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ABSTRACT

’

This is the final report under Grant NAG2-316 “A Wide-Field and Diffrac-
tion-Limited Array Camera (IRAC),” Dr. Giovanni Fazio, Principal Investigator.
The camera is capable of two-dimensional photometry in either a wide-field (5
arcminute field of view) or diffraction-limited (1.25 arcminute field of view) mode
over the wavelength range from 2 to 30um with a possible extension to 120um.
Under this grant the Smithsonian Astrophysical Observatory (SAO), in conjunction
with the Ames Research Center (ARC), Goddard Space Flight Center (GSFC), the
University of Arizona (UA), and the University of Rochester (UR), with support
from Santa Barbara Research Center (SBRC), developed a new “low-doped” indium
antimonide detector for 1.8-5.0um, tested and optimized detectors for the entire
1.8-30um range, developed and tested beamsplitters for the 1.8—30um range, and
performed tradeoff studies of the camera’s optical system.

This report presents data on the performance of InSb, Si:In, Si:Ga, and Si:Sb
array detectors bump-bonded to a multiplexed CMOS readout chip of the source-
follower type (SBRC’s CRC-228) at SIRTF operating backgrounds (< 1 x 108
ph/cm?/sec) and temperatures (4—12°K). Some results at higher temperatures are
also presented for comparison to SIRTF temperature results. Data are also pre-
sented on the performance of IRAC beamsplitters at room temperature at both 0°
and 45° angle of incidence and on the performance of the all-reflecting optical
system baselined for the camera.
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FINAL REPORT
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Grant NAG2-316

1.0 INTRODUCTION

This final report is submitted in accordance with the requirements of Grant
NAG2-316 for technology development in support of a “Wide-Field and Diffraction-
Limited Array Camera” for SIRTF. The camera is capable of two-dimensional
photometry in either a wide-field (5 arcminute field of view) or diffraction-limited
(1.25 arcminute field of view) mode in three bands over the wavelength range from
1.8 to 30um with the possible addition of a fourth band from 60 to 120um.

The camera will be applied to a number of fundamental scientific prob'sms,

most of which cannot be addressed in any other way. Two of the most imj or-
tant are galaxy formation during the early stages of the Universe and the search

for the “missing mass” in galactic halos. These would provide an important ad-
vance in our understanding of the formation and dynamics of galaxies and of the
total mass density in the Universe. Other scientific goals include determining the
nature of the energy sources in active galactic nuclei and measuring the properties
of clusters of galaxies, understanding star formation processes and evolution, both
in our galaxy and nearby galaxies, observing the late stages of stellar evolution,
determining the abundance distribution of heavy elements in our galaxy and in
nearby galaxies, dust around stars, and studying the distribution of dust and gases
in comets. The camera will also be applied to follow-up studies on IRAS sources
and be used to assess the optical performance and operational characteristics of the
SIRTF telescope and spacecraft platform.

The goals of this research were to 1) Develop an improved InSb array
detector for Band I (1.8~5.3um); 2) Evaluate the performance of existing array
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detectors under SIRTF backgrounds (< 1 x 10% ph/cm?/sec) and temperatures
(4°~12°K) in all three bands; 3) Optimize the operation of the arrays in all three
bands by the adjustment of parameters such as bias points, operating temperatures
and clocking methods; 4) Demonstrate that SIRTF performance specifications,
particularly read noise and dark current, could be met; 5) Develop and evaluate
the performance of infrared beamsplitters for the IRAC instrument; and 6) Pre-
pare a preliminary optical analysis for the camera.

For Band I, two detector materials, Si:In and InSb, were evaluated. The
Si:In detector array was a standard Hughes-Carlsbad product. The InSb detectors
were of both standard (1.1 x 10%3/cm3®) and reduced (1.7 x 10'/cm3) doping
concentration. Standard-doped detectors were available from a standard SBRC
product line; the “low-doped” detectors were fabricated by SBRC under this re-
search program. “Low-doped” InSb was evaluated because it promised a factor of
two reduction in detector capacitance and, hence, a factor of two improvement in
read noise over normal InSb. While standard InSb has proven disappointing when
operated below 50°, the low-doped InSb program has yielded arrays with promising
performance. At 8°K exceptionally low (aA level) dark currents were demonstrated
and the anticipated factor of two improvement in read noise achieved.

For Band II (5.3-14um) and Band III (14-30um), Si:Ga and Si:Sb detectors
were chosen for evaluation respectively. These were developed under earlier pro-
grams. Excellent results, results very close to and in some cases exceeding initial
SIRTF/IRAC performance requirements, have been achieved with these arrays,
although concern remains about their behavior in the radiation environment of
space.

The readout system for the detector arrays was the SBRC CRC-228 direct
readout (DRO) n-channel multiplexer, a 58 x 62 pixel readout array with 76um
source-follower unit cells which allow random access to any of the 3,596 pixels in
the array. One of these hybridized arrays is shown in Figure 1-1.

A simplified diagram of the multiplexer circuit is shown in Figure 1-2.
Seven row and seven column address lines plus other control signals allow random
access to the 1,798 detector pairs (“unit cells”) within the array. The array is
read out in parallel as two interlaced 58 x 31 subarrays, each with its own read-
out source-follower circuit. Sampling can be performed with or without the appli-

cation of a software-controllable reset pulse, allowing either destructive or non-
destructive readout (NDRO).

The Infrared Array Camera must reimage the infrared sky in three bands
simultaneously. A pair of wideband dichroic beamsplitters operating in series reflect
energy in the first band (1.8—5.3um, Beamsplitter 1) then in the second band
(5.3—-14.0um, Beamsplitter 2) while passing energy in the third band (14-30pm).
Both beamsplitters require wide-band multilayer coatings and presented a technologi-
cal challenge in the development of the instrument. As a result of this research,
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the technology for these beamsplitters can now be said to be well in hand.

Beamsplitter goals for the IRAC instrument were developed in conjunction
with the Optical Coating Laboratory, Inc. (OCLI), Santa Rosa, California. OCLI
subsequently fabricated and tested one set of multilayer coated beamsplitters on
cadraium telluride (CdTe) substrates which were further tested at the University of
Arizona.

Optical constraints imposed on the camera by IRAC scientific requirements
include the necessity of independent wide-field (5.0 arcmin FOV) and diffraction-
limited (1.25 arcmin FOV) modes and a resolution in both modes better than
75um, with the system operating at less than 10° kelvin. Although no new tech-
nology will be required to meet the optical or thermal constraints, the camera will
test the state of the art. Accordingly, optical analyses were undertaken as a part
of this research to identify areas of concern and to select the optimum optical
configuration.

Optical design requirements and tradeoff parameters were established jointly
by SAO, UA and GSFC. Refractive-reflective and all-reflective optical designs were
considered. An all-reflective design was selected for the baseline optical system
because of the freedom from chromatic aberration it provides.

Development of hardware and software to test the arrays at SIRTF back-
grounds and temperatures in support of this research constituted an important part
of this effort. Although equipment details differ, the facilities at ARC, GSFC and
UR are similar in purpose and design. FEach consists of a dewar capable of
operating at LN2 and LHe temperatures to cool the array under test and flood it
with IR through a selection of filters. Read and drive circuits interface the array
with the computer systems to control the array and read out data. These systems
implement a wide range of signal processing modes and clocking schemes, prov.ie
for NDRO capability and direct addressing of pixel pairs, provide direct control of
the test conditions and record, process and display image data in a variety of
formats.

The Smithsonian Astrophysical Observatory (SAO), with Dr. Giovanni Fazio
as Principal Investigator, held overall responsibility for performance under the
Grant, provided scientific direction, program management and support to SIRTF
project activities, including the SIRTF Science Working Group (SWG). Dr. Judith
Pipher at the University of Rochester (UR) tested and evaluated the InSb and
Si:zIn Band I arrays. Mr. Gerald Lamb (Co-I) of Goddard Space Flight Center
(GSFC) tested the Si:Ga Band II array initially and Dr. Craig McCreight (Co-I) at
Ames Research Center (ARC) repeated and extended the tests later. Dr. McCreight
also tested and evaluated the Si:Sb array for Band III. Dr. William Hoffmann
(Co-I) of the University of Arizona (UA) tested and evaluated the OCLI beamsplit-
ters and collaborated with GSFC in developing and evaluating optical designs for
the camera. Optical design work at GSFC was carried out by Mr. Peter Maymon.



Dr. Daniel Gezari (Co-I) was Instrument Scientist during this period. Work at
SBRC was the responsibility of, in order, Dr. B. T. Yang, Mr. Donald Campbell,
Ms. Mary Hewitt and Mr. Robert Feitt.

This report summarizes the results of this research. Detailed results are
available in the references.

Page 5
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2.0 INSTRUMENT DESCRIPTION

The Infrared Array Camera images the sky on solid-state array detectors in
three bands which are nominally, Band I: 1.8-5.3um, Band II: 5.3 — 14um,
and Band III: 14-30um. A fourth band of 60-120um is under consideration.
Beamsplitters provide simultaneous viewing in each of these bands. The camera
operates at two magnifications one of which provides diffraction-limited imaging and
the other optimized wide-field imaging. A magnification change mechanism moves
the appropriate optical elements to change the plate scale at the detectors and filter
wheels provide a selection of infrared filters in each band.

The major elements of the IRAC are the Optical/Mechanical Subsystem, the
Thermal Subsystem, the Calibration Subsystem, the Focal Plane Array Detector
(FPAD) Subsystem, the Instrument Control and Data Processor (ICDP) Subsystem,
and the Power Subsystem (Figure 2-1).*

The Optical/Mechanical Subsystem consists of all optical elements, the optical
bench, and related mechanisms. A schematic of the optical subsystem may be
found in Figure 2-2. All of these elements are mounted on a common optical
bench which is bolted directly to the SIRTF Multiple Instrument Chamber (MIC)
reference mounting interface. IRAC is assigned one 120° sector of the MIC and
will utilize a single position on the SIRTF tertiary mirror.

The Thermal Subsystem includes all temperature control surfaces and materi-
als, heaters and related control electronics.

The Calibration Subsystem contains all infrared reference sources, their power
supplies and their control circuits. Internal calibrators will be provided for arrwy
detector flat fielding and radiometric calibration.

