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OPTIMAL PLACEMENT OF TUNING MASSES FOR VIBRATION
REDUCTION IN HELICOPTER ROTOR BLADES

Jocelyn I. Pritchard and Howard M. Adelman
NASA Langley Research Center
Hampton, Virginia

ABSTRACT

This paper describes methods for reducing vibration
in helicopter rotor blades by determining the opti-
mum sizes and locations of tuning masses through
formal mathematical optimization techniques. An
optimization procedure is developed which employs
the tuning masses and corresponding locations as
design variables which are systematically changed
to achieve low values of shear without a large mass
penalty. The finite-element structural analysis of
the blade and the optimization formulation require
the development of discretized expressions for two
performance parameters: the modal shaping parame-
ter and the modal shear amplitude., Matrix expres-
sions for both quantities and their sensitivity
derivatives are derived in this paper. Three opti-
mization strategies are developed and tested. The
first is based on minimizing the modal shaping pa-
rameter which indirectly reduces the modal shear
amplitudes corresponding to each harmonic of air-
load. The second strategy reduces these amplitudes
directly and the third strategy reduces the shear
as a function of time during a revolution of the
hlade. The first strategy works well for reducing
the shear for one mode responding to a single har-
monic of the airload but has been found in some
cases to be ineffective for more than one mode.

The second and third strategies give similar re-
sults and show excellent reduction of the shear
with a low mass penalty.

LIST OF SYMBOLS

A Amplitude of the generalized force
distribution

DAF Dynamic amplification factor

Fik Generalized force, lbf

(e} Force vector, lbf

£, € Objective function

2184 Constraint function

1 Set of modes included in procedure

K Set of harmonics of airload included in
procedure

(K] Elastic stiffness matrix, 1bf/in

m Mass per unit length, lbm/in

(M) Mass matrix, lbm

ﬁi Ceneralized mass, lbm

M, Tuning mass, lbm

MSP Modal shaping parameter

Mtor
NCON

NDV

NHARM
NMASS

NMODE

NTIME

lag, !

Sik

3ik

Total tuning mass, lbm
Number of constraints
Number of design variables

Number of harmonics of airload included in

procedure

Number of tuning masses included in
procedure

Number of modes included in procedure

Number of critical time points in one
revolution of blade

Response of ith mode subject to k/rev
harmonic of airload

Amplitude of the response of ith mode to
k/rev harmonic of airload

Amplitude of the blade root vertical shear
force, 1bf

Amplitude of the modal shear force
corresponding to the ith mode and k/rev
harmonic of airload, 1lbf

Amplitude of the shear force associated
with the k/rev harmonic of airload, 1bf

Time variation of blade root vertical
shear force, 1bf

Time variation of modal shear force
corresponding to ith mode and k/rev

harmonic of airload, 1bf
Time, seconds
Critical time, seconds

jth design variable

Maximum peak shear in one blade revolu-
tion, 1bf

Locations of the tuning masses along blade
span, inches

Additional design variables
Damping coefficient

Phase angle of k/rev harmonic
Eigenvector for ith mode
Phase angle

Eigenvalue equal to the square of the ith
natural frequency, rad/s
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o] Angular velocity of blade, rpm or rad/s

Wy Lower bound on frequency, rad/s

CI Upper bound on frequency, rad/s

I} Ad justable tolerance factor (see Eq. (37))
Avj Change in jth design variable

Subscripts

i Denotes ith mode

} Denotes jth design variable

k Denotes kth harmonic of airload
Superscript

T Denotes transpose of a matrix

INTRODUCTION

The current trend in engineering design of aircraft
and spacecraft is to incorporate critical require-
ments from all pertinent disciplines analytically
in an early phase of the design process to avoid
the costly modification of a prototype after a
problem has been detected (Ref. 1). Incorporation
of vibration requirements in rotorcraft design is
one example of this. 1In helicopter rotor blade and
fuselage design, the need to increase ride comfort,
stability, and fatigue life of structural compo-
nents leads to stringent design constraints on
vibration levels (Refs., 2-4),

Vibration is transmitted from the blade to the
fuselage primarily through a time-dependent shear
force at the hub., Historically, frequency place~-
ment has been the principal technique for reducing
rotor blade vibration (Refs. 5 and 6). Recently,
it has been shown that minimization of the hub
shear can be achieved through minimization of a
modal shaping parameter (MSP) (Refs. 2 and 3). An:
associated technique, sometimes referred to as
"modal shaping” or '"modal tailoring", alters the
vibration mode shapes of the blades through mass
and/or stiffness modification to make them less
responsive to the airloads (Refs. 2, 7-9). A
number of passive control techniques show promise
for overall reduction of structural vibration in
totor blades. For example, pendulum absorbers
(Ref. 10), active isolation devices (Ref. 11},
additional damping (Refs. &4, 11~12), and vibra-
tion absorbers which create anti-resonances

(Refs. 13-14) have been demonstrated. Particularly
effective is the strategic placement of tuning
masses along the blade span to tailor mode shapes
(Refs. 2-3, 5), What has been lacking in modal
shaping and frequency placement methods is a
systematic approach for predicting the best loca-
tions for the tuning masses along the blade span.

