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In this research, a simplified uniaxial strain-controlled creep damage law is
deduced with the use of experimental observation from a more complex
strain-dependent law. This creep damage law correlates the creep damage,
which is interpreted as the density variation in the material, directly with
the accumulated creep strain. Based on the deduced uniaxial strain-controlled
creep damage law, a continuum mechanical creep rupture analysis is carried out
for a beam resting on a high temperature elastic (Winkler) foundation. The
analysis includes the determination of the nondimensional time for initial
rupture, the propagation of the rupture front with the associated thinning of
the beam, and the influence of creep damage on the deflection of the beam.
Creep damage starts accumulating in the beam as soon as the load is applied,
and a creep rupture front develops at and propagates from the point at which
the creep damage first reaches its critical value. By introducing a series of
fundamental assumptions within the framework of technical Euler-Bernoulli type
beam theory, a governing set of integro-differential equations is derived in
terms of the nondimensional bending moment and the deflection. These
governing equations are subjected to a set of interface conditions at the
propagating rupture front. A numerical technique is developed to solve the
governing equations together with the interface equations, and the computed
results are presented and discussed in detail.
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1.  INTRODUCTION

Tertiary creep involves the process of fracture leading ultimately to
complete failure, and is associated with local reduction in cross-sectional
area and more importantly with the nucleation and growth of voids and
microracks along grain boundaries. This failure mode Jleads to eventual
collapse of a structural component and is known in the literature as creep
rupture or stress rupture. In order to meet the demands of designers and
engineers concerned with the safety of equipment operating at elevated
temperatures, researchers in recent decades have conducted extensive creep
rupture experiments from which they hope ta extract some wuseful
"extrapolation" parameters. Such parameters are '1nevitab1y limited by the
laboratory-allowed time scale and by the usual scatter of the empirical data,
but they are employed to estimate the appropriate stress and temperature
requirements for the practical service lives of equipment 1in operation.
Amongst such extrapolation parameters methods are the ones of Larson-Miller
(1952) [1], Manson-Haferd (1953) [2], Orr-Sherby-Dorn (1954) ([3], and many
others. Manson and Ensign [4] have presented an interesting review on the
progress in extrapolation procedures for creep vrupture; an excellent
discussion of these is also given in the text by Conway [5].

In parallel with the development cited above, other researchers including
some metallurgists have attempted to define and quantify a suitable variable
which describes the damage state and measures the extent of damage in
materials undergoing creep. The major hurdie in this line of research is the
manner by which ones bridges the gap between the scalar damage variable
obtained by macroscopic creep testing and the microscopic processes involved
in the nucleation and growth of voids and microcracks at grain boundaries.

Such variables are expected to be able to characterize the damage state from
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the physical and quantitative points of view, and furthermore to provide a
useful tool for analytical modelling via continuum mechanics. Amongst such
approaches are Robinson's linear cumulative creep damage law (1952) (6],
Hoff's ductile creep rupture theory (1953) [7], Kachanov's brittle rupture
theory (1961) [8], Robotnov's coupled damage creep theory (1969) [9], and many
other modified theories such as the one due to Leckie and Hayhurst (1974)
{10]. Comparative studies of the various theories may be found in [11-13].
Recently, scientists have observed a close relation between density change and
the nucleation and growth of voids and microcracks associated with creep
damage in polycrystalline materials. Extensive efforts have thus been made to
jdentify and quantify creep damage in terms of the density variation which is
attributed to cavitation in a creeping material. Following this concept,
Piatti et al [14] developed a refined experimental technique to measure the
density variation for use as a definition of creep damage. Using data
obtained in this manner for steel, Belloni et al {[15,16] proposed a
statistically-based damage law in a complicated power law form similar to the
one presented in Woodford's parametric study of creep damage [17].

Because of its inherent mathematical complexity, the creep damage law
proposed in [15,16] is somewhat inconvenient for analytical treatment within
the framework of continum creep damage mechanics. In addition, some
arbitrariness remains in the determination of the material constants appearing
in this damage law (see [18]). Accofdingly, the first task in this work is to
obtain a simplified yet still useful damage law. This task is addressed in
Section 2 where we argue first from the microscopic point of view that density
variation certainly is a proper index of damage in a material undergoing creep
deformation. We then propose a simplified uniaxial strain-controlled damage

law by introducing some assumptions based on experimental observation
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associated with the original damage law, and this strain-controlled damagelaw
is demonstrated to be closely related not only to the original damage law but
also to Kachanov's damage law (see [8]). We conclude Section 2 with the
observation that, whereas a typical boundary value problem suffices to
represent the problem in "the first stage of creep damage", we encounter in
"the second stage of propagation of the rupture front" a moving boundary
problem similar to the Stefan problem in heat conduction [19].

Utilizing the above strain-controlled creep damage theory, we present in
Section 3 a continuum mechanics model for the creep rupture analysis of a beam
resting on a high temperature elastic Winkler foundation which generates a
prescribed thermal gradient in the thickness direction. Based on technical
Euler-Bernoulli-type beam theory, we derive in Section 3 a set of governing
differential equations for a region with a moving boundary (rupture front)
which is prescribed by a set of interface equations. Owing to the inherent
nonlinearity of the problem, closed form solutions generally do not exist.
Accordingly, a successful treatment of the problem requires the application of
a suitable numerical technique which is then presented in Section 4. In the
latter part of Section 4, we consider a simpie case for which a closed form
solution does exist. We then present detailed numerical results for the
problems in which temperature gradient is taken 1into account and the
foundation is either present or absent. The results consist of the
nondimensional forms for bending moment, deflection, and the geometric shapes

of the rupture front.

