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Abstract

Nonlinear simulations are presented for instability and transition in
parallel water boundary layers subjected to pressure gradient, suction, or
heating control. In the nonlinear regime, finite amplitude two-dimensional
Tollmien~-Schlichting waves grow faster than is predicted by linear theory.
Moreover, this discrepancy is greatest in the case of heating control. Like-
wise, heating control is found to be the least effective in delaying secondary
instabilities of both the fundamental and subharmonic type. Flow-field

details (including temperature profiles) are presented for both the uncon-

trolled boundary layer and the heated boundary layer.
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Introduction

Laminar flow control (LFC) techniques have been investigated extensively
both experimentally and theoretically. Most of the theoretical work has re-—
lied on linear theory and asymptotic methods. Since the literature on LFC is
so vast, we simply refer the reader to the survey article by Hefner and
Bushnell (1979) and cite specifically only that work which is especlally
pertinent to our own. Wazzan, Okamura, and Smith (1968) have performed an
extensive study of the 1linear stability of the heated, parallel, water
boundary layer. They ignored the temperature fluctuations and found that wall
heating increased the critical Reynolds number. Lowell and Reshotko (1974)
included the effects of temperature perturbations in the linear stability
analysis and concluded that they did not significantly change the results.
Strazisar, Reshotko, and Prahl (1977) and Barker (1979) verified experimental-
ly the linear stability results for low amplitude two-dimensional Tollmien-
Schlichting-Schubauer (TS) waves. They found that the parallel theory gave an
adequate description of the neutral curve except near the critical Reynolds
numbers for slightly heated flows.

However, even 1if high intensity bypass mechanisms (Morkovin (1969)) are
not involved, linear theory describes only the first stage of transition——the
slow growth of the primary, TS instability. Subsequent stages are due to non-
linear interactions. A wide variety of asymptotic methods have been used to
describe secondary instabilities arising from the interaction of three~
dimensional disturbances with the primary 2-D TS wave. Of these methods
Floquet theory (see the review by Herbert (1988)) has been particularly
successful 1in clarifying the secondary instabilities of both fundamental and
subharmonic type in channels and boundary layers. These methods have yet to

be applied to controlled boundary layers.



Experimental (Klebanoff, Tidstrom, and Sargent (1962), Kovasznay, Komoda,
and Vasudeva (1962), Hama and Nutant (1963), Wortmann (1977), and Williams,
Fasel, and Hama (1984)) and numerical (Wray, Hussaini, and Degani (1977), Wray
and Hussaini (1980, 1984), Orszag and Patera (1983), Kleiser and Schumann
(1984)) work have demonstrated that the fundamental secondary instability for
uncontrolled boundary 1layers leads to the emergence of periodic 1lambda
vortices and to the development of detached shear layers which ride on top of
them. The lambda vortices originate near the critical layers where the wave
speed of the 2-D mode matches the local mean flow speed. They originate
because of the secondary instability and they intensify because of nonlinear
self-induction effects. The detached shear layer arises because the mean flow
must traverse the vortices. Subsequent developments are at best only qualita-
tively understood: the shear layers roll up and shed discrete vortices (Hama
and Nutant (1963)) and eventually turbulence ensues. The lambda vortices and
the detached shear 1layers are strongly three-dimensional, time-dependent
structures. Numerical simulations have the potential to provide a theoretical
prediction of the tertiary instabilities of these structures without resorting
to drastic simplifications, such as assumptions of two—-dimensionality, weak
three-dimensionality, or quasi-steadiness. Such predictions via numerical
simulations, however, are quite costly and have been furnished only for
channel flow (Gilbert and Kleiser (1986), Krist and Zang (1987)).

Experiments on the subharmonic secondary instability have not yet pro-—
duced such great detail on the evolution of the lambda vortices. Likewise,
most numerical simulations of subharmonic transition (Spalart and Yang (1987))
have proceeded only to the stage at which these structures emerge. Moreover,
little or no experimental work has been done on either secondary instability

in controlled boundary layers.



In this paper we apply direct numerical simulations of the time-
dependent, incompressible Navier-Stokes equations to explore a variety of non-—
linear effects in boundary layers subjected to pressure gradient, suction, or
heating controls. The LFC technique are here limited to passive, spatially
and temporally uniform controls, with the emphasis on heating control for
water boundary layers. The effect of finite amplitudes on the growth of 2-D
TS waves 1is examined first. Then a comparison is made of the effect of the
LFC techniques on both the fundamental and subharmonic secondary instabili-
ties. Next, flow visualizations are presented for the early stages of the
tertiary instability. Finally, the crucial role played by longitudinal

vortices in the fundamental instahility is illustrated.

