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ABSTRACT

A study is made to improve the predictions of Reynolds stresses in a back-
ward facing step flows, through modifications of the pressure-strain correla-
tion. The mean-strain term of the pressure-strain correlation is formulated
only in terms of non-isotropic turbulence in order to take the severe non-
isotropic effect caused by a separating flow. This model is compared with
other existing models and results are verified with existing experimental
results.
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pressure strain correlation constants
generation rate of turbulent kinetic energy
generation rate of Reynolds stresses < wu; >
step height

secondary generation rate of Reynolds stresses
< uing >

turbulent kinetic energy

fluctuating pressure

Reynolds number based on step height, H
Surface integral

fluctuating velocity in x direction

mean velocity in x direction

fluctuating velocity in y direction

Cartesian coordinates

mi
lj
Kronecker delta
dissipation rate of turbulent kinetic energy

constants in

pressure-strain correlations
for Reynolds stresses
fourth-order tensor

density of fluid

kinematic viscosity

tensor notations

time-averaged values
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1 INTRODUCTION

Separation and recirculation of flow is a common flow phenomena in many
industrial problems. It associates itself with higher turbulence levels which
not only render the flow greater analytical complexity but also result in
highly augmented heat and momentum transfer. Therefore, mathematical
models that can predict complex turbulent flows are needed. It has heen
commonly accepted that any isotropic turbulence models such as the & —
e model et al. cannot take the non-isotropic effect into account in the
evaluation of turbulence levels, whereas this effect is significant in complex
turbulent flows. This is why the presents authors have been investigating
to establishing a turbulence model based on the Reynolds stresses. The
pressure-strain correlation term of the Reynolds-stress equations can be
divided into two parts: the turbulence term and the mean strain term. The
turbulence term controls the energy exchange between the normal stress
components in relatively smaller eddies and the latter does the same in
larger eddies. Our main focus is the evaluation of stresses in large eddies
through the separating and reattaching flow which suffers strong curvature
effect from the recirculation of flow.

In improving the computations of the Reynolds stresses, the authors
discovered that the closure models of the mean strain term of the pressure-
strain correlation significantly affects the results in the separating and reat-
taching flows.

The model for the turbulence term in the pressure-strain correlation was
developed by Rotta [1] and it has given effectively reasonable results with
the anisotropy form. However, the existing models for mean strain term
of the pressure-strain correlation proposed by several researchers [2-4] do
not reach to a compromizing level in the computation of such a separating
flow with recirculation. Thus, the authors have established a tensor that
does not contain any terms which have isotropic turbulence but have only
quantities with non-isotropic turbulence. The new model was compared
with the existing models mentioned above. All models were then compared
with experimental results of Chandrsuda and Bradshaw [5] with Reynolds
number of 10°.

Since constants of the existing models were determined by comparing
with plane homogeneous shear flows [4], modifications were made for re-




circulating and separating flows through analytic comparison with experi-
mental values , and computer optimazations.

2 MATHEMATICAL MODELS

2.1 Governing Equations

The set of differential equations governing the transport of the kinematic
Reynolds stresses ,< u;u; > can be written in the form :

oU; ou; 8u,~ Ou,
<uJuk>—-—-—+<uuk>——21/ —

o
éw—j(Uj < u;uj >)

6:c afk 8’Bk a’L‘k
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< uuug > +————0,
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To close eq. (1) in terms of mean velocities and the Reynolds stresses,
the turbulence quantities on the right-hand side of eq. (1) must be repre-
sented by empirical functions of mean velocities, the Reynolds stresses and
their derivatives.

In this study, attention was focused on the approximation of the fourth
group of terms of the right-hand side of eq. (1), namely the “pressure-strain
correlation”. The rate of the “pressure-strain correlation” is the redistribu-
tive effect ; thus, this correlation mainly controls the energy distribution.

The authors have tested several models of the pressure-strain correlation
and discovered that it was necessary to remodel this correlation for the
computations of flows which are accompanied by flow recirculation. Some
existing models are summarized in the next subsection.

