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A VISCOPLASTIC THEORY APPLIED TO COPPER

Alan D. Freed and Michael J. Verrilli
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

A phenomenologically based viscoplastic model is derived for copper. The
model is thermodynamically constrained by the condition of material dissipativ-
ity. Two internal state variables are considered. The back stress accounts
for strain-induced anisotropy, or kinematic hardening. The drag stress
accounts for isotropic hardening. Static and dynamic recovery terms are not
coupled in either evolutionary equation. The evolution of drag stress depends
on static recovery, while the evolution of back stress depends on dynamic
recovery. The material constants are determined from isothermal data. Model
predictions are compared with experimental data for thermomechanical test con-
ditions. They are in good agreement at the hot end of the loading cycle, but
the model over predicts the stress response at the cold end of the cycle.

INTRODUCTION

A wide range of materials are used in devices that are designed to
function in high-temperature environments. Materials of high-temperature capa-
bility 1imit the designer in some applications, while materials of high-
conductivity capability 1imit him in other applications. MWhenever a design
application calls for a material of high conductivity, copper is often the
material of choice. For example, a copper liner is used in the regeneratively-
cooled main combustion chamber of the space shuttle main engines.

The prime objective in the development of a viscoplastic model, in the
authors' opinion, is to make it as simple as the physics and intended applica-
tion allows. The main reason for doing inelastic analyses is not to determine
the deformation response of a structure per se, but rather, to assess its use-
ful service life. Results from inelastic analyses are input to life assessing
schemes. These schemes typically require such quantities as: stress range,
mean stress, inelastic strain range, and percentages of creep and plasticity
that make up the inelastic strain range. It is therefore paramount that the
predictive capability of a viscoplastic model be capable of predicting these
phenomena with reasonable accuracy.

A viscoplastic model for pure metals is developed and applied to copper
in this paper. (Its extension to alloys is a subject of current research.)
This model is phenomenological, and consistent with the physics of inelastic
deformation in pure metals. Its mathematical structure is kept simple but ade-
quate, so that the model may be useful. Material constants are determined in
a straight forward manner from isothermal data. To begin to assess the model's
predictive capability, predictions are compared with experiments for the case
of thermomechanical deformation.



NOMENCLATURE

A,Do,Ds,h,H,L,n,Q,5,Tm inelastic material constants

Bi j back stress (deviatoric)

D drag stress

E,a,v eltastic material constants

5 = €45 - 1/3 skksij deviatoric strain

F.,g9.G,r,R,Z2,86 inelastic material parameters

k,T,AT Bg]tzmann's constant, absolute temperature, temperature
change

Sij = oij - 1/3 okk8ij deviatoric stress

1 - p C
X, = ‘/2 X554 norms X, = {52,82,22,82,82}

Sij Kronecker delta

eij strain

e?j, egj inelastic strains (deviatoric)
i j stress

Lij = Sij - Byj effective stress (deviatoric)

VISCOPLASTIC THEORY

The viscoplastic theory presented herein incorporates two internal state
variables; they are: the back stress Bji for kinematic or flow-induced ani-
sotropic hardening (which is deviatoric), and the drag stress D for isotropic
hardening. A simplified structure for this theory is assumed so that there is
no coupling between static and dynamic recovery terms in either of the evolu-
tionary equations. This facilitates the derivation of material functions for
the viscoplastic model presented later in the paper.

The proposed elastic-viscoplastic theory is characterized by the elastic
constitutive equations

E

and

. ¢t P
Si5 = T+ v (eij - eij) (1b)

and by the viscoplastic constitutive equations (cf. Freed (ref. 1))
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Repeated indicies are summed over. A dot placed over a variable denotes its
time rate of change. Strains, displacements, and rotations of the material
element are infinitesimal.

The flow equation, equation (2a), is consistent with the constructs used by
Prager (ref. 2) in his theory of plasticity. Contracting this equation with
itself results in the relationship
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which defines the Zener-Hollomon (ref. 3) parameter.

The evolutionary equation for back stress, equation (2b), is consistent
with the kinematic constructs used by Krieg (ref. 4) in his two-surface theory
of plasticity. Here strain-induced dynamic recovery competes against strain
hardening. This competitive process results in the back stress hardening up
exponentially to a 1imiting state L associated with kinematic saturation, and
thereby accounting for the strain hardening response observed in stable hyster-
esis lToops of stress versus strain.

