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Abstract 

This paper is concerned with the identification of the geometrical structure of the 
system boundary for a two-dimensional diffusion system. The domain identification 
problem treated here is converted into an optimization problem based on a fit-to-data 
criterion and theoretical convergence results €or approximate identification techniques 
are discussed. Results of numerical experiments to demonstrate the efficacy of the 
theoretical ideas are reported. 
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I. INTRODUCTION 

Domain identification problems are important in the design of engineering systems and 

frequently such problems are treated as a branch of the calculus of variations which involves 

nonlinear optimization techniques, optimal control theory, partial differential equations (el- 

liptic, parabolic, hyperbolic, etc.) and related numerical methods. Domain identification 

for elliptic systems has been studied theoretically and numerically by many authors (see 

e.g., [5],[7],[10],[13]). For parabolic systems, a couple of numerical methods for identi- 

fying the domain or boundary have been investigated in [14],[15]. Until recently, most 

investigations concentrated on the “optimal shape design problem” which is motivated by 

numerous applications to structural, engine, airplane, ship designs, etc. (see [lo] and the 

references therein). In this paper, our concern for domain identification is motivated by an 

application that is different from these shape design problems. However, as we shall see, 

the resulting theoretical aspects are closely related. Recently, associated with the use of 

fiber reinforced composite materials for aerospace structures, there is growing interest in 

the detection and characterization of large structural flaws which may not be detectable 

by visual inspection. One recent effort has focused on non-destructive evaluation methods 

(NDE) based on the measurement of thermal diffusivity in composite materials (see e.g., 

[SI). Motivated by these problems, we consider the domain identification for parabolic 

systems. 

To explain our approach, we restrict our attention to a 2-D domain identification prob- 

lem. We consider the bounded domain G(q) in two-dimensional Euclidean space as follows: 

where 51 + t ( z 1 , q )  is some parameterized real function which is assumed to characterize 

the unknown part of the boundary and q is a constant parameterization vector to be 

identified among values in a given compact admissible parameter set Q. As depicted in 
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Fig. 1.1. The spatial domain G and its boundary aG1, dG2, aG,, dG4. 

Fig. 1.1, we assume the boundary of G(q) consists of the following components: 

dG1 = { X  = (51 ,~2)10  < 2 1  < 1, ~2 = 0 )  

{ X  = ( x ~ , x ~ ) I z ~  = 1, 0 < ~2 < e} 

{ Z  = ( ~ 1 , ~ 2 ) ( 0  < X I  < 1, 5 2  = r(Zl,q)} 

{ Z  = ( Z ~ , X ~ ) I Z ~  = 0 ,  0 < 5 2  < e}  

dG2 = 

aG, = 

aG4 = 

The measurement system is described by the following 2-D diffusion equation: 

au(t' - clAu(t,  X )  + cou(t, z)  = 0 in T x G(q) 
at 

with the initial and boundary conditions, 

(1.la) 

U ( O , X )  = E,-,(X) on G(q) 
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aU 

a52 
-ci-+ h(u - f )  = 0 on T x dG1 

au - = o  
dn 

on T xdG2 

on T x d G ,  

on T x d G 1  

( l . l c )  

(1.ld) 

(1.le) 

where c1, co and h are thermal diffusivity, radiation coefficient and heat transfer coefficient, 

respectively, which are given constants, and where T denotes the time interval (0, t f )  during 

which the process is observed. In the above system, f is the known boundary input defined 

on T x aG1 and iiro is the given initial function defined on SZ where SZ is a known bounded 

domain in R2 such that f2 2 G(q) for any qcQ. The system output is assumed to be on a 

subset C of the boundary dG1, and mathematically, the observation is taken as 

From a physical point of view, the system state u = u ( t , x )  represents the temperature 

distribution at time t at location x = (x1,z2) and, the boundary input f and the output 

y correspond, respectively, to the thermal source (for example, by a laser beam) and 

the observation of the temperature distribution at the surface of the material (e.g., by an 

infrared imager) (see [SI for more details). Thus, the search for structural flaws in materials 

may be formulated as an inverse problem for a heat diffusion system. The problem treated 

here is that of identifying, from input and output data { f, EO, y} on (T x dG1) x G x (T x 

E), the constant parameter vector q in Q determining the geometrical structure of the 

boundary aG,. 

In Section 2, we formulate this problem in an abstract setting in a Hilbert space. In Sec- 

tion 3, for computational purposes, we approximate the Hilbert space by finite dimensional 

subspaces and we discuss the convergence analysis for the approximate identification prob- 

lems. In Section 4, a practical optimization technique based on a finite element approach 

is outlined. Some numerical results for a simple example are given in Section 5. 



