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1. INTRODUCTION

There has been a great deal of research work in modeling the inelastic
deformation behavior of materials at the elevated temperature environment.
[t appears that a unified approach in the form of viscoplastic relations has
been most popular for prediction of material responses. In this context, a
number of viscoplastic material models have been published in the literature
[e.g. 1-6]. The unified approach differs from the conventional creep and
plasticity theory in that both the creep and plastic deformations, or alter-
nately termed inelastic deformations, are treated as time-dependent quanti-
ties. Based on the experimental and theoretical studies performed by vari-
ous investigators [3,4,7-9], it is known that viscoplastic constitutive re-
lations, in principle, are capable of predicting material responses at high
temperatures such as cyclic plasticity, rate sensitivity, long-term creep
deformations, strain-hardening or softening, etc. The degree of success of
a constitutive relationship varies depending on the extent of parameters
considered in or mathematical sophistication of a specific model,

Although most of viscoplastic models give improved material response
predictions over the classical approach, the associated constitutive differ-
ential equations have stiff regimes which present numerical difficulties in
time-dependent structural analysis. The numerical difficulty is indeed an
important concern when the viscoplastic relations are applied to large scale

finite element structural analysis.
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In finite element analysis for viscoplastic materials, two issues of
primary concern in connection with the associated material nonlinearity:
1) solution convergence in solving the global (incremental) equilibrium
equations, 2) integration of the constitutive rate equations at the local
material points (or element integration points). Numerically, these two
issues are inter-related. On the one hand, global equilibrium can not be
achieved if the stresses calculated at local material points are grossly
inaccurate. On the other hand, the constitutive relations and stresses are
not representative to the material if the strains computed from the nodal
displacements are in error.

In view of the above discussion, we have therefore investigated a com-
bined global/local incrementing scheme for the finite element analysis of

viscoplastic materials.

2. GLOBAL INCREMENTING

Due to the material nonlinearity, a viscoplastic problem is effectively
formulated by an incremental approach, in which the finite element equili-
brium equations can be linearized. In order to solve these equations suc-
cessfully, the analyst must be able to specify "appropriate" load steps.

If the loading increments are too large, the solution may not converge, or
it is far from being accurate. Alternatively, if the loading increments are
very small, the computation cost will become prohibitively high. Therefore,
it is desirable to implement an automatic incrementing procedure in which
the selection of (global) load steps can be made by the program, rather than
the analyst.

Use of automatic load stepping for solving nonlinear problems is not

new and most of the applications were concentrated at time independent
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problems [10-11]. Herein, we adopted similar concepts for the solution of

time dependent viscoplastic problems. The procedure involves two major

steps: 1) initiation of incremental solution, and 2) selection of subsequent

load increments. Each of the two steps is briefly outlined below.

(1)

Initiation of incremental solution - the solution begins with a speci-

fied load vector, i.e.

Ri =a - R (1)
where a = a load factor, < 1.
R = a reference load vector.

With the above load vector, solution will proceed with equilibrium
iterations. When the number of iterations reaches four and the solu-
tion has not yet converged, an estimate is made to project the number

of iterations required according to

n =1+ 4n{DTOL/d;)/(en dj - &n dj-1) (2)
where i = number of iterations already performed.
DTOL = iteration tolerance for displacements,
d; = ratio between the incremental displacement norm of

the i-th iteration and total displacement norm.

[ aU; [ /] Ui |

If n is greater than a maximum number of iteration cycles allowed, then

a new load vector is set to be R?EW = TRy, <l.
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(2) Subsequent load increments - The load increments, subsequent to the
first step, are determined on the basis of a constant arc length

method [12-14]. In this method, let the current load vector be
Ri+1 = A+1 R (3)

where Aj+¢] = a load parameter corresponding to the (i+l)-th iteration

=X +d A+l (4)
and d Aj+] is calculated from a quadratic algebraic equations [13].

