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INTRODUCTION 

. 

Thermoplastics are c u r r e n t l y  being considered f o r  use as m a t r i x  r e s i n s  

i n  h igh  performance composites. Besides the potent i -a l  advantages o f  

u n l i m i t e d  she l f  l i f e  and rapid,  inexpensive processing, a major reason fo r  

the i n t e r e s t  i n  these ma te r ia l s  i s  t h e i r  much grea ter  f r a c t u r e  toughness 

re1 a t i  ve t o  t y p i c a l  350'F-cure epoxy res1 ns. 

toughness are desi r a b l  e as one approach t o  improvi  ng del ami na t i on  r e s i  stance 

and damage to1 erance i n  composite s t ruc tu res .  

Improvements i n resf  n 

Extensive t e s t i n g  using the double c a n t i l e v e r  beam (DCB) t e s t  has 

shown a reasonable c o r r e l  a t i o n  between r e s i n  toughness, as measured by 

compact tens ion  t e s t s  on neat res in  cast ings,  and composite i n t e r l a m i n a r  

f r a c t u r e  toughness [ l ] .  However, two compl icat ions a r i s e  i n  the DCB t e s t i n g  

f o r  i n t e r l a m i n a r  f r a c t u r e  toughness: 

t e s t  may be a f f e c t e d  by f i b e r  b r i dg ing  and the adhesion between carbon 

f i b e r s  and the thermoplast ic matr ix may be poor. 

GIC values as measured by the  DCB 

The present work examines the i n t e r l a m i n a r  f a i l u r e  process i n  fou r  

experimental composite ma te r ia l  s usi ng both the double c a n t i  1 ever beam (DCB) 

and the edge delamination tension (EDT) tests .  The EDT t e s t  was chosen t o  

g ive  an a l t e r n a t e  measure o f  i n te r l am ina r  f r a c t u r e  toughness t h a t  would n o t  

be in f luenced by f i b e r  b r idg ing ,  and would q u a n t i f y  the i n f l u e n c e  o f  

res idua l  thermal stresses on delamination onset. One se t  o f  experiments was 

conducted on composites w i t h  a model thermoplast ic r e s i n  m a t r i x  t o  

i l l u s t r a t e  the e f f e c t  o f  vary ing  f i b e r  surface p r o p e r t i e s  on delaminat ion 

toughness. The o ther  s e t  o f  experiments was conducted on composites with 

novel high-temperature thermoplastic polyimides. The 1 a t t e r  t e s t s  

i l l u s t r a t e  the s i g n i f i c a n t  e f f e c t  o f  thermal stresses on delaminat ion onset 

s t r a i n  i n  composite laminates made a t  h igh  conso l i da t i on  temperatures. 
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I 

Mater i  a1 s and Process4 ng 

The f ibers ,  AS4 (Hercules, Inc. )  and XAS (Hysol G r a f i l ) *  were supp l ied  

unsized, b u t  wi th  the manufacturer 's p r o p r i e t a r y  sur face treatment. 

Previous work had shown t h a t  these two f i b e r s  behave very d i f f e r e n t l y  toward 

polycarbonate i n  s i  ngl e - f i b e r  adhesion t e s t s  [ 2  1. Polycarbonate r e s i n  

(Lexan 101 from General E l e c t r i c  Co.) was se lec ted  as a model tough 

thermoplast ic ,  l a r g e l y  because i t s  behavior i n  neat  r e s i n  form i s  

wel l -character ized.  Prepreg was made by drum-winding where the r e s i n  was 

app l ied  as a 17% w/w s o l u t i o n  i n  a 50:50 mix ture  o f  chloroform: methylene 

ch lo r ide .  Before laminat ing,  prepreg was d r i e d  f o r  one hour a t  400°F i n  a 

forced-ai  r oven. 

showed l e s s  than 1% weight l o s s  i n  heat ing t o  570°F. 