The FPAD Subsystem includes the detector arrays for each wavelength band;
associated power supplies; drive electronics, read electronics, and A/D converters;
and the cryogenic, mechanical, thermal and electrical interfaces with the instrument.
In order to assume optimal thermal control of the detector arrays, they will be
mounted directly to the independently-accessible 2°K and 7°K stations in the MIC.
Independent thermal control can be applied directly to each detector assembly if
necessary. Arrays in all three bands are baselined to use 75um pixels. Band I
will have 128 x 128 elements; Bands II and III 64 x 64 elements. Signal buffers
will be required to drive the signal cable between the cold array and warm elec-
tronics circuits. These buffers will be attached to the 7°K station. Low-doped
InSb detectors are baselined in Band I; Si:Ga and Si:Sb in Bands II and III

*Figures and text in this section are current to the date this report was prepared.
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respectively.

The ICDP Subsystem consists of all instrument control and mode change
logic, command and telemetry formatting circuits and spacecraft interfaces, data
accumulators, data processors, housekeeping monitors, and FPAD control circuits and
interfaces. The ICDP will provide control signals to the FPAD in the form of
read enable and address commands, gain settings, and regulated power supply
voltages and take data in the form of digital signal level words. All data process-
ing, data formatting and mode control will be handled by the ICDP. A digital
interface is baselined between the FPAD Subsystem and the ICDP Subsystem.

The Power Subsystem conditions spacecraft power and supplies filtered power
to the rest of the instrument.

Page 9
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3.0 BAND I ARRAY DETECTOR RESEARCH

3.1 . Introduction

’

Santa Barbara Research Center fabricated and tested both standard-doped and
low-doped InSb arrays and Hughes-Carlsbad provided a Si:In array, all of which
were subsequently tested at the University of Rochester. This section summarizes
SBRC and UR test results and discusses work on detector capacitance measurement,
QE variation across the arrays and evaluation of alternate clocking schemes carried
out at UR as a part of the test program.

One standard-doped InSb array, two low-doped InSb arrays and one Si:In
array were tested and characterized by UR. SBRC tested a total of four low-
doped InSb arrays. The standard-doped InSb array and one low-doped InSb array
were procured under separate funding. These arrays have a useful wavelength
range of 1.8—-5.3um and a peak response at 3.5um. Tests were performed over a
range of temperatures to evaluate the performance of the arrays parametrically in
a search for the optimum operating conditions. Summary data from tests run at
both SBRC and UR are presented in Table 3-1.

3.2 Summary of Test Results

3.2.1 Standard-Doped InSb Array FPA17

The standard-doped InSb array (FPA17) was tested at 51°K, 47°K, 41°K,
36°K, and 8°K to explore array performance as a function of temperaturel. Oper-
ating at 40°K, FPA17 had a read noise of 900 e~ and a dark current of 100 aA.

Quantum efficiency varied widely across the array from 0.4 to 33% in a manner
suggestive of the unexplained dramatic low temperature falloff in QE seen in some

standard- and low-doped InSb arrays and described by SBRC? and others. At 8°K,
this array showed the impressive drop in dark current expected at the lower oper-
ating temperature. The dark current was measured to be 5 aA at 8°K; read
noise was 600 e. Unfortunately QE also dropped dramatically to 0.2—-2% across
the array.

Histograms of quantum efficiency, dark current and read noise for the device
are shown in Figure 3-1. The zero bias capacitance for the device is assumed to
be 1pF; at 150mV bias, the capacitance is taken to be 0.77pF.

Figure 3-2 shows the variation in quantum efficiency across the array at
three temperatures, 51°K, 41°K, and 8°K, and clearly demonstrates the extreme
falloff seen as the temperature is lowered.
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(a) Histogram of quantum efficiency

measurements for FPA 17. T = 51K;
looking at a 295K blackbody, through
a 3.3 ym filter. VBIAS = 150 mV;

VGATE = -2.5 V. Pixels at left are
dead. Quantum efficiency in %.

(b) Histogram of dark current, at
8K on FPA 17. Other parameters
include VGATE = -2.5 V, VBIAS =
150 mV, 36 microsec/pixel pair read
rate. Dark current in electrons/sec.
Pixels at left are dead.

(c) Histogram of two subtracted
CDS frames, in electrons, on FPA 17.
T = 8K, VGATE = -25 V; VBIAS
= 150 mV. RMS Noise is given by
HWHM/ /2.
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Figure 3-1. Histograms of Quantum Efficiency, Dark Current and Read Noise for FPA17
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T=51K QE

QE OF FPA #17
DRO TEMPERATURE SHOWN
BLACKBODY OF 295K

THROUGH A 3.3 MICRON
FILTER.

36 MICROSEC READRATE
-2.5 U GATE

0,2>102 %

Figure 3—2. FPA17 Variation of Quantum KEfficiency
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The dark current variation across FPA17 at 4°K is shown in Figure 3-3.
The upper left-hand image is the result of a 240-second exposure to a cold dark
slide (CDS) at 150mV bias. The upper right-hand image is the result of exposing
the array to the same dark side for one-twelfth of a second. Differencing the two
yields a dark current display with instrumental effects removed (lower left). Note
that the dark current is higher by a factor of three along the lower left and
lower right edges relative to the center. At 50mV bias, the dark current shows
further randomization as shown in the lower right-hand image.

Noise on FPA17 is shown in Figure 3-4. The left-hand figure is a typical
frame taken at 3.3um and 51°K. Subtraction of two consecutive 3.3um exposures
results in the image of the upper right indicating uniform noise properties across
the array.
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DARK CURRENT FPA a7y
JIZPLAY UKIT = 8 2% ELECTRONS.SEC
TEMFPERPATURE 4 K

UGATE -2.8 U READRATE 36 MICROSEC
YBIAS 150 MU EXCEPT LOMER RIGHT 50 MU

Figure 3-3. Dark Current of FPA 17
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Figure 3—4. Noise on FPA 17 at 3.3um and 51°K
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3.2.2 Low-Doped InSb Array SCA001

SCA001, the first of the two low-doped InSb arrays studied® was operated at
31°K with a measured read noise of 600 e, a dark current of 30 aA, across the
central portion of the array, and QE’s of 25-68% across the array. The his-
tograms taken in this array are shown in Figure 3-5. All values are based on a
calculated detector capacitance of 0.63pF, the value appropriate for operation above
freeze-out which occurs between 20°-30°K. Below freeze-out, the proper value is
0.55pF. (See Section 3.3, below.) At 8°K, the QE dropped to 2-40% across the
array. The dark current was highest on the lower right portion of the array
(Figure 3-6), a characteristic also noted by SBRC.2 A secondary “hot spot,” one
not observed by SBRC, was also seen in the upper left portion of the array. The
hot spot in the lower right portion of the array is due to the relatively high
power output MOSFETs located near that area. When VDD is decreased from 5V
to 1V the resultant dark current in that corner decreases. This effect was ulti-
mately determined to be caused by a dewar wiring error, not by a malfunctioning
array.

Also seen are small undulations on top of and parallel to the gross variation
which are referred to as “tree rings.” The gross variations may be due to a
carrier lifetime or mobility problem in the high-doped InSb, and the “tree rings”
due to variations in the doping.

Read noise distribution across SCA001 may be seen in Figure 3-8. Note
how readouts later in time improve, an effect which is not yet fully understood.
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Figure 3-6. Dark Current in SCA001 as a Function of Integration Time

Figure 3-7. Gray Scale Representation of Quantum Efficiency of SCA001
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7 min/ 96 readouts later

Figure 3-8. Difference of Two Consecutive Readouts in SCA001 as a Function of Time
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3.23 Low-Doped InSb Array SCA002

SCA002 has, to date, yielded better results than any of the other Band I
arrays tested by UR.®] Dark current at 6°K is an impressively low 1.3 e /s or 0.2
aA. The QE at 10°K is an acceptable 40% in the upper left portion of the array
assuming a detector capacitance of 0.55pF. Read noise was 200—300 e~ at both
6—7°K and 10°K and essentially the same from 83 ms to 500 s integration time.

Histograms of quantum efficiency and dark current in SCA002 at 7-10°K
may be found in Figure 3-9. Figure 3-10 compares the gray scale representation
of quantum efficiency of SCA001 and SCA002. Note that while the tree ring
structure is evident in both arrays, SCA002 does not show the extreme falloff
across the array evidenced by SCAO001.

The gray scale representation of dark current and noise reveals a good
degree of uniformity (Figure 3-11) across the array with no hot spots evident.
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Figure 3-9. Histograms of SCA002 Performance at 4.5°K
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Figure 3-10. Gray Scale Comparison of Quantum Efficiencies of SCA001 and SCA002
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Figure 3-11. Gray Scale Representation of Dark Current/Noise Data
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3.2.4 Low-Doped InSb Array RH2

RH2, also a low-doped InSb array, was tested by SBRC? prior to delivery.
At 10°K the device showed a dark current of 7.33 aA (burst mode) and a read
noise of 345 e based on an assumed detector capacitance of 0.65pF. (SBRC and
UR estimates of detector capacitance differ by approximately 0.1pF, see paragraph
3.3 below.) QE was 47.3% with a sigma of 25% across the array. This array,
and RH4, described in the next section, are both AR-coated. Responsivity unifor-
mity was 37% across the array. Operability greater than 97% was achieved.
NEP was measured as 4.61 x 107'® W and the dynamic range was 12.2 x 10° e
At 15°K, this array showed the expected significant increases in dark current (to
44.5 aA) and read noise (to 480 e). QE also increased significantly to 77.3%
(29.3% 1 o variation) while dynamic range and NEP were little changed from their
10°K values. Histograms supporting these figures are given in Appendix A. Fig-
ure 3-12 shows the variation with detector bias of quantum efficiency, NEP, read
noise and dark current of RH2. Gray scale photographs of signal response and
dark current are shown in Figure 3-13. Signal response shows a “cool” spot in
the lower left-hand corner, two column defects of unknown origin and a diagonal
defect due, possibly, to a crack in the InSb detector board.