2.2 Summary of Existing Models

Generally, the pressure-strain correlation is divided into two parts: onc
with turbulence effect only and the other with both turbulence and the
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mean strain rates. The first part with the turbulence effect was formulated
by Rotta [1] in the form of anisotropy which is represented by the symbol
¢ij1 and the last term has been proposed in several ways as follows :

Model 1 : Naot et al. [2]

P 8u,~ Buj 2 .
- -_— = — G," - -—5,"G i 2
<p<3mj+3:c,')> Crbz( J 3 J )+¢JJ ( )
Model 2 : Launder et al. [4]
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The first model was developed by removing the isotropic constraint from
the double-velocity, two-point correlation tensor. The second model was
obtained by approximating the pressure-strain correlation by an arbitrary
fourth-order tensor, where the single-point correlation was used.

The value of Cy4, was set equal to 1.5, and through computer opti-
mizations, Cy, was recommended to be 0.7 and 0.4 for model of Naot and
Launder respectively.




2.3 Formulation of A New Model

Following Chou [6], a Poisson equation for the fluctuating pressure, p, can
be obtained by taking the divergence of the equation for the fluctuating ve-
locity u;, which can be re-expressed to write the pressure-strain correlation
as

Qu;
<P o Sij+
paxj

1 O%u i, I Ou; 5 oU, I O, I Ou; dvol
Er-/uol < (ax,axm> Ox; >+ (EE) < (8:1:1) (55;) > zT—y (8)
where the first and second terms in the integral are denoted as ¢;;; and
#i;,2 respectively, and S;; is a surface integral which is negligible away from
a solid wall.

Following Rotta’s proposal [1], ¢;;1 was formulated same as one given
by eq. (7) with Cy4, = 1.5. Furthermore, ¢;;, may be approximated as

ou; _..;
Pij2 = Bz, (9)

where H}?' is a fourth-order tensor which satisfies the kinematic constraints

of

=17 = H;'.’,“ (10)
=0 (11)
07 =2 < upu; > (12)

Equation (12) suggests that H;”ji can be approximated by a linear combi-
nation of the Reynolds stresses. On neglecting isotropy effects, the tensor
can be expressed as :

}T = abyy < upt; > +PB(6m < wuj > +bmj < ujuy >



+6i < umuj > +6i5 < Uy >) + Cgpbmi < wuj > (13)

where the condition of eq. (10) is already imposed. The application of eqs.
(11), and (12) enables two of these constants to be expressed in terms of
the third, namely Cy, and can be written as

0(=C¢2+1

/Bsz)z

The final form is given as

p [Ou; Ouj 2.
- =— 4+ = =— )G — 6i;G

(14Cy, + 2)

3 6;; G (14)

2
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The coefficient Cy, can be determined by simplifying the Reynolds
stresses described by eq. (1) into an algebraic equation which was orig-
inally developed by Rodi [7].

If the convection-diffusion string of the < u;u; > is set to be equal to
that of the turbulence kinetic energy, k, it follows that,

9 < uzu; >
EZ;(UJ‘ < UU; >) — D,’j = A J

o
[&cj (Uik) — Dk} (15)

where D;; and Dy denote, respectively, the diffusion rates of < w;u; > and
k. After some manipulation, eq. (15) can be re-arranged into the following
form,

2 1 ’
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Cy, €



By assuming that the dissipative action is isotropic, and the flow is
parabolic, eq. (16) can be further reduced to :

2.\1 (66'(1,2 3)
7 17
(<““> 3k>k C (17
2 1 _ (60¢2 + %)
<< v > 3k> r = Co (18)
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2
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The above set of relations are compared with typical experimental data
for several parabolic flows, and the coefficient Cy, is found as;

Cp, = —=

¢2 5
Further investigations through comparison with recirculating flows, it was
concluded that

1

Cy, = ——
b2 10

is the optimum value for prediction of separating and recirculating flows.