The purpoge of this paper is to develop and demon-
strate a method for optimally locating, as well as
sizing, tuning masses to reduce vibration using
formal mathematical optimization techniques. The
design goal is to find the best combination of
tuning masses and their locations to minimize blade
root vertical shear without a large mass penalty.

The method is to formulate and solve an optimiza-
tion problem in which the tuning masses and their
locations are design variables that minimize a com-
bination of blade shear and the added mass with
constraints on frequencies to avoid resonance.

The optimization procedure includes a finite-
element vibration analysis (Ref. 15) of a rotor
blade in combination with a general-purpose optimi~
zation code (Ref. 16). An explicit, approximate
analysis (Ref. 17) of the blade vibration behavior
is used to avoid the high computational cost of
repeating the finite-element analysis for every
blade modification., Sensitivity derivatives of the
structural behavior with respect to the design
variables are required in the optimization proce-
dure. The research described herein includes de-
velopment of the finite-element formulation of the
analytical sensitivity derivatives of the MSP and
the blade root vertical shear.

Three alternate optimization strategies are devel-
oped and demonstrated in the paper. The first is
based on minimizing the modal shaping parameter,
thus reducing amplitudes of the modal shear for a
single mode and single harmonic of the airloading.
The second strategy directly reduces the shear am-
plitudes corresponding to several harmonics for
several modes, and the third strategy reduces the
total shear as a function of time during a revolu-
tion of the blade., Results are shown in which the
above gtrategies are applied to a rotor blade de-
sign considering single mode/single harmonic air-
load, as well as multiple mode/multiple harmonic
airload cases.

ROTOR BLADE DYNAMIC ANALYSIS CONSIDERATIONS

Calculation of the natural vibration mode shapes
and frequencies, and the steady-state harmonic
response are the fundamental analysis steps in the
optimization procedure to be described. The pur-
pose of this section of the paper is to outline the
analytical basis and modeling conventions for the
calculations.

The rotor blade is modeled as a pinned-free beam
undergoing lateral vibration normal to the plane of
the rotor disk. This "flapwise' motion is in gen-
eral accompanied by in-plane (edgewise) motion as
well as torsion, but these are not included in this
work. The beam is assumed to rotate at a constant
speed (the rotor speed) about an axis which passes
through the pinned end of the beam and is normal to
the rotor disk. The effects of blade rotation are
included through the centrifugal stiffness terms
and differential stiffness terms in the equation of
motion (see appendix). An additional term due to
the Coriolis acceleration generally occurring in
the equations of motion of rotating structures is
not necessary in the model used herein. Also,
damping is neglected in the calculation of frequen-
cies and mode shapes and although it is often in-
cluded in response calculations as modal damping,
damping is neglected in all calculations herein.
Based on the preceding, the governing equation for
the finite-element modeled rotor blade is

MK + KX = F
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where M is the mass matrix
K is the stiffness matrix
F is the applied force vector

Solution of the governing equation is described in
more detail in the appendix, along with a discus-
sion of how the centrifugal effects are included.

The time-dependent forces acting on the rotor blade
are associated with the lift and drag forces gener-
ated by the air flow passing through the rotor
disk. These loads are spatially distributed along
the blade and vary with time sinusoidally at
frequencies which are integer multiples (harmonics)
of the rotor speed. It is customary in rotorcraft
dynamics to use the notation N/rev or N per rev
when referring to frequencies or loading at N times
the rotor speed. In rotor blade dynamic response,
it is generally assumed that the loads are speci-
fied in terms of distributions and phases for all
appropriate harmonics. For an N-bladed rotor, the
most critical frequencies of load and response are
Nfl and (N £ 1)R. Thus the most important harmonics
are N and N ¢ 1.

In the work described in this paper, the blade
flapwise response is calculated by modal super-
position. An outline of the derivation is given in
the appendix, mainly for the purpose of establish-
ing the terminology, but also for completeness.

The flapwise modes which have the largest contribu-
tion to vertical shear transmitted from the blade
to the fuselage are the first and second elastic
modes. Therefore these two modes are included in
the example problems described in subsequent sec-
tions of the paper.

DERIVATION OF PERFORMANCE PARAMETERS AND
THEIR SENSITIVITY DERIVATIVES

The degree to which the design is optimized is
measured by two performance parameters: the modal
shaping parameter (MSP) and the amplitude of the
blade root vertical shear S. This section of the
paper contains derivations of these performance
parameters and their sensitivity derivatives. The
roles they play in the optimization will be dis-
cussed in a subsequent section of the paper.