2.  STRAIN-CONTROLLED CREEP DAMAGE
2.1 Creep Damage Law Under Uniaxial Stress

Virtually all load-bearing structural components operating at elevated
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temperatures undergo the typical 3-stage creep phenomenon. Various
phenomenological 1interpretations of the creep process have been devised,
usually employing the concept that creep is essentially a competition between
strain-hardening and recovery [20]. It is well understood that at elevated
temperatures a crystalline solid may deform 1in accordance with several
mechanisms such as dislocation creep and diffusion creep. Each such mechanism
is most active is some range of stress and temperature [21], such that within
certain regions of the stress-temperature space one mechanism is said to
dominate the others. The pictorial maps constructed by this concept are known
as Ashby's deformation-mechanism maps [21,22]. Raj and Ashby [23] have
pointed out that the creep mechanisms mentioned above are in fact an
"accommodation process" for grain boundary sliding. When a shear stress
causes sliding to occur at a generally nonplanar grain boundary, some
accommodation process (such as diffusional flow or plastic flow) is necessary
to heal the crystalline Structure at the deviation of the boundary from a
perfect plane. In the event that this accommodation process does not develop
fully at a boundary deviatidn during sliding, an "incompatibility" results in
the form of voids and wedge cracks along the grain boundaries which are
oriented roughlyl perpendicular to the tensile axis. As the material is
strained further the coalescence of voids and cracks eventually leads to
intergranular creep fracture. Clearly, as the cavity volume increases during
the process of tertiary creep and eventual fracture, the material dilates. In
this section, we shall focus on a strain-controlled constitutive continum
damage law based on this close relation between creep damage and cavitation
induced dilation in materials.

The type of damage described above 1is associated with power-law or
dislocation creep [23,24]. Steady dislocation creep under constant uniaxial
tensile stress o, 1is. found experimentally to obey the constitutive
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relation{25]

. n
e = AT o, (1)

in which n is the constant stress power. The reciprocal viscosity coefficient

A(T) is expressed as the Arrhenius equation
*
A(T) = A exp(-AH/RT) (2)

where A* is the relatively temperature insensitive pre-exponential cofficient,
AH the activation energy for creep, R the gas constant and T the absolute
temperature. Equation (1), which is also known as Norton's steady creep law,
will be employed to describe  the creep deformation process in the problem
considered later in this work.

From the phenomenological point of view, creep rupture can be separated
into two categories. Failure at high stress and low temperature is
characterized by pronounced lateral contractiens and the first continuum model
for this process is known as Hoff's duétile creep rupture theory (7]. OnAthe
other hand, 1low stress levels together with high temperatures result 1in
brittle type of rupture with 1little lateral contraction, and the first
phenomenological theory for this process was formulated by Kachanov [8]. We
shall not consider Hoff's theory further here (ample discussion is given in
[13,26]), but we shall now review Kachanov's theory briefly. Kachanov defined

the damage variable « for a one-dimensional test specimen in accordance with

A -A A
° e e

A A

° (-]

142



where A_  and A are, respectively, the original and the effective cross
sectional areas carrying the load. Clearly, cavitation creates new internal
surface area which in turn reduces the effective cross-sectional area carrying
the load. Thus, the material in its virgin state has the damage « equal to
zero, while the damage in a completely deteriorated material approaches
unity. A power law for the damage-rate was postulated by Kachanov for

variable one-dimensional stress as

ﬁ=ngv (3)

l1-w

where C,v are material constants, and where C may be temperature dependent.
Assuming that the material is initially undamaged, integration of the above
equation gives

1 - (1-0)"*= C('|+\>)I§ o’(t')dt! (4)

As pointed out earlier in this section, a close connection exists between
creep damage and the cavitation induced dilation of a material. Belloni et al
[15,16] have employed material density variation as the measure of damage in a
creep material using refined techniques. They proposed a damage law at

constant stress o, 1in the power form for the wuniaxial tension test

(]

D=ce o t (5)
C o
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where D= -4p/p,, p, is the density of the material in the virgin state, and
Ap is the change in density due to the volume dilation of the material. In
eqn.(5) e denotes the creep strain, and ¢, a«,v,8 appear to be relatively
insensitive to temperature, but c¢ is highly temperature sensitive. In analogy
with Kachanov's damage variable « , the damage D has value equal to zero in
the virgin state and is equal to a critical value at rupture Dr, which is a
material constant. Employing statistical regression techniques, Belloni et al
were able to correlate their experimental data with damage law (5). A close
inspection in.eqn.(5), however, reveals that some arbitrariness exists in the
determination of the material constants (for 'details see [18]). This
arbitrariness 1is a consequence of treating €. and o, as independent state
variables in eqn.(5), without considering the constitutive creep law. One
possible way of eliminating this arbitrariness is outlined by the sequence of
simp}ifications given below.

First, based on the findings in [16] and related work [26,27] we shall

make the simplifyig assumption

Yy = 4n (6)
It will be shown later that eqn.(6) together with v=n in eqn.(4) establishes
an equivalence between Kachanov's formulation and the current one. We further
assume that steady creep as described by eqn.(1) completely dominates the
deformation behavior, i.e., the material is non-Newtonean viscous. A

combination of eqns.(1) and (5), together with assumption (6), then gives

_ c ( tc+6 7
= — cs) (7
A(T)

]
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or

C atd
D = c (8)
S

-3
A(T)

in which eg is the creep strain under the steédy creep condition. It has

been found [28] that, for the rupture mechanism considered here, the product
of steady-creep-rate, és’ and the time-to-rupture, tR’ is a constant, i.e.