3 NUMERICAL METHOD

3.1 Numerical Procedure

Formulation and discretization of all transport equations were performed by
using the conventional control-volume approach of Patankar [8],by breaking
each equation into diffusion, convection, and source terms. The system of
equations were made linear so that they could be solved iteratively by the
tridiagonal matrix algorithm. The convection-diffusion string was evaluated
through the fourth-order approximation of the exponential form [9]. After
several numerical tests, it was observed that the variation in results of




skin friction coefficient, pressure coefficient and mean velocity lie within
2% when the grid is changed from 52 x 52 to 62 x 62. Therefore the grid
independent state was assumed to be attained with the grid of 62 x 62 [10].

Computations are performed by using a variable grid mesh with the
grid expanding linearly at the rate of 2% in the axial direction and at 3%
in the transverse direction from the step wall. The iterative procedure is
terminated when the maximum value of the relative residual sources of U,
V, and mass balance falls below 1%, which is often achieved with 1000
iterations.

The complete process of solving the momentum, turbulent kinetic en-
ergy and the Reynolds stresses takes about 60 minutes of CPU time on a
UNIVAC 1100 computer.

3.2 Boundary Conditions

At the inflow, outflow, and symmetry axis, conventional conditions are
employed; prescribed values are provided at the inflow region, and zero
gradients of the variable are used at the outflow region and the symmetry
axis.

At the wall boundary the wall function treatment is employed for the
momentum and the turbulent kinetic energy. The dissipation rate is evalu-
ated under the local equilibrium condition. Details of these conditions are
given in [11]. The wall boundary conditions of the Reynolds stresses are as
follow:

d
— <uv>=—0.238k + L2 (20)
pdx
< uu >=1.214k (21)
< wvv >=0.238k (22)

The above equations are used for the grids adjacent to a solid wall.




4 DISCUSSION OF RESULTS

Figure 1 depicts the flow geometry and numerical grid used in the present
computations. The height of the channel is magnified five times for better
visualization.

Figure 2 shows the velocity variations inside the solution domain. It
can be seen that shear flow separates at the edge of the step and forms a
separating shear layer which causes a part of the fluid to recirculate in the
region confined by a step and the bottom wall, and the rest to continue to
flow downstream contributing to the stabilization of the flow through the
formation of a boundary layer in the redeveloping region.

Figures 3 and 4 compare the mean velocity profiles predicted by all three
models at two different streamwise locations. It can be seen that the mean
velocity is fairly independent of the choice of pressure-strain correlation.

Figures 5 and 6 show the predicted shear stress. Generally all three
models overpredicted the levels of the shear stress but the new model im-
proved the prediction in the separating shear layer giving levels closer to
the experimental data , whereas models by Naot et al. [2] and by Launder
et al.[4] give levels of the Reynolds shear stress nearly zero.

Figures 7 and 8 compare the < uu > profile. Although both models by
Naot et al. and by Launder et al. give reasonable results, the agreement
with the measured values in the separating shear layer is not quite satisfac-
tory. The new model predicts well in this region but underpredicts at the
wall.

Figures 9 and 10 show the < vv > profile. The new model is far more
superior than the other two models in predicting this Reynolds stress com-
ponent in the separating shear layer, but does suffer from overprediction
near the wall.

5 CONCLUSIONS

From the above results, it is clear that the development of a new pressure-
strain correlation is essential to improve the prediction of the Reynolds
stresses particularly in the separating shear layer. A near wall correction
might be helpful to improve the prediction near the solid wall.



As mentioned before, the constants Cy, and Cy, might need further
modifications to improve the predictions of Reynolds stresses.
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Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Figure 10

FIGURE CAPTIONS

Typical grid system used (5:1 magnification radially).
Velocity vectors inside the solution domain.

Mean velocity profile at £ = 5.4

7]
Mean velocity profile at £ = 6.4
< uv > profile at & = 8.4

< uv > profile at & = 10.3

< uu > profile at £ = 8.4

< uu > profile at £ = 10.3

< wvv > profile at £ = 8.4

< vv > profile at & = 10.3
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