Laminating was performed i n  a matched metal mold i n  a heated press a t  

200 p s i .  A 15-minute h o l d  a t  50OOF was fo l lowed by a 2-hour h o l d  a t  473OF. 

Mu1 t i d i r e c t i o n a l  laminates showed small areas o f  v i s i b l e  f i b e r  waviness i n  

Thermogravimetric ana lys is  o f  t h e  prepreg a f t e r  d r y i n g  

the surface p l i e s  a f t e r  consol i d a t i o n ,  whereas u n i d i r e c t i o n a l  panels had 

r e l a t i v e l y  s t r a i g h t  f i b e r s  (F igure  1). Th is  f i b e r  waviness has been 

commonly observed t o  occur i n  o ther  thermoplast ic  composi t e s  [ 3,4]. 

However, u l t r a s o n i c  C-scan evaluat ions i n d i c a t e d  good consol i d a t i o n  i n  a l l  

panels, w i t h  the except ion of the c ross-p l ied  XAS laminates where some 

a t t e n u a t i o n  was noted. As w i l l  be shown l a t e r ,  dye-penetrant-enhanced 

radiography of the EDT specimens o f  t h i s  XAS/polycarbonate m a t e r i a l  revealed 

*Use o f  t rade names or  manufacturers does n o t  c o n s t i t u t e  an o f f i c i a l  

endorsement, e i t h e r  expessed o r  imp1 ied,  by t h e  Nat ional  Aeronaut ics and 

Space Admi n i  s t r a t i  on. 

, 
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extensive p ly  cracking i n  every ply direction. 

even i n  an untested specimen. 

These cracks were present 

The polyimide blends consisted of 1:l mixtures of commercial LARC-TPI 

powder w i t h  a polyamic acid (ei ther  LARC-TPI or polyimidesul fone) . They 

were prepregged onto AS-4 f iber  using a slurry process [ S I .  Each blend also 

contained 2.5 weight percent of the diamic acid formed by the reaction of 

' p-di ami nobenzene and p h t h a l  i c anhydri de. Thi  s addi t i  ve had been shown to  

improve the flow of thermoplastic polyimides [6 ] .  For simplicity, the two 

blends will be referred t o  simply as TPI blend and polyimidesulfone blend. 

The prepreg was dried and imidized for one hour a t  500°F then 3" x 6" 

laminates were press-molded i n  a 3 to  4-1/2 hour  cycle w i t h  a maximum 

temperature of 6 6 O O F  and 1000 psi pressure. 

pressures had a h i g h  void content, as judged by C-scan. 

panels a t  660°F and 1000 psi gave acceptable laminates. 

Test Procedures and Calculations 

Laminates prepared a t  lower 

Repressing these 

Specimens for the polycarbonate double cantilever beam t e s t  were cut  

from 24-ply unidirectional laminates containing a 0.005"-thick x 1.5" wide 

Kapton f i lm  a t  the midplane as a crack s t a r t e r .  Pin-loading was introduced 

through 1/2" aluminum blocks bonded t o  the beam ends. Results were analyzed 

us1 ng the compl i ance cal i brati  on method 17 3 .  Crosshead speed was 0.05"/mi n ,  

and specimen compliance was determined from the opening load vs. time 

record. Crack propagation was steady. 

matri x 1 ami nates, extensive fiber bri dgi  ng caused the apparent G x c  to  

In the case of the polycarbonate 

- increase rap id ly  as the crack advanced from the Kapton in se r t ,  typically 

reaching a steady-state value af ter  a crack extension of only 0.5". The 

steady-state values were t y p i c a l l y  30-100% larger than the i n i t i a l  values. 
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I n i t i a l  values only are reported, s ince they are  regarded as more 

c h a r a c t e r i s t i c  o f  the toughness which would be obta ined i n  the absence o f  

f i b e r  b r idg ing .  For a l l  o f  the tes ts ,  th ree  t o  f i v e  specimens were tested,  

and the r e s u l t s  were averaged. 

t e s t s  were i d e n t i c a l ,  except the specimens were on ly  twelve p l i e s  t h i c k .  