et =¢

s R MG
where CMG is known as Monkman-Grant constant which has the dimension of

strain. This relationship holds true for a wide range of temperature and

stress. Therefore, at rupture eqn. (7) gives

c a+d

D= —5 (Cye (9)
A(T)

where Dr is the critical value of damage at rupture. Belloni et a1's»data
[15] showed that the critical value of damage in the high temperature range is
relatively insensitive to temperature. The temperature independent character
of both CMG and Dr immplies that the B/A(T)6 in eqn. (9) must also be
temperature independent. Thus

c

A(T)

where ¢, is a temperature independent material constant. Substituting this

back into damage law (8) we then get the simplified form

D==c ¢ (10)
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Although a significant simplification has been obtained, damage law (10)
is still physically plausible. Note that, although damage is an explicit
function of strain along, it is an implicit function of temperature and stress
via creep constitutive law (1). In accordance with eqn.(10), a material
exposed to stress experiences damage directly related to the creep strain, and
rupture occurs as the available creep ductility is exhausted. Hanna and
Greenwood [29] showed, for copper with pre-nucleated cavities subjected to low

stress and with the creep rate linearly related to the stress, that

- < € (1)

Although a surprising analogy appears to exist between eqns. (10) and (11),
conclusions may not be easily drawn on the material constants in eqn.(10).
However, it does appear very reasonable to postulate that creep damage, as
measured by density variation, be expressed explicity as a function of creep
strain.

In many engineering practices, however, the stress may be varying with
time due to effect such as load variation and stress relaxation. The
extension of the original creep damage law, eqn.(5) , to the case of time
dependent wuniaxial stress has been presented in [30]. In the case of
simplified eqn.(10) it suffices to employ the integrat form of creep strain
for variable stress, and thus integrating ;s = A(T)o(t)n we obtain

t at§
D(t) = C.{ j A(T) cn(t')dt'} (12)
(]
Here, the reciprocal viscosity function, A(T), is retained inside the integral
sign, in order to allow for the situation in which the temperature varies with
time. If v=n in Kachanov's theory [see eqn.(4)], eqns. (4) and (12) assume a
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very similar form; a more detailed comparison of strain-dependent theory with

Kachanov's approach is given in [31].

2.2 Propagation of a Creep Rupture Front -- The Moving Boundary Problem

A nonun1formrstate of stress may be introduced by the irregular geometry
of a structure, nonhomogeneous material properties, and nonuniform external
loads. Under such circumstances the creep damage within the structure would
be a function of the space coordinates in addition to time. Creep damage
starts accumulating in the structure as soon as the loads are applied. As
time elapses, the creep damage at some point within or on the surface of the

structure would first reach the critical value, D at which rupture takes

r'
place. This initial rupture time, tI’ is determined 1in accordance with
eqn.(12) as ¢
I a+|8
Dp = C{f A(T) «“(mw} (13)
o

A rupture front then develops generally as a smooth surface, and starts
propagating through the structure until the entire structure collapses at some

time t It is readily seen that the lifetime of a structure may be divided

II-
into two time intervals or stages, i.e., 0 < t < t and t;< t <ty In

the first stage 0 < t < t which has been termed the stage of latent

I'
failure by Kachanov [8] or the incubation period by Johnson [32], the creep
damage is assumed to be less than the critical value (Dr) everywhere 1in the
structure. In the second stage tI <t <t which has been termed the

stage of propagation of rupture, a rupture front § along which
(14)

travels through the structure and complete collapse occur, at tII‘
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A condition on the direction of travel for the rupture front } may be
obtained by taking the total time derivative of eqn.(14). Accordingly, we
obtain

8D , @D dN _
at = aN dt

in which N designates the coordinate normal to the rupture front. Similarly,

the geometry of the rupture front § is constrained by

dx
8D _ 9 7§ _
at T ox| 3t 0 (15)

in which the xj are the space coordinates.

This type of problem, more generally called moving (free) boundary
problem, is well-known in heat conduction [19] with phase change and is known
as the Stefan problem. Although the Stefan problem and the creep rupture
problem share analogous mathematical characteristics, there are some
significant physical differences. Instead of the temperature profile of the
Stefan problem, we are now more concerned about the mechanical behavior of the
structure, such as the coupling between the stress redistribution and the
speed of the mov1n§ boundary (rupture front). Owing to the inherent
nonlinearity of the problem, closed form solutions generally do not exist for
moving boundary problems with a finite damain. Accordingly, a successful
treatment of such problems will require the application of a suitable
numerical technique. A thorough discussion and comparison of numerical
methods currently used for moving bodndary problems is given in [33]. Details
of the numerical technique which we shall choose will be disclosed in

subsequent sections as the need arises.
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3. CREEP RUPTURE IN A BEAM ON A WINKLER FOUNDATION
3.1 Statement of the Problem

The beam problem to be studied is depicted in Fig. l1a. We consider a
beam continuously supported by an elastic Winkler foundation, which exerts a
restoring force as the beam deflects under the action of a distributed lateral
load. Since the foundation is at an elevated temperature, a prescribed
thermal gradient is assumed to exist in the z-direction (thickness) of the
beam. It is assumed that this prescribed temperature distribution through the
thickness of the beam is independent of time during the deformation and
rupture processes. The physical model used to analyze the problem is shown in
Fig. 1b. Here, the elastic foundation is modelled as an infinite series of
infinitesimal springs with an elastic constant K [34], 1.e. as an elastic
Winkler foundation. Creep deformation starts to accumulate in the beam as
soon as the lateral load is applied. In geophysical research this type of
flexure model has recently yielded some interesting results on lithospheric
flexures (eg. see McMullen et al [35]), where the temperature variation with z
is due to the geothermal gradient and the Winkler foundation is due to the
underlying mantle. In addition to the creep deformation, we shall also
consider the effects of creep damage using the concepts previously developed.
In brief, it is our major goal here to explore the propagation of a creep
rupture front in a non-isothermal beam under distributed lateral load. During
the second stage of damage the beam 1is thinning in a non-uniform manner, and
accordingly the cross-section of the beam is not constant (see Fig. 1c). It
will be seen 1later that a moving boundary problem is encountered as a
consequence of this thinning behavior.