Derivation of MSP and Shear

Reference 2 derives an expression for the vertical
shear contribution, Sk from the ith flapwise mode
due to the kth harmonic of the airload for a dis-
tributed parameter model of a rotor blade. This
paper develops its finite-element counterpart.
Readers who are not familiar with Reference 2 may
find the appendix helpful.

From Equation (11) of Reference 2, the expression
for s; is

L2
L P LT )
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where q;, is the steady state modal response
(derived in appendix)

w; is the ith natural frequency

$; is the ith eigenvector

and m is the mass per unit length
For a discrete (finite-element modeled) structure,
the analogous expression is

2 T
TP FORLH (v} [Ml(éi} (2)

where [M] is the diagonal mass matrix and (U} is a
selection vector that extracts the appropriate com-
ponents from the eigenvector. For example, for
modal shaping of the flapwise modes, {U} contains
1.0 in the rows corresponding to the flap degree of
freedom and 0.0 elsewhere. Using Equation (A8)
€rom the appendix for the time dependence of q;
and letting

2 T
a, = wi{U} [M]{Oi} (1)
gives
Sie ™ Sik sin(kQe + Yik) (4)
where §;, = ailqikl (5)

Q is the angular velocity of the rotor
blade

t is time

and Y;, represents a phase difference between the
components of the response. This phase angle ac~-
counts for the lag between the modes, as well as
the harmonics of the force. For cases in which
there is no damping, Y;, reduces to ¢, which is the
phase angle for the kth harmonic (see appendix for
more details of Yik)‘

The time variation of the total shear results from
summing over the modes and harmonics

) ‘ (6)

s(t) = E g Sik sin(kQt + Yix

Substituting Equation (A9) from the appendix for
:qik! and Equations (3) and (5)

W (o)

g, = P * DAF, * Fik n

i
where for the case of no damping (£ = 0) the
dynamic amplification factor DAF;, is



(o, /k@)?
DAF. = (8)
ik 2
[(w;76@)” - 1]

ii is the generalized mass
F., is the generalized force, (Equation (A10))
written as

Foo= ALFYT() (9

i T ARG

A, is the amplitude of the force and (Fk) is the
force distribution for the kth harmonic. Using

Equations (7)-(9) and rearranging terms leads to
the expression

(0TI to )+ (71710}
S " - * DAF, * A (10)
i

The total contribution from all the modes to the
kth harmonic of shear is

5, " g Sk (11)

Following Taylor (Ref. 2), the first term of Equa-
tion (10) is identified as the modal shaping
parameter (MSP). Thus

T T
(u} (MI{e,)} » (F } (9.}
MSP, = 1 k L (12)
H %,
1

Equation (12) shows that an MSP exists for each
mode shape and load case (harmonic). Since the MSP
is a function of the mode shape, it is possible to
reduce its value by tailoring the mode shape. For
example, if the mode shape is made orthogonal to
the force distribution, then the value of the MSP
is zero. As seen from Equation (10), S;, can be
reduced by reducing MSP;, while limiting the size
of DAF;, . The size of DAF;y is controlled by
placing constraints on the natural frequencies as
suggested in Reference 5. Equations (6), (10),
(11), and (12) are the basis for the optimization
strategies which will be discussed in a later
section of the paper.

Derivation of Sensitivity Derivatives of
Performance Parameters

Derivative of MSP{y - Beginning with Equation (12)

the derivative of the MSP can be calculated as:

IMSP, I
= ik T i
Hi. —3vj <(U} [M}{-Q—V—J}

. (u)T[%] (og) c (R0
J

34,
ROHTONE (rk)T{f,v—f}
]

j = 152,...,NDV 3

where NDV is the number of design variables. In
Equation (13) {30{/3Vj} is the derivative of the
ith eigenvector with respect to the jth design
variable which is calculated analytically by
Nelson's method (Ref. 18) and [3M/3Vj] is the
derivative of the mass matrix which is calculated
by finite differences. For the design variables
used (masses and locations) the finite difference
derivatives are exact.

Derivative of Sjx - Using Equations (10) and (12)

we can write the amplitude of the shear as

S,

ik " HSPik . DAFik e A (14)

k
and then the derivative is

asik BHSPik

v, = ™) * DAF, ¢ &

aDAFik
+ MSPik . T’ i Ak (15)
]
IMSP,
where v is taken from Equation (13) and the

derivative of the dynamic amplification factor
(DAF) of Equation (8) is

3DAF, \ aw?)
v v,
J

- (D

(16)

j (k@ [(w e ? - 1)

In Equation (16) wi is the ith eigeavalue. The
ami
derivative o, ¢an be calculated analytically with

the following equation (Ref. 19):

2
gv—; - ui}T[gﬂ';‘ - _”—ﬂ] (9} an

i dv,
b

where %&51, the derivative of the stiffness matrix

)
with respect to the jth design variable, is cal-
culated by finite differences.

