 

important for the understanding of the Lagrangian phenomenology. However, the results reported 
here can only be regarded as preliminary in nature. It has already been oboerved (paragraph 5 )  
that the number of 'events" (about 2,000) ie still low and the convergence of the results not yet 
complete. Moreover, the prediction appears to be strongly affected by the nature of the forcing. This 
can be remarked by comparing the separation average velocity obtained from the direct prediction 
(Figures 10) with that Corresponding to the two particle random light model (Figures 11). It can 
clearly be seen that the patterns of the mean velocities are quite diflerent; the ones predicted by 
the Lagrangian equation decrease in time (for large separation times) with a law which is smooth 
enough (considering the relatively limited number of markers ) and filling the expected z-'I2 law. 
On the contrary, the direct simulation yields a profile containing consecutive peaks, more or lesa in 
correspondence with the peaks of the Eulerian correlation (Figure 1). It appears that at large times 
when the two elements of the pair are far away and their relative motion is dominated by the energy 
carrying eddies, the influence of the forcing becomes dominant. Consequently, large differences 
exist between the separation predicted by the direct simulation and the Lagrangian equation. As 
an example, the 2nd order moments are shown for the direct simulation in Figure 12 and for the 
two particle model in Figure 13. The differences are evident, above all in the initial part where 
the behavior of the mean separation velocity is entirely different. Unfortunately the only available 
theoretical prediction of the separation moments is valid only for high turbulent Re and assumes, 
above all, the existence of an inertial subrange. Therefore, its predictions are, unsurprisingly, f a r  
from the numerical results (Figure 14). 
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8. Conclusions 
The present report is only a first quite preliminary draft covering some of the results obtained 

during the stage of the author at the Center for Turbulence Research. Another part of the results has 
not yet been processed and will be discussed in the forthcoming second draft. Tentative conclusions 
are : 
0 It is confirmed that Eulerian and Lagrangian macroscales are of the same she, at least in the 

range of turbulent Reynolds number which can, at present, be tackled by direct simulation. 
0 The predicted autocorrelation has no negligible diflerences with respect to the expected exponen- 

tial shape. 
0 One particle statistics can be analyged in detail using the present results, but two particle statistics 

require more ‘events” (double at least) and a better understanding of the influence of forcing upon 
the large scales. 

0 nrbulent Reynolds numbers at least 4 times higher than the present one should be reached to 
fulfill all the aims of the present investigation. 
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I OVERVIEW 

A feasibility study was conducted during the Summer of 1987 to determine 

whether particle simulation could be used to study low-speed turbulence in a gas. 

Additional work was conducted during the Fall of the same year to attempt to resolve 

several questions that were raised. In trying to determine whether or not turbulence 

can be modelled in this manner, one must first establish that a suitably large Reynolds 

number can be reached in the simulation. This requires that we have the means to 

measure such quantities as kinematic viscosity and Reynolds number based strictly on 

the behavior of interactions of thousands of particles. This method, which was 

originally developed by Baganoff for studying hypersonic flows, was adapted to 

analyze a particular low-speed scenario using an IBM AT microcomputer. Thirty-two 

thousand particles were used, and computation was restricted to two dimensions. 

Stokes' First Problem was considered as a suitable scenario for simulation. In it, 

a laminar boundary layer develops in both space and time following a similarity scaling 

law, so the Reynolds number and the shear stress are time-dependent. A program 

was developed to obtain data on the velocity profile, temperature, and shear stress, 

and to find a means for computing a Reynolds number. A wide range of freestream 

velocities were tested (0.4 c M, c 2.0). The lower bound on the Mach number was 

dictated by achieving the highest velocity possible before compressible effects became 

significant. The importance of this will be explained later. The upper bound was 

chosen to see what would occur once compressibility became important. Despite the 

pronounced effects of thermal (random) motion of the particles at low fluid velocities, 

the simulated velocity profiles fit the theoretical cuwes nicely. Also, one would expect 

to find a constant coefficient of kinematic viscosity for incompressible flows, and in this 

analysis, every simulation gave the same numerical coefficient. 