The problem presented here is extremely complex in nature. In order to

reduce the mathematical difficulties somewhat, we present below a series of
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simplifying assumptions. Firstly, we assume that the material in the beam
obeys the Norton law of steady creep, with viscosity dependent on the
prescribed temperature gradient. Although the beam 1is of non-uniform
cross-section during the second stage of damage, we assume that technical
Euler-Bernoulli-type beam theory 1is valid throughout the entire process of
creep damage. We also restrict our consideration to the case of small
deformations and small rotations. Furthermore, we assume that no major cracks
form in the unruptured segment of the beam during the process of rupture, and
thus the effects of stress concentration at crack tips are excluded from the
current study. Finally, we assume that the shear stresses are negligibly

small when compared with the axial stresses due to ?lexure.

3.2 Mathematical Formulation of the Problem
The constitutive law governing the creep deformation in the beam is

assumed to be of the Norton type [eqn. (1)]:
. n
€. = A(Z)o (16)

Here the stress state o may vary with time as well as with the x- and
z-coordinates. Note also that the reciprocal viscosity coefficient function
A(z) is an implicit function of z via the temperature distribution (see Fig.
1c).

The geometry of the beam 1is shown is Fig. 1c¢; it has a rectangular
cross-section of width b and thickness h and the length of the beam is 2L.
For simplicity we will consider symmetric loading and thus only symmetric
deformation in this work, and therefore only half of the span of the beam need

be considered. Employing Euler-Bernoulli-type beam theory with h constant, we
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may derive the expression for stress in terms of the bending moment M as

1l
M z-eon
P 17
o J'O(A(Z)) (17)

where e, 1s the distance to the neutral axis (marked as N.A. in Fig.1c).

Also, the governing equation in the bending moment M is obtained as

3
asM M. 3P (18)
axe0t K(Js ) ax* at
o

where P is the applied lateral 16ad, and we have introduced the notation for

flexural rigidity

. llo z'-e
u’% =b f [ZT;T;]n z'dz’ (19)
o

The R.H.S. of eqn.(18) vanishes if we assume that the applied lateral load

P(x,t) is expressed mathematically in the form

P(x,t) = P, f(x) H(t) (20)

where P, is the maximum load at x=0, f(x) is the symmetric shape function and
H(t) represents the Heaviside unit step function. For a viscous material

governed by eqn. (16) we have the initial condition in M as

daM(x,0") (21)
e = -f(x)
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For further simplicity, we also assume that the beam is simply supported at
both ends and that the 1lateral 1load vanishes at both ends. Due to the
symmetric nature of the probltem as previously mentioned, the boundary

conditions follow as

aM _ M

ax 933 -0 at  x=0 (22a)
02M

g3 " M=0 at x=L (22b)

It is important to point out that the neutral axis does not coincide with
the centroidal axis in this beam problem since the viscosity is inhomogeneous
due to its dependence on a non-uniform temperature distribution [36]. Since
the axial force is zero in this problem, the distance to the neutral axis €,

may be determined in the first stage of damage from

o z'-e 1
I Gl e =0 (23
[ o]

It is our task now to extend the above mathematical formulation, which is
Qalid only for the first stage of creep damage, into the second stage of creep
damage. The shear stresses in technical beam theory are usually negligibly
small when compared with the axial stress. It is thus reasonable to utilize
the uniaxial strain-controlled damage law. The creep damage then follows from

eqn. (12), which with the use of eqn. (17) yields

t
M o+ 8
D(x.z.t) = ¢ {j [ (z—eo)dt’} (24)
P o
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Experimental evidence [37] has shown that there 1is virtually no creep damage
in a crystalline material under compression. Therefore, the above equation is
valid only 1in the region eo<zgh0 (see Fig. 1c), while the creep damage is
assumed to be identically zero in the remainder of the region. The initial

rupture time t. may now be obtained from the implicit relation

I

X+ §

t
I
Der = ¢ fJ' [;f]n (z-eo)dt'} (25)
o [+]

where the initial rupture clearly occurs at the midpoint of the bottom fiber
(i.e. x=0 and z=h°), since it is there that the tensile strain is maximum in
magnitude.

Rupture thus starts at the point x,z=0,h0, and then develops into a
moving front which 1in turn causes the beam to thin (see Fig 1c). We shall
call the region 0<x<&(t) the thinning zone, and the remaining interval
5(t)<x<L the uniform zone since this interval is of uniform thickness. The
quantities h and e; which designate the thickness and the distance to the
neutral axis within the thinning zone of the beam, are clearly function of x
and t. Furthermore, the flexural rigidity 0 in the thinning zone is also a
function of x and t since it involves h and e. Governing equation (18) with P

given by eqn. (20) may now be restated in the thinning zone as

+xdhHn - o 0<x<8(t),  tylt (26a)

+ K(=—) =0 5(t)<x4L, tI_<_t (26b)
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where

hi(x,t)
J-j(!pt) =} f
[+]

[Z"Q(!.t)

1
IO pa, oG, gt (27)

It ts readily seen that governing equations (26) are subjected to a
moving Jjunction, which separates the thinning zone from the uniform zone.
Note that the upper 1imit h(x,t) and the quantity e(x,t) in integral (27) are
changing and unknown functions, and thus we must obtain conditions which
govern the variables h,s, and e. It may be shown that if the rupture front J
is prescribed as

T z = h(x,t) tydt

eqn. (15) can be rewritten as

a o ap
at "3t oz ° trt (28)

Substitution of the expression for damage [eqn. (24)] into the above equation

yields after some manipulation

LN

at F \

O Ly

(‘%)ndt‘} ., 0<x(B(t), o<t (29)

The creep damage at the junction point Q in Fig. lc with coordinates

x=8(t) and z=h_ should be equal to the critical value, i.e.

