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ABSTRACT 

A study is made to improve the predictions of Reynolds stresses in a, back- 
ward facing step flows, through modifications of the pressure-strain corre1a.- 
tion. The mean-strain term of the pressure-strain correlation is formula tetl 
only in terms of non-isotropic turbulence in order to take the severe non- 
isotropic effect caused by a separating flow. This model is compa.rec1 with 
other existing models and results are verified with existing experimental 
results. 
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. 

NOMENCLATURE 

e41 9 c42 
G 
Gi j 
H step height 
Hij 

pressure strain correlation cons tan ts 
generation rate of turbulent kinetic energy 
generation rate of Reynolds stresses < u;u j  > 

secondary generation ra.te of Reynolds stresses 

k 
P 
Re 
Si j 

U 
U 

V 

X,Y 

< uiuj > 
turbulent kine tic energy 
fluct,uating pressure 
Reynolds number based on step height, H 
Surface in tegra.1 
fluctuating velocity in x direction 
mean velocity in x direction 
fluctuating velocity in y direction 
Cartesian coordinates 

Greek Symbols 
a,  P constants in IIci 
6i.i Kroneclier delta 
E dissipation rate of turbulent kinetic energy 

nmi 

P 
Ij 

v 

pressure-strain correlations 
for Reynolds stresses 
fourth-order tensor 
density of fluid 
kinematic viscosity 

Subscripts/Superscripts 
i,j,k,17m,n tensor notations 

Symbols 
0 time-averaged values 

... 
111 



1 INTRODUCTION 
Separation and recirculation of flow is a common flow phenomena in ma.ny 
industrial problems. It associates itself with higher turbulence levels which 
not only render the flow greater analytical complexity but also result in 
highly augmented heat and momentum transfer. Therefore, mathema.tica.1 
models that can predict complex turbulent flows a.re needed. It 1ia.s heen 
commonly accepted that any isotropic turbulence models such as the k - 
E model et al. cannot take the non-isotropic effect into account in the 
evaluation of turbulence levels, whereas this effect is significant in complex 
turbulent flows. This is why the presents a.uthors have been investigating 
to establishing a turbulence model based on the Reynolds stresses. The 
pressure-strain correlation term of the Reynolds-stress equations can be 
divided into two parts: the turbulence term a.nd the mea.n stra.in term. The 
turbulence term controls the energy excha.nge between the normal st,rcss 
components in relatively smaller eddies a.nd the 1a.tter does the Sam(;  in 
larger eddies. Our main focus is the evaluation of stresses in large eddies 
through the separating and reattaching flow which suffers strong curva.t8itrc 
effect from the recirculation of flow. 

In improving the computations of the Reynolds stresses, the a.uthors 
discovered that the closure models of the mean stra.in term of the pressitre- 
strain correlation significantly affects the results in the sepa.rating and reat,- 
taching flows. 

The model for the turbulence term in the pressure-strain correlation wa.s 
developed by Rotta [I] and it has given effectively rea.sonable results urit,h 
the anisotropy form. However, the existing models for mean strain term 
of the pressure-strain correlation proposed by several researchers [2-41 do 
not reach to a compromizing level in the computa.tion of such a sepa.ra t,iiig 
flow with recirculation. Thus, the authors have established a tensor that 
does not cont,ain any terms which have isotropic turbulence but ha.ve only 
quantities with non-isotropic turbulence. The new model was conipa.ret1 
with the existing models mentioned above. All models were then compared 
with experimental results of Chandrsuda and Bradshaw [ 5 ]  with Reyiiolds 
number of IO5. 

Since constants of the existing models were determined by compa.ring 
with plane homogeneous shear flows [4], modifications were made for rc- 
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circulating and separating flows through andytic comparison with experi- 
mental values , and computer optimazations. 

2 MATHEMATICAL MODELS 

2.1 Governing Equations 
The set of differential equations governing the transport of the kinema t,ic 
Reynolds stresses ,< u;uj > can be written in the form : 

To close eq. (1) in terms of mean velocities and the Reynolds stresses, 
the turbulence quantities on the right-hand side of eq. (1) must be repre- 
sented by empirical functions of mean velocities, the Reynolds stresses and  
their derivatives. 