NEP WATTS

NOISE o-

I DARK

10° K
100 50
- 40
75 4
7 = 30
g
< .‘ - 20
o
25 10
T >
0 T v T 0
0.00 0.10 0.20 0.30
DET BIAS (V)
6e-18 20-18
-~
h\m\
> 1e-18
40-18 -
1 - 1e-18
2018 4
- 50-19
Ce+0 v T T Oe+0
0.00 0.10 0.20 0.30
DET BIAS (V)
B —— o~ 100
300 - /———""
¢ - 75
225 !
- 50
150 ~
75 - 25
0 +—r—r—p—r—r———r————v1t 0
-0.10 0.00 0.10 0.20 0.30
DET BIAS
1e-17 1e-17
8e-18 1 y"‘ - 7e-18
st
5e-18 - 50-18
20-18 - - 20-18
0e+0 T r T v Oe+0
0.00 0.10- 0.20 0.30
DET BIAS (V)

Figure 3-12. Low-Doped InSb Detector RH2 Quantum Efficiency, NEP, Read Noise,

SIGMA

SIGMA

SIGMA

SIGMA

- CE
-~ SIGMA

@ NEP
-+ SIGMA

< NOISE
-~ SIGMA

< | DARK
- SIGMA
AMPERES

QE

NEP WATTS

NOISE o-

1 DARK

15° K
100
.- - 30
] ”A
- 20
50
25 4 10
[0} v T - T 0
0.00 0.10 0.20 0.30
DET BIAS (V)
5e-18 2e-18
49-18 4 :
. - 1e-18
3e-18 -
1 - 1e-18
20-18 4
- S5e-19
1e-18 - °
Oe+0 T T Oe+0
0.000 0.100 0.200 0.300
DET BIAS (V)
600 200
© =L} -8
" T - 150
400 -
- 100
L
200 4
- 50
0 T v T 0
0.00 0.10 0.20 0.30
DET BIAS (V)
e ‘\/ Se17
3e-17 - 6e-17
20-17 - > 40-17
1e-17 b 20-17
Oe+0 v T v T Oe+0
0.00 0.10 0.20 0.30
DET BIAS (V)

and Dark Current as a Function of Detector Bias at 10° K and 15°K

SIGMA

SIGMA

SIGMA

Page 25

NR

Ip



ORIGINAT PAGE IS Page 26
OF POOR QUALITY]

RH2 Signal Response Scale: 120 from the Mean

RH2 Dark Current Scale: +20 from the Mean

Figure 3-13. RH2 Gray Scale Signal Response and Dark Current
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3.2.5 Low-Doped InSb Array RH4

RH4, also low-doped InSb, showed very similar performance to RH2 except
that the QE was significantly higher in tests by SBRC? 61.3% (12.6% 1 o varia-
tion) and the responsivity uniformity much better at 21%. Histograms for RH4
are given in Appendix B and the data plotted as a function of detector bias at
10K in Figure 3-14. Dark current (burst mode) is a low 9.34 aA at 0.12V bias,
read noise is 331 e and NEP is 3.68 x 10-18 at the same point. Quantum
efficiencies, NEP, and read noise are remarkably constant as bias is increased from
0.04V to 0.25V. Dark current increases by about 50% over the same range.

Figure 3-15 shows gray scale plots of signal response and dark current.
The excellent uniformity seen in the histograms in Appendix B is also clearly
shown in the signal response plot in this figure, the only anomaly being a diagonal
line of low response across the face of the array which is attributed to a crack in
the detector board. Dark current gray scale response is seen to be similarly
uniform in the same figure.

Of the low-doped InSb arrays tested under this program, RH4 initially
appeared, by far, to be the best array. Unfortunately, the device, in subsequent
tests, developed a “salt-and-pepper” appearance due to the development of high dark
current in about 500 pixels, the cause of which is unknown. RH2 shows no such
behavior, but is far less uniform overall and has a column defect causing the loss
of almost two entire columns.
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RH4 Signal Response Scale: +20 from the Mean

RH4 Dark Current Scale: 120 from the Mean

Figure 3-15 RH4 Gray Scale Signal Response and Dark Current
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3.26  Hughes-Carlsbad Si:In Array

The Si:In array from Hughes-Carlsbad has been tested by UR3 over the
range from 50°K to 8°K and with biases from -55.9V to +4V. At 30°K with a
bias of +2V, measurements yielded a dark current of 15 aA, a read noise of 150
e, and a quantum efficiency —photoconductive gain product (QExg) of 1.06%. At
8°K and a bias of -55.9V, far closer to the proper operating bias of about 100V,
the measurements yielded a dark current of 0.5 aA, a read noise of 60 e, and a
QExg of 5.1%. While the low dark current and read noise of the Si:In array are
very attractive, the low QE and high operating bias are not and further work

must be done at higher biases to fully evaluate the performance of this array in
the SIRTF application.

The variation in the quantum efficiency —photoconductive gain product for the
Si:In array at 13°K is shown in the gray scale representation in Figure 3-16.
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3.3 Low-Doped InSb Detector Capacitance Measurements

UR developed estimates for the various components which comprise the total
detector capacitance in InSb:? zero bias diode capacitance, sense node (DRO gate
node) capacitance and gate overlap capacitance, based on a combination of calcu-
lated and measured data. The diode capacitance varies inversely with the square
root of applied bias; the sense node capacitance and gate overlap capacitance are
fixed capacitances. The estimates in the following table are for diodes in a CRC-
228 array at 8°K (i.e., below freeze-out).

University of Rochester Zero-Bias InSb Detector Capacitance Estimates

Zero-Bias Diode Capacitance 0.42+0.03pF

Sense Node Capacitance 0.07pF

Gate Overlap Capacitance 0.06pF
TOTAL 0.55pF

This value (0.55pF) was used in calculating the performance values presented
by UR in Table 3-1 and compares well with the value of 0.57pF measured by
SBRC using the “noise-squared vs. signal” method on SCA002 at 8.1°K. Other
measurements, including one direct measurement of the capacitance of 44 diodes in
parallel on a fanout board, yielded values in the range 0.68pF to 0.75pF. Taking
the known variables into consideration, UR estimates the uncertainty in their calcu-
lation of total zero bias detector capacitance to be about 0.1pF.

34 QE Falloff Across Array and With Temperature

All of the InSb arrays show variations in QE across the array and QE
falloff with decreasing temperature. Sometimes, these variations are quite extreme,
such as the 2-40% variation seen in SCA001 at 8°K. This array showed far less
variation at 31°K (25-68%). The worst variations were seen by UR in FPA17,
the standard-doped array, 0.4-33% at 31°K and 0.25-2% at 8°K (Figure 3-2); the
least variations in SCA002, 28-40% at 10°K (Figure 3-10). Arrays RH2 and RH4
showed variations in QE of 29.3% and 12.6%, respectively in measurements by
SBRC?. None of these variations are fully explained. SBRC? has postulated that
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the variations across SCA001 and SCA002 at a given temperature are due to detec-
tor thickness variations across the array, and blackbody source misalignment.

Consideration of these QE variations at UR have led to the conclusion that
the measured detector thickness variations across SCA001 can only partially account
for the observed QE variations and, based on a measurement technique that pre-
cludes misalignment of the blackbody, misalignment can explain none of it. UR
concludes that the observed QE variations must be due to contamination of the
InSb3. Further work on this question will be done in the follow-on IRAC
Definition Phase Contract.

3.5 Effect of Clocking Changes on Array Performance

Nine different clocking schemes were tried at UR to search for the method
that would yield the lowest read noise within IRAC power dissipation limits.3 All
of the nine were variations on the double-correlated sampling technique. Changes
in pulse widths and variations in the use of the enable and reset signals were
tried; all gave essentially the same read noise (250 e operating with the detectors

shorted).
3.6 Spectral Response of InSb

The spectral response of an AR-coated low-doped InSb array of identice’

design to those discussed above was tested at 77°K. The test data are presen.ed
in Table 3-2 and plotted in Figure 3-17. Of importance to QE measurements at

2.35um is that the response is down 19% at this wavelength compared to its peak
at 3.5um. Between 2 and 5um, the shape of the response curve is largely deter-
mined by the AR-coating. Beyond 5um, the detector cutoff dominates. The cutoff
wavelength decreases slightly with temperature.
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pm  Resp pm  Resp pm  Resp
2.0 0.73 3.4 1.00 4.8 0.88
21 0.74 3.5 1.00 4.9 0.87
2.2 0.76 3.6 0.98 5.0 0.87
2.3 0.81 3.7 0.98 5.1 0.85
24 0.86 3.8 0.96 5.2 0.85
2.5 0.88 3.9 0.96 5.3 0.81
2.6 0.92 4.0 0.96 5.4 0.78
2.7 0.92 4.1 0.96 5.5 0.76
2.8 0.95 4.2 0.95 5.6 0.43
29 0.94 4.3 0.93 5.7 0.12
3.0 0.96 4.4 0.92 5.8 0.03
3.1 0.94 4.5 091 5.9 0.00
3.2 0.96 4.6 0.90 6.0 0.00
33 096 47 089

Table 3-2. Relative Spectral Response of an Anti-Reflection Coated InSb Array at 77°K

SPECTRAL RESPONSE OF AN InSb
ARRAY AT 77K
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Figure 3-17. Relative Spectral Response of an Anti-Reflection Coated InSb Array at 77°K.
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40 BAND II ARRAY DETECTOR RESEARCH

4.1 Overview of Test Results

Results with the Si:Ga array for Band II are sufficiently encouraging that, if
necessary, an existing array could be flown and come very close to meeting present
SIRTF performance requirements. Based on earlier GSFC tests®* and recent tests on
the Band III arrays at ARC,5¢ the baseline conditions established for the tests
performed were 43V bias and a temperature of 8°K. The Si:Ga array has a
useful wavelength range of approximately 4—18um with peak response at 15um.
Test conditions have not yet been fully optimized for this array.

Under baseline conditions, responsivity is approximately 5.1 A/W and system-
limited readout noise is about 190 uV (100 e’) (Figure 4-1). Typical noise equiva-
lent power (NEP) measurements are 2.0 x 10-!7 W /root-Hz for a 0.205 s integra-
tion at the same temperature and bias. Signal-to-noise continues to improve up to
the highest bias voltage available in the current test setup (43V). The temperature
dependence at lower bias (10V) has been measured at 0.2 A/W at 5°K and 0.5
A/W at 11°K where the dark current becomes unacceptably high. Dark current
as a function of temperature is displayed in Figure 4-2 where the slope correspond-
ing to Sb impurity generation-recombination is included for comparison. Table 4-1
summarizes these results.

Dark current, though higher than that observed in the InSb and Si:Sb ar-
rays, is still excellent at 30 aA at 8K. The uniformity of this array is excellent:
8% (1 o/mean) over a contiguous 58 x 59 region of the array. Sense node
capacitance was measured to be 0.07pF, slightly higher than that of the Si:Sb

arrays.