D(x,z,t) =D, x=b(t), z=h,, tylt
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Following the same procedure employed for eqn. (29), the total time derivative

of this equation now gives

t
a8t) o, [ tongM

Note that the quantity J(x,t) does not appear in the above equation as it is a
constant at the junction point Q (see Fig. 1c).
Finally, eqn. (23) for the distance to the neutral axis of the beam now

becomes for the second stage of creep damage

h(x,t) 1
j~ [z'-e(x.t)]n ,
S YPORE dz’' =0 , 0<x<8(t), ty&t

Differentiating the above equation with respect to time we obtain the equation
1 _
1 n n !
de . h-e ]n (_a_li) / II (z'-e)
at A(r)d ot \ 1

° azn1®

where A(h) is the reciprocal viscosity function A(z) evaluated at z=h.

We have thus obtained governing equations (26) subjected to jnterface
equations (29), (30) and (31), and we must solve these equations for the
unknowns M,h,8, and e with boundary conditions (22). Although boundary
conditions (22) are not applied at a moving boundary, we do have the interface
equations which are applied at the moving junction. We shall thus use
familiar terminology and call this problem a Stefan-like problem. It is
readily seen that the present nonlinear problem 1is very complicated and
numerically cha]]enging;‘we shall present its numerical solution in the next

section.
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4. NUMERICAL TECHNIQUE AND RESULTS
4.1 Solution Technique

For convenience we introduce the following nondimensional variables:

- t - - ¢ &
t=—, (t =1) = - = —
ty I ) h, 8 L
- x - D
=3, (0G) b=— . (04Bc1)
cr
- z - A(z)
z = ‘l: » (0&2‘_1) K = m (32)
h : - f
k= z R (E°=1) $ =‘F
v-X B
Po poLz

In the above, \;* represents the flexural rigidity of a beam at a uniform
temperature Tu’ where Tu is the temperature at the upper surface of the

present non-uniform beam. Thus

* nbh
S = 1 (33a)
n
2(2n+1)[2A(2=0)]
and
1 .
(12)2;4.lh sr-% 2
- +2n 2'-¢ 9N -
= [ ] z'dz’

We now follow the practice that unless otherwise noted all variables without
bars appearing in this section from this point on will be dimensionless

variables. In accordance with the above definitions, governing equation (18)
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may be reformulated in terms of dimensionless variables as

s Min
2)8 o 34
ax‘at * Bq(po) o ( )

in which we have introduced the dimensionless quantity

~1;2n+2
Kt{Py 'L

B=— (35)
o

The variables appearing on the R.H.S. of eqn. (35) are all in dimensional
form, andt¢: is evaluated by setting h=ho in edn. (33a). Note that the
quantity B will be the key parameter in the present nondimensional study.
Employing the same techniques presented in [35], we may eliminate the
spatial partial derivative appearing in eqn. (34) for the first stage. We

thus obtain the integro-differential equations

aM ‘ " 1 M
—;7= % { F(x'!')ﬁiF)ndx' + I G(x.x')(——)ndx'} (36a)
[+ [} o o
where
F(x,x') = —(x-x")’ (36b)
6(x,x') =3x> - 3x7x* - x'’ +3x'" -2 (36¢)

The numerical solution to the above equation with geophysical data for a beam

of constant thickness was presented in [35]. Here, we will employ a numerical
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technique other than the one presented in [35]. A discretization scheme using
the method of lines in space is obtained from the above eqn. (36a). It

follows that

M, Xy 1
i g/ M .a M\n } (37a)
—_— = F(x;,x") (—)"dx’ + | G(x;,x*)(=)"dx'} ,
at & \{ SN J otz 5
i=1,2 N.
» P A 2
oM
i
it 0 N2
where

1
x; = (i-1)Ax = E (i-1)

Note that the first integral in eqn. (37a) vanishes at i=1, egn. (37b)
corresponds to boundary condition (22b), and N2 designates the number of
spatial increments. Evaluating the integrals by the Newton-Cotes formulas, we
thus obtain a system of ODE's which may be solved by Gear's stiff ODE
algorithm [38]. The result obtained above furnishes the solution in the first
stage of damage, and provides the initial data for the second stage of damage.

Returning now to eqns. (26), we may again integrate out the spatial

derivatives to obtain for the thinning zone in the second stage

oM x 5(t)
B ’ M Ry e . (M Dyx?
7t =3 {J- F(x.x )Sf) dx’' + I G(x.x )Ez) x
(] [+
( ¥ ngee (38a)
+ G(x.x") (g)%ax’ 0Lx<a(t), 1<t
5(t) °
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and for the uniform zone

- 5(t) x M
= B 1y (M ’ Yy ()8 '
2t 6 {I F(x,x )(Z)ndx + f F(x.x )('ﬁo) dx
o 8(t)
5(t) 1 M
+ j G(x.x')ﬁ%)ndx' + j G(x.x')ﬁ;r)ndx'} , 0<x<8(t), 1<t (38b)
o 5(t) °

where f was defined in (33b), and F(x,x'), G(x,x') were defined in egns. (36
b,c). Note that we have used continuity of M and its derivatives at the
junction point, e.g. M(x=6(t)+.t) = M(x=8(t) ,t). In other words, the bending
moment, shear force, deflection, and slope of the beam are all continuous at
the junction point.