The evolutionary equation for drag stress, equation (2c), is consistent
with the isotropic constructs used by Mitra and McLean (ref. 5) in their theory
of creep. Here thermally-induced static recovery competes against strain har-
dening. This competitive process accounts for the cyclic strain hardening
response observed early in the fatigue life.

For any viscoplastic theory to be thermodynamically admissible, it must

satisfy dissipativity (cf. Onat and Leckie (ref. 6)). For the viscoplastic
theory of equation (2), this condition requires that (ref. 1)
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resulting in the constraint
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which bounds static recovery from below. This constraint will seldom, if ever,
be realized in any given analysis but, nevertheless, it is a physically manda-
tory constraint. Static recovery is bound from below by another constraint,
too. The drag stress cannot dip below the minimum value Do associated with
the virgin or annealed state.

STEADY-STATE FLOMW

Before the viscoplastic theory of the previous section can be used to
model a material or a class of materials, specific forms for its material func-
tions O, r, and Z must be determined. Physically-based phenomenological
relations are used to meet this need. In this section, conditions of steady-
state flow are used to characterize the thermal diffusivity © and Zener-
Hollomon Z parameters.

The temperature dependence of this theory is largely contained within the
thermal diffusivity parameter, which is taken to be (cf. Miller (ref. 7)).

{;xp(ﬁg> ;o T2 %m
0= . (6)
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Diffusion-controlled dislocation climb is the primary rate controlling
mechanism of inelastic flow at the higher homologous temperatures, while dis-
location glide dominates at the lower homologous temperatures (cf. Ashby

(ref. 8)). Equation 6 represents the effect that these mechanisms have on the
temperature dependence of inelastic flow in a simplistic way.

Since the steady-state flow of metals can be modeled by a power-law at the

lower stresses and an exponential at the higher stresses (cf. Dorn (ref. 9)),
one can write the steady-state Zener-Hollomon parameter as

S ]
21 _/
l(s ) =1 (7a)




which is associated with the flow equation
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of Odqvist's (ref. 10) theory of creep. This Zener-Hollomon parameter is
defined in such a way that it is continuous and differentiable across the
interface Sy = S. Diffusion-controlled dislocation climb governs the inelas-
tic response at the lower stresses, while dislocation glide governs it at the
higher stresses (ref. 8). Equation 7 represents the effect that these mechan-
fsms have on the stress dependence of inelastic flow in a simplistic way.

VISCOPLASTIC MODEL

A specific viscoplastic model is formulated in this section by equating
the arguments of the transient and steady-state Zener-Hollomon parameters of
equations (2) and (7) under steady-state conditions. This enables one to
derive specific representations for the Zener-Hollomon Z and static recovery
r parameters that apply to transient and steady-state conditions alike.

Equating these arguments at steady state gives the equation

X S, - B S, -L S
2 2 2 2 2
E = D = D = D = S (8&)
thereby enabling one to define the function
S
L 2
g = S _ D = S (8b)

for static recovery at steady state, where 0 < D < S. This derivation makes
use of the facts that I3 = Sy - Bp and By = L at steady state (neither of
which is true, in general).

With the structure of the function G now established, it is useful to
reconsider the evolutionary equation for the drag stress, equation (2c¢).

Therein, the drag stress is defined to harden up at the rate héglG, which
equals h(S - D)ég/L because of equation (8). Therefore, like the back

stress, the drag stress hardens up in an exponential manner. That is, this
evolutionary equation for drag stress has the concept of dynamic recovery
built in without introducing a separate term for it. However, unlike the back
stress, the effect of strain hardening can never be completely canceled out by
the influence of dynamic recovery at the isotropic saturation of state. The
influence of static recovery is also required. This is because the drag
stress D must always be less than the power-law breakdown stress S in the
presence of a back stress Bjj.

By combining equations (7) and (8), one obtains the desired Zener-Hollomon
parameter
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Likewise, by combining equations (8) and (9a), one obtains the desired static
recovery parameter

fb ; D = Do

r(G) = (9b)
\g(g) ;. D> Do
N

where

{Z -1 g
R(G) = (9¢)
Lﬁ expln(G - 1)]//G ;o G > 1
since r =12/G and G = F at steady state. This static recovery parameter is
thermodynam1ca11y constrained by equation (5).