In this study, attention was focused on the approximation of the foiirtli 
group of terms of the right-hand side of eq. (l), namely the “pressure-straiii 
correlation”. The rate of the “pressure-strain correlation” is the redistribii- 
tive effect ; thus, this correlation mainly controls the energy distribution. 

The authors have tested several models of the pressure-strain correlation 
and discovered that it was necessary to remodel this correlation for the 
computations of flows which are accompanied by flow recirculation. Some 
existing models are summarized in the next subsection. 

2.2 Summary of Existing Models 
Generally, the pressure-strain correlation is divided into two paxts: mi(\ 

with turbulence effect only and the other with both turbulence and the 
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mean strain rates. The first part with the turbulence effect was formulated 
by Rotta [l] in the form of anisotropy which is represented by the symbol 

and the last term has been proposed in several ways as follows : 

Model 1 : Naot et al. [2] 

The first model was developed by removing the isotropic constraint from 
the double-velocity, two-point correlation tensor. The second model was 
obtained by approximating the pressure-stra.in correlation by an arbitra.ry 
fourth-order tensor, where the single-point correlation was used. 

The value of Cdl  was set equal to 1.5, and through computer opti- 
mizations, Cbz was recommended to be 0.7 and 0.4 for model of Naot and 
Launder respectively. 
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2.3 Formulation of A New Model 
Following Chou [6] ,  a Poisson equation for the fluctuating pressure, p, can 
be obtained by taking the divergence of the equation for the fluctuating ve- 
locity u;, which can be re-expressed to write the pressure-stra.in correlation 
as 

p au; 
P a x j  

< -- >= s;j+ 

where the first and second terms in the integral are denoted as and 
q5,),2 respectively, and S,, is a surface integral which is negligible away froill 
a solid wall. 

was formulated same as one givtii 
by eq. (7) with C41 = 1.5. Furthermore, #,,,2 may be approximated as  

Following Rotta's proposal [l], 

where rIGi is a fourth-order tensor which satisfies the kinematic constraints 
of 

Equation (12) suggests that IIEi can be approximated by a 1inea.r combi- 
nation of the Reynolds stresses. On neglecting isotropy effects, the tensor 
can be expressed as : 
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where the condition of eq. (10) is alrea.dy imposed. The a.pplica.tion of eqs. 
(ll), and (12) enables two of these constants to be expressed in terms of 
the third, namely C42 and can be written as 

cy = Cb2 + 1 

The final form is given as 

The coefficient C4, can be determined by siniplifying the Reynolds 
stresses described by eq. (1) into an a.lgebraic eclua.tion which 1va.s orig- 
inally developed by Rodi [7].  

If the convection-diffusion string of the < uitij > is set to be equal t,o 
that of the turbulence kinetic energy, k,  it follows tha.t, 

1 d 
a x j  k -(Uj < U ; U ~  >) - D;j = 

where D;j and Dk denote, respectively, the diffusion rates of < ~ i i i i j  > ant1 
I C .  After some manipulation, eq. (15) can be re-a.rrangec1 into the following 
form, 
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By assuming that the dissipative action is isotropic, and the flow is 
parabolic, eq. (16) can be further reduced to : 

The above set of relations a.re compared with typica.1 experimental da.ta 
for several parabolic flows, and the coefficient G‘b2 is found as; 

Further investigations through comparison with recircula.ting flows, it, wa.s 
concluded that 

is the optimum 

1 
c 4 2  = -E 

value for prediction of separating and recirculating flows. 

3 NUMERICAL METHOD 

3.1 Numerical Procedure 
Formulation and discretization of all transport equations were performed by 
using the conventional control-volume approach of Patankar [8],by breaking 
each equation into diffusion, convection, and source terms. The syst,ein of 
equations were made linear so that they could be solved iteratively by the 
tridiagonal matrix algorithm. The convection-diffusion string was evaluatcd 
through the fourth-order approximation of the exponentia.1 form [9]. After 
several numerical tests, it was observed that the variation in results of 
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skin friction coefficient, pressure coefficient and inem velocity lie within 
2% when the grid is changed from 52 x 52 to 62 x 62. Therefore the grid 
independent state was assumed to be attained with the grid of 62 x 62 [lo].  

