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ABSTRACT
' Exact image method, recently introduced for the solution of electromagnetic field prob-

lems involving sources above a planar interface of two homogeneous media, is shown to be
valid also for sources located in complex Space, which makes it-s application possible for
Gaussian beam analysis. It is demonstrated that theGoos-Hiinchen shift and the angular
shift, of a TE polarized beam are correctly given as asymptotic results by the exact reflec-
tion image theory. Also, the apparent image location giving the correct Gaussianbeam
transmitted through the interface is obtained as another asymptotic check. The present
theory makes it possible to calculate the exact coupling from the Gaussian beam to the
reflected and refracted beams as well as to the surface wave.
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[ INTRODUCTION

The Gaussian beam is an important model for radiation from large aperture antennas
and laser sources, from which the energy is sent. in a relatively narrow space angle. Intro-
duction of a complex space dipole to mathematically represent a source for the Gaussian
beam by Deschamps (1] :made it possible to extend analytical results, derived earlier for
real space sources, to Gaussian beam excitations. The basic Gaussian beam originates
from a dipole in complex space, while multipoles of higher order can be shown to produce
more complex Hermite-Gaussian and Laguerre-Gaussian beams (2], [3], [4].

The basic problem in Gaussian beam analysis is the problem of reflection and refraction
of the beam at a planar interface of two homogeneous dielectric media, where losses might,
be present. This problem has been treated both through complex space dipole method
151 and other methods [6], [7], [8]. The general field expressions in the exact formulations
are involved, but asymptotic considerations for narrow beams allow simpler analysis of
reflection and transmission problems and lead to the well,-known shift phenomena of the
reflecting beam. The most famous of these was first demonstrated by Goos and Hinchen
191 in 1947'and analyzed by Artman [10] in 1948, involving a parallel shift of the bean)
reflected from an interface in denser of two lossless dielectric media. Other shirts which can
be defined for narrow beams are the angular shift [5], [11] and the focal shift ( 12]. Infinities
arising in the idealized theory for the Goos-Hinchen shift. can be avoided through a more
realistic', analysis [6], [131 7 [17].

The purpose of the present paper is to give a more general account of the exact image
theory, introduced elsewhere for sources in the air above a planar interface of a hor'z ►ge-
neous medium [14], [151 (the Sornmerfeld problem) and allow sources to be in cor,i,+lex
space. Thus, the thheory is applicable to global Gaussian beam analysis in exact form. In
comparison with other exact methods applying Sommerfeld integrals, the present theory,
dealing with sources and their integration, gives more physical insight and does not resort
to special integration procedures dependent on the field point. For the application of the
exact image theory, functions characterizing the image sources are needed and methods
for their computation have been presented in [14], [15]. These functions need only be cal-
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	 culated once in the computer memory, after which the field calculation involvs converging
well-b hayed integrals. The exact image of a point source is a line source, which is nor-

6	 orally in complex space. As checks to the theory, known asymptotic expressions for the
'	 }	 reflected beam shifts and the apparent transmission image location are shown to arise as

t	 special cases when the exact line image is approximated by a point image.
it

REFLECTION IMAGE THEORY

The notation applied here is based on Ref. [14] except that we consider two half spaces
with respective parameters µ 1 µo, f 1 fo for u - r > 0 and 02µp, e2eo for u - T < 0. In [141,
[151, the medium u -r > 0 was assumed to be air, but generalization for any medium pair is
straightforward, if ins' d of k we write k l = k µ. 1 e1 , where k = w µpep, and everywhere
understand that p. = r . /,u l, c = E2/E 1 • To avoid unnecessary, although not excessive,
complication, the theory here is limited to dielectric media only with µl = 1A = 1.