Since F and G are not restricted to be steady-state parameters, the
Zener-Hollomon and static-recovery parameters of equation (9) apply to tran-
sient and steady-state conditions alike.

DETERMINING MATERIAL CONSTANTS

For the viscoplastic model presented in this paper, there are two material
constants required to characterize thermal diffusivity: Q and Tm; three
material constants required to characterize steady state: A, n, and S; three
material constants required to characterize transient behavior: h, H, and L;
and one initial condition: Do. Thus, there are nine viscoplastic material
constants in all. Their values for copper are given in table I. Of these
nine, only four can vary with temperature; they are: h, H, L, and Do.

The activation energy for self diffusion Q and the melting temperature
Tm are handbook data.

With the thermal diffusivity now characterized, one can determine the
Zener-Hollomon parameter Z = égle at steady state and plot it against its

associated flow stress Sp. Such a data plot is presented in figure 1 for cop-
per. Each datum point from the literature represents the average of typically
four to six creep experiments, usually run at different temperatures but with
the same flow stress. Our fully-reversed saturated cyclic data are in agree-
ment with these monotonic data. Values for the material constants A, n, and

S are obtained by fitting these data to equation (7a). Such a fit is repre-
sented by the solid curve in this figure for the material constants given in
table I. These constants are quickly obtained by trial and error. The coeffi-
cient A translates the curve along the ordinate, the Norton exponent n
defines the slope of the curve in the power-law domain, and the power-law
breakdown stress S splits the stress domain into power-law and exponential
stress-dependent domains.



With the thermal-diffusivity and steady-state material constants speci-
fied, one can determine the material constants H and L from stable, stress-
strain, hysteresis loops, where the drag stress is saturated. Actually, an
interactive, nonlinear, least-squares, optimization program (ref. 15) was used
to fit H, L, and the saturated value of the drag stress Ds to data obtained
from stable hysteresis loops at room-temperature, 200, 400, and 600 °C.
Although it is not necessary to use such a technique, it is useful and expedi-
ent to do so in determining these particular material constants. An optimiza-
tion algorithm is also an extremely useful tool in assessing the validity of
proposed constitutive equations. The optimized values for H and Ds were
found to be independent of temperature, and their averaged values were deter-
mined. Only L wvaried systematically with temperature, and was fit with good
accuracy by an Arrhenius function of temperature (see table I). The experi-
mental and correlated, stable, stress-strain, hysteresis loops are presented in
figure 2 for your comparison. The material constant L determines the extent
of increase in stress from the onset of inelastic flow to the saturated state.
The material constant H determines how much inelastic strain is required to
go from the onset of inelastic flow to the saturated state. The fact that the
limiting state of back stress L diminishes with increasing temperature intro-
duces the effect of static recovery without introducing a separate term for it
into the evolutionary equation for back stress.

Two material constants remain to be determined; they are: Do and h.
Their values are quickly obtained by trial and error by comparing numerical
simulations with experiments. The virgin drag stress Do 1is associated with
the annealed yield strength. The material constant h determines the rate of
isotropic hardening, and can be determined from the first few stress-strain
cycles from the same experiments used to quantify the constants H and L at
isotropic saturation. The experimental and correlated stress-strain hystere-
sis loops at 200 °C are presented in figure 3 for your comparison.

EXPERIMENTAL DETAILS

The experiments were performed using a 90 kN, closed-loop, servo-
hydraulic, test system fitted with an environmental chamber. The isothermal
experiments were performed in vacuum, while the thermomechanical experiments
were performed in flowing argon. A high temperature axial extensometer was
used for strain measurement and control. Specimens were heated by a radio fre-
quency induction generator. A chromel-alumel thermocouple was used for temper-
ature measurement and control. The temperature profile along the gage length
of a specimen was checked using three thermocouples, and less than a 10 °C var-
fation was measured. A 16-bit computer was used to generate the strain and
temperature waveforms, and to acquire the data.