Formulation

The boundary layer on a flat plate is 1illustrated in Figure 1. The
streamwise, normal, and spanwise directions are denoted by x, y, and 2z, re-
spectively. The displacement thickness 6* Increases in the streamwlse
direction. At any distance x3 from the leading edge, one can define a
Reynolds number Re based on the velocity u_ and kinematic viscosity v
in the free stream and the local displacement thickness.

The transition process of the growlng boundary layer is influenced by
significant non-linear, three-dimensional and non-parallel effects. Unfor-
tunately, existing computer resources are only adequate for treating two out
of these three effects. A common compromise is to study the parallel boundary
layer (see Figure 2) instead of the true, growing one. Here the focus is on

the vicinity of some point x; (see Figure 1) and the approximation is that




the displacement thickness remains constant (in x) at the value § ;3 the
mean flow is strictly in the streamwise direction and is given by

go(x,y,z,t) = (uo(y),0,0), where up(y) 1s the mean velocity profile which
follows from the similar boundary-layer equations at Xny. As a consequence,
only the non-linear and the three-dimensional effects are taken into
account. The neglect of the non-parallel effects should be serious only if

there is appreciable growth on the scale (A..) of the Tollmien-Schlichting

TS
(TS) waves. Since the mean flow in the parallel boundary layer is uniform
in x, a Fourier approximation in x 1s highly accurate; moreover, only one
spatial wavelength need be resolved for the temporal transition problem.
Thus, highly resolved computations can be performed, well into the strongly
non—-linear regime.

Figure 3 depicts three types of laminar flow control (LFC) techniques.
The dimensionless parameters describing self-similar solution of the Falkner-
Skan boundary layer equations are defined in the figure. These are B for

pressure gradient, F for suction, and T for heating. In the last case,

w

the free stream and wall temperatures, denoted by T, and Ty, respective-

ly, (and given in degrees Kelvin), differ and the kinematic viscosity depends
upon the temperature T,

Lengths are scaled by the displacement thickness at x;, velocities by
the free-stream velocity at xg, and the density is taken to be constant at 1
gm/cm3. The Navier-Stokes equations for the dimenslonless variables are used

in the rotation form

1
+ = +
u w X u VP Re

o v e[u(Vu + vuD)] + F (1)
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Qt +ue Vo = r Re v (xve) + Fe (2)
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where 0 = (T = T)/(T, - 1), Re = G8%/5,, Pr = 0,8 /%, v = i/i,
K = -K'/E°° s
Ju
1 3 0.%
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and EP(T) is held fixed at its value at Tw. The forcing functions E

and Fe are applied for consistency with the parallel flow assumption.

The boundary conditions are

u=20 at y=0
8 =1
(5)
u= (1,0,0) at y = o
6 =0

along with perlodicity in x with period Lx and periodicity in z with

period Lz. The empirical formulas employed are those recommended by Lowell

and Reshotko (1974):

B (T) = 1.002 1077 4 1072 gm/ cm-sec

r(T)

| 1.370 + 8.36 x 107/ (T-293) | (T-293)/(T-164)



S(T) = [-9.901 + 0.1002 T - 1.874 x 107 T 2 + 1.040 x 107’ T] x 107>
joule/sec—cm=0K
¢ (T) = [2.140 - 9.68 x 10727 £2.69 x 107° T 2= 2,42 x 10787 3]

x 4.184 joule/gm - Ok, (6)
where T is in Ox. The Prandtl number characteristic of water is Pr =
7.

All of the results in this paper are for Tw = 2930 and for
1 <1< 1.1, Over this range EP(T) varies by less than 0.1% and the

density is within 1% of being constant. On the other hand, u(T) changes
by as much as 507 and E(f) by nearly 7%Z. Note that viscous dissipation has
been neglected in the temperature equation. This is a small correction in the
heated cases considered below, which have Eckert numbers [Gi /(Epw(fw—fw))]
smaller than 1072, The term V-(uVE?) vanishes if u is constant (in x)
and has only a-ndnor effect (below the 1% level) on the heated cases, as
determined by comparing simulations made both with and without this term.

One of the Reynolds numbers chosen for the present investigation of non-
linear stability was 8950. (Some linear theory results were reported for this
Reynolds number by Lowell and Reshotko (1974).) The free stream temperature
was 2939K. The amounts of pressure gradient, suction, and heating were
chosen so that the flow was neutrally stable. (The linear theory results for

the heated case did not include the temperature fluctuations.) The mean flows

of both the controlled and uncontrolled cases are displayed in Figure 5, and



the parameters of the least stable 2-D modes are included in Table 1. The
characteristics of the least stable linear modes of the heated case differ
appreciably from those of the pressure gradient and suction controls. As was
observed by Wazzan, et al., there are destabilizing effects in the heated case
due to the vertical gradients of W and Ko

The use of the LFC techniques has a dramatic effect upon the actual dis-
placement thickness of the boundary layer. This is quantified in Table 2.
The Reynolds number based on the displacement thickness of the corresponding
uncontrolled boundary layer 1s also listed there. Note that in terms of the
growing boundary layer, the controlled cases correspond to different posi-
tions x;, with the pressure gradient case having the greatest distance from
the leading edge and the uncontrolled case the least.