As another generalization, the original source is taken to be in complex space. Because
the theory in [14], [15] was analytically derived and no use of the tacit assumption of real
source location was made, the final expressions can also be applied for complex source
locations. The same idea has been applied earlier with success when field expressions, de-
rived for problems with sources in real space, have been generalized for sources in complex
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space 1 16j, resulting in solutions for problems with Gaussian beam excitation.
Let. us consider, for simplicity, the source J(i`) = FI L6(r — (Oh + jb)), which is a dipole

with the direction of the unit vector v and location at the real height h from the interface
u ' r = 0 and imaginary depth jb• When calculating the fields in the half space 1, the half
space 2 can be replaced by the exact image source, as was shown in 114]:

)0,P) - ft(p )Jct( r )— (fc(N) + 
e + 

1 6+(P), aa•JC(T)^u^;2 
e 
E1!E(p)U'^^'(^'t`JC(T))' (1)

Here p is an integration variable and the image function f (p) can most conveniently be
calculated through the following Bessel function series 115

Oct
A(p) = 

r2 

8e1 ` n ^ e+ 1 1° 
J2^P), h(P) = —2
	

(2)
(2)

nj=1	 J
Further, 6+(p) denotes 6(p -- 0+), t a component transverse to u, and c the reflection
operation

ac=C•4, Jc(r)=C' J ( C^ n), t"=I - 2v,zc.	 (3)

The field from the image source can, be 'written as a fourfold integral over space and the
parainet.er p:

ao,_

E(r) _ —jWµO f

V fo 
G 1( D ) •Ji( r' ,P)dV'dp,	 (4)

with

— 'ke J 1 D

1

D(T,i;',p);r- (j; —Tl +iipljB)•(r—T r +up/7B), B =k e2—Et.

The ► n►age current expression contains Bessel functions Jn(p), which are convergent only if
the integration parameter p is real. For a point source, ( 1) can also be written so that the
integration parameter p isabsent, because in the field integral (4), the coordinate z = v. • r
and p are related through the distance function D in the argument. .of the Green function.
The expression (1) can thus be written

Jil T ) _ , IL f + 1 u(u v )6+( r + iih jbc) - jkt a - UL [vcfl(P(z))6(P _ ?1►t)—

—v.(u • z1)ff(p(=))6(P — A) uk2 
E 

F l fc(P(") )u n(vC ' ^)b(r + fih — jbc)], 	 (6)
1

f with
i

p( z ) _ —jB(z + h + ju.. b),	 ;'	 (7)

To obtain an exponentially converging Green function, we must select the branch of the
distance function D so that I, n[k1D] < 0. Also, to obtain a convergingage current

i
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function, the path of integration must be chosen so that p in (i) is real and positive, in
which case all the Bessel functions in (2) converge. This means that the image line must
start at the point P = —uh + 6c in complex space and lie parallel to the complex z plane
with 4

arg(r + h + jz1 ' . 6 ) = arq(jB)•	 ($)
Requiring that the additional condition Re(z] ^ 0 be valid the complex distance function.
satisfies D # 0 for all field points in Relz) > 0 and the field integrand in (4) is nonsingular
(14). This condition defines the branch of B, or the square root V 'c2— E1 through

Re[j c2 - E 1] = Re( vle1 - e2) > 0,	

_	 (a)

implying for example, that if E1, E2 = (E l < E] are real, then E -•- 1 = -j 1 E, provided
1 -- e  > 0. For some combination of lossy medium parameters there may be doubt of

choosing the correct branch of the distance function D to obtain the best convergence i1$1.
A close study of the integration path on the complex z i plane will reveal that a branch cut
line, starting from the branch points at z/ z f j p, defining the converging branch of the
Green function, may be crossed for some combination of parameter values E1 i E2, when p
moves from 0 to oo. In this case it is possible to take the image current line in the 'wrong'
half space with Re[.-') > 0, which makes the integrand converging again. This question is
the subject of a forthcoming paper.

REFLECTED GAUSSIAN BEAM

There does not seem to exist a global definition for the Gaussian beam field, instead,
the term "Gaussian beam" is understood as an asymptotic property of radiation fields
close to the axis of the main radiation. Thus, many fields with the same asymptotic
quadratic exponential behavior are called Gaussian beams. One example is the field from
a point source in complex space with the imaginary part of the position vector, b =
ubcpse — v.ybsinO.