Computations are performed by using a variable grid mesh with tlie 
grid expanding linearly at the rate of 2% in the axial direction and at 3% 
in the transverse direction from the step wall. The iterative procedure is 
terminated when the maximum value of the relative residual sources of U, 
V, and mass balance falls below 1%, which is often achieved with 1000 
iterations. 

The complete process of solving the momentum, turbulent lcinctic cn- 
ergy and the Reynolds stresses talces about GO minutes of CPU timc on  a 
UNIVAC 1100 computer. 

3.2 Boundary Conditions 
At the inflow, outflow, and symmetry axis, conventional conditions are 
employed; prescribed values are provided at the inflow region, and zcro 
gradients of the variable are used at the outflow region and the symmctry 
axis. 

At  the wall boundary the wall function treatment is employed for tlic 
momentum and the turbulent lcinetic energy. The dissipation rate is evalu- 
ated under the local equilibrium condition. Details of these conditions arc 
given in [ll]. The wall boundary conditions of the Reynolds stresses are as 
follow: 

9 dP 
p clx 

- < uv >= -0.2351; + -- (30 )  

< uu >= 1.2141; (21 )  

< vv >= 0.23Sk (22) 

The above equations are used for tlie grids a.cljacent to a solid wall. 
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4 DISCUSSION OF RESULTS 
Figure 1 depicts the flow geometry and numerical grid used in the present 
computations. The height of the channel is magnified five times for bcttcr 
visualization. 

Figure 2 shows the velocity variations inside the solution domain. It 
can be seen that shear flow separates at the edge of the step and forins a 
separating shear layer which causes a part of the fluid to recirculate in  the 
region confined by a step and the bottom wall, and the rest to continlie to 
flow downstream contributing to the stabilization of the flow through thc 
formation of a boundary layer in the redeveloping region. 

Figures 3 and 4 compare the mean velocity profiles predicted by all tlircc. 
models at  two different streamwise locations. It can be seen that the niem 

Figures 5 and 6 show the predicted shear stress. Generally a11 tlircc 
models overpredicted the levels of the shear stress h i t  the new modcl im- 
proved the prediction in the separating shear layer giving levels closcr to 
the experimental data , whereas models by Naot et al. [2] and by Launder 
et a1.[4] give levels of the Reynolds shear stress nearly zero. 

Figures 7 and 8 compare the < uu > profile. Although both modcls by  
Naot et al. and by Launder et al. give reasonable results, the agreement 
with the measured values in the separating shear layer is not quite satisfar- 
tory. The new model predicts well in this region but underpredicts at thc 
wall. 

Figures 9 and 10 show the < vu > profile. The new model is far iiior'c 

superior than the other two models in predicting this Reynolds stress com- 
ponent in the separating shear layer, but does suffer from overprediction 
near the wall. 

velocity is fairly independent of the choice of pressure-strain correl. d t' 1011. 

5 CONCLUSIONS 
From the above results, it is clear that the development of a new pressiirc- 
strain correlation is essential to improve the prediction of the Reynolds 
stresses particularly in the separating shear layer. -4 near wall correction 
might be helpful to improve the prediction nea.r the solid wall. 



As mentioned before, the constants C+l and Cd2 might need fiirtlier 
modifications to improve the predictions of Reynolds stresses. 
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Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

Figure 6 

Figure 7 

Figure 8 

Figure 9 

Figure 10 

FIGURE CAPTIONS 

Typical grid system used (5:l magnifica.tion ra.clially). 

Velocity vectors inside the solution domain. 

Mean velocity profile at $ = 5.4 

Mean velocity profile at 5 = 6.4 

< uv > profile at 5 = 8.4 

< uv > profile at 5 = 10.3 

< uu > profile at 5 = 8.4 

< uu > profile at 5 = 10.3 

< vz, > profile at j$ = 8.4 

< vv > profile at 5 = 10.3 
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