Both the isothermal and thermomechanical experiments were performed in
strain control at a constant mechanical strain rate. Prior to beginning the
thermomechanical experiments, the temperature of the specimen was cycled
between the desired limits, keeping the specimen at zero load. The tempera-
ture versus thermal-expansion strain data were stored and subsequently added
to the desired mechanical strain waveform in order to obtain the control wave-
form. These thermal expansion strains were subtracted from the recorded total
(thermal plus mechanical) strains in order to obtain the desired stress versus
mechanical-strain hysteresis loops.



The material studied was polycrystalline OFHC copper supplied in the form
of 19 mm round bars. Machined specimens were 120 mm in length, and had a 19 mm
tong uniform gage section. The diameter of the gage section was 9.5 mm. Each
specimen was annealed at 538 °C for 1 hr in vacuum prior to testing.

DISCUSSION

There is a need for relatively simple viscoplastic models with the capa-
bility of providing accurate input to life assessing schemes. In high-
temperature structural applications, three-dimensional stress states associated
with nonisothermal and nonproportional loading histories are the norm, not the
exception. The viscoplastic model presented herein was developed with this
need and application in mind. To retain simplicity, it was essential to model
only the first-order effects associated with the inelastic deformation of met-
als, such as isotropic and kinematic hardening. A second-invariant formulation
for the flow equation was adopted, and as such, the higher order effect of dis-
torting flow surfaces was neglected. Both the back stress and the drag stress
evolve in a competitive process between strain-hardening and recovery. In par-
ticular, the back stress was considered to recover by a dynamic or strain-
induced mechanism, while the drag stress was considered to recover by a static
or thermally-induced mechanism. The static recovery of back stress and the
dynamic recovery of drag stress were considered as higher-order effects, and
have therefore been neglected. A significant simplification is achieved in the
mathematical structure of the constitutive equations by not coupling static and
dynamic recovery terms within either evolutionary equation. In this regard,
the model is most unique. Each term and each material constant in the model
has an interpretation that is physically meaningful. The phenomenological
approach used to derive the material functions of this model is akin to the
approach used by Miller (ref. 7) in his model development; however, our focus
has been towards the simplified, whereas his focus is towards the detailed. 1In
addition, our Zener-Hollomon parameter is similar to the one used by Miller (a
hyperbolic sine raised to a power), but ours is more efficient in numerical
integration. The end result is a relatively simple viscoplastic model with
reasonable potential to achieve its objective. This model has recently been
implemented into a finite-element code, where it is being used to perform
structural analyses.

Thermomechanical experiments were performed for the purpose of assessing
the model's capability under uniaxial conditions. A comparison between experi-
ment and theory is presented in figure 4 for an in-phase test. Here the tem-
perature range was from 200 to 500 °C, and the controlling mechanical strain
rate was 1.5x10~2/s. The model does a good job in predicting at the hot end
of the cycle, but it over predicts at the cold end of the cycle. Problems in
accurately predicting the cold end response of thermomechanical hysteresis
loops seems to be a common flaw of viscoplastic models (ref. 16). Why this
model exhibits an excessive amount of hardening at the cold end of the cycle
is currently unknown. This is a disturbing result, since stress amplitude and
mean stress are often important ingredients in life assessing schemes. Never-
theless, it is encouraging to note that the model predictions are more accurate
than the often used rule-of-thumb, where stress amplitude and mean stress are
determined from saturated isothermal hysteresis loops associated with the
mechanical strain range and temperature extremes of the thermomechanical cycle.



The jagged nature of the experimental data is the result of strain aval-
anches (cf. Yan and Laird (ref. 17)). The digitally-stored data of figure 4
were acquired at too slow a rate to capture the details of the response. Fig-
ure 5 is an in-phase thermomechanical response curve for four consecutive
cycles, which more clearly shows the substructure of the hysteresis loops
associated with strain avalanches. Here the temperature range was from 316 to
427 °C, and the controlling mechanical strain rate was 2.5x10-9/s. Yan and
Laird observed this phenomena after cycling polycrystalline copper at room tem-
perature to half life, while in the present work, strain avalanches were
observed to begin at the onset of cycling in all thermomechanical experiments.
The strain avalanches are not random, as evidenced by the coincidence of the
four hysteresis loops. The spacing between the strain avalanches and the mag-
nitude of the strain avalanches are related. The longer the time interval
between two successive avalanches the larger the following avalanche.
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