4.2  Transient Response

Initial studies of the transient response of the Si:Ga array (see Figure 4-3)
have shown some of the irregular behavior often exhibited by bulk photoconductors
under low background conditions. In response to a step input of IR, the array
does not settle to its final value until 20-40 s after application of the step input,
depending upon background level.

4.3 Power Dissipation

Power dissipation of the array is less than 1 mW under the stated operating
conditions with VGGUC at 0.6V.



Array Designator:

Type:

Tested by:

Test Temperature (°K)

Dark Current (aA) @ 8 K

Read Noise (e-)

Detector Capacitance (pF)
Quantum Efficiency (%)
Operability (%)

Responsivity (A/W)
Responsivity Uniformity (%)
NEP (Watts/Root-Hz) @ Ti=0.2 s
Well Size (e-)

AR Coated

"Goddard
Si:Ga

Goddard

5.4
50
255
0.1*

4.7

All values means unless otherwise indicated

*Assumed

Array” -

Ames

6 - 10
30

100

0.07
>99.5

5.1

8
2.0E-17
>5.0E+05

No

>5.0E+05

Table 4—1. Band II Array Test Data and Design Goals




Page 37

. 1014
T = 8 K, background = 2.8e5 ph/s

@& Responsivity
4 -~ NEP
101 5

g o
> |§
3 16
> 10
D <
[ 2 S~
(o] o
o L
o] =z

1

0 gtu(.;rz!l‘“ A s N 101 8

0 10 20 30 40
Bias (V)

Figure 4-1. Si:Ga Responsivity, Noise Equivalent Power vs. Bias Voltage

12 10 9 8 7 6 5K

4 i
107 I T T T T T T .
3 1015
o .3 O Si:Sb (Bias =1V)
@ 7 F a SiGa (Bias=10V) 10'6
g A EdeT <
3 ' | S =
@ 2 @
-~ 10 - -17 =
= ’ a 10 g
S Y
Q [
5 i g =
&) 1 8 (]
~ 10 E -18
- - 1
4] L 1]
Q
a
1 0 R 1 . 1 N 1 . 1 . 1 . 1L ]
0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

1T (1/K)

Figure 4-2. Si:Sb and Si:Ga Dark Current vs. Temperature.



Page 38

10
¢1)=1.1x107 ph/s
st 6 '
¢ =87x10" ph/s
S 6f
- i 6
g ¢ =58x10" ph/s
2 =
n 4 6
¢ =32x10" ph/s
2 F
6 =28x10° ph/s
o 2 1 " 1 M
0 5 10 15 20

Time (s)

Figure 4-3. Response of One Si:Ga Array Pixel to Step Change in Incident Flux.



Page 39

50 BAND III ARRAY DETECTOR RESEARCH

5.1 - Overview of Test Results

As with the Band II Si:Ga array, the Si:Sb arrays evaluated for Band III
showed excellent performance, performance which virtually meets SIRTF require-
ments. The Si:Sb arrays are useful over the wavelength range from about 15 to
3lum with peak response at 27um.

Optimum operating conditions, in terms of signal-to-noise ratio, were found
to be at a temperature of 8°K and an applied bias of 2V56, TUnder these condi-
tions, peak-wavelength responsivity is 3.8 A/W, average dark current is 2.1 aA (13
e’/s), and the (system-limited) readout noise is about 220 uV rms (100 e) for a
0.205 s integration. Table 5-1 summarizes these results; Figure 5-1 shows respon-
sivity and NEP as a function of temperature. Noise was studied as a function of
integration time (Figure 5-2) and shows only a factor of 2 increase at 200 s over
the noise at 0.2 s. A typical NEP for this integration time is 2.7 x 10-17
W /root—Hz.

Dark current levels in these devices can be very small (about 0.3 aA at
5°K), and integrations of 30 minutes and longer have been achieved with the array
blanked off without approaching well capacity. As temperature increases above 8°K
dark current increases rapidly, reaching 175 aA by 11°K.

5.2  Measurement of Detector Capacitance

Measurement of the input capacitance of the sense node was made by
monitoring the current on the reset line (VRSTUC) as a function of signal and
resulted in a value of 0.061pF. Corroborating measurement of the capacitance
through the current vs. signal voltage characteristic in the detector substrate line
(DETSUB) and through a noise-squared vs. signal plot were also made and reason-
able agreement obtained (Figure 5-3). The resulting value is less than the 0.1pF
value predicted by Hughes, although this was based on their experience at higher
temperatures.

Capacitance measurements were also made on the Si:Ga array (Figure 5-4)
which yielded a value of 0.069pF.
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Array Designator: SBRC 1 -- IRD --
Type: Si:Sb Req'mt
Tested by: Ames (SAO)
Test Temperature (°K) 5-12 4 -12
Dark Current (aA) 2.07 <1.6
Read Noise (e-) 100 < 100
Detector Capacitance (pF) 0.06 ---
Quantum Efficiency (%) --- ---
Operability (%) >99.5 99.5
Responsivity (A/W) 3.8 3.4
Responsivity Uniformity (%) --- 5
NEP (Watts/Root-Hz) @ Ti= 0.2 s 2.70E-17 ---
Well Size (e-) 2.0E+05 >5.0E+05
AR Coated No .-
All values means unless otherwise indicated

Table 5—1. Band III Array Test Data and Design Goals
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5.3 Linearity and Well Capacity

Measurement of the well capacity of Si:Sb and Si:Ga arrays was made by
plotting the variation in the output signal as integration time was increased (Fig-
ure 5-5). Assuming a responsive QE of 0.25 and a photoconductive gain of 0.5,
the first significant departure from linearity is seen at an integrated flux of about
1.4 x 10% photons which corresponds to a well size of 2 x 10° e~. Figure 5-5
also shows the results of measurements made on the Si:Ga array which showed a
larger well capacity of >5 x 10° e.. Note that the array could be operated with
up to twice the integrated flux before hard saturation is reached.

5.4 Effect of Guard Ring Potential on Uniformity

Bright edge effects are displayed by these arrays under certain conditions.
The guard ring potential (VGRNG or VGATE) was found to be effective in con-
trolling these effects. By setting the guard ring potential to its optimum value,
the excellent uniformity figures achieved (8% in Band II and 15% in Band III) are
realized (Figures 5-6 and 5-7).

5.5 Power Dissipation

Array power dissipation is primarily determined by the voltage applied to
the output FET’s (VDD) and the unit cell FET’s (VGGUC) (Figure 5-8). By

operating the arrays at low VGGUC, at 0.6V, power dissipation in both the Si:G=
and Si:Sb arrays can be held below 1 mW without degrading performance over

that obtained at higher values of VGGUC.
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6.0 BEAMSPLITTER RESEARCH

6.1  Introduction

The Infrared Array Camera utilizes two dichroic beamsplitters for the separa-
tion of the incident infrared energy into three wavelength ranges. The perform-
ance of these elements is a key determinant of the overall performance of the
camera,

A pair of beamsplitters for the 28-30um range was designed and fabricated
by the Optical Coating Laboratory, Inc. (OCLI) to the IRAC specifications shown in
Table 6-1.

The purpose of this effort’” was to design appropriate coatings for beamsplit-
ters 1 and 2, followed by trial deposition of the coatings on cadmium telluride
(CdTe) substrate material. Measurements of the transmission in the wavelength
bands of interest would then allow a realistic performance level to be set for
these elements.

Beamsplitter Wavelength Range Design Goal
1 1-5.0um R > 90% average
5.2-30.0um T > 55% average
2 5.0-18um R > 90% average
18.5—30.0um T > 55% average

Table 6—1. IRAC Beamsplitter Specifications for 1.0-30.0um

6.2 Theoretical Performance

The calculated performance of the coating design for beamsplitters 1 and 2
are shown in Figures 6-1 and 6-2. In both cases, the performance levels exceed
the design goal specifications; however, the model does not include losses due to
absorption in the thin film structure. Past experience dictates that the realized
performance will be lower than projected, especially in the transmission regions due
to unmodelled interactions between the layers, random errors in the coating deposi-



08/01/88 10. 18. 06

o
N e
T ‘ | . \ A
Y } .
\gl SCAN #1
z BEAMSPLITTER #1
R
[4]
g
P |
L |
Wl
[4 8
“.
< ]
o
w
=
-
-
-
o
(72}
=2
P4
u
m
o
=
Hg 45.0
E
1.000 57660

WAVELENGTH

008/01/86 _10.59.55
ol | T
g N
| i
n AM\AI\ /\/\/\ ay /\/\/\ /\/
]
=13 1
4
<
=
=t
(=]
3 SCAN #2
2 BEAMSPLITTER #1
Fad
“,
-
[ 4
["]
—
-
-
J
0.
g
<
w
m
Q
<
Re 45.0
° DEG
5.000 30. 00

WAVELENGTH

Figure 6—1. Calculated Performance for Beamsplitter 1

Page 46



‘,):/9"1/36 9.55.02
3 RERAGamns T
SCAN #3 \
BEAMSPLITTER #2 \
y
E \
-
Q)
8
[T
L]
2
xr \
o ‘
. 3
: \
w
- -
: \
B oec
.000
! WAVELENGTH 18.50
o08/01/86_10.04.18
° /\ /\ | ‘ : 1
: dscan #
A BEAMSPLITTER #2
tadi
wl
Er
=
=
[ = |
=
2
-4
«
[« 4
|-
R_
i |
L]
o
[T]
-
=
(]
-
g
t
o
Q
é R
= |4s.0
o DEG
18.00 30. 00

WAVELENGTH

Figure 6-2. Calculated Performance for Beamsplitter 2

Page 47



Page 48

tion, and the fact that accurate absorption coefficients for thin film materials at
the operation temperature are not known.

The broad wavelength ranges (from 1.0um to 5.0um for beamsplitter 1 and
from 5.2um to 18.0um for beamsplitter 2) over which reflectance is required resnlt
in reasonably complex designs.

6.3 Experimental Results

Both beamsplitter designs were calibrated in the OCLI coating chamber and
then deposited on CdTe substrate. Following the deposition an analysis was made
of the spectral and environmental performance that resulted. Since OCLI does not
have the capability to measure reflectance at cold temperatures, the performance
cold has been inferred from the ambient temperature data. Future tests at the
University of Arizona will verify these cryogenic temperature figures. At cold
temperature the absorption of the thin films is reduced, and therefore the reflec-
tance at this temperature is expected to be equal to or greater than the perform-
ance at ambient temperature. This section includes test data taken by both OCLI
and the University of Arizona.! OCLI test data plots may be found in their Final
Report on this work.”