Most nonlinear transition calculations have used initial conditions con-
sisting of the mean flow, plus a two-dimensional TS wave and two three-
dimensional (oblique) waves:

ia x
u(x,0) = Re{uy(y) + e, u, (y)e

i[(ax/sx)x+azz]

1 +
+ 7 e3pugp)e 7)

_ i[(a /sx)xrazz]
+ 7 eqpisp(Ve }

p—

where and 9§D(y) are the least stable linear modes for the

“20(y)
given real wavenumbers o and a,, and the integer s, 1is 1 or 2. These

eigenfunctions are normalized so that their maximum streamwise amplitudes are

1. The 3-D waves are either themselves TS waves (solutions to the Orr-



Sommerfeld equation) or else Squire modes (eigenmodes of the vertical vortici-
ty equation (Herbert (1983)). This particular combination of 3-D modes, with
waves o, and -a, generates streamwise vorticity patterns that

resemble those of the Benney-Lin (1960) mechanism.

Numerical Methods

In this work, numerical methods are needed for three problems. The mean
flow is calculated from the Falkner-Skan boundary layer equations via a
fourth-order finite-difference scheme (Malik, Chuang, and Hussaini (1982)).
The 1linear eigenmodes (and linear stability properties) are computed by a
Chebyshev tau method (Orszag (1971)). The mean flow and the linear eigenfunc-
tions are used for the initial conditions of the direct simulation.

The time dependent Navier-Stokes equations are solved by a Fourier-
Chebyshev collocation method, using Fourier series in X and 'z and
Chebyshev polynomials (with an algebraic stretching) in y. The velocity has

the Fourier seriles representation

(8)

R [(k /s )a_x+(k /s da_z]
H-k k (y,t)e X X X z V4 VA
x* 'z

where ax and a, are the fundamental wavenumbers in the streamwise and
spanwise directions respectively. The fundamental wavelengths in these direc—

tions are given by LX = 21r/onx and L, = 21r/az, respectively. The im

posed periodicity lengths are syLy and s,L,, where sy and s, are



integers which specify the number of subharmonics that are permitted in each
direction. (In most cases presented in this paper Sy = S, = 1.) The

rational numbers kx =k /s and k = kz/sz label the Fourier wave-

numbers in the numerical representations with respect to the fundamental wave-

numbers « and B. The velocity also has the Chebyshev series represen-
tation N
u(x,t) = ¥ u (x,z,t)T_(£) (9)
- o™ n

where a mapping y = y(£) is employed from [-1,1] to (O,x). Of course, a
fully Fourier-Chebyshev representation is also available. The notation is
straightforward: a triple sum over k., n, k, with respect to the coef-
ficients Ekx’n’kz times the Fourier-Chebyshev basis functions.

The algorithm used for the boundary-layer simulations is based upon the
improved splitting method devised by Zang and Hussaini (1986) for channel flow
simulations. The first (velocity) step accounts for the advection and diffu-
sion terms. Although the simulations presented in this paper used the rota-
tion form of the Incompressible Navier-Stokes equations, recent work indicates
that the skew-symmetric form is more accurate (see Zang (1988)). The advec-
tion and horizontal diffusion terms are advanced in time via a low-storage
third-order Runge-Kutta method while the normal viscous term is advanced with
a Crank-Nicolson method. (The temperature equation is also integrated in this
step.) The second (pressure) step enforces the incompressibility con-
straint. The boundary conditions in the velocity step are chosen to minimize
the slip velocity which is present after the pressure step. More details are
given by Zang and Hussaini (1986). Chapter 7 of the book by Canuto, Hussaini,

Quarteroni, and Zang (1988) contains an exhaustive discussion of spectral

methods for simulations of incompressible flow.
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Several aspects of the boundary-layer implementation of this algorithm

are worth noting. Asymptotic boundary conditions (Malik, Zang, and Hussaini

(1985)) were enforced at y = Ymax by requiring that
d ° 2 2 2 2 °
_— = - + .
dy ukx,kz /kxax kzaz ukx,kz (10)

In practice, the choice y ., = 15 has sufficed to yield numerical solutions
with no discernible spurious boundary effects. Had zero perturbation boundary

conditions been applied instead, a substantially larger value of would

Ymax
have been required to yleld comparable solutions.