Equations (13) and (15) are the expressions for the
derivatives of the performance parameters which are
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used in the sensitivity calculations for the three
different optimization strategies.

OPTIMIZATION FPORMULATION

Design Goal

The design goal is to find the optimum combina-
tion of tuning masses M, and their locations X,
(Fig. 1) to minimize blade root vertical shear
while avoiding an excessive mass penalty. The
method is to formulate and solve an optimization
problem in which the tuning masses and locations
are design variables that minimize the objective
function which is a combination of a measure of
vertical shear and the added mass. Additionally,
constraints are placed on the frequencies to avoid
resonance. [t is noted that because this optimi-
zation formulation involves mass as the objective
function and frequencies and harmonic response as
constraints, it falls into the general category of
optimization problems discussed in Reference 20.
In that reference, the complication of a disjoint
design space was identified as occurring - the dis-
jointedness being associated with noncontiguous
regions of the design space on either side of res-
onance points. It turns out that in the current
formulation, the disjoint design space problem was
avoided because in rotor blades, frequency changes
due to varying tuning masses tend to be small.
Also, even when the disjoint problem occurs it may
be dealt with by generating several designs from
different starting points - a technique which is
generally used when the presence of multiple local
minima is suspected.

Three optimization strategies will be described in
this section of the paper. In each method, addi-
tional design variables (B) are used. They facili-
tate the trade off between desired performance and
excessive mass penalty. A general-purpose con-
strained optimization program, CONMIN (Ref. 16), is
used. CONMIN requires derivatives of the objective
function and constraints. All derivatives are ob-
tained analytically as will be shown in this
section.

Strategy I

The objective function is
f-(l»)‘zs.) I o (18)
i

where 1 is an element of the set of included modas
(1) and k is an element of the set of included har-
monics of airload (K), %, are the tuning masses,
and €;, are the additional design variables which
also appear in the constraints defined below:

MSP.. < B, i€ 1 (19)

ik ik K€ K

or in standard dimensionless form:
g » Msp. /8. - 1¢<0 (20)

ik’ ik

’.'ORIGINAL PAGE 18
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These constraints express the requirement that the
MSP;, be less than B;,. The convention is that
for g < 0 the constraint is satisfied and violated
othefwise. Large values of 8;, make the con-
straints easy to satisfy, but cause a large objec-
tive function. Conversely, small values of Bix
result in a small objective function, but make the
constraints more difficult to satisfy. The opti-
mizer, therefore, will tend toward designs with the
lowest possible values of B;y and therefore low
values of MSP;,. Additional constraints include
upper and lower bounds on the frequencies to avoid
resonance

2 Ml
wy. € uw, €, (20
i u

or
2,2
g mi/mui ~1<0
and (22)

2,2
g =1 - mi/mli <0

The required derivatives of the objective function
and constraints are obtained by differentiating
Equations (18), (20), and (22). The derivative of
the objective function is

0 Vj’xn
1+ 758, v: = M
e ki P (23)
v,
T hwass
P vi = Bik
n=1

Using the dimensionless form of the constraint
function (Eq. (20)), the derivatives of the
constraints are expressed as

2
-MSPik/Bik Vj - Bik
® . (24)
3Vj 1 aMSPik
— v, = or ?
v 7 X or %

where Equation (13) is used for calculating the
derivative of MSP;,. The constraints on the fre-

quencies also need to be differentiated. Taking
the derivative of Equation (22) gives
0 Vj’Blk
2
Boog oy o
v, —_ L -—
j 7w, ™M T TR, Yithorth
W, § w, .
ui 11
(25)
Equation (17) is used for calculating the
3mg
. . . i
eigenvalue derivative, Fron
j



Strategy I1

In this strategy the constraints are placed on the
harmonic amplitudes, S, (see Eq. (11)). The
objective fumction is

NMASS
f-(lo):Bk) I M (26)
K

=]

The additional design variables B, play a role
similar to By in the first strategy. Here the
constraints are written as

< Bk k € K (27)

or

g = Sk/Bk - 1<0 (28)

This strategy also employs upper and lower bound
congtraints on the frequencies (Egs. (21) and
(220,

Similar to strategy [, the derivative of the objec-
tive function is obtained by differentiating
Fquation (26).

0 Vj = xn
1 + Z 8 v. = M
ac_ _ PR oo (29)
v,
) NMASS
Z Mn Vj = Bk
n=]

Differentiating Equation (28) gives the derivatives
of the constraints

-8/ 8, vi = By
% . (30)
E)vJ l_f_li vi =X, or ¥,
8, avJ J n
3 aSi ik . . .
where I = L avj y and avj is given in Equa-

]
tion (15). Equations (25) and (17) give the
derivatives of the frequency constraints.