3. LOCAL INCREMENTING

Once the global load increment is determined from the method outlined
in the above, a sub-incrementing method is incorporated at the material
point level to integrate the rate constitutive equation. For the purpose of

discussion, the viscoplastic constitutive equations are written in the form

y=fyt) (5)

where y represents the vector of stress, inelastic strain and state vari-

ables, and ﬁ is a vector of nonlinear functions. To integrate the preceding

equations, we have developed an automatic procedure based on the variable-

step Runge-Kutta (R-K) method. In this method, the global time increment at

is divided into a number of sub-increments, i.e. h = at/n. Corresponding to

h, the vector y for iteration (i+l) is evaluated by the 4th order and 5th
(5)

4
order R-K formulas, respectively, i.e. y§+{ and yj+]1. Then an error can be

estimated from

5 4
Est = || !$+{ - Z$+% [1/h (6)
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The calculated error must be within the following tolerance

Est < e || yij [/ at (7)
If the above condition is violated, a revised sub-increment h' is then
obtained from

h' =1t h

1
syl e
The foregoing procedure is repeated until the criterion in Eq. (7) is

satisfied.

4, NUMERICAL EXAMPLE

Several problems have been analyzed using the procedure outlined in
the preceding sections. Presented herein is a thick walled cylinder sub-
jected to an internal pressure, varying linearly from O to 14.6 psi for
t € [0,40sec.] The cylinder material is assumed to be 2-1/4 Cr-Mo common
steel at 811° k and Robinson's viscoplastic model is adopted. For finite
element analysis, five 4-noded axisymmetric elements are used.
The analysis was performed by using four different combinations of
numerical algorithms:
1) Automatic global and local incrementing (G + L)
2) Automatic global incrementing (G) with constant local steps
h = At/ng, ng = 2,4, and 8

3) Automatic local sub-incrementing (L) with constant global steps,
N =5, 10, 16, and 20.

4) Constant global and local steps.

Summarized in Table 1 are the algorithm details, CPU time on IBM-3033 com-
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puter, and radial displacement at the outer surface of the cylinder. It is
seen that with the automatic global/local incrementing algorithm, the lowest
CPU time was consumed. Convergence difficulty was experienced if only the
automatic global or local incrementing scheme was optioned unless the number
of solution steps or the number of sub-increments is significantly in-
creased. Shown in Figure 1 is the load vs. radial displacement at the outer
surface of the cylinder calculated from two different algorithms, i.e. auto-
matic global/local incrementing and constant global stepping with automatic

local incrementing. Both algorithms gave almost identical results.

5. CONCLUSION

Presented in this paper is a global/local time incrementing scheme for
viscoplastic analysis of structures. The scheme is very efficient and use-
ful for conducting large scale nonlinear finite element analysis involving

viscoplastic materials.
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Table 1 A COMPARISON OF DIFFERENT SOLUTION ALGORITHMS
FOR A THICK-WALLED CYLINDER

Case Option Global Local cPU Ugl0-2
No. Steps Substeps Unit ?nch
1 G+ 1L 16 -- 11 0.1851
2A G 16 8 100 0.1851
28 LR 16 4 57 0.1851
2C /G -- 2 solution diverged, (note 5)
3A L 20 -- 35 0.1851
3B L 16 -- 36 0.1856
3C L 10 -- 45 0.1879
3D L 5 -- solution diverged, (note 6)
4A N 20 4 37 0.1851
4B N 20 2 solution diverged, (note 5)
Note:
1. G+L - both global and local automatic incrementing.
2. L - local automatic incrementing only.
3. G - global automatic incrementing only.
4. N - manual incrementing

5. In cases 2C and 4B, solution diverged at steps 6 and 3, respectively,
because the values of material state variables are out of bound.

6. In case 3D, solution diverged at step 5 because out-of-balance load
was greater than incremental load.

7. Uy s the radial displacement at outer surface of the cylinder.
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Figure 1. A Thick-Walled Cylinder
Under Internal Pressure
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