Procedures f o r  the poly imide m a t r i x  DCB 

The data reduct ion took i n t o  account geometric n o n l i n e a r i t y  by the method o f  

D e v i t t  e t  a1 181. 

Edge delaminat ion t e s t s  were performed on (+452/-452/02/902)s 

specimens t h a t  were 0.5" o r  1" wide wi th  a 3" sec t i on  between the  gr ips .  No 

d i f f e rences  i n  delaminat ion s t r a i n  were seen between the two d i f f e r e n t  

widths.  A layup conta in ing  0" p l i e s  was chosen t o  minimize n o n - l i n e a r i t y  i n  

the s t ress -s t ra in  curve before onset o f  delaminat ion,  and s i x teen  p l i e s  were 

used t o  insure  t h a t  the delaminat ion s t r a i n  was below the  f a i l u r e  s t r a i n  o f  

the 0" f i b e r s  [4,9,10]. Delaminat ion was detected v i s u a l l y  on the  f r e e  

edges, which had been coated w i t h  water-based t y p e w r i t e r  c o r r e c t i o n  f l u i d .  

Tota l  c r i t i c a l  s t r a i  n-energy re1 ease ra tes  are ca l cu la ted  v i a  the formula 

2 
G,=- - E * )  

2 ( 1 )  

where c C  i s  the delaminat ion s t r a i n ,  t i s  the  laminate  th ickness, Elam 

i s  the o r i g i n a l  laminate modulus, and E* i s  the  modulus o f  a completely 

delaminated specimen, which may be ca l cu la ted  us ing  the r u l e  o f  mix tu res  

equat ion 

* 1  
E = F x E i t i  

where E i  and ti are the modulus and thickness, respec t i ve l y ,  o f  the  

subl ami nates formed by the  del  ami n a t i  on [ 3,g ,113. The subl ami na te  modul i 
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may be calculated from p ly  properties, or from the measured s t i f fness  of 

symmetric sublaminates [ 3 ] .  

these customary procedures had t o  be modified s l i g h t l y .  

ply properties were obtained a s  before from tens i le  measurements on ( O B ) ,  

( g o l 2 ) ,  and (+45)2s laminates [ l l] .  The resu l t s  are shown i n  Table I .  

These properties were used w i t h  classical laminated plate  theory to  predict 

the modulus o f  the quasi-isotropic layup employed i n  the EDT t es t .  When 

t h i  s prediction was compared w i  t h  the measured Val ues E1 am, however, i t  

was found that  the actual specimen moduli f e l l  below the predictions by 5 t o  

30 percent. Since i t  was known t h a t  the specimens contained wavy f ibers ,  

the discrepancy between the measured moduli and the laminate theory 

prediction was attr ibuted t o  fiber waviness i n  the quasi-isotropic 

laminates. Such waviness was also noted i n  Ref [ 4 ]  for AS-4/PEEK. 

rather large v a r i a b i l i t y  i n  Elam among specimens cut from the same plate  

was assumed t o  be due t o  variations i n  the degree of f iber  waviness across 

the plate - pr imar i ly  i n  the 0' plies, since they dominate the tens i le  

modulus. I t  fo l lows ,  then, that  a proper value of E* for each specimen 

should take account of t h i s  v a r i a b i l i t y .  Therefore, the fo l lowing  procedure 

was adopted. 

the measured value of Elam was obtained. 

E l  1 ,  was then used to  calculate the corresponding sub1 aminate modulus E* for 

t h a t  specimen. 

T h i s  procedure gave the most accurate Values of (Elam - E*) f o r  each t e s t  

specimen, and yields the most r ea l i s t  c values of Gc from E q .  (1). 

For the materials used i n  the present study, 

For each material, 

The 

Various values of E l i  were used i n  the laminate theory u n t i l  

T h i s  "adjusted" ply modulus, 

Typically, the adjustment amounted to about 15% of Ell. 