Strategy III

In this formulation, the shear as a function of
time is minimized by constraining all the peak
values which occur during a revolution of the
hlade. These are called critical point constraints
(Ref. 21). The objective function is

NMASS
£= (1 +8] ] ™ (31)

n=1 a

and the constraints are

s(tm) <8 m=1,2,...,NTIME (32)

or

g = s(c)/B-1¢0 (1)

which require that the values of the shear at each
time t, be less than the value of B8; and again 8 is
minimized because of its role in the objective
function. As shown in Equation (6), s(t,) is the
shear at time t where t represents a time at
which a peak occurs in s(t).

The peak values are identified as follows: A value
of NTIME is specified corresponding to the maximum
number of peaks in the function s(t) during a revo-
lution of the blade. The peak values are identi-
fied by examining the shear as a function of time
(Re€. 21). The constraints are placed on these
NTIME values of shear to force the peaks to he as
small as possible. This procedure does not require
that the locations of the peaks be constant
throughout the optimization process since the
search for the peaks occurs each time the analvsis
is performed for a new set of design variables.
Additional constraints are again placed on the
upper and lower values of the frequencies

(Eqs. (21) and (22)). Again the objective function
for strategy I[IT yields a similar derivative as in
the two previous cases

NMASS
Z Mn Vj = g
3 n=]
FI (34)
] 0 Vj = xn
1 +8 Vj = Mn

Differentiating Equation (33) with respect to the
design variables gives*

2
~S(tm)/s Vj =8
a =
{,—j | as(e ) (35)
E —3;;-" Vj 2 Xn or M,

where s(t;) is obtained from Equation (6) and
m=1,2,...,NTIME. The derivative of the shear

Is(t )
— at time t_ is
v, a M
J
Bs(tm) . z asik
—_—=) sin(kQt + ¢ ) (36)
avj ki 3vj m k
3S.

where the derivative
Equation (15).

is given by

*The critical point tn is also a function of the
design variables; however, as pointed out in
Reference 21 this has no effect on the derivative
in Equation (35).
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KS-Function

It can be seen from the optimization formulations
that as we begin to consider the contributions of
larger numbers of modes and load cases to the
shear, or as the number of critical points in
strategy III increases, the number of constraints
will become large. This can cause slower conver-
gence of the optimization process. An envelope
constraint function, denoted the Kreisselmeier-~
Steinhauser (KS) function (Ref. 22), is used to
substitute a single constraint function for a large
number of constraints. The KS-function is defined

as
NCON
Pg;
KS -% ln( I e ‘) (31

iw]

where the g; are the actual constraints, NCON is
the number of constraints, and p controls the dis-
tance between the KS-function and the actual con-
straint boundary (Fig. 2). For small values of o,
the KS-function is very smooth and also a very
conservative estimate of the constraint viola-
tions. As p increases, the KS-function moves
closer to the discontinuous function, max (g;).

18

Typically, the initial value of p is small and is
increased as convergence is approached.

The optimizer requires the derivative of the KS-

function. Taking the derivative of Equation (37)
gives
NCON g agi
P 'Zl € dv.
&S =l ] (38)
e
i=l
3gi
where 3o are derivatives of the constraints,
i

OPTIMIZATION PROCEDURE

The sequence of operations in the optimization
procedure is illustrated in Figure 3. The overall
procedure consists of two nested loops. Each pass
through the outer loop is referred to as a cycle
which involves a full analysis and a sensitivity
calculation. The first step is to generate the
finite~element structural model of the beam, ex-
cluding the values of tuning masses. The design
variables (masses and locations) are used to allo-
cate the masses to the appropriate grid points of
the mod2l. Specifically, the masses M, are divided
between the two grid points adjacent to each X, by
prorating according to the distance from each.
Next, the masses are inserted into the model, the
vibration analysis is performed, and the MSP;, and
shear amplitudes S;, are calculated for NMODE
number of modes responding to NHARM number of
harmonics. The sensitivity analysis includes
calculating the vibration mode shape derivatives by
Nelson's method and then calculating the deriva-
tives of the objective function and constraints
using Equations (23)-(25) for strategy I, Equations
(25) and (29)-(30) for strategy II, and Equations
(29) and (34)-(36) for strategy III. The inner
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loop consists of the optimization program, CONMIN
(Ref. 16) and an approximate analysis for calculat-
ing the objective function and the constraints (see
Ref. 17). The approximate equations are

NDV
J;
!

f=f + -av—- AVj (39)
]

o j'l

NDV 3
g g + Z 28 v, (50)
o . .
= )

These equations give the change in the objective
function from f, to f and the change in a con-
straint from 8o to g corresponding to a change in
design variable Av:. To assure that the linear
approximation in Equations (39) and (40) are valid,
the size of Av: is limited to 10 percent of v:.