An alternative to this domain truncation/asymptotic boundary condition
approach 1is the use of a mapping from £ e [0,1] to y e [0,9) ——see
Spalart (1986) and Laurien (1986). However, the present algorithm employs a
staggered grid for the pressure, and for this alternative mapping it would
require that matrix multiplies be used in place of Fast Fourier Transforms in
several key locations in the code. As documented by Canuto, et al. (1988,
Chapter 2), this would significantly increase the run time of the code,

especially for simulations employing over 128 grid points in the normal direc-

tion. Moreover, the small value of made possible by the use of

Ymax
asymptotic boundary conditions leads to the presence of relatively few grid
points outside of the boundary layer.

Both the algebraic stretching

T
YT LG v+,

(11)

C=1+ 2yL/ymax
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and the exponential stretching

- -y/y
y = -y, log(t2 E=a “+0b
AN A
a=-2/[1 - e ML (12)
-y Iy - Iy
b=1[l+e max L][l—e max L]

were considered. The algebrailc stretching i1s more robust for spectral algo-
rithms: it ylelds spectral accuracy for solutions which decay only alge-
braically fast, as y + @, whereas the exponential stretching requires expo-
nential decay to achieve spectral accuracy (see Canuto, et al. (1988, Ch. 2)).

These mappings cluster the grid points near the wall. In the linear and
early secondary instability stages the greatest need for resolution is near
the wall and in the critical layer near y = 0.6 (in units of displacement
thickness). However, as the tertiary 1instability develops, 1i.e., as the

lambda vortex and detached shear layer intensify, additional resolution is

required near the location of the shear layer, which rises toward the free
stream as it breaks down. In these later stages of transition it 1is ad-
vantageoﬁs to compose the above mappings with a mapping from ne[~1,1]
to £ e [-1,1] which has the effect of clustering grid points near, say, y

= 3. We have employed a hyperbolic tangent mapping of the form

£-€p n-ng
&5 - n + o tanh i (13)

where 60, AE Ny» An, and o are chosen to provide the desired cluster—
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ing. This combined mapping is readily accommodated witin the spectral
collocation method.

The collocation grids ranged from 16 x 48 to 64 x 64 (in x and y)
for the 2-D cases and from 16 x 48 x 8 to 64 x 64 x 16 (in x, y, and z)
for the 3-D secondary instability studies. Typical simulations took several
thousand time-steps and covered from two to five periods of the primary 2-D TS
wave., The simulations of the tertiary instability took in excess of 106
total grid points. 1In all cases the grid was refined during the evolution of
the instability so as to maintain a decrease of 8 orders of magnitude in the
energy spectra in each coordinate direction (see Krist and Zang (1987)). The
use of the additional mapping (13) enabled the tertiary instability simula-
tions to be performed with less than half the points in y that would other-
wlise have been required.

A useful measure of the strength of a given Fourier harmonic is

y

max . 9
E, X (€) = d, 4 / |uk X (yst)] dy/E, (14)
X’z x z 0 x’'z
where

This quantity is the kinetic energy of the mode normalized by the kinetic
energy of the mean flow (Ep) between y =0 and y = yp..- The constant

dy 1is used to account for the symmetries in the Fourier harmonics. Similar-

ly, a measure of a given Chebyshev component 1is
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z )
|un(x,z,t)| dxdz
(15)

E L]
/(stxssz O)

The accuracy of the fully non-linear, time-dependent Navier-Stokes code
is documented in Table 1. For each of the linear modes specified in the first
four columns, a highly accurate temporal eigenvalue w and eigenfunction
were generated using the Chebyshev tau code. This eigenfunction was then in-
put at very low amplitude into the non-linear code as the inital condition.
The code was run for two TS periods and the growth rate of the eigenfunction
was measured. This 1s listed in the last column. Listed next to it is the
growth rate (imaginary part of w) produced by the linear stability code.
This growth rate is effectively zero——the real part of w is roughly
0.04. Keeping in mind the size of the real part of w, it is clear from the

table that the nonlinear code is accurate to four or five digits.

Finite Amplitude Two-—Dimensional Disturbances

Figure 6, taken from Lowell and Reshotko (1974), compares the neutral
stability curves that ensue under heating control for T, = 60°F when the
temperature is allowed to fluctuate (solid lines) and when it 1s held fixed at
its mean value (dashed lines). Note that the boundary layer is actually more
stable than is suggested by linear theory calculations which neglect tempera-
ture fluctuations. Note also that although the flow initially becomes more
stable as the wall is heated, its stability eventually degrades with addition~

al wall heating. lowell and Reshotko have performed further calculations in



-14-

which the effects of the temperature upon the density are 1included. They
found that this effect moves the neutral stability curves to the left, e.g.,
for the T, = 90°F case, the solid curve moves one-third of the distance to
the dashed curve when density fluctuations are admitted.