11. PROBLEM FORMULATION AND BASIC ASSUMPTIONS 

For the discussions here, we restrict the geometrical structure of the boundary dG, by 

imposing the following hypotheses: 

(H-0) The admissible parameter set Q is a compact subset of R"; 

(H-1) For each gcQ, we have r(g)EWk(O, 1); 

(H-3) There are constants PI and P 2  satisfying 0 < P I  < i! < P2 < 00 such that, for qcQ,  

~ we have 

P1 L r ( € , q )  5 P 2  a-e. in ( w ) ;  
I 

l and 

(H-4) There exists a constant M such that 

I 

Ir (E,q) - r(€,G)ll,m L M I 9  - GI for Q, G E Q ,  €+A 11, 

I where I - Il,oo denotes the norm of WA(0,l). 

1 We make the following assumptions for the class of system inputs: 

(H-5) L2 (n) ; 

and 

It follows from results in ([9], Ch. 3) that, under the hypotheses (H-1)-(H-3), (H-5), and 

(H-6), for each fixed geQ, there exists for (1.1) a unique solution u in L2(T;H1(G(q) ) ) .  

I Following standard procedures in optimal shape design techniques ([lo], Ch. 8, p. 125), 

we introduce the affine mapping 
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given by 

Note that this is equivalent to z1 = 21, z2 = r(z1, q)z2/e. Under this coordinate change, the 

system domain G(q) is transformed into the fixed domain 5 

G(q) --+ G = (0,l)  x (0, e) 

which is independent of the parameter q. Using this coordinate transformation, we obtain 

the system state ii given by 

this transformed state then satisfies the system equation 

(2 .14 

with 

ii(0,z) = ~ ( z )  0 ~ - ' ( q )  on (2.lb) 

aii cy aii 
azl e a22 

c1- - -z2rf(l,q)- +he  = 0 on T x dG2 

(2.14 

(2.ld) 



In this system the coefficients are given by 

a11 := c1 

where r' denotes dr/dzl, while aG, has been mapped into 

If we consider a variational formulation similar to that in [2],[9], the system dynamics can 

be described by the variational form: 

ii(0) = To 0 T-l(q) 

where the bracket < a , .  > denotes the scalar product in L 2 ( 6 )  and where o(q)( - , . )  and 

L(q)( . )  denote, respectively, a sesquilinear form on @(e) x H1(e )  and a linear functional 

on H1(e) .  Explicitly, a(q) ( - , - )  and L(q)( . )  are given by for q5,t,fxH1(@ by 
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respectively. With some tedious calculations, one can readily establish the following useful 

conditions on the sesquilinear form Q. 

Theorem 1: Let I - I V  and I - I H  denote the norms in the Hilbert spaces V = H 1 ( G )  and 

H = L 2 ( 6 ) .  Then,  under the hypotheses (H-0) to (H-4), the sesquilinear f o r m s  a(q)( . , - )  

satisfy the following inequalities: There exist positive constants ICl,  A ,  I C 2 ,  and IC3 such that 

for $,$cV we have 

Q(d(4 ,  4) 2 kll4lC - Xl4l$ (2.10) 

Proof: We wish to show first that the sesquilinear form Q is coercive. From (2.2)-(2.4) 

and (2.8),  the principal part of the differential operator becomes 

for ( € 1 ,  (2) €R2. 

By simple calculations and from (H-3), we have 

(2.13) 

where 

This means the operator is strongly elliptic. For the coefficients b j ( z , q ) ( j  = 1 , 2 ) ,  from 

(2.5) and (2.6), it follows that 

(2.15) 

(2.16) 
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respectively. We note that, from (H-0) to (H-4), 

SUP Ir'(z, q)l < R 
ZlC[O,11 

where R is some constant independent of q. Hence, we obtain 

(2.17) 

lbj(z,q)l 5 K2 < 00 for j = 1,2, (2.18) 

where (assuming R > 1) 

(2.19) 

For the last two boundary integrals in (2.8), by virtue of (H-3), the following inequality 

holds: 

(2.20) 

where ds denotes a line element on aE and ac = dG1 U aG2 U dG1. From (2.14), (2.18), 

and (2.20), we can derive the coercivity property of the sesquilinear form. Namely, the 

sesquilinear form satisfies 

(2.21) 

where 

K3 = min (* h) . 
4P,2 ' 

Friedrich's second inequality ([I], p. 124) asserts that if i3c is a nontrivial subset of 82, 
then there exists a positive constant CY such that 

(2.22) 
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By applying this to the last parenthesis of (2.21), we can conclude that 

where 

respectively. 

To prove the boundedness of a(q), we note that 

(2.23) 

(2.24) 

The first t'mee integrals of RHS in (2.24) satis€y 

(2.26) 

(2.27) 

respectively. From (2.2) to (2.4), it follows that, under hypotheses (H-1) and (H-3) (see 

W 7 ) ) ,  

sup l a i j ( z ,q ) (  5 K6 < 00 (2.28) 
i , j<2 

~ € [ O , ~ l X  I O , 4  

where 
C l t 2  

Ks = K(R2 + 1). 