The effects  of thermal stresses ntroduced d u r i n g  cool-down from the 

processing temperature were evaluated us ing  a finite-element (FEM) 
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calculation [ 1 2 ] .  

a n a l y s i s  [ 13 I ,  b u t  FEM was used fo r  convenience since i t  was available. The 

mesh used i s  shown i n  Figure 2 i n  Reference [12]. 

Total G could have been calculated using plate theory 

The rectangular mesh had 

102 eight-noded parabolic elements. This element s ize  a t  the 

p has been shown to  yield accurate s t ra in  energy release ra te  

367 nodes w i t h  

del ami nation t 

components 114 

The s t r e s  -free temperature for each material was determined by 

fabricating a (02/906) laminate ,  which bowed upon cool-down. A strip o f  

this laminate was heated i n  an oven a t  approximately 4.4"C/min and the 

height of the arc was monitored w i t h  a DCDT (Figure 2 a ) .  The temperature a t  

which the strip flattened completely was taken as the s t ress-free 

temperature (Figure 2 b ) .  As expected, this temperature closely matched the 

g l a s s  transition temperature of the matrix resin. 

Thermal expansion coefficients o f  the laminae were assumed to  be zero 

i n  the f iber  direction. 

near room temperature usi ng an interferometric technique, or calculated from 

the resin and fiber properties u s i n g  the concentric cylinder model of Hashin 

1151. 

calculated values showed fa i r ly  good agreement, indicating the technique was 

reasonably accurate. Results are shown i n  Table 11. 

Transverse expansion coefficients were measured 

In the two cases where both were available, the measured and 

RESULTS AND DISCUSSION 

In i t i a l  G l c  values for the AS-4/polycarbonate and XAS/polycarbonate 

obtained from the f i r s t  increment o f  crack growth beyond the inser t  i n  the 

DCB t e s t ,  were 7.4 and 5.1 i n - l b / i n 2 ,  respectively. Scanning electron 

. 
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micrographs ( S E M I  of the f rac tu re  surfaces show, i n  bo th  cases, extens ive 

m a t r i x  deformat ion (F igure  3 ) .  There does seem t o  be a q u a l i t a t i v e  

d i f f e r e n c e  i n  f i b e r / m a t r i x  adhesion i n  the two cases, however. 

AS-4/polycarbonate (PC) f r a c t u r e  surface (F igure  3a) , many f i b e r s  a re  judged 

by SEM examination t o  be completely bare, s t r i p p e d  of res in ,  and threads o f  

drawn polymer l i t t e r  the surface. 

f i b e r s  seem t o  r e t a i n  shreds o f  polymer (F igure  3b). 

On the  

I n  the  XAS composite, by cont ras t ,  most 

These observat ions are  

cons is ten t  w i t h  the degrees of adhesion measured f o r  the two systems us ing  

embedded-fiber f ragmentat ion t e s t s  [ 2 ] .  Table 111 reproduces some r e s u l t s  

from Reference 121. The c r i t i c a l  fragment l e n g t h  lC, which prov ides a 

q u a n t i t a t i v e  measure of f i be r /ma t r i x  adhesion, seems t o  be q u i t e  l a r g e  f o r  

AS-4/PCY i n d i c a t i n g  very poor adhesion. As a p o i n t  o f  reference, the  

c r i t i c a l  l eng th  f o r  AS-4 i n  an epoxy r e s i n  i s  about 0.4 nnn. The much 

smal le r  c r i t i c a l  leng th  f o r  XAS/PC i s  i n d i c a t i v e  o f  b e t t e r  adhesion, 

a1 though one would need t o  know the t e n s i l e  s t rengths  o f  the two f i b e r s  a t  

submi 11 imeter  gauge 1 engths t o  ca l cu la te  the re1 a t i  ve s t rengths o f  the 

i n t e r f a c i a l  bonds. A second, independent l i n e  o f  evidence, however, tends 

t o  con f i rm  the d i f f e rence  i n  adhesion t o  the two f i b e r s .  This  i s  t he  

b i r e f r i n g e n c e  p a t t e r n  which a r i ses  around the  broken f i b e r  ends. 