The first set of results pertains to finite amplitude effects upon 2-D TS
waves for a Re = 8950 boundary layer subjected to pressure gradient or heat-
ing control. The amount of control applied and the wavenumber of the least
stable mode are included in Table 1. The control level was chosen to yield a
growth rate of 0.0001 for the least stable 2-D TS wave. Results of simula-
tions for which the initial amplitude of the 3-D wave was zero and the initial
amplitude of the 2-D wave was 1/2, 1, 2, and 4% are summarized in Figure 7.
Suction control yields behavior similar to that for pressure gradient control
(Zang and Hussaini (1985b)) and is therefore not given. Two types of heating
control simulations were performed: in one case the temperature was held
fixed at its initial mean value (corresponding to the linear theory study of
Wazzan, et al. (1968)), and in the other the temperature fluctuations were
properly accounted for (as in the work of Lowell and Reshotko (1974)). The
initial conditions for both types of heating simulations, however, were
identical.

The strength of the perturbation at any instant is measured here by the
kinetic energy El,O(t) of the fundamental Fourier component of the velocity
field. The ratio El,O(t)/El,O(O) is plotted on a semi-log scale in Figure
7, with the time measured in units of the period of the 2-D TS wave. Thus,
one indication of the impact of non-linear effects 1s the departure of the
curves from a straight (and nearly horizontal) line. Another is the failure

of the curves to lie on top of each other.
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In all cases, the initial growth of the 2-D TS wave {is faster than ex-
ponential. Note that in the non-linear regime the heated boundary layer
appears to be less stable, i.e., subjected to faster growth of the 2-D wave,
when temperature fluctuations are Included. This is precisely the opposite of
how temperature fluctuations affect the linear stability results. It 1s also
apparent that non-linear effects lead to a more rapid destabilization of a
water boundary layer controlled by heating than one controlled by pressure
gradient. As will be shown below, it is the convection rather than the con-
duction terms In the temperature equation which are most responsible for this
de-stabilization.

Tables 3 and 4 summarize the departure from linear growth for 2-D waves
with initial amplitudes of 1/2% and 2%. The numbers give the ratios (after 1,
2, and 3 TS periods) of the actual amplitude of the 2-D wave to that given by
linear theory. These numbers, of course, just reinforce the data presented in

Figure 7.

Secondary Instability

The next part of this investigation focuses on finite amplitude effects
upon the secondary instability of the primary 2-D wave to small, 3-D perturba-
tions. The secondary instabilities may be categorized as fundamental or sub-
harmonic. These are identified in flow visualizations of the early three—
dimensional stage of transition as either ordered or staggered arrays of
lambda vortices (Knapp and Roache (1968)), and have been explained by Floquet
theory (Herbert (1984)). Figure 8 sketches the periodic array of vortices
associated with these secondary instabilities. The distance L is the

X

length of the primary 2-D TS wave.
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The 3-D waves that lead to the fundamental instability are TS waves,
i.e., solutions to the Orr-Sommerfeld equation, whereas the subharmonic in-
stability arises from the interaction of the 2-D wave with a solution of the
vertical vorticity (or Squire) equation with streamwise wavenumber ax/2.
These so—called Squire modes are all linearly stable.

Figure 9 summarizes the results of numerical simulations of the secondary
instability of controlled boundary layers under the same Re = 8950 condi-
tions used for the 2-D simulations. The initial phases of the 3-D TS wave and
the Squire waves were, respectively, 39° behind and 40 behind the 2-D TS wave
for the pressure gradient case. TFor the heated cases, the 3-D wave was 45°
behind and the Squire wave 7° ahead. The phase of each wave is judged by the
location of the maximum in the streamwlse velocity perturbation. In all
cases, the initial 3-D amplitude was 0.01% and the initial 2-D amplitude
varied between 1/2% and 4%, 1In these plots, the kinetic energy is shown for
the 2-D Fourier component (kX’kz) = (1,0) and for the appropriate 3-D
component--(1,1) for the fundamental instability and (1/2,1) for the sub-
harmonic. The 3-D curves are labeled by the amplitude of the 2-D wave for the
simulation.

The secondary instabilities have the same general character here that
they do in uncontrolled boundary layers: they are triggered by 2-D amplitudes
on the order of 1% or more; their growth rate increases with the 2-D ampli-
tude; they grow much faster than the primary wave; and the fundamental and
subharmonic instabilities have comparable growth rates.

Among these three cases, the secondary instability is strongest for the
heated boundary layer simulation which includes temperature fluctuations. But

the more rapid growth of the 3-D waves in this case 1is clearly tied to the
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more rapld growth of the 2-D wave. Hence, the principal effect of the

temperature fluctuations is upon the 2-D waves.