The radiation beam of the point source is obtained in the direction of -b. The reflected
beam is obtained from the image source (6), and, for points far enough from the interface,
the field can be approximated by a Gaussian beam, if the image source can be approximated
by a point. source. To demostrate the validity of the exact image theory in this generalized
sense, we show that the Goos-Hanchen shift as well as the angular shift of the reflected
beam are obtained as asymptotic results from the exact image field expression To keep
notation simple, let us consider a two -dimensional problem with the line source J(r) =
u?Ib(y + jbsinO)b(z — h jbcoO), where 0 is the angle between u. and b. This assumption
simplifies the image source ( 1) into

J0,P) = h(P)MO = .f1(p)v.-Ib(y+ jbsin9)b(z + h+ jbcos9). 	 (10)
The Green function (5) integrated in x direction produces the two-dimensional Green
function in the medium 1,

G1(D) = (I + jF2 VV)G1( D), G 1( D) = 4jHo^1 (k1 D),	 (11)
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where flO(x) is the Hankel function. $
The field calculated from the exact image source is valid in any point in the upper half

space, but since we are interested in Gaussian beam properties, let us consider the far field
with (k i D[ » 1, in which case the image can be approximated by a point source. Also
the asymptotic expression for the Hankel function can now be used:

,
H(

02)(ki D) 
N	 -Al D.	

(12) ,	 a	 z3^

k"

D here represents the complex_ distance between the field point T and the complex inte-
gration point r1 + ju.p/kj f - 1, where r' _ -uh+ j6c, if p integration is done separately.
Because the image function f	 is decaying, the	 integration	 be(p)'	 effective p	 range can
regarded as small with respect to If -- F'I and we can write -

_	 U-W	 n - rD , D	
IIPq	

D	 0)	 (r - fl )+	 q =	 ^	 -u, _	 (13)

-(j 	
-^

 Do

Applying (12), the field integral can be written on the plane x = 0 as
00 n

E(r)	 --jwp,ou.,T1G j (Do)
J 	

fl(e)e-Pdp.	 (14)
0

If (14) can be written in the form
# }

00

p,	 15E(*) ^ -juyou.,TIGI(Do)ea	 e-^A.2wo a 
f	 .fi(p)e-P11d	

()

i

in the vicinity of the radiating direction u+ ;z:^ 6+o, where ibo corresponds to a field point ro
on the axis of the reflected beam, the field can be thought of as arising from the current. line

r shifted by the vector e" from the mirror image location r^. Approximation (15) is obviously
possible, if (14) can be expanded as a power series in terms of the small difference vector
w - wo. This is possible only for narrow enough beamwidtbs. After some steps of Taylor >x
expansion, the expression for a can be,.written in the form m

e	 ju	 boo 
pfl(p)!?^pqodP	

16
(	 )

J

j

o

k. , re - 1	 fi(f)e-pqOdP

-	 E where qo - u • up /f -- 1. To obtain an expression for 3, the following integral identities 3
are needed:*

^^l h

R^Y

4—V92 _2+ 1
=q.

-pqaPfl(e)e=	 17
(	 .)

o	 92+1
q+

{ a .
	 V .Ar

M^

C-4°°	 2	 q- Vg2	1
Pfl(P)e-	 dp ._	 (18)F	 q2,.+ 1 q +-q" + 

1 . #4"

Thus, we have
1 2ju	 2ju

	 2i ft
_	 _	 \ (19),

ki	 - 1	 q	 -} 1	 2	 1	 1(	 o	 l
0	

— k
	 E — E	 {- E 	u•v)	 k	 E -ain B

x

}.

vw^
n

m..:
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with the branch of the square root so defined that. Im.( E - sin-9) < 0, (14). (19) explains
the Goos- Hincheii i shift and the angular shift when the Taylor approximation condition is
valid'. In fact, because uo 	 4,1b, we have qp = Cosa/	 —'1a	 , and (17) represents the
TE reflection coefficient of a plane wave coming at the angle a. Let. us consider the two
possibilities with real c:

1) e < sin-20, which can only happen for e t > f2. In this case, s is real and thus the
real part of the location vector is shifted by

24 _

^k j - si P - t' 	
( 20 )

which means a parallel shift of the reflecting beam, Fig. I. This is the well-known Goos-
Hinchen shift. Because s is in — u direction, the parallel shift is ssitta,

2) e > sin-2 0. In this case, the square root is real and the shifts is imaginary = js•ia,
which means that the image line is shifted an imaginary distance in the ^h direction from
the original location. Because the imaginary part of the position vector determines the
direction of the beam, the beam is shifted angularly from its mirror image direction 410 to
the direction determined by 6c — js, Fig.2. if the shift angle A# is small, it satisfies