q u i t e  d i s t i c t i v e ,  and shows c h a r a c t e r i s t i c  features of poor adhesion w i t h  

It i s  

AS-4 and good adhesion w i t h  XAS. Based on the  data above, therefore,  poor 

f i  ber /mat r ix  bonding, such as that  between AS-4 and polycarbonate, appears 

t o  y i e l d  h igher  composite in te r laminar  f r a c t u r e  toughness as measured by the  

DCB t e s t .  Th is  i s  a s u r p r i s i n g  resu l t ,  and should be regarded wi th  

caut ion .  

c o n t r i b u t e  t o  increased GIC by inc reas ing  f r a c t u r e  sur face area, by 

I n  Reference 1161, f i be r /ma t r i x  debonding i n  DCB t e s t s  was s a i d  t o  



8 

promoting fiber b r i d g i n g ,  and by relieving s t r e s s t r i ax ia l i t y ,  thereby 

a l lowing  more resin deformation. These e f fec ts ,  and especially f iber  

bri dgi  ng ,  are normal l y  observed a f t e r  the del ami nation has grown some 

distance from the inser t  [ 171.  However, i n  the present study, increased 

toughness was found for in i t ia t ion  values. 

t h a t  i n  t h i s  case f iber  b r i d g i n g  began to  develop immediately a t  the 

inser t .  

hypothesized b r i d g i n g  was n o t  detected direct ly .  

A possible explanation would be 

T h i s  conclusion must be regarded as tentat ive,  though, because the 

In the edge delamination t e s t s ,  delamination occurred, as expected, a t  

the 0/90 interfaces w i t h  the fa i lure  plane wandering back and fo r th  through 

the central 90" pl ies  [3,9,11]. Dye-penetrant x-ray photos (Figure 4a) show 

t h a t  i n  the AS-4/PC composites, the 90' cracks do not extend much beyond the 

delaminated region indicating t h a t  they form a f t e r  the delamination [ll].  

In contrast dye penetrant-enhanced radiographs of the XAS/PC showed 

extensive matrix o r  interfacial  cracks throughout the laminate width i n  a l l  

plies.  As mentioned ea r l i e r ,  this cracking was present before any 

mechanical l o a d  was applied. Micrographs of the 0/90 delamination fracture 

surfaces of bo th  the AS-4/PC and XAS/PC EDT specimens are dominated by what 

appear t o  be bare f ibers  and resin tracks l e f t  by f ibers  which peeled out 

cleanly (Figure 5 ) .  The resin i n  the XAS/PC composite appears to have 

fractured b r i  t t l e ly  (Figure 5 b ) .  T h i s  apparent matrix br i t t l eness  was 

completely unexpected, and two possible explanations for i t  have been 

considered. 

surface 118 1, the apparent b r i t t l e  behavior m i g h t  have been understandable, 

b u t  no evidence of matrix c rys ta l l in i ty  was found by different ia l  scanning 

cal orimetry or by wide-angle x-ray scattering. Another possi b i  1 i ty - t ha t  

I f  polymer c rys ta l l in i ty  was being nucleated by the f iber  
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t r a c e  i m p u r i t i e s  on t he  f i b e r  surface cou ld  ca ta l yze  r e s i n  degradat ion - was 

a l so  r u l e d  out,  s ince r e s i n  d isso lved from the  XAS composite had n o t  

decreased i n  inherent  v i s c o s i t y .  Thus the reason f o r  the b r i t t l e  appearance 

o f  the r e s i n  i n  F igure  5b i s  s t i l l  n o t  c lea r .  The EDT r e s u l t s  a re  compared 

w i t h  those from the  DCB t e s t  i n  Figure 6, i n  which the  supersc r ip t s  M and T 

stand f o r  mechanical and thermal s t ress  c o n t r i b u t i o n s  t o  Gc. Both t e s t s  

i nd ica te  t h a t  the  AS-4 composite possesses the h igher  i n t e r l  ami nar  

toughness. 