Towards the Tertiary Instability

We now seek to determine the effect of LFC techniques on the formation of
the lambda vortex and of the detached shear layer whose roll-up into hairpin
eddies 1s believed responsible for the tertiary instability. Our comparisons
will be made with the Re = 1100 experiment of Kovasznay, Komoda, and
Vasudeva (1962), referred to hereafter as KKV, in which detailed measurments
were made of the detached shear layer resulting from a fundamental mode
transition. The basic parameters of the simulations are listed in Table 5.
The magnitudes of the pressure gradient and heating controls were chosen so
that each provides a 7% decay in the amplitude of the velocity fluctuation of
the 2-D TS wave in a single period. The controls here are so weak that the TS
period of the heated case 1s only 27 longer than those of the uncontolled and

pressure gradient cases.

Clearly, the secondary instability exists for the uncontrolled case, re-
gardless of the initial amplitude of the unstable 2-D wave, because the 2-D
wave will eventually grow sufficiently large to trigger the explosive growth
of 3-D waves. A parametric study of the controlled cases reveals that the
threshold initial 2-D amplitude for the onset of the secondary instability is
approximately 1.5% for both pressure gradient and (fixed temperature) heating
control.

The initial amplitudes used by Wray and Hussaini (1984) in their numeri-

cal simulation of the KKV experiment were €y = 0.018 and €4 = . 008, These
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have been adopted in the present repeat of their simulation of the uncon-
trolled case. At t = 0 the 3-D wave is 36° behind the 2-D wave. A time
history of the low-order Fourier components of this case is shown in Figure
10, Both the 2-D and 3-D TS waves (labeled (1,0) and (1,1) respectively in
the figure) are linearly unstable. The 2-D TS wave grows at nearly its linear
rate for more than 3 periods. The 3-D TS wave initially grows at its linear
rate, but shortly commences a far more rapid growth due to the secondary
instability. Before the end of the fourth TS period the flow is strongly
three~dimensional, as evidenced here by the presence of Fourier harmonics—-
(1,1) and (0,2)--which have larger amplitudes than the primary 2-D waves.

This figure also furnishes a comparison with two controlled cases, one
with pressure gradient and another with heating. In the latter simulation,
temperature fluctuations were excluded. The 3-D waves were 40° behind the 2-D
waves in both cases. For each controlled flow, both TS waves are linearly
damped. The secondary instability is evident, although it is substantially
weaker than it is for the uncontrolled boundary layer, Indeed, it is not
until the seventh TS period that the controlled flows became predominantly
three-dimensional. The reduced strength of the secondary instability is due
partly to the improved stability of the controlled mean flow profile and
partly to the decay of the 2-D TS waves. After 1 period, the uncontrolled 2-D
TS wave has an amplitude of 2.3%, compared with the 1.77 amplitude of the
controlled cases at the same time.

The maximum perturbations occur in the so-called '"peak plane," which is
the symmetry plane (in the spanwise direction). The improvement produced by
the LFC techniques 1s emphasized by the plots of vertical shear in the peak

plane after roughly four periods (Figure 11). The detached shear layer in the
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uncontrolled case is quite distinct and already has the sharp kink character-
istic of the "one-spike" stage (KKV). The controlled flows are still so early
in the transition process that the detached shear layer has not yet developed.

Another set of simulations has been performed to illustrate the effect of
temperature fluctuations. The example for this comparison will be the same as
the previous case except that e, = 0.027 instead of 0.018. The increased
amplitude of the primary wave permits the strong detached shear layer to form
by t = 4 in the controlled cases. The results are given in Figure 12 and
include calculations for Pr =1 as well as Pr = 7.0.

In all three cases shown in Figure 12, the flow becomes predominantly
three—dimensional during the fourth TS period. (In the uncontrolled case

with €, = .027, this occurs during the third period.) The larger 2-D

2
amplitude of the initial conditions for the present cases compensates for the
enhanced stability of their mean flow profiles.

Notice once again that temperature perturbations have a substantial,
destabilizing effect. This 1is especially so for the realistic case with
Pr = 7, The comparison case with Pr = 1 has a higher conductivity and thus
has faster damping of temperature fluctuations. Apparently the destabilizing
effects of the temperature fluctuations are due to convection, since the flow
is more stable as the conductivity 1is increased. Figure 13 illustrates the
differences in the formation of the detached shear layers in these cases.

The characteristic lambda vortex and detached shear layer structures of
the K-type transition have been documented experimentally by Williams, Fasel,
and Hama (1984) for an uncontrolled boundary layer. Detailed mappings of it

have been provided by Krist and Zang (1987) in their numerical simulations of

both sub-critical and super—critical channel flow transitions. Here we focus
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on relating the temperature fluctuations to the lambda vortex and the detached
shear layer.