In order to mathematically fix the moving junction and the 1limits of
integration appearing in eqns. (38), we employ the concept of Landau's

transformation [39] and introduce the variable changes

[ =—— , for thinning zome 0<x<8(t) (39a)
8(t)
x-8(t) . ; 29
NS T ¢ for wm form zone §(t)<x<1 (39b)

Under such a transformation the partial time derivative a( )/at is replaced

by the substantial time derivative D( )/Dt in accordance with

8( ) D() dx a()
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With the use of the chain rule, the transformed governing equations are

obtained for the thinning zone as

4 1
DM ds(t) oM B f oy (Myn ' ’ H Nare
ki — 4+ s(t) [ Fee.z) G az'+8(t) § G(z,3") ()74t
Dt _ 5(t) dt ac O { AN 4 { F
1 .
+[1-8(t)] I G(c.n')&;—)ndn' } ., 0<£z<1, 1t (40a)
A
[+]
and for the uniform zone as
1
DM 1-n  as(t) oM p J . n
Dt " ToE(o gt an T 8 \8(8) f Fan.ch (hRaseli-6(e)] jp(n.wj— s
(o] (]
1 1 M
+8(t) f G(q,cn)(ﬂ)ndcr+[1-5(t)] f G(n n')(——)ndn'} 0<n«1,
. , (40b)
o 'f ° Jo 1t

Similarly, an application of Landau's transformation to interface

equations (29),(31) yields

Dh 4 ds(t) oh
Dt B0 ar - Pre f.f[;]“dt} . 0<r<l, 1<t (41)

and

Dt  8(t) dt 3z "ot T 5o e A(h)
1
}(z'-e) \
S Y R T
{ o) < 1<t (42)
[A(z")]
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The transformed interface equation (30) has the slightly different form

das(t)

at at ' (43)

t
= -5(t)M® /. {n I yn-1 E—M- dt'\ =1, 1<t

(o]
since &§(t) involves only the single variable t. By virtue of variable
changes (39), the substantial (material) time derivative D( )/Dt appearing in
the above transformed equations possesses a numerical value identical with
[a( )/at]c or [a( )/at]“. It should be noted that fixing the moving junction
unfortunately leads to governing equations of even more complicated form, and
the above set of equations surely will not have a closed form solution. A
numerical scheme will now he presented.

First, the method of 1lines in space [40] is utilized to eliminate the
spatial derivatives from the above integro-differential equations in
accordance with the discretization scheme shown in Fig. 2. Accordingly, we
employ the central finite difference approximations for the interior points

and one-sided three point formulas for the end points A,B and the junction

point Q (see Fig. 2). Accordingly, eqns. (40-43) yield the followina:

t
ds(t)
= -1 1\ =
dt 24% 8(t) M3 / {“ Jougmong p-amg_ped;at J i=Nj+1  (44)
[o]
1 1
g 5(t) [ 60zs ) MhBacr+l1-8(6)1 [ G(gun’) () Ban’f, =1
Dt [ i’ N CisM P n’'r. =1 (45a)
[+] o o
DM L 54
i i as(t) : B{ vy (Mymg e
= M., +M. 41+ 5(t) F(z.,7") (F)"dL
Dt 2AC &(t) dt M54 t¥ 1 5 { i $
(45b)
1 1
Myn, .. .)(b_(_)nd ' i=2,3,...,N
+8(t) [ 6z5, 50 (@Racr+l1-6()] [ etzym Foman BaeeNg
()
[o] (o]
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DY 5 as(t) R
- 4%
Dt ZAI; 5(t) dt [Mi"z 4“1_1"‘3“1]"‘ {5(t) IF(CioC )S}) dc
[+
1 1 y
+8(¢) jc(;i.c-)&’é>nd;-+[1-a<t>1 fG(ci.n')(j—)“dn
o o °
DMy 1-ny a8(t) B/ ; M
= - 1y (Myn ’
Dt 2An01-6(t)] 4t My41-My-11+ § \s(t) I Flng. ¢ )ﬁﬁ) a
(o]
ny y 1
+[1-8(0)1 | Fing.n') (G n'+8(¢) fc(ni.;')g)ndc'
o ° o
1 M
+[1-8(t)] js(ni.n-)(f)ndnv } 1=Nj+2 N 43, L NN
o [}
DM,
3;— =0 » i=N1+N2+1
Dh. M. tou,
1 _ in f 1.5 } .
—_— i h.- - ) s -
o (Jiulei)/Lj(yi)dt i=1
[+
Dh, z M. t M,
i i ds(t) in
Dt 2AZ 6(t) at [hi+1_hi—1]'(~¢_i) (hi-e;) /{ f % ndt'
[+]
i=2,3, N
Dhy
e -0 i=N;+1

'} »  i=Ny+l (45¢)

(45d)

(45e)

(46a)

(46b)

(46c)



Jr=s

De Dh h,—e; & i (z'-e )n -
i i cbi—ei g z'-ey
= —————— ’ = 47a
pt Dt [A(hi)] / G P } - (#r2)
n
[A(z")]
De; %y as(t) Dhy %i . ds(t)

Dt~ AT 8(0) at  Li+17®i-1] +n[Dt T AL 5(1) dt (bip1-hy-p) ]

1,
1 h n
hi~e; & / i (z'-e;) \
—_ az'h, i=2,3,...,N 47b
[A(z")]
Dei
TS o, i=N;+1 (47c)
In the above
1
Ly = (i=-1)AZ = — (i- i=
i ) C Nl (1 1) » 1-1.2.....N1

. 1
ni = (I—Nl_l)An = 'N—z— (i_Nl-l) » i=N1+13N1+2.ooo;Nl+N2+1

AC= » A'ﬂ='—

1
N1 N
and N],Nz designates, respectively, the number of spatial 1increment in
thinning zone and uniform zone, and.in is obtained by setting h=h1 is eqn.
(33b).

Note that eqn. (45e) corresponds to boundary condition (22b). Moreover,
Dh/Dt and De/Dt as given by egns. (46¢) and (47c) vanish at the junction

point, since at any instant we always have h=1 and e=eoat this point. The

163



integrals appearing in the above set of equations were evaluated by use of the
Newton-Cotes formulas. We thereby obtained a 1large system of 3N]+N2+4
ordinary differential equations. A computer program was developed first to
solve eqn. (23) for e, and then to solve eqns. (37) for the Mi's using the
initial bending moment function (see Sec. 4.2) as the initial condition. We
then used these results along with h1=1, e1=eo, &§=0 as the initial conditions
to solve the system of QODE's, eqns. (44-47).