Once the value of the kinematic viscosity was found, the Reynolds number (Re) 

was computed. Reynolds numbers, based on the boundary layer thickness, of 10 - 400 

were obtained in these simulations. (This quantity was computed at different time 

steps as well as for different freestream velocities.) For a flat plate, a generally 

accepted, similarly defined Re for the beginning of transition to turbulence is 1220. In a 



I duct, transition begins at an Re of 2300, based on the diameter of the duct. Also, for 

Couette flow, Couette measured a critical Re of 1900, based on the distance between 

the plates (Hinze. Turbulenca, second edition, p. 76). 

So, it appears that these simulations can achieve the Reynolds numbers 

associated with the onset of turbulence. Judging from the existing programs on the AT, 

one can estimate the time requirements needed when running such a program on the 

CRAY2 computer. While it takes roughly 30 seconds per time step using 32000 
particles on the AT, a code adapted to the CRAY2 could use one million particles 

undergoing time steps every 1.5 seconds. Such a program could easily simulate a 

three-dimensional flow. 

STOKES1 

It was decided to simulate a flow that could easily be verified by theory. If such a 

simulation was successful, one could generate more confidence in the method. An 

obvious, simple choice was to simulate the flow field of "Stokes' First Problem" (also 

known as the "Rayleigh Problem"). In the theoretical formulation (see Schlichting. 

W n r  ThaPLy, seventh edition, pp. 90-91), a semi-infinite fluid, bounded by a 

stationary wall, is initially at rest. At t = 0+, the wall is suddenly accelerated to a 

constant velocity of V,. In time, momentum is transferred to the fluid, and a 

time-dependent boundary layer develops. For this problem, the analytical solutions for 

the velocity profile and the shear stress are 

-q2 s (x,t) = swe 

X 
where q = - J4vl 

One may define a Reynolds number with a length scale based on the distance 
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away from the wall where the velocity is 99% of the freestream velocity. The value of 

the similarity parameter q for which erf (q ) = .99 is 1.8214. This gives us a 

time-dependent Reynolds number of 

Re, = 3 . 6 ~ -  J’ 
V 

In this program, it was easier to keep the wall stationary and have the fluid, 

initially having velocity V, everywhere, begin to slow down at the wall. During 

development of the program, M, = 0.6 was used to get the highest fluid velocity 

possible before compressible effects became significant. 

SCATTER 

One problem with using particle simulations for low speed flows is due to the fact 

that fluid motion usually consists of bulk motion of the flow superimposed on the 

random velocities of the individual particles. In a typical compressible flow, the bulk 

motion of the flow depends on the Mach number M, where 

Bulkmotion a M =  - U where a2+iT 

h e r e  c2 =3m Thermal motion a T a C 

a 
-- - 
2 

SO, a - Crms . Hence, as M increases, u / a - u / Crms increases, and thermal 

fluctuations become a smaller fraction of the total velocity. Also, since 

dispersion I = where N I number of particles 
X Ji;T (normal distribution) 
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there is less statistical scatter with more particles in the region of interest and particle 

density increases. 

STOKES1 RESULTS 

In solving Stokes First Problem, one finds that the governing differential equation 

scales according to a similarity parameter x/& . Because of this scaling, it was 

decided to save data of a particular simulation at time steps that were related to each 

other by a certain constant factor. Usually, data was saved for time steps from 32 to 

2048 that were related to each other by factors of two. 

The size of the computational box was 20 divisions high along the wall and 80 

divisions long normal to it. These divisions were used for calculating averaged values 

of physical quantities from the particle populations lying within each division. 

Thirty-two thousand particles were used in this two-dimensional system, because this 

number made good use of the allowable array lengths available with the large memory 

model on the AT. (Using the huge memory module would increase run times 

significantly.) As in the theoretical formulation, only the development of quantities 

normal to the wall were calculated. When data was to be obtained during a certain 

time step, the number of particles in each of the 80 columns was totaled, as well as the 

sums of each particles' three velocity components, their squares, and sums of 

x-velocity times y-velocity. Further, in computing velocity, density, temperature, 

pressure, and shear stress profiles normal to the wall, another averaging took place. 

In calculating a quantity, at each x position, corresponding to one column, the values of 

the two adjacent columns were added to it. The resulting value was then divided by 

the number density of those three columns. This data sampling occurred at a point in 

the program after the particles' positions had been updated but before the collision 

algorithm had been applied in order to get values before equilibrium occurred through 

collisions. 

Later, data from a run, which consisted of sets of data from various time steps, 
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