Figures 14 and 15 illustrate the flow fields which develop at an advanced
stage of the fundamental secondary instability in an uncontrolled and a heated
boundary layer. The former case had an initial 2-D amplitude of 1.87% and is
shown in Figure 14 at t = 3 %- from a calculation on a 96 x 96 x 192 grid.
The initial 2-D amplitude of the heated case was 2.7%; it is shown in Figure
15 at t = 4 %- and the grid was 96 x 162 x 216. The flat plate is indi-
cated by the solid surface and the mean flow is from the lower right to the
upper left. The peak plane is located in the middle of the spanwise direction
in these figures.

The flow field is particularly clear in the case of the uncontrolled
boundary 1layer. The vortex lines in Figure 14 indicate the presence of a
lambda vortex suggest the emergence of a hairpin eddy at the vortex tip, and
demonstrate the existence of the inverted vortex which has been observed ex-
perimentally (Williams (1987)). The inverted vortex is a structure character-
ized by wvortex lines which bend upstream and down towards the wall. It is
located in the vicinity of the critical layer about a third of a wavelength
upstream of the tip of the principal vortex, and just underneath the start of
the detached shear layer. Zang, Krist, Erlebacher, and Hussaini (1987) have
discussed the physical origin of this structure in transitional flows. The
spanwise vorticity displays the strong detached shear layer which forms on top
of the vortex. The normal velocity contours indicate the regions in which low
speed fluid from the wall region is ejected upward towards the free stream.
The peak plane is located at the center of the hairpin vortex. 1In this plane,
the detached shear layer is strongest and the upward normal velocity is most

intense.
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The flow field qf the heated case is quite similar, although the lambda
vortices and detached shear layers are less intense 1In this more stable
flow. Of special interest in Figure 15 are the contours of the temperature
perturbation. They represent the local departure from the mean temperature.
Note that the temperature fluctuations are strongly correlated with the normal
velocity. There is a temperature increase in the peak plane, where hot fluid
is convected upwards, and an even stronger temperature decrease near the wall
on the outer reglons of the legs of the lambda vortex, where cold fluid is
convected downwards.

Williams introduced a finite amplitude 2-D TS wave by means of a vibrat-
ing ribbon and 1let the three-dimensional structure develop from random
perturbations in the flow. The present numerical simulation used regular,
non-noisy initial conditions in the form of a 2-D TS wave and two oblique 3-D
waves. Thus, the flow-field structures in the simulations are more regular
and yield finer detail on the dynamics of the lambda vortex and the detached

shear layer.

The Role of longitudinal Vortices

Several recent experiments on the control of boundary—layer transition
have resorted to the principle of wave superposition to delay transition.
They have employed either a vibrating ribbon (Milling (1981), Thomas (1983))
or else a heating element (Liepmann, Brown, and Nosenchuck (1982)) to intro-
duce a 2-D TS wave, and a second control element some distance downstream of
the first to introduce a second 2-D TS wave which was tuned in amplitude and

phase to cancel out as much of the evolved TS wave as possible. The delay in
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transition occurred because the reduced amplitude of the 2-D TS wave resulted
in a decreased strength of the nonlinear instabilities which lead to transi-
tion.

Liepmann and Nosenchuck (1982) have implemented a feedback control mecha-
nism to drive their second heating element. Their sensor was able to detect
both 2-D TS waves deliberately excited by an upstream heating element and
naturally occurring 2-D TS waves. They demonstrated that both artificial and
natural transition can be delayed by such a control mechanism.

Several numerical experiments, for example, by Kleiser and Laurien
(1984), and Laurien (1986), have simulated LFC wave superposition produced by
suction. These results are similar to those of the experiments described
above.

Both the experiments and the simulation have focused on the control of
the 2-D TS wave. The secondary instability involves other waves as well,
notably the two oblique 3-D TS waves and the spanwise mode (kx’kz) = (0,1).
The simplest and apparently the strongest secondary instability mechanism in-
volves the (1,0), (1,1) + (1,-1), and (0,1) modes. The 2-D TS wave is by far
the most energetic of these. But the possibility exists that control of one
of the remaining modes might prove equally effective in delaying transition.

Zang and Hussaini (1985a) demonstrated that control of the spanwise mode
did indeed delay transition. This demonstration consisted of a series of nu-
merical simulations in which the usual initial conditions were employed, but
in which the (0,1) mode was artificially and completely suppressed at each
time step. This artifice is not completely physically realizable, of course,
but it 1is a first step 1n analyzing the effectiveness of spanwise mode

suppression.



-23-

Most of the nume;ical simulations reported there were for channel flow.
The results indicated that at low Reynolds number, i1.e., 1500, spanwise mode
suppression eliminates the subcritical, secondary instability, and at higher
Reynolds numbers, e.g., 5000, this instability 1is substantially reduced.
Similar results were obtained for the uniformly controlled parallel boundary
layer at the low Reynolds number of 518 and at the higher one of 8950.