Use of these approximations saves computational
time and effort in the innmer loop where many aval-
uations of the objective function and constraints
are required. Development of these and other tech-
niques and demonstration of their benefits ar=2
described in Reference 23. It was observed that
the KS-function of the linear approximation to ¢
was a very accurate approximation to the KS-
function of the exact g. Once the inner loop
iterations have converged the next cycle of the
outer loop begins, using the current design vari-
ables as the new values of the lumped masses and
their locations. These masses are then inserted
into the structural model and the process continues
until convergence of the outer loop is achieved.

EXAMPLE PROBLEM

The example problem is a beam representation of an
articulated rotor blade developed in Reference 5
and shown in Figure 4. The beam is 193 inches long
with a hinged end condition and is modeled by 10
finite elements of equal length. The model con-
tains both structural mass and lumped (non-
structural) masses. The beam has a box cross
section as shown in Figure 4b and the material
properties and cross-sectional dimensions are sum-
marized in table 1. Three lumped masses are to be
placed along the length of the beam. The values of
the masses and their locations are the design vari-
ables and their initial values, shown in table 1,
are from the blade in Reference 5.

Figure 5 shows the distributions (from Ref. 2) and
phase angles (from Ref. 24) of the airloads used.
They are input as tabulated values of distributed
forces (i.e., force per unit length) into the
finite-element analysis (Ref. 15). The forces
{Fk}T needed in Equation (9) are calculated as
consistent nodal forces for the finite-element
model. These airloads represent the 3, 4, and 5
per rev lifting airloads that are typical of a
four-bladed articulated rotor system. These
harmonics were chosen since they are the prime
contributors to the vibration of a four-bladed
rotor system. In this work, the first and second
elastic flapping modes are included since they are
prime contributors to the vertical vibration
transmitted by the rotor blades to the fuselage.



RESULTS AND DISCUSSION

The following sections discuss results obtained for
each of the three optimization strategies applied
to the example problem. The test cases include (1)
a single mode responding to a single harmonic of
the airload; (2) two modes responding to a single
harmonic of airload; and (3) two modes responding
to three harmonics of the airload.

Results for Strategy I

Figures 6a and 6b show the initial and final de-
signs for the first test case using strategy [ for
minimizing Sy,, the shear for the first elastic
flapping mode and the &4/rev airload by proper
placement of three tuning masses. The 4/rev air-
load is concentrated at the tip of the blade and in
order to shape the mode to be insensitive to the
airload all three tuning masses were moved to the
tip of the blade. Figure 6c shows a sketch of the
mode shape before and after optimization. It is
this change in the mode shape that reduces the
value of the MSP;, 99 percent and the corresponding
shear S;, by a similar amount. Table 2 summarizes
the initial and final designs. It is noted that
the large change in MSP and shear is accompanied by
an almost zero change in frequency.

This method proved to be very useful when working
on the response of one mode corresponding to one
airload; however, when this method was applied to
more than one mode it was not always effective.
The method did reduce the values of the MSP's as
required, but low values of the MSP's did not
necessarily give low values for the shear, S . The
reason for this is that the various MSP's (and,
therefore, the corresponding contributions to the
shear, §;,) may have different signs. When these
shear contributions are added together (see Eq.
(11)), small values for the individual contri-
butions 8;, do not always minimize the shear S
unless the necessary cancelling of equal and
opposite terms occurs.

Results for Strategy II

In strategy II, the method is to reduce the values
of the shear contributions, sik summed over the
modes (see Eq. (11)). This eliminates the problem
in strategy I since constraints placed on the sums
of the modal shears encourage the desirable can-
cellation effects. The first step in demonstrating
this method was to validate it for the ! mode/l
load case. The design for strategy II is essen-
tially identical to that of Figure 6 and table 2
gives the initial and final designs of the blade.
The next step was to apply this strategy to a 2
mode/! load case. The response of the first and-
second elastic flapping modes corresponding to the
4/rev airload is minimized. Table 3 summarizes the
initial and final designs. The initial shear S,
including both modes is -34.68 1bf which is reduced
by the optimization process to -.0l lbf with an
accompanying decrease in the added mass.

Inspection of the initial and final values of the
MSP's (table 3) shows that the magnitudes of the
MSP's became larger. This helps to explain the
lack of success of strategy I for this problem. In
fact, the modal shears Sy, and S,, are equal and

opposite thus combining together to produce a near
zero value of total shear. Figures 7a and 7b show
the initial and final masses and their locations
and Figure 7c shows the change in the shapes of the
first and second elastic flapwise modes.

Strategy II was next applied to a case of two modes
responding to the 3, 4, and 5 per rev harmonics of
airloading (see Fig. 5). Table 4 shows the initial
and final results where the amplitudes of the
shears, due to the two flapwise modes, have bheen
reduced significantly with only a 9 lbm increase in
tuning mass. For example, S5, the shear force
associated with the S/rev harmonic, was reduced
from -39.48 1bf to -.162 lbf. Figure 8 gives a
time history of the shear during one revolution of
the blade before and after optimization.