6.3.1 Beamsplitter 1

The spectral characteristics of beamsplitter 1 were measured at both ambient

temperature and 15K in accordance with the parameters listed in the table below
and appended to the OCLI Final Report.”

Scan Range Type Angle Instrument Temperature
1 1.0-2.5um R 45° DK-2 Ambient
2 2.5-30um R 45° PE-983 Ambient
3 2.5-30um T 0° PE-983 Ambient
4 2.5-30um T o° PE-983 15 Kelvin
5 2.5-30um T 45° PE-983 Ambient

From this spectral information, the actual performance of the dichroic at 45°
is estimated by OCLI to be:
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Wavelength Range Design Goal Measured Performance
1-5.0um R > 90% Average 84.3% (Ambient)
5.2—-30um T > 55% Average 65.6% (Ambient)

76.7% (Calculated at 15K*)

The previously identified technical concern regarding transmission from 5.2 to
30.0um is alleviated by this dichroic design. However, further effort needs to be
made in the 1.0 to 5.0um reflectance region. Examination of the spectral test
data’ indicates the loss in reflectance is due to absorption dips between the reflec-
tance multilayer stack centers. This has been verified by measurement. The
transmission level in this region is virtually zero. Absorption coefficients for the
thin film materials were estimated and included in the computer design. This
performance is plotted in Figure 6-3 and indicates behavior similar to the actual
performance.

For manufacture of acceptable flight dichroics, a more complex coating
design may be required. By adding thin film structures to the design these ab-
sorption dips may be minimized. However, the increase in coating thickness mate-
rial will lower the in-band transmission. An alternate approach to consider is
moving some of the reflectance stacks to the rear surface of the beamsplitter in
order to decouple the interference effects which emphasize these dips. Unfortu-
nately this would complicate the optical design of the camera.

As part of this study, the coating was also tested for environmental per-
formance at OCLI with the following results:

Test Result
24-Hr. Humidity per MIL-C-675A Pass
Slow Tape per MIL-M-13508B Pass
50 Rub Cheesecloth per MIL-M-13508B Pass

Subsequently, beamsplitter 1 was retested at the University of Arizona.

Figures 6-4 and 6-5 give the OCLI beamsplitter 1 transmission from 5 to
35um at 0° and 45° incident angle respectively as measured by UA. Figure 6-6
shows the 0° measurements with the OCLI test measurement data superimposed

*Cold temperature transmission at 45° is calculated as follows:

45° T at 15K - 0° T at 15K
45° T at Amb 0° T at Amb
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as a dashed line. There is excellent agreement between the curves.
Figure 6-7 shows beamsplitter 1 transmission with IRAC Band II broadband

filters superimposed as hatched columns. The height of the columns represents the
percent transmission of the individual filters.
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6.3.2 Beamsplitter 2

The spectral performance of beamsplitter 2 was measured in a manner
analogous to beamsplitter 1, and is summarized in the table below and in the
OCLI Final Report.”

Scan Range Type Angle Instrument Temperature
1 2.5-30.0um R 45° PE-9083 Ambient
2 2.5-30.0um T 0° PE-983 15 Kelvin
3 2.5—-30.0um T 0° PE-983 Ambient
4 2.5-30um T 45° PE-983 Ambient

From this information, the actual performance of the dichroic at 45° can be
estimated as follows:

Wavelength Range Design Goal Measured Performance
5.0—18.0um R > 90% Average 88.4% (Ambient)
18.5-30.0um T > 55% Average 58.8% (Ambient)

62.7% (Calculated at 15K*)

As in the case of beamsplitter 1, the lower than desired reflectance from 5.0

to 18.0um is due to absorption losses in the thin film structure. This effect has
been modelled in Figure 6-8. The effect of adding additional coating material to
the design to correct the observed deficiencies is riskier than for beamsplitter 1
since the physical thickness of the layers is greater at these long wavelengths.

Thus the effect of such changes on transmission needs to be considered thoroughly
and there is the additional risk that the stress buildup in this thicker coating could
lead to adhesion failures.

Beamsplitter 2 was evaluated for environmental durability with the following
results:

*Cold temperature transmission at 45° is calculated as follows:

45° T at 15K _ 0° T at 15K
45° T at Amb 0° T at Amb
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Test Result
24-Hr. Humidity per MIL-C-675A Pass
Slow Tape per MIL-M-13508B Pass
50 Rub Cheesecloth per MIL-M-13508B Pass

Corroboration of these results at the University of Arizona produced the
data displayed in Figures 6-9, 6-10, and 6-11.

Figures 6-9 and 6-10 give the transmission of OCLI beamsplitter 2 transmis-
sion from 10 to 35um at 0° and 45° incident angle respectively. Figure 6-11
shows the 0° measurements with the OCLI measurement superimposed with a
dashed line. There is also very good agreement with the exception of a slight
wavelength shift. Before making additional measurements, UA will recalibrate the
spectrophotometer wavelength scale against a reference absorption cell.

Figure 6-12 shows the product of the transmission of beamsplitters 1 and 2
with two Band III broadband filters superimposed as hatched columns. It is clear
that the transmission through both beamsplitters between 25 and 30pm is undesir-
ably low.
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6.4 Observing Efficiency with Beamsplitters

The purpose of the beamsplitters is to permit simultaneous observation of
the same focal plane in the three IRAC bands. There are four advantages to
simultaneous versus sequential imaging in the three bands: 1) certain positional
registration in the three bands; 2) fewer instrument moving mechanisms; 3)
reduced instrument mode changes and spacecraft maneuvering; and 4) more effi-
cient use of observing time. In this section the question of whether or not, given
the transmissions and reflection losses of the beamsplitter, the beamsplitter ap-
proach does indeed make more efficient use of observing time.

Given:
€1, €2, €3 are efficiencies of each band with the beamsplitters.
Ty, To, T3 are the required integration times with sequential (no
beamsplitters) observations.
Ti, T2, T3 are the required times for switching beams and
stabilizing (no beamsplitters).
ni, ngz, n3 are 1 for detector readout or sky background noise

2 for dark current noise

For T;, the integration time to reach a required signal-to-noise ratio without
the beamsplitters, and T, the time to reach a required signal-to-noise ratio with
the beamsplitters, we find:

Detector readout noise limited: T = Ti/¢€
Background noise limited: T = Ti/€
Dark current noise limited: T = Ti/e
In general: T = % \

Then the ratio of observing time with the beamsplitters to the time for sequential

observations is:
. maximum of £S! . T, , T
T(Beamsplitters) en;’ €N, €n,

T(Sequential) ~ T, + T, + Ty + 7, + 7, + 75

Table 6-2 gives the beamsplitter efficiencies as measured by UA and OCLI in
various filter bands.
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Band Filter A No. 1 No, 2 Product

1 3 1-3 84 (R)
8 3-4 84 (R)
11 4-5.3 84 (R)

2 12 5.1-6.9 69 (T) 84 (R) 58
15 6.5-8.8 81 (T) 84 (R) 68
16 8.5-11.2 82 (T) 84 (R) 69
18 10.7-14.5 83 (T) 84 (R) .70
22 13.8-18.6 77 (T) 84 (R) 65

3 23 17.6-23.8 65 (T) 60 (T) 39
26 22.8-30 55 (T) 50 (T) 28

Table 6—2. Beamsplitter Efficiency for Given Filter Band Pass

The following are three examples comparing the beamsplitter to sequential
times. In each example, the switching and recovery times (71, 72, 73) are taken to
be zero so the resulting ratio is an upper limit. The beamsplitter approach takes
less observing time when the ratio is less than 1.

In the first example, equal sequential time in all broadband filters is re-
quired, ie., T1 = Ts = T3 = T,

Configuration 1 2 3 4 5
Band Filters

1 3 3 8 11 11
2 15 16 18 12 22
3 23 23 23 26 26
Then,

Tepit _ To (1/.68 + 1/69 + 1/70 + 1/.58 + 1/.65)
= = 7.6/10 = .76
Tseq. TO (10) /
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In the second example sequential times equal to 4 T, in Band I, filter 11,* T, in
Band II, filters 15, 16, and 18, and T, in Band III, filters 23 and 26, are used.

Then,
Tt To(1/.39 + 1/.28)
= = 6.1 9 = 68
Ty = To (4 + 3 + 2) /
In the third example equal sequential times T;, = Ts = T3 = T, are used in one
filter and each band.
Then,
Band 1 Filter 11 4 - 53u
2 18 10.7 - 14.5
3 26 22.8 - 30
Tsplxt _ max (To/.84, To/.70, To/.28 < 1 19
Tseq. 3To + (r1 + 72 + 73) -
6.5 Conclusions

Coating designs for the dichroic beamsplitters of the IRAC camera have been
produced and experimental depositions have been performed. Test results at OCLI
and UA indicate that the transmission requirement of beamsplitter 1 has been
achieved, but that the reflectance at the shorter wavelengths must be improved.
Beamsplitter 2 demonstrated acceptable reflectance at the shorter wavelengths but
less than desirable transmission. Within the confines of this study, extensive
attempts could not be made to tune the coating deposition for maximum reflected
performance. A certain amount of improvement can be expected from that effort
when it is undertaken later in the program. Transmission improvement beyond
23um is highly desirable and short wavelength reflectivity must be improved but
not at the expense of long wavelength transmission.

*References are to filters defined in IRAC-202, “IRAC Instrument Requirements
Document.”
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Further work should concentrate on refinements in the design that will
enhance the broadband reflectance. In addition, through dialogue with the system
designer certain critical spectral ranges can be identified and the performance in
those areas maximized over other less critical regions.

An analysis of the dichroic approach showed that it is more efficient than
sequential measurements when data must be taken in three bands. Taking instru-
ment settling times, ignored in this simple calculation, into consideration makes the
advantage of the dichroic approach even greater.
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7.0 OPTICAL ANALYSIS

7.1 Introduction

The GSFC Optical Design Section working in conjunction with Dr. William
Hoffmann of the University of Arizona has performed conceptual baseline optical
analyses for IRAC. This analysis modelled refractive, reflective, and catadioptric
configurations and evaluated them for system performance by utilizing computer-
aided ray tracing techniques (ACCOS V).?