It is also useful to compute the deflection of the beam. This can be
accomplished by substituting the above bending moments Mi into the

nondimensinal form of the equation of equilibrium

2
aM
= -P + Kw

- 7
3 X

However, this approach leads to considerable numerical error due to the
presence of the derivative term in the above equation. An alternate and more
accurate approach is to develop differential equations in the deflection. The
same solution technique used for the bending moment is also applicable to
these differential equations in the deflection. For the sake of brevity, the
resulting equations will not be presented here (see [18]). An even larger
system of 4N]+2N2+5 ODE's 1is obtained in this case. A high accuracy yet
costly numerical algorithm, i.e. Gear's stiff ODE algorithm, was used to solve

this system.
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4.2 Solutions and Discussion

Our attention is first directed to a special case in which closed form
solutions exist. Thus, let us delete the elastic Winkler foundation and also
consider a beam with a uniform temperature distribution equal to Tu (a
dimensional quantity). Under such circumstances, the bending moment M remains
constant in time, and the neutral axis coincides with the centroidal axis
owing to the homogeneous nature of the material properties. Moreover, we have

the following values for the dimensionless quantities [see eqns. (32) and (33)]

e=%h

A(z) =1
1.

F=n

The dimensionless governing equations for h,e [see eqns. (29) and (31)] in the

thinning zone (0 <x<§(t)) follow for this special case as

-2n
dh b
.- . 1<t 48a)
ot t £ (
o]
de dh
=2 - , 48b
it 2 at 14t ( )
and that for &(t) becomes
as(e) ___M x=6(t) , 1<t (48c)
dt
L
n ox
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Note that these equations may be solved consecutively and that eqns. (48

a,b) include neither the x variable nor the 1input 1load function P(x,t)
explicitly. Physically, eqn. (48b) 1indicates that although 2eo=h°=1
initially, both quantities will be equal to zero at the instant the beam
collapses. After eliminating the integral via differentiation, eqn. (48a) may
be rewritten as

2 oh

— [Z= « 42027 _ 49

3t L3 " B ]=o0 (49)
This differential equation may be solved analytically with the {initial

conditions

and

. F at t

where tI=tI(x) designates the time required for a material point with
coordinates (x,1) to reach the critical state. The second initial condition

in the above was obtained by setting t=t_ and h=1 in eqn. (48a). The solution

I
to eqn. (49) is then obtained as

t 2 2n-1 1+2n

tp  1za X T 1aa c 0t . gt (50)

which is identical to the result derived in [8].
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?he solution to eqn. (48b) for e then follows directly from the solution
of eqn. (50) for h. Here tI(x) may be expressed in terms of the bending
moment M(x). Since the point (0,1) reaches the critical state at time t=1

while the point (x,1) ruptures at time t=tI(x), it follows from eqn. (25) that

M

tr(x) = (GO (51)

Here, Mo and M represent the bending moments at points with x-coordinates

equal to 0 and x, respectively. Equation (50) thus becomes

+2
(!Lo“t UL 2 1420 0<x<8(t) , 1<t (52)

M, 1-2n 1-2a '

Although differential equation (48a) in h does not explicitly involive the
variable x and the bending moment M, its solution (52) is seen to be directly
related to M.

The function tI(x) in egn. (51) may be inverted in the simple case that
the bending moment M(x) is monotonic in nature. In fact, for such a simple

case the constraint on the moving juntion

x = 5(t)
is invertible and is physically equivalent after inverstion to
t = tI(X)

Consequently, witht he use of eqn. (51), eqn. (48c) attains the alternate form

as mo+l
di” - - i x=5(t) , 1<t (53)

oM

n

g =
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Consider for the moment a very simple case in which a point-load is applied on

the beam at x=0. The bending moment for this load is simply given as

M= M (1-x) (54)

and differential equation (53) becomes

ds(t)
dt

=1 (-s(ey12t1, 1<t

With the initial condition § at t=1 equal to 0, the above equation yields the

solution

8(t) =1 - ¢ , 1<t (55)

B

Note that solution (55) 1is also obtainable from the solution (52) by setting
h=1 and using expression (54). The solutions of this special closed-form case
are now complete.

We thus turn our attention to the original problem, containing in general
both the Winkler term and a temperature gradient. A singularity appears in
eqn. (39a) at time t=1 when &=0, and this leads to numerical difficulties.
This obstacle may be circumvented by introducing an "imperfection" [33] in
eqn. (39a). Here, we follow the latter approach and introduce an imperfection
in & as

8(t) = 1.0x10~° at  t=1

Moreover, the temperature in the beam is assumed to be linearly distributed in

the z-direction in accordance with (see Fig. 1c)

T=T, + (Tb -TJ)z . 0<z<1
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where the dimensional surface and bottom temperatures are chosen respectively
as

= o] — [o]
T, = 300°% , Ty =360°%
Also, we use for the creep activation energy the dimensional value

AH = 0.112x10° T'mole™?