It is clear from the figure that reducing the
amplitudes of the harmonic shears results in a
large reduction of the total shear throughout 1
revolution of the blade.

Results for Strategy IIIL

The third strategy was applied to the previous test
case of two modes responding to three harmonics.
Figure 9 shows graphs of the shear s(t) plotted as
a function of time and azimuth for a revolution of
the blade for the initial and final designs. The
peaks on the initial curve have been reduced
dramatically. For example, the maximum peak s ..
for the initial design is -78.00 1bf and for the
final design the maximum peak is -.576 1bf. The
extreme right column in table &4 gives details of
the final designs from strategy III and indicates a
large payoff for a relatively small increase in
added mass.

Comparison of Strategies II and TII

As seen from table &, strategy IIL gave a design
comparable to strategy II. In both cases, there
was a significant reduction in the total shear.
Results from strategies II and III are compared in
table 5, in terms of the peak values of s(t) at the
critical points. The final results were very close
with strategy III producing slightly lower values
for some of the peaks and strategy II producing
lower values of others. Overall, strategy II1 was
slightly better in minimizing the peak shear.
Figure 10 shows the shears plotted as functions of
time from each strategy. Strategy III was a some-
what more complicated approach than strategy Il and
was more cumbersome to implement. However, the
greater degree of rigor in strategy II1 makes the
slightly greater effort worth the investment.

CONCLUDING REMARKS

This paper described methods for systematically
locating, as well as sizing, tuning masses to
reduce vibration in helicopter rotor blades using
formal mathematical optimization techniques. The
problem was to find the optimum combination of
tuning masses and their locations to reduce ver-
tical shear without a large mass penalty. The
methods embodied optimization procedures in which
tuning masses and their locations were design
variables whose values minimize a combination of
shear and added mass. The finite-element
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structural analysis of the blade and the optimiza-
tion formulations required the development of dis-
cretized expressions for two performance parame-
ters: the modal shaping parameter, and the ampli-
tude of the blade root vertical shear. Matrix
expressions for both quantities and their sensitiv-
ity derivatives were derived in this paper. The
mechanism in the optimization for reducing the ver-
tical blade shear was through "modal shaping" by
placing the tuning masses at strategic locations
slong the blade.

Three optimization strategies were developed: the
first was based on minimizing the modal shaping
parameter, thus indirectly reducing the amplitudes
of the modal shear for each harmonic; the second
reduced the shear amplitudes directly; and the
third reduced the total shear as a function of time
during & revolution of the blade.

Strategy I worked well for reducing the shear for
one mode responding to one harmonic of the load,
but was ineffective for multiple modes. This was
due to inability of the method to take advantage of
sign differences between the contributions for
different modes and harmonics. Strategy I worked
extremely well for the | mode/l load case, as well
as multiple mode/multiple loads. Strategy III gave
excellent results; that is, the peak shear was re-
duced significantly without a large mass penalty.
Strategies II and III gave esentially the same
results for a 2 mode/3 load case. Strategy II is
slightly easier to implement but the fact that
strategy III is a more rigorous approach makes it a
preferred choice overall.

APPENDIX

DERIVATION OF GENERAL FORM OF STEADY-STATE
RESPONSE OF A HELICOPTER ROTOR BLADE

The purpose of this appendix is to develop the
general form of the steady-state modal response qjy
for the ith mode and kth harmonic of loading.

This derivation is based on that of Reference 2 and
is included here to establish the notational con-
ventions used in the main body of the paper in the
axpressions for the modal shaping parameter (MSP)
and blade root vertical shear (S).

The governing matrix equation for vibration re-
sponse of a finite-element modeled structure is

X + CX + KX = F (Al)

where M is the mass matrix
C is the damping matrix
K is the stiffness matrix

X is the vector of displacements and
rotations

F is the applied force vector

The stiffness matrix K for a rotor blade has the
form

K = Kg + Ke + Kp (a2)
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where Kp is the linear elastic stiffness matrix

Ko is a centrifugal stiffness matrix which
contains products of masses and angular
velocity

Kp is the differential stiffness matrix and
contains stresses associated with exten-
sion of the beam due to centrifugal
forces

Details of the derivations and explicit forms for
Ke and Kp may be found in References 25 and 26.