7.2 IRAC Optical Specification Status

The pixel sizes originally chosen for IRAC were 50um (128 x 128) for Band
I and 100um (64 x 64) for Bands II and III. Pixel size is being reconsidered in
an ongoing tradeoff study being performed at SBRC. The current baseline pixel
size is 75um for all three bands.

Image quality for IRAC is specified in terms of Encircled Energy (EE).

Each specification applies over the entire wavelength band and field of view of the
instrument. For the wide field of view, 80% of the point spread function energy
must fall either within a single pixel or within a circle defined by the Airy Disk
diameter (D = 2.44 A/f). For the narrow field of view, 80% of the same func-
tion must fall within a circle of diameter equal to or greater than two pixels so
as to avoid undersampling. It also must fall within a circle defined by the Airy
Disk diameter.

7.3 Refractive Work

At the onset of the IRAC optical analysis effort for FY1986, the refractive
cesium iodide singlet design initially proposed was evaluated. The image quality
suffered from astigmatism, chromatic aberration, and curvature of field. This was
especially true in Band I. Optimization was performed such that the geometric
wide-field spot sizes for Bands II and III met the spec for a 100um pixel size at
300°K. The Band I singlet could not be optimized to meet the wide-field specifica-
tion. No other material was found that performed better than cesium iodide for
all three bands. Therefore a silicon/germanium air-spaced achromatic doublet was
designed for Band I for a 50um pixel size at 300°K. Geometric ray tracing has
been performed on these designs for the wide- and narrow-field cases. This was
done by tracing 300 rays through the system for each particular field angle. The
geometric image quality for all three bands met specification for both the wide-
and narrow-field modes.
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To determine the idealized performance of these IRAC designs, a diffraction
image quality analysis has been performed for both the wide- and narrow-field
modes for all three bands for this system. A diffraction analysis determines if the
performance of the system is limited by diffraction and determines the real spot
sizes and MTF’s of the system.

An investigation into broadband antireflection coatings for the Band I achro-
matic air-space doublet at room temperature was also performed, A triple-layer
AR coating of MgF;, CeO; and Si each was assumed on a substrate of germa-
nium. The coating increased the transmittance from 46% to about 92% with
maximum transmittance values of 95% at 2.35um and 98% at 5.2um. A similar
AR coating can be produced on a substrate of silicon. An investigation at the
4°K operating temperature has not been performed yet.

The 4°K operating temperature of IRAC will cause the refractive index,
element thickness, and element spacing to change from the baseline (room tempera-
ture) values. This in turn will cause the image to go out of focus as the instru-
ment is cooled down. The depth of focus for Bands I, II and III are respectively
+86um, +236um, and +170pum. This was determined by defocusing the image
plane until the worst case geometric 80% Encircled Energy Spot Diameter (EESD)
exceeded the specification. Thermally induced focus shifts that exceed these values
would have to be corrected by actively refocusing the lens or detector. Passive
compensation for thermal focus shifts would require the knowledge of the cryogenic
optical properties of the lens material. Unfortunately cryogenic data of optical
properties of infrared materials at 4°K are rare.

7.4  Catadioptric Work

Catadioptric designs were considered only briefly due to the success of the
all-reflective two aspheric mirror design concept. No viable catadioptric design had
been identified.

7.5 Reflective Work

7.5.1 Review of Work Done

Reflective IRAC designs were looked at initially out of concern for chromatic
aberration and cryogenic uncertainties of refractive indices and thermal expansion
coefficients at 4°K. A number of two-mirror concepts were studied using Dr.
Hoffmann’s original spherical tilted collimator. All of these designs suffered from
first order limitations. Most of these limitations were due to image inaccessibility
and/or obscurations. Tilting and decentering the mirrors to avoid these first order

¥,
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limitations resulted in poor image quality. No feasible all-reflective approach
emerged for the Band I 50um pixel size configuration.

An unobscured two off-axis aspherical design was always within the realm
of possibility for Bands II and III (100pum pixel), but it was once again revisited
for use in Band I due to a change in the baseline pixel size to 75um for all
three bands. The collimator was allowed to be an aspheric mirror and was in-
creased in focal length. A baseline unobscured two off-axis parabola system design
with fold mirrors was generated for the baseline 75um pixel case for all three
bands. This design accommodated both wide- and narrow-field modes. Space for
beamsplitters and filter wheels were also allotted. Figure 7-1 is an optical sche-
matic of this reflective IRAC system design.

The first parabola serves as a collimator for all three bands. There is a
second parabola for each band which serves as an imager. A 134 x 134* baseline
pixel array was used. This resulted in a 10.05mm detector array size and a
corresponding IRAC wide-field magnification of 0.339 (F/8.129) for the baseline
pixel size of 75um. Figure 7-1 also shows that space has been allotted for a
fourth band (60um — 120um) beamsplitter between the wide-field primary and
first wide-field fold mirror. Therefore Band IV would only operate in the wide-
field mode. If Bands II, III, and IV have larger pixel sizes than the baseline
T5um (therefore different size arrays) then the specific magnification required for
each band will be accommodated by each band’s secondary focal length.

7.5.2 Implementation of Magnification Change

The magnification switch from wide- to narrow-field mode or vice versa is
accomplished by moving the following optical components via a mechanism:

(1) Wide-Field Fold Mirror — following the wide-field primary (collimator).
(2) Narrow-Field SIRTF Fold Mirror
(3) Narrow-Field Fold Mirror — following the narrow field primary (collimator)'

(4) Narrow-Field Pupil Stop"

*Allows for six inactive pixels between four 64 x 64 arrays butted together.
tIn the current design (January 1988) only two mirrors must be moved to effect
the mode change.l?
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Figure 7-1. Optical Schematic of Reflective IRAC System Design
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7.5.3  Physical Layout Consideration

A conclusion can not be made on the space availability for the three beam-
splitters, four filter wheels, and the detector until this design has been laid out
within the MIC. Space must be allotted for mounts and alignment adjustments.
The beamsplitters and filter wheels are placed in collimated light (between the
primary mirror and secondary mirror of each band where there would be no
wavelength spread in the passband of an interference filter for any one point on
the focal plane). The filter wheels probably could not be located on the image
side of the secondary mirror. This is due to the design being slightly non-
telecentric (approximately two degrees in the narrow field). There is one narrow-
field pupil which is common to all three bands. To insert the narrow-field mode
into the system along with the wide-field mode necessitated having a separate wide-
field pupil for each of the four bands (4 pupil stops). This will be a problem if
it is necessary to place the calibration sources at the edge of the wide-field pupils.
The alternative is to have these calibration sources placed at the center of the
SIRTF secondary (aperture stop). This is where they could serve all of the SIRTF
experiments. ‘

7.5.4  Analytical Results

The first step in determining this design’s performance was to perform a
geometrical analysis. This was done by simply tracing 300 rays through the sys-
tem for each particular field angle. Table 7-1 lists the geometric 80% EESDs for
the wide- and narrow-field modes respectively. All tables are based on a Band I
array size of 134 x 134 pixels.

A diffraction image quality analysis was performed to determine the real
spot sizes and MTF’s of the system. Tables 7-2 and 7-3 list the diffraction 80%
EESDs for the Band 1 wide- and narrow-field modes respectively. Figure 7-2
shows the worst case (corner of field) radial energy distribution plots for the BandI
wide-field case. Band I does not meet the wide-field specification for wavelengths
between 2.76um and 4.09um. The Band I narrow-field specification is not met for
wavelengths less than 2.63um. Tables 7-4 and 7-5 list the worst case diffraction
80% EESDs for Bands II and III respectively for both the wide- and narrow-field
modes. Both Bands II and IIl are well within the wide- and narrow-field specifi-
cations. The geometric and diffraction analyses represent the IRAC optical perform-
ance independent of the SIRTF telescope.

Further optimization of the design may achieve full Band I success. The
Band I secondary mirror may have to be a nonparabolic asphere. An alignment
sensitivity analysis is currently being performed as part of the optimization of this
design. This involves misaligning each optical element, one at a time, until the
worst case 80% EESD exceeds the specification.
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Wide-Field Case .(FOV=300 arcsec; F#=8.13)

X Field Y Field Angles (arcsec)

Angle (arcsec) -150 arcsec 0 arcsec 150 arcsec
0 arcsec 54.2u 46.0u 38.8u
75 arcsec 54.6u 46.5u 40.1u

150 arcsec 55.0u : 47.2u 43.2u

Narrow-Field Case (FOV=75 arcsec; F#=32.52)

X Field Y Field Angles (arcsec)

Angle (arcsec) -75 arcsec 0 arcsec 75 arcsec
0 arcsec 49.8u 3.2u 34.7u
37.5 arcsec 55.4u 15.1u 35.2u
75 arcsec 68.7u 31.8u 38.4u

Notes: (1) Encircled Energy Values are for a flat and titled focal surface.
(2) Spot Sizes are symmetric about the Y-Z plane.
(3) These Geometric Spot Sizes are measured in reference to the
optimized geometric focal-plane position.

Table 7—1. Geometric Analysis — 80% Encircled Energy Diameter (Microns)
Infrared Array Camera (IRAC) Optical Design Evaluation
Configuration: Two Off-Axis Unobscured Parabolas
For all 3 Bands: (Pixel Size = 75u)
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Band I: 75 Micron Pixel Optical Design Data

Wide-Field Case (FOV = 300 arcsec)
Diffraction Analysis

Band I Wide-Field Specification
(2u-5¢)  Diff. Limit. Requirement
A=2u 39.7u <75.0u
A=2.T6um 54.8u <75.0u
A=3u 59.5u <75.0u
A=4p 79.3u <79.3u
A=4.09u 81.1u <81.1u
A=5u 99.2u <99.2u
Notes:

(1) Encircled energy values are for a flat and titled focal surface.
(2) Spot sizes are symmetric about the Y-Z plane.
(3

) These diffraction spot sized are measured in reference to the
diffraction optimized focal-plane position.