lower  than the DCB r e s u l t  f o r  GIG. Th is  t rend  has been observed i n  o ther  

m a t e r i a l s  [ 3 ] ,  b u t  wi th  polycarbonate the d i f f e r e n c e  i s  s t r i k i n g .  I n c l u d i n g  

thermal stresses i n  the EDT ca l cu la t i ons  ra i ses  the EDT r e s u l t s ,  b u t  on ly  by 

l e s s  than 20% because the  AT between the  conso l i da t i on  temperature and room 

temperature i s  not  very la rge .  The l a r g e  d i f fe rences  between the  DCB and 

the  EDT values i n  t h i s  case are t e n t a t i v e l y  a t t r i b u t e d  t o  the  e f f e c t s  o f  

f i b e r  b r i d g i n g  i n  the  DC6 tes t ,  although t h i s  has n o t  o f  course been shown 

conc lus ive ly .  The processing [ l ]  and o ther  f a c t o r s  which l ead  t o  b r i d g i n g  

i n  u n i d i r e c t i o n a l  specimens are not y e t  f u l l y  understood. 

AS-4/Polyimi de B1 ends 

Note, however, t h a t  the t o t a l  Gc as measured by the  EDT i s  

Double c a n t i  1 ever beam specimens of these mater i  a1 s showed much 1 ess 

obvious f i b e r  b r i d g i n g  than the polycarbonate, a l though an increase i n  G I ~  

w i t h  crack length  was again noted. Because there  was no r e s i n  squeeze-out 

du r ing  f a b r i c a t i o n  o f  these panels, the f i b e r s  probably cou ld  n o t  nes t  

e f f e c t i v e l y ,  and the f r a c t u r e  surfaces were q u i t e  f l a t .  

I n  the edge delaminat ion tests ,  these two mate r ia l s  behaved s i m i l a r l y ,  

and t h e i r  f rac tu re  surfaces again show regions o f  bare f i b e r s  and r e s i n  

t roughs where f i b e r s  have peeled out (F igure  7). The SEM of the PISOZ/LaRC- 
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T P I  surface i n  F igure  7b i nd i ca tes  some f i ne -sca le  heterogenei ty ,  which may 

r e s u l t  from incomplete b lend ing  o f  the  LaRC powder wi th the  PIS02 b inder .  

Whether b e t t e r  mechanical m ix ing  i s  needed, o r  whether these two polymers 

are thermodynamically incompat ib le  i s  n o t  known. 

With the  higher so f ten ing  temperatures of these poly imides r e l a t i v e  t o  

convent ional  epoxy matr ices,  the issue o f  thermal s t resses assumes much 

grea ter  importance, as w i l l  be c l e a r  from an examination o f  t he  EDT r e s u l t s  

i n  F igu re  8. 

almost tw ice  as l a r g e  as t h a t  due t o  the  mechanical s t r a i n  on ly ,  GM. 

mentioned e a r l i e r ,  one reason f o r  us ing  the  EDT t e s t  i s  t o  i l l u s t r a t e  t h i s  

r o l e  o f  res idual  stresses i n  delaminat ion.  The EDT t e s t  i s  performed wi th  a 

r e a l i s t i c  laminate which i nhe ren t l y  conta ins  res idua l  thermal s t resses 

[4,10,13]. I n  the case o f  these thermoplast ic  poly imides, the c o n t r i b u t i o n  

o f  res idua l  stresses t o  delaminat ion i s  s i g n i f i c a n t ,  amounting t o  28 and 32 

percent  o f  GcM+T f o r  the T P I  and poly imidesul fone blends, respec t i ve l y .  