Express the response vector X as a modal expansion
such that

NMODE
X= § ¢.q (a3
i=1

where 4; is the ith vibration mode of the
structure

q; is the generalized response vector

The modes are normalized such that

T -
Qi Hbi = Hi (as)

Equation (A4) is the usual definition of M. as the
generalized mass associated with the ith mode.
Combining Equations (Al), (A3), (A4) gives

. . 2 1
q; + 28,09, *+ wiq; a— F. (A3)

where w; is the natural frequency of the ith mode

is the generalized force for ith mode

§; is modal damping coefficient (see

N Ref. 27)

Equation (AS) is identical to Equation (1) of
Taylor (Ref. 2). The generalized force vector F;
is a superposition of contributions from all

harmonics.
o«
cos kQt + k§1 Fiks 8in kat (A6)

From Equation (A5) and (A6) it follows that the
steady state modal response amplitudes q; are of
the form

q; = § q., cos kft + | q. . sin kQt (A7)
b ok=0 ike k=1 iks

= ] Iqikl sin(k@t + v;.) (A8)

k=0



The quantity Iq-kl is the amplitude of the re-
The dek\ning equation for Iqik' is

sponse.
F.
ik
lagl = 7 72 72 (A9
. 2{ “’i) (”ﬁ“’i)z}
Hi(kﬂ) *a - + wa
where
2 2 q1/2
Fie ™ (Fiks ® Fikel
Yoo " Vit % (410)
where
26w, /x8
by, = tan N2 7 (at1)

2
=
P -1

Equation (Al10) along with Equation (All) show that
the phase angle Y;, is composed of the sum of two
contributions. The first ¢;, is the usual phase
due to damping of the ith mode and the second ¢, is
due to the phase lag in the kth harmonic of load.
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Journal, 12, No. 5, 692-699, 1974. (Pirst and second elastic flapwise modes at &4/rev)
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1984, pp. 73-92. X, (in) 135.10 135.02
Xy (in) 154.40 146.38

25. Laurenson, R. M., "Modal Analysis of Rotating
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No. 10, October 1976, pp. 1444-1450. My (1bm) 5.21 7.15
My (1lbm) 6.55 5.24
26. Patel, J. S., and Seltzer, S. M., "NASTRAN: My (1bm) 6.60 0.97
User's Experiences,’ NASA TMX-2378, September MroT (1bm) 18.36 13.36
1971, Sy (1bf) -34.68 -0.01
. . ) Sy4 (166) -58.50 -66.91
27. Hurty, W, C., and Rubfnstexn, M. F., "Dynamics S (1b ) 23.82 66.90
of Structures,” Prentice-Hall, Englewood s -11.75 -14.61
Cliffs, New Jersey, 1964. L ¢ :
MSP,, 1.03 2.24
w; (per rev) 2.69 2.63
Tahle 1. Details of finite-element model wy (per rev) 4.65 4.47
of rotor blade.
(a) Material properties and Table 4. Tnitial and final designs using
cross-sectional dimensions strategies 11 and LTI for 2 mode/3 load problem.
(see Figure 4) (First and second elastic flapwise modes it
3, 4, and 5 per rev)
Element E b h t d

P
No. (psi) (1b/ind) (in) (in) (in) (in) Initial Final
Strategy II Strategy III

1 0.490 x 10; .07 3.75 2.50 .80 .10
2-10 0.585 % 10 07 3.75 2.50 .80 .10 X, (in) 135.10 150.95 152.81
(b) Initial values of design variables X2 (fn) 154.40 154.44 154.27
(see Figure 1) Xy (in) 173.70 154.40 154.42
M (1bm) 5.21 4.28 7.93
X X5 X4 My My My My (1bm) 6455 12.40 9,66
(in) (in) (in) (lbm) (1lbm) (lbm) Mq (1bm) 6.60 10.13 9.26
Mror (1bm) 18.36 26.81 26.85
135.10 154.40 173.70 S5.21 6.55 6.60 33 (1b€) ~7.98 -0.36 -
L S, (1bf) -34.68 0.30 -
(¢) Blade characteristics S (1bF) -19.48 -0.16 _
Length Structural Nonstructural 1Y) Smax (1b6) ) -72'22 2-81 -g':?
(in) mass (1lbm) mass (lbm) (rpm) wy (per rev * * *
wy (per rev) 4.65 4.72 4.72
193 87.82 122.93 425
) L. i i . Table S. Comparison of peak values of shear
Table 2. 1Initial and final designs using during one revolution of the blade using
strategies I and Il for | mode/l load problem. strategies II and III.

(First elastic flapwise mode at 4/rev)

Strategy II Strategy III
s(ty) (1bE) eo(s) s(e) (16E) e (s)

Initial Final

Strategy 1 Strategy 1I

-.348 .0N9 .330 .000

Xl (m) 135.10 193.00 193.00 .198 024 -.186 N4
X2 (1n) 154.40 193.00 193.00 162 044 234 042
X] (in) 173.70 193.00 193.00 -.528 .059 -.390 .059
H2 ( 1bm) 6.55 10.53 10.33 -.768 .092 -.576 .090
M3 { lbm) 6.60 10.60 10.40 -.588 .107 .570 .107
Mror (1bm) 18.36 27.43 27.43 , a0z 21 sos a2
MSPiq -lL7s -0.008 -0.010 .354 .136 .366 .138
S1a (166 -58.50 -0.040 -0.051 132 a1 - -
w) (per rev) 2.69 2.70 2.70
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