X Field
Angle

! arcsec '

0

75
150
0

75
150
0
75
150
0
75
150
0
75
150
0
75
150

Y Field Angles (arcsec)

-150

67.2u
67.0u
67.0u
75.0u
69.4.
60.8u
75.6u
76.1u
77.4u
77.9u
78.44
81.5u
81.1u
62.1u
61.5u
75.6u
75.5u
75.7u

0

60.6u
60.2u
59.7u
74.2u
69.4u
58.1u
71.64
71.4u
71.2u
69.44
67.3u
63.9u
T7.9u
65.9u
61.3u
75.0u
74.Tu
74.4u

150

51.3u
51.8u
54.0u
74.0u
69.61
57.9u
58.4u
58.4u
61.9u
60.1u
60.0p
60.4u
T7.3u
68.2u
61.3u
73.8u
73.8u
74.0u

Table 7-2. 80% EESDs for Band I (Wide Field)
Infrared Array Camera (IRAC) Optical Design Evaluation

Configuration: Two Off-Axis Unobscured Parabolas
Band I: (Pixel Size = 75u; Wide Field F+#=8.13)
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Band I: 75 Micron Pixel Optical Design Data

Narrow-Field Case (FOV = 75 arcsec)

Band 1 Narrow-Field
(2u--5u)  Diff. Limit.

A=2u <158.7u
A=2.634 <208.7u
A=3u <238.04
A=4p <317.4u
A=5u <396.7u

Notes:

Diffraction Analysis

Sampling
Requirement

>1504

>150u

>150p

>150u

>150u

X Field
Angle
(arcsec)

0
37.5
75
0
37.5
75
0
37.5
75
0
37.5
75
0
37.5
75

Y Field Angles (arcsec)

15

117.5u
117.8u
119.4u
153.0u
153.1u
154.1u
174.0u
174.0u
174.8u
230.8u
230.7u
231.2u
288.0u
287.6u
287.8u

0

114.5u
114.4u
115.2u
150.4u
150.3u
150.8u
171.7u
171.4u
171.7u
228.8u
228.4u
228.4u
286.1u
285.4u
285.2u

(1) Encircled energy values are for a flat and titled focal surface.
(2) Spot sizes are symmetric about the Y-Z plane.
(3) These diffraction spot sized are measured in reference to the

diffraction optimized focal-plane position.

75

115.5u
115.4p
115.7u
151.0u
150.7p
150.8u
171.8u
171.5u
171.5u
228.4u
228.0u
227.7u
285.2u
284.5u
284.1u

Table 7-3. 80% EESDs for Band I (Narrow Field)

Infrared Array Camera (IRAC) Optical Design Evaluation

Configuration: Two Off-Axis Unobscured Parabolas
Band I: (Pixel Size = 75u; Wide Field F#=32.52)
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BAND 1 REFLECTIVE IRAC SYSTEM WIDE FIELD DIFFRACTION RADIAL ENERGY
DISTRIBUTION PLOTS FOR WAVELENGTHS OF 3, 3.5, AND 4 MICRONS (WORST CASES)
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Figure 7—2. Worst Case Radial Energy Distribution Plots for Band I
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Worst Case Diffraction

Band II Wide-Field Specification Wide-Field Case (FOV=300arcsec;F#=8.13)
(5u->18u) Diff. Limit. Requirement  Worst Case Diffraction 80%EESD (microns)

A=54 99.2u <99.2 5.7

A=Tu 138.9u <138.9u 103.2u

A=10p 198.4u <198.4u 145.6u

A=13u 257.9 <257.9u 188.2u

A=164 317.4u <317.4u 231.14

A=18u 357.1u <357.1p 259.74

Band II Wide-Field Sampling Narrow-Field Case (FOV=T75arcsec;F#=32.52)
(5u->18u) Diff. Limit. Requirement  Worst Case Diffraction 80%EESD (microns)
A=5u <396.7Tu >150u 288.0u

A=Tp <555.4u >150u 402.4u

A=10u <793.5u >1504 574.3u

A=134 <1031.54 >150u 746.34

A=164 <1269.64 >150u 918.1x

A=18u <1428.3u >150u 1033.04

Notes: (1) Encircled energy values are for a flat and titled focal surface.
(2) Spot sizes are symmetric about the Y-Z plane.
(3) These diffraction spot sized are measured in reference to the
diffraction optimized focal-plane position.

Table 7-4. Worst Case Diffraction 80% EESD (Band II)
Infrared Array Camera (IRAC) Optical Design Evaluation
Configuration: Two Off-Axis Unobscured Parabolas
Band II: (Pixel Size = 75u)
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Worst Case Diffraction

Band III Wide-Field  Specification =~ Wide-Field Case (FOV=300arcsec;F#=8.13)
(18u->30x) Diff. Limit. Requirement  Worst Case Diffraction 80%EESD (microns)

A=18u 357.1u <357.1u 259.7u

A=22u 436.4u <436.4u 317.0u

A=24p . 476.1u <476.1u 345.7u

A=264 515.84 <5158u 374.44

A=28u 555.4u <555.4u 403.2u

A=30u 595.1u <595.1u 431.8u

Band II Wide-Field Sampling Narrow-Field Case (FOV=75arcsec;F#=32.52)
(184->30u) Diff. Limit. Requirement  Worst Case Diffraction 80%EESD (microns)
A=18u <1428.3u >150u 1033.0u

A=22u <1745.7u >150u 1262.3u

A=244 <1904.44 >150y 137714

A=264 <2063.14 >150u 1491.8y

A=28y <2221.8u >1504 1606.54

A=304 <2380.54 >1504 1721.2

Notes: (1) Encircled energy values are for a flat and titled focal surface.
(2) Spot sizes are symmetric about the Y-Z plane.
(3) These diffraction spot sized are measured in reference to the
diffraction optimized focal-plane position.

Table 7—-5. Worst Case Diffraction 80% EESD (Band III)
Infrared Array Camera (IRAC) Optical Design Evaluation

Configuration: Two Off-Axis Unobscured Parabolas
Band III: (Pixel Size = 75u)
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CONCLUSIONS

8.1  Array Detector Performance

The goals of the IRAC project and the results of the detector research

carried out under this Grant are shown in Table 8-1 and summarized below. This
table shows the best performance across the array achieved in each band.*

1.

Read Noise: IRAC proposed goals (<100 e) have been demonstrated except
in Band 1 where the best read noise measured to date is 240 e in low-doped
InSb.

Dark Current: IRAC proposed goals (100e"/s or 16 aA) have been demon-
strated in all bands at 6°Kelvin. Bands I and III have demonstrated dark
currents <2.1 aA at 8° Kelvin.

Responsivity: IRAC proposed goals have been met or exceeded in Bands II
and III but are lower than required by a factor of 2 in Band I

Power Dissipation: IRAC proposed goals (<26 mW per 64 x 64 array) have
been demonstrated in all bands with 1 mW per array a typical value for the
array alone. Additional power may be required for operation of heaters,
temperature control circuits and line drivers.

Integration Time: IRAC proposed goals (1000 s, all bands) are within reach.
Integration times up to 500 s have been demonstrated in Band I with no
read noise increase and up to 30 minutes in Band III with read noise at
200 s only a factor of 2 higher than at integration times of 0.2 s.

Linear Range Well Capacity: IRAC proposed goals are within reach. Linear
range well capacities of 2 x 10° e~ have been demonstrated in all bands.

Operating Temperatures: Optimum array operating temperatures have been
determined to be in the 6°-10° kelvin range.

*At the time of the SIRTF Instrument Requirements Review (December 1987).
Subsequent work in Bands II and III have demonstrated read noise results at the
60 e level.
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IRAC Band

Detector Material
Detector Type

Wavelength Range (um)
Format

Pixel Size (um)
Muitiplexer

Capacitance/pixel (pF)
Quantum Efficiency* (%)
Operability (%)

Responsivity (A/W)
Responsivity Uniformity (%)
NEP*** (Watts/Root-Hz)

Read Noise (e-)

Dark Current (aA)

Well Size for Linear Range (e-)
Manufacturer

IRAC Contact

* Not AR Coated. AR Coated Arrays RH2 and RH4 have shown QE values in the 50 - 77% range

** For SCA002
***Integration Time = 0.2 s

Low-doped InSb

Photovoltaic**

14-53

58 X 62

75

Direct Readout
Switched MOSFET
(CRC-228)
0.55

42 @3.3um

> 98

1.2 @ 5pm

38

1.50E-17

240 (typ.)
0.2@8°K
1.5E+05
SBRC

J. Pipher
W. Forrest

University of
Rochester

Si:Ga

Photoconductor Photoconductor

53-14

58 X 62

75

Direct Readout
Switched MOSFET
(CRC-228)
0.07

30 (est)

> 99

51 @ 11um

8

2.00E-17

100

30 @ 8° K
5.0E+05
SBRC

C. McCreight

Ames
Research Center

Si:Sb

14 - 30

58 X 62

75

Direct Readout
Switched MOSFET
(CRC-228)
0.06

30 (est.)

> 99

2> 3.8 @ 25um
5

2.70E-17

100

207 @ 8° K
2.0E+05
SBRC

C. McCreight

Ames
Research Center

Table 8-1.

IRAC Array Development Status
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8.2 Beamsplitters

" IRAC proposed goals have been demonstrated in all bands except in the
20-30um range where improved transmission efficiency is required.

8.3 Optical Design

Table 8-2 summarizes the status of refractive and reflective design studies
relative to meeting IRAC design specifications. After performing the diffraction
analyses on the refractive designs, only the Band I silicon/germanium doublet
design was able to meet the specifications for the 50um pixel size case. The
unobscured two off-axis parabola 75um pixel size design met the wide- and nar-
row-field specifications for Bands II and III. With further optimization this reflec-
tive design should also meet specification for all of Band I for the 75um pixel
case. A T5um pixel size refractive design for Bands I, II and III still needs to be
generated. Therefore a direct comparison of the two designs can not be made at
this time. A strong recommendation must be given to the reflective design if
75um is the preferred pixel size due to its cryogenic and achromatic advantages.
If there is a Band IV (60um — 100um), it would be very difficult to design a
refractive imager due to the lack of optical materials that both transmit in Band
IV and have low dispersion across the band. From this design study it now
appears that a pixel size smaller than 75um will be very difficult to accommodate
in this reflective design.*

*Current (January 1988) assessments indicate that the Bands II and III perform-
ance will be worse than stated due to a reduction in the physical sizes of the
Band II and Band III arrays from those analyzed here. Pixel sizes are being
reconsidered as part of on-going detector design work at SBRC. The latest projec-
tions of performance may be found in Reference 10.
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REFRACTIVE DESIGNS | REFLECTIVE DESIGNS
Hoffmann | Achromatic | Parabolic Collimator
Band Field Design Design and
Csl Si/Ge Parabolic Imager
41 Narrow No Yes No
Wide No Yes No
42 Narrow Yes Yes
Wide No Yes
43 Narrow Yes Yes
Wide No Yes
Spec DL DL Diffraction Limit
(wide field) or or or
pixel Band I 50um 50um 75um
size Band 2 100um 75um
Band 3 100pm 75um

A YES or NO addresses whether or not the specification is met.