Note that because of the nondimensional form of our governing equations it was
not necessary to stipulate a specific material. Finally the number of

increments chosen in the present beam problem were

N

] 5 for the thinning zone

N

i

2 10 for the uniform zone
which yield a total of 29 0DE's, or 45 if the equations for deflection are
also included. In order to limit the complexity of this nonlinear problem,
only the uniformly applied load is considered here. In this case, the shape

function [see eqn. (20)]1 of the applied load is simply
f(x) =1, 0<x(1

The jnitial bending moment function M(x,0+) is obtainable from egns. (21) and

(22), and is given as

M(x,0%) = (x*-1)/2 (56)

which will be used as the initial condition for egns. (37).
The results we shall present may be separated into two groups, i.e. those

with the foundation present and those with the foundation absent. 1In the
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latter case of the foundation absent, we have from eqn. (35) B=0 since in this
case the spring constant for the foundation is identically zero. We consider
the B=0 case first, and note that here the bending moment is independent of
time, and is thus given simply by eqn. (56) after the 1lateral 1load is
applied. (For the B=0 case, we did not calculate the deflection of the
beam.) Figures 3 and 4 display the propagating rupture front for B=0 in the
second stage of damage for n=3 and 5, respectively. In these figures the
depth and axial coordinates z,x of the beam are given in nondimensional form.
The sequence of curves inside the beam trace the propagation of the rupture
front as time ellapses. The &(t) function at time t is given by the distance
along the bottom surface (z=1) from the point x=0 to the intersection of the
curve for time t with the bottom surface. Note that the beam of n=3 material
exhibits a wider thinning zone than does the beam of n=5 material. It would
appear that the rupture front of the n=5 beam propagates faster than that of
the n=3 beam. But you are reminded that this observation is made for a
nondimensional time scale and will not necessarily follow for dimensional
time. Each set of these curves for a parameter n required about 1 minute of
computer time (CPU).

We now turn to the general case with the Winkler foundation present. Tlhe
dimensionless parameter B ([see eqn. (35)] contains a group of constants
including the spring constant of the foundation, applied load, geometry and
material properties of the beam, and is considered arbitrary in the present
nondimensional study. Here we chose for illustration the value B=1 which
requires that the numerator and denominator 1in eqn. (35) be of the same

order. In addition to the bending moment M, we also computer the deflection w
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for this case. Due to the complicated nature of the governing large system of
ODE's, a considerable amount of computer time was required to complete one run
for a specific value of n. Thus we limited the computer time to 1000 seconds
(about 16.7 minutes) per run, and accordingly obtained a reasonable number of
solution curves for time steps in the early part of the second stage of
damage. The computations could have easily been extended up to the point of
final collapse of the beam, but for reasons of economy this was not done.
Figures 5a,b give respectively the nondimensional deflection of the beam
for values 3 and 5 for the stress power n. Since the chosen load is uniformly
distributed, these curves do not exhibit the characteristic "uplift" which
often occurs under centrally concentrated loads orkpoint loads on a beam with
a Winkler foundation [34, 35]. According to the flexural model presented in
[35], the deflections of a beam which experiences no damage approaches an
asymptotic 1imit as the time tends to infinity. Howrver, no asymptotic
deflection solution exists in the present problem, since damage causes the
beam to thin and accordingly the deflection is unbounded. This may readily be
seen in Fig. 5Sb, in which the increment of beam deflection 1is clearly
increasing in the final few time steps shown. Although we have used Norton's
steady creep law, egn. (16), to describe the creep behavior of the material,
the nature of the deflection shown in Fig. 5b is similar in form to the
typical creep curve with its three stages of creep. Such behavior coincides
with the recent experimental investigations [41, 42] in which a beam with a
deep notch was subjected to a uniform temperature and point load. This can be
explained by the fact that as the beam starts thinning the remaining material

carries the same load but with greater stress.
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In [35] where no damage was included, McMullen et al noted that the
bending moment relaxes after the load is applied and approaches zero as time
tends to infinity. Fiqures 6a,b exhibit this same relaxation of the bending
moment in the more general case where damage causes the beam to thin.
Furthermore, Fig. 6b shows that the relaxation of the bending moment
accelerates in the final few time steps shown; it is believed that Fig. 6a
would also do the same if the computer time had been extended. Since the
1ifetime of the beam is finite, the beam should collapse before the bending
moment vanishes. Figures 7a,b display the propagating rupture front for B=1
with n=3 and 5, respectively. As in the B=0 case, the rupture fronts in the
present case have sharper profiles in the n=5 beam than in the n=3 beam. And
the rupture front for the n=5 beam propagates faster than that for the n=3
beam relative to the nondimensional time scale. We also point out that the
numerical scheme for the system of O0DE's presented in the previous section is
stiffer for n=5 than that for n=3, since within the chosen limit of compute
time (100 seconds) the final time step reached was t=1.90 for the case of n=3
and only t=1.60 for the case of n=5.

It should be noted that the results displayed may contain some numerical
error in the later time intervals, since we are restricted by the limitations
of infinitesimal strain and small rotations. Although we have formulated the
problem in an idealized manner, a significant amount of mathematical
difficulty was still encountered. If one attemps to relax some of the
assumptions imposed, the complexity of the problem could increase greatly and

possibly preclude a successful numerical analysis.
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P(x.t)
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e High temperature
foundation

Fig. 1a Beam on high temperature foundation, subjected to lateral
load P(x,t).
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»" load P(x,t)
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Fig. 1b Beam with simple end supports, elastic Winkler foundation,
and symmetric load.
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Fig. 3 Propagation of rupture front in a beam with no Winkler
foundation — (a) B=0 and n=3, (b) B=0 and n=5.
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Fig 3. (continued)
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Fig. 4 Nondimensional deflection of a beam resting on Winkler
foundation — (a) B=1, n=3, T, =360k and T, =300, (b) B=1,
n=5, T, =360° and T, =300°k.
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Fig 4. (continued)

182



1NIWOW SNIaN38

05 ;
t=00
04 1
03 -
0.2 1
014 t= 02
0 06
10
14
18
OO T — T T T Y T — T Y
00 01 '02 03 04 '05 06 07 08 09 10

X-AXIS (X/L)
(@)

Fig. 5 Nondimensional bending moment along a beam on Winkler
foundation — (a) B=1.0, n=3, T,,=360°% and T, =300°k, (b)
B=1.0, n=5, T, =360%% and T,=300°.
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Fig. 6 Propagation of rupture front in a beam on Winkler foundation —
(a) B=1, n=3, T, =360° and T, =300, (b) B=1, n=>5, T, =360
and T,=300°%.
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Fig. 6 (continued)
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