F igure  8 also shows the r e l a t i v e  magnitudes o f  G I ~  determined from 

The st ra in-energy re lease i n c l u d i n g  thermal s t resses GM+T i s  

A s  

t he  DCB t e s t  and t o t a l  GcM+T ca l cu la ted  from the  EDT t e s t .  

po ly imide  mater ia ls ,  u n l i k e  the  polycarbonate, one sees t h a t  t o t a l  Gc i s  

comparable i n  magnitude t o  G I ~ .  The layup chosen f o r  t he  EDT t e s t  i n  t h i s  

work produces almost a pure mode I delaminat ion,  so t h i s  would be expected. 

Furthermore, Johnson and M a l g a l g i r i  [19] have shown t h a t  f o r  o ther  tough 

r e s i  n composi t e  systems, i nc l  u d i  ng the  thermopl a s t i  c PEEK APC2,  GIC = 

GII~= Gc a t  delaminat ion onset. 

For the  
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SUMMARY AND CONCLUSIONS 

The edge delamination t e s t  and DCB t e s t  gave similar toughness rankings  

for the f iber / res in  combinations studied here. 

greatly affect  the DCB resul ts  for the tough thermoplastic, even a t  onset 

from the inser t ,  a l though th i s  effect i s  not ful ly  understood. 

Fiber b r i d g i n g  seems t o  

A procedure based on adjusting the modulus of 0' plies i n  a laminate is 

a reasonable way t o  account for the e f fec ts  of f iber  waviness on composite 

1 ami nate sti f fness i n  thermoplastic materi a1 s. 

accurately measure Gc from the EDT t e s t .  

T h i  s procedure was needed t o  

Thermal residual s t resses  must be considered when analyzing resul ts  of 

EDT t e s t s  on higher-temperature matrix material s. 

system, the thermal contribution amounted t o  32% of the total  Gc. 

In one graphite/polyimide 
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MATERIAL 

AS4/Polycarbonate 

XAS/Polycarbonate 

AS4/LARC-TPI + LARC-TPI  Powder 

AS4/Polyimidesulfone + 
L A R C - T P I  Powder 

E 1 1  

17.7 

19.0 

20.8 

18.4 

TABLE I 

PLY PROPERTIES 

"12 

0.37 

0.37 

0.34 

0.34 

- 
E 22 

1.10 

1.37 

1.64 

1.29 

- 
FIBER 

.VOLUME AVERAGE PLY,THICKNESS 
% h, x10 i n  

55.8 6.08 

55.1 5.63 

56.5 5.21 

52.0 6.55 

Ms i - 
612 

0.71 

0.44 

0.91 

0.78 

- 



TABLE I 1  
16 

THERMAL EXPANSION PROPERTIES 

L I N E A R  COEFF I C I ENT OF 
THERMAL EXPANSION, 

m/m/"C 

MEASURED STRESS-FREE CALCULATED MEASURED 
LAM I NATE TEMPERATURE, O C  R E S I N  COMPOSITE a2 COMPOSITE a2 

A S 4 / P o l y c a r b o n a t e  130 67.5 41.2 36.7 

X A S / P o l y c a r b o n a t e  -- 67.5 51.5 -- 
A S 4 / T P I  b lend 229 45 29.3 -- 
A S 4 / P o l y i m i d e s u l f o n e  blend 243 45* 31.9 27.9 

*Assumed 
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TABLE I 1 1  1 .  

EMBEDDED FIBER FRAGMENTATION RESULTS 

F IBER/MATR I X C R I T I C A L  FRAGMENT LENGTH*, mm BIREFRINGENCE PATTERN 

AS-4/PC 0.74 Poor Adhesion 

XAS/PC 0.36 Good Adhesion 

*The c r i t i c a l  fragment length i s  inversely  proport ional  t o  the  f iber /matr ix  
i n t e r f a c i a l  shear strength if f i b e r  breaking strength i s  constant 
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