	

tan( Aa) ;Z4 -
!
Cosa =	

2cosa	
(21j

-b	 k,Ib E s n^9

T
h
he

e
 previous ex

sufficiently lur a values for b.
ressions are
re 

only valid for sufficiently narrow beams, which presumes
y g They are not valid if the Taylor expansion is not applicable,

which happens at and close to the branch point of the square root function 6511 + 1, i.e.,
at sin2a sing ac = e, where (19) would predict an infinite shift. This is the definition of
the critical angle ac, for which q2 + 1 = 0, For angles a ::^: ac We can write' from (14),
(17)

2j 2(coaB—coaBc)/^1- e- e

	

E(T) ^ —jwp0u.,1G 1(D0)t'	 -(22)

which cannot be described by a simple shift of image source, because tike reflecting beam
is distorted. and not exactly of Gaussian forni. To find out the shift of the maximum of
the reflecting beam, some numerical analysis must• be made, as in (6), f13), (17}.

For complex a values, there are both real and imaginary parts for the vector s., which
means a combined Goos-Hanchen and angular shift. In this case, the beaux does not enter
at the critical angle, because it is now complex. For beams narrow enough, the real and
imaginary parts of s of (19) determine the Goos-Hanchen and angular shifts, respectively.

This simple test demostrates the applicability of the exact image theory for the Gaus -

sian beam analysis. The field of the reflected beam can be calculated at any point from the
exact formulation ( 4). This also includes the coupling to the surface wave, which however,;
is small when 0`is not 0.

TRANSMISSION IMAGE THEORY

The image theory for fields transmitted through a planar interface was developed in
ref. (15) and the generalization discussed for reflection image theory also applies here.. To



k^

C.

express the result, the upper dielectric half space is replaced by the transmission image
source:

Ji(	 +c1	 1( '►',7')	 ^-^' i^ ^ J ( r )	 ^'+(P) + Ff B ^= ,P) `{' Jtir 6^(P)	 ( ',P)

ii.(FE(B.,P) — Ft( B--,P)jjf(",P)Vt , J(r).	 Q3)

Here, the original source is J('r) and x denotes its coordinate. Further, we have

B = k  E --I = k E2 Z T1,	 (24)

H( y , P) ° V_2 + (P/BY= ,	 (25)

M
2f

F,( r ,P)	 JO(P)
	 4e	 °O C-11 — fPIT )	 f	

hyn(P),	 (26)R e+l	 M1=1 e + 1 1-4 (P/T) +I)

and ' in functions H and F denotes differentiation with respect to p.
The field is ob f,axaed from an integral similar to (4) but the medium is now E 2 , Also,

the distpnce fatict.ioti D is here defined to be

D ( T , r',P)	 (r — p' — uH ( z# ,P)) ' (r — p' — uH( zt ,P)) .	 (27)
kain, to obtain a converging ima a function, the parameter p must be real. To obtain

a converging Green function, Im(k2D)I must. be nonpositive, which defines the branch of
the D function. Also in this case, for certain lossy media, the branch cut of the Green
function may be crossed if the image is restricted to the half space Re(') > 0, leading to
nonconverging Green function. This problem can be overcome by taking the other branch
of the H(c, p) function.

a

iryTRANSMITTED GAUSSIAN BEAM

Without delving more into the theory itself, which can be found in (15), let us apply
it to the same line source as in the previous Section. The transmission image source can
be written in the form

!

	

	 J0, P) = v.-X \6+(P) + Fl(Bh', p)) 6(y + osin.8)d(c — h'),

where the function F1' is defined as

F1'( Bh',P) H(H + i) C(H + hl )2 J (P) + (H — h')2J3(P))

and

H = H( h` ,P) = hO2 + (P/B)2 , ht = h + jticoaO.

a 4r	 .

(28)

(29)

(30)

en,f ^'
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The convergence condition Im[p] = 0 defines a path : = R(p), which consists of a part
of hyperbolic curve in the complex z plane [15]. To obtain an asymptotic result from the
exact image field solution, let us once again study the far field of the beam. Making use
of (12), the following approximation for If  large must now be applied instead of (13), for
X=O ' z<0-

D Do + qH (p). Do - ( y + jb4 itN)'= -t » 2 , 4 ` f I/Do cOA02 ,	 (31)

Thus, the field in medium 2 can be written in the approximative forte

/r oc,	 .