Issues such as

how much “margin” exists for Yes answers is not quantified in the specification
and therefore is not used as a specification requirement at this stage in the investi-

gation.

that meet the top level specification).

Table 8—2. Status of Refractive and Reflective Design Studies

Optical margin will be examined in detail for feasible designs (i.e., designs
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SBRC Low-Doped InSb Array RH2 Test Data Histograms

Test Data Histograms
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Figure A-14 Histograms of RH2 15K Noise Electrons

&
o = a
@ W = E
b 0 Ll -~
- 2
X o
- = & T B oo
[ o ==
Wduy 13 PU .
=22 B DD}
o T X % a3
Ll wt w S e
3 = - 35
Te (D - =
I 0f TR - -
P @ v
x - = ? o
T s s W
PRy~ R T wm W
witad T o R xx] .o
[ o -
& ol :
Iz = -
[ iy LIS I -
'_:F Do} P . i
&aw o + + o 9
L o 0y Ll w FURE n
X o e [Ta] [T b
LRl e o ™ W a4 = 2
- - e W 7 v
T — L = o
oo ; ]; = i b - o
ZBb i 5] =
Lo e - I ]
(LN S I £ -~ RN
hodh -] i - o
i “ — -
- v el TR NS
To X acE P + g oww M
L) - : =M > - To P < E
Q@ i 314 I o= ‘IE J:'emsn
; x s & 3
= = 2] & T L o 3ITN
= 1t ] o S g
I R0 - T
32D oD [ I ety
[T ] 2w " Z - )
o4 ko i N fia) i hnl
u r T
AL (o= 7 WA WZWI i
o= M D WAdWIZwWIE-)
T
DD -
b} £ oD
H H + +
8 & » td L
Ead R R o
B 4 "UAS
[} T . ] ..
= ’ fop =L
tud - ooy Ld __I: R
) = o in =
FR - L::" A4 2w
= ]
e T 5" g s “ - H
v W - e P
Ld o LI - [ o
[ DO - 222 24
procian Jis o g E T X jraia a4 g &
w 33~ tat o
= ZTZEZE = ==
T 0] N
- 0,
(I pY) = ) = : L
L-;f . - & o o= : 1
I e = s S Y
wAaz=z w weaE Doy
il [ s X Loprn
Wz T - W= Loenng
[ I 74 ]
IZ Tz =
% o ) & [ T :g "y
[; D : D<)
@w T + QL - Mo+ o+
@ T [M] X T M . ) Wl
T v O T L Feen
= R o IR AY B of <+ PR | E H g XX W
= . - ; ..
[ — - X -l e q -
- o~ f— ee ae = w
- — = Gy S
a4 U - X IR ]
Py = LI B
H = h=la>] :
o~ h R
- T ow n L - v o ,
T T O E ! o T I 4aJ "
S~ T = ) ! o W= T Z 3
T pu] - i - T& .. 22 "
— - e [ had == ::,
z ] : .3 I - B
[ S R S~ T ~ S~ S S o B ~ B~ S = o T~ - ;3
= wn v u Pt} L P 3 b 35} - o} ul Pon u i) u P} o o Uz
W - T (A Pl D) J — Raad Lo -+ - oA A "} By — —t
TS EdWE D WIWIZIWIZ T Z AW Sl WAdWZW T



APPENDIX B
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APPENDIX C

University of Arizona Test Facilities
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Il MID INFRARED SPECTROPHOTOMETER

For the beamsplitter measurements from 2 to 30 microns we arranged for
the use of the National Optical Astronomy Observatories (NOAO) Beckman
Acculab 6 Dual Beam Spectrophotometer. This spectrometer is a grating
instrument specifically designed for room temperature transmission
measurements. By rapidly "chopping" between the beam through the sample
and a beam bypassing the sample and nulling the difference with a servo
controlled aperture on the bypassed beam, the unit provides percent
transmission measurements as a function of wavelength, relativity immune

from drifts in source strength, detector sensitivity and amplifier gain.

Figure 1 shows the optical diagram of the Beckman Acculab 6
Spectrophotometer. The beamsplitter sample goes in the sample beam near
the center line of the sample well. M12 is a movable mirror which permits
directing the beam outside the spectrophotometer for use as a

monochrometer. Figure 2 shows an unfolded ray diagram of the

spectrophotometer in the vertical aspect. In the horizontal aspect, the
beam size at the sample and slits S1 and S2 is considerably smaller. This
diagram is unfolded in that it shows all reflecting elements as normal

incidence transmitting elements.

The characteristics of the Acculab 6 are given in Table 1.
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BECKMAN ACCULAB 6 RAY DIAGRAM
VERTICAL UNFOLDED DUAL BEAM MODE

Figure 2.



OPERATING MODES

Automatic recording; double-beam optical null; .Iinear transmittance

versus linear wavenumber.

TABLE 1

BECKMAN ACCULAB 6 SPECIFICATIONS

Page C-4

Spectrat Range

4000 to 250 cm-?

%T7T Range

0 to 100%T on
integral recorder.

Any desired portion of
the 0 to 100%7T range
with span of 10%T

or greater may be
selected for expansion
to fullscale on a
100-mv auxiliary
recorder.

Scan Times

3.2, 9.5, or 28 minutes
(60 Hz)

3.8,11.4 0r 34.2
minutes (50 Hz)

AccuSet Meter Yes

Ordinate Expansion for |Yes

Auxiliary Recorder

Purge Fitting Yes

Weight 75 pounds

Wavenumber Better than 10 cm-?,

Accuracy 4000 to 2000 cm-!
Better than 5 cm-!,

2000 to 250 ¢cm-?
Wavenumber Better than 5 cm-!,

Repeatability

4000 to 2000 cm-?
Better than 3 cm-},
2000 to 250 cm-?

Resolution Better than 5 cm-!
at 3000 cm-!?
Better than 3 cm-?
at 1000 cm-?
Slit Control Two Programs: routine

and high-resolution

Double-Beam
100% Line

+2%, 4000 to 600
cm-}, excluding
atmospheric
absorption bands.

+39%, 600 to 300
cm-}!, excluding
stmospheric
absorption bands.

Formatted Chart
Paper Presentation

5% x 133, ” grid
4% " x 11~ grid
notebook (Optional)

Monochromator

1 rotating wedge filter,
100 line/mm and
40 line/mm gratings

Stray Light

Less than-1%, 4000
to 650 cm-?

Less than 3%, 600
to 300 cm-?

Linear transmittance versus time, at fixed wavenumber.

%7T ACCURACY
Better than +29%,.

%T REPEATABILITY
Better than 1%.

SOURCE
Nichrome wire.

RECORDER
Flatbed, strip-chart. Repeating format.
Optional notebook-size format available.

CHART PRESENTATION
Percent transmission versus linear cm-!.

DIMENSIONS
26 inches wide; 11 inches high; 24 inches deep.

RECOMMENDED OPERATING ENVIRONMENT
. Less than 80% relative humidity; 15°C to 40°C.



111 BEAMSPLITTER TEST CRYOSTAT

Since the beamsplitters must be tested at liquid helium temperature,
it was necessary to design a cryostat for holding the beamsplitter samples

which was compatible with the spectrophotometer sample wall.

We have therefore designed and constructed a beamsplitter test
cryostat satisfying the following constraints. Two of the requirements,
measuring reflection and measuring beyond 30 microns with a Fourier

Transform Spectrometer, were added after the initiation of this contract.

] Sample temperature at room temperature and at ~ 15K

® Compatible with spectrophotometer sample well

] Compatible with fourier transform spectrometer sample area

° Test sample at 0° or U45° incident angle

. Sample size to 1 1/2 inch diameter

° Measure transmission and reflection

° Switch from sample to open (transmission) or gold reference mirror

{(reflection) to determine instrument baseline

° maintain reference mirror co-planar with sample

The cryostat was designed as a square addition to an existing Infrared

Laboratories HR 8 vapor cooled radiation shield, liquid helium dewar.
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During this contract the transmission only configuration was completed and
successfully tested. The design changes for the reflection configuration

were initiated.

Figure 3 shows the test dewar, transmission configuration for 45°
incidence angle. The geometry is arranged so that the lower part of the
dewar sits in the spectrophotometer sample well with the windows aligned
with the spectrophotometer sample beam and the beamsplitter sample holder
located at the spectrophotometer beam waist. In the direction into the
paper, the windows and paddle are offset so that the dewar case clears the

nearby spectrophotometer reference beam.

The dewar case windows are 1 inch diameter 2mm thick KRS5. The sample
area and mechanism are enclosed in a helium temperature shield to maintain
the low temperature of the sample holder. The interior surface of this
shield is painted with Primer (3M Nextel Primer #911-P4 Light Grey) and
black paint (3M ECP-2200 Solar Absorber Coating) to absorb the radiation
entering through the dewar window. The inside of the dewar case, both
sides of the vapor cooled shield and the outside of the helium shield are
coated with aluminum foil. The vapor cooled shield and inner shield

openings have baffle plates with openings approximately 1/8 inch x 1/2 inch.

Not shown is a mechanical feed-through mechanism which rotates the
paddle in and out of the spectrophotometry beam. The support post and

paddle have a second monitoring position for 0° incident angle.

The electrical header connects to seven temperature sensors listed in

Table 2.
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TABLE 2 TEMPERATURE SENSORS

Location : Type

1. Sample Resistor (1K 1/8W Allen Bradley)

2. Sample Cell

3. Paddle "

4, Post "

5. Cold Work Surface "
6. inner Radiation Shield Diode (1N4002)

7. Outer (Vapor Cooled) Radiation Shield "
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Figure 4 shows the dewar cool-down, with liquid helium after
precooling with liquid nitrogen. The sample reaches equilibrium in 1 1/2
hours. The radiation shield takes ~ four hours to stabilize, The hold
time after the second LHe fill is eight to twelve hours depending on the
number of manipulations of the feed through mechanism and the time under

the thermal load of the spectrophotometer beam.

Figure 5 shows the detailed thermal performance with a fused silica
sample in the sample holder. The sample cooled to 7°K whether it was in or
out of room temperature radiation entering the dewar. Its temperature rose

to 14 degrees when exposed to the spectrophotometer beam.
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IRAC-SIRTF DEWAR LHe TEMP. PERFORMANCE
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