An example of these results is shown here in Figure 16 for the heated
boundary layer at Re = 1100, where, for simplicity, the temperature is held
fixed at its mean level. At a 2-D TS wave amplitude of 2.77%, control of the
spanwise mode 1s not sufficient to stabilize the flow. However, the remaining
instability is quite weak and no longer has the character of the lambda vortex
and detached shear layer. Even after 8 TS periods the original oblique modes
are still of lower amplitude than the 2-D mode. The flow field at t =8 1is
11lustrated in Figure 17. (The grid here was 36 x 96 x 192.) The vortex
lines are only mildly distorted and there 1is no 1indication of a lambda
vortex. There 1is a pair of counterrotating longitudinal vortices pinched
close together near the peak plane. However, as is documented in Table 6, the
intensity of this instability 1s far less than when the spanwise mode 1is

operational .

Concluding Remarks

For all of the LFC techniques examined here, finite amplitude effects are
destabilizing, i1.e., finite amplitude 2-D TS waves grow faster than predicted
by linear theory. We also find, in direct contrast to the results from linear

theory for low amplitude waves, that temperature fluctuations exert a further



de—-stabilizing influence on finite amplitude 2-D TS waves. The controlled
boundary layers are, of course, subject to intense 3-D secondary instabili-
ties. The instantaneous growth rates of both the fundamental and subharmonic
instabilities are strongly tied to the amplitude of the primary 2-D wave. The
principal finite amplitude effects upon the 3-D secondary instabilities occur
through the faster growth of the 2-D wave.

The secondary instabilities of flows controlled by uniform pressure
gradient, suction, and heating are qualitatively similar to each other and to
uncontrolled flows. The principal quantitative difference is between wall-
heated boundary layers and the other two controlled cases. Especially when
one translates the parallel boundary layer results into terms appropriate for
the growing boundary layer, our numerical results indicate that the nonlinear
instabilities of heated flows are more severe than those of flows controlled
equally well in a linear sense by pressure gradient or suction.

The pronounced effect of temperature perturbations in heated boundary
layers is responsible for part of this difference. Flow-field analysis of the
heated boundary-layer simulation reveals that the temperature fluctuations are
largely due to convection driven by the temperature gradients.

The investigation of spanwise mode control has disclosed that this can
substantially delay transition. It also has suggested that several different

nonlinear interactions contribute significantly to the secondary instability.
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Table 1. Some Controlled Boundary-Layer Modes for Re = 8950
Control Mode a B wr wy wi,calc
Bp = 0,55 TS 2-D 0.167675 0.00 0.037384 0.000095 0.000096
TS 3-D 0.167675 0.167675 0.040948 -0.001012 -0.,001028
F, = 0.895 TS 2-D 0.162057 0.00 0.036207 0.000093 0.000093
TS 3-D 0.162057 0.162057 0.039742 -0.000968 -0.000993
T =1.10 TS 2-D 0.149937 0.00 0.029337 0.000093 0.000097
TS 3-D 0.149937 0.149937 0.032105 -0.000798 -0.000793
Table 2. Mean Flow Characteristics for Re = 8950
* VX
Control s / _90 Re ,
Uy § Blasius
None 1.7244 8,950
B8 = 0.55 0.9448 16,330
T = 1.10 1.3986 11,040
Table 3. Non-linear/Linear Amplitude Ratio for 1/2% 2-D Waves
TIME PRESSURE GRADIENT HEATING (FIXED T) HEATING
1 1.004 1.005 1.001
2 1.013 1.017 1.016
3 1.022 1.030 1.080
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Yable 4. Non-linear/Linear Amplitude Ratio for 2% 2-D Waves
TIME PRESSURE GRADIENT HEATING (FIXED T) HEATING
1 1.050 1.065 1.184
2 1.189 1.257 1.605
3 1.378 1.567 2.387
Table 5. Some Controlled Boundary-Layer Modes for Re = 1100
Control Mode o B W w;
none TS 2-D .250 0. .08624 .00333
TS 3-D .250 .209 .09396 .00126
Bp = ,1054 TS 2-D .250 0. .08662 -.00100
TS 3-D .250 .209 .09349 -.00307
T = 1.0275 TS 2-D .250 0. .08486 -.00102
TS 3-D .250 «209 .09161 -.00372
Table 6. Effect of Spanwise Mode on Transition
Case €2(t=0) t wxlmax mzlmax Vlmax
uncontrolled 0.018 37/8 1.6 1.5 0.20
heated 0.027 4 1/4 1.2 1.0 0.085
heated (spanwise 0.027 8 0.4 0.8 0.034

mode suppressed)
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