E( r) ^ -jwNOu :IG^2(Do) C1 + J F1'(Bh, , p)
e-1k29H(P)dp^ .	 (32)

Here, the Careen function is defined similarly as in (5), for the ntediuni l. 2 with k2
replacing k t . Applying an integral identity 115, eq. (17)), we can write for thi J 

expression
in braces in (32):

of

1 + J F(ghf,p)c jyH(r)dp -	
2y	 _ e-j 72, Q2h'	 (33)

o	 y +H2

	

Use of this and (see Fig. 3 for the different parameters)	 I
Do r + jbsinB9in02 r2 + iesinO2 ,	 (34)

with

d' = d + jbsin$,	 (35)
makes it possible to write ( 32) in the following form:

E(rj _1wµo6,I	 2j	 2k2cO862	 e_jk.2r2e-jkIsi.neldIc-ajkicosBiM	 (36)
4;	 7rk2ro kacosBt } k2cos9,;

Here, we have wade the far field assumption r2 » h, d, b, otherwise the expressions would
have been much more complicated. ( 36) can be interpreted in terms of geometrical optics
rays of the Gaussian beam, with a phase shift in each medium and a transmission coefficient•
at the interface. From this, an equivalent source point location; can be defined from the
divergence of two adjacent rays close to the beam axis B l = 9. Taking the combination
of the last two exponentials in (36), we may require, that the corresponding expression
for the image case has the same change when the angle 01 differs from the axial angle 8.
Writing for the exponential expressions

j	 k d'sin8 + h lcosd -	
A th.

*1 - -'7 '1(	 1	 1) - -'^	
+

cosBt	
k)bcos(B t - 9),	 {37}	 .t

k
	 L'242*2 = -jk2(dgsinO2 +h;'Qs92) _ _^cosd2 +k2b2 cos(82 - 60),	 (38)

(	 kls n9 bp;in9o,	 (39)
we may require that phase and amplitude changes' along the plane : = 0 be the same for
the original and the image case. This implies that the differentials of *1 and *2 are the
same:
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a

0 1 = d*2.	 (40)
When supplemented by;the condition between the differentials d0 j , d02i arising from Snell's
law k 1 shi9 1 = k2sin92 ,' ( 40) gives us the following expression for the unknown''h2:

k2C0s3o2
h2 hk lcos391' 

al At e.	 (41)

Because of L 1 = h/cosOli L2 :;; 11.2 /coe92 i the corresponding result for L2 is

LZ
` 
L 

k2cos202	
(42)

1 k1a	
"

which was also given in (5]. To obtain an expression for 62, defining the apparent source
location in complex space, we must study the real parts of (37), (38), The direction of the
vector is known from the main beam direction in the half space 2. The magnitude b2 is
not obtained from (40), since the first differentials vanish identically at 9 1 0. Taking the
second differentials of *1 and 4'2 and equating the real parts give` us the result

k2cas2B2
b2 = b	 , for e1	 B,	 (43)

rklcos261

which condition was also given in (5).
Thus, the location of the approximate image source can be obtained through two differ-

ent, approaches: the present exact image theory and the saddle -point asymptotic analysis
of Fourier integal representation of the transmitted field in ((5). The present approach has
the advantage of working with sources, which gives a more physical insight for the problem
in addition to being exact.

C'ONC 'LUSION

l In this paper, the exact image method, previously introduced for problems involving
sources in real space with two homogeneous media and a planar interface, is extended
to problems involving sources in complex space, This is possible because the analytic
functions of real space source position can be extended to functions of complex space
source position, which idea has - been applied before with success in diffraction problems.
The complex source point theory gives a possibility to aiialyze Gaussian beam problems
with a simple source instead of a complicated source in real space. The method has been
tested' in this paper by analyzing asymptotic (far field) expressions for a reflected and a
transmitted Gaussian beam, resulting in well known Goos•Hiinchen and angular shifts for
the reflected beam and apparent position for the transmitted beani. The present method
suggests itself for more exact calculation of the fields in these beams.

r;
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Figure I,
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Figure 2.

Angular shift of the Gaussian beam arising from an approximate image point source

wit li an imaginary shift vector a from the mirror image point y -uh + A.
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