From (2.18) and (2.25)-(2.28), we have 
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Furthermore, the boundary integral term satisfies 

which follows from the trace inequality ([l], p. 124) 

where 

Consequently, we can prove the boundedness property of a(q) ( e ,  -). 

To establish the continuity property, we note that, for any q and GEQ, 

Under the hypotheses (H-1) and (H-3), we argue that 

10 

(2.30) 

(2.31) 

(2.32) 



and 

Applying these inequalities into (2.32), we have 

where 

2Cl.t R 2 ~ 1 . t ~  R 2RP2 C 1  R 2cllR RP2 l h  
p," ma+---, P," 

, l)+-max(-, 1)+- maz( - K$j = --mmaz(-, 1)+ 
Pl Pl Pt Pt P1 P1 

From the hypotheses (H-4), we can thus infer the continuity of the sesquilinear form 

a(q)(., a)  with respect to the parameter q in Q. The proof has been completed. 

For the system (2.7), the output can be represented as the restriction of G ( t )  to a subset 

C C aG1 of positive measure, i.e, 

We assume (see (H-0)) throughout that the admissible parameter set Q is a given compact 

subset of R". The fundamental identification problem considered here is based on the 

fit-to-data functional (see [2]) given by 

(2.35) 

where F = L2(C), { y d ( t ) I t r T  are given observed data, and y ( t , q )  is the solution of (2.7) 

corresponding to qEQ. Then our problem is stated as follows: 

(IDP) Find q'cQ which minimizes J ( q )  given in (2.35) subject to the system (2.7) and 

(2.34). 

In the next section, we consider a family of approximating identification problems associ- 

ated with (IDP). 
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111. APPROXIMATE IDENTIFICATION PROBLEMS 

The approximation scheme we have employed is based on the use of a finite element 

Galerkin approach to construct a sequence of finite dimensional approximating identifica- 

tion problems. Let us choose U ~ = l ( q 5 r } ~ 1  as a set of basis functions in H1(G). That is, 

for all N, { @ } ~ v = l  are linearly independent and U N  span{qhi N N  }i=l is dense in the V norm 

in V = IT1(@. We choose the approximation subspaces as 

H N  := span{#,#,..- ,&}. 

Then, we can define the approximate solution of Eq. (2.7) by 

where w y ( t ,  q)  are chosen such that for j = 1,2, .  . - , N, 

and 

(3.1) 

( 3 . 2 ~ )  

(3.2b) 

Hence the system (2.7) and the output (2.34) can be approximated by solving the system 

N - N  c w (t,Q) + AN(a)wN(t ,q)  = F N ( t , q )  (3 .34 

wN(0) = 57: (3.3b) 

[ J ” ( t , q ) ] i  := L(t ,q) (#)  for i = 1 , 2 , . - . , N  

12 



The approximating identification problems thus take the following form: 

( A I D P ) N  Find t N c &  which minimizes 

subject to the approximating system (3.3) and (3.4). 

Our convergence results for the finite element schemes are summarized in the following 

two theorems. 

Theorem 2: Let { q M }  C Q be a sequence such that qM 4 qcQ as M 4 00 and 

let  G N ( q M )  and G ( q )  be the solutions of Eqs. (3.3) and (2.7) corresponding to qM and q, 

respectively. Then, under hypotheses (H-0) to (H-6 ) ,  we have i iN(qM) 4 G ( q )  strongly in 

L~(T; ~ ( 6 ) )  as N ,  M -+ 00. 

Theorem 3: Let i j N  be a solution of the problem ( A I D P ) N .  Then the sequence { G N }  
as k -+ 00. Moreover, G is a solution admits a convergent subsequence { i j N k }  with i jNk  4 

of the problem ( I D P ) .  

The proof of Theorem 2 follows from the general convergence framework for parameter 

identification problems given in [3] and [4]. To ensure the desired convergence, it suffices to 

show that the sesquilinear form a(q) (-, .) satisfies the continuity, coercivity and bounded- 

ness conditions as stated in [3], [4]. But this is a result of Theorem 1 under the hypotheses 

(H-0) to (H-4). 

The proof of Theorem 3 can be carried out by using Theorem 2 and the compactness 

of &. Since ijN is a solution of the problem ( A I D P ) N ,  it is clear that 

Thus, if we can argue that for any qM 3 q in Q, 

N M  in L 2 ( T ; F )  as N , M  + 00, Y (q  1 -+ Y k . )  

13 



then, we can obtain the desired inequality 

J ( G )  I J ( q )  for bQ 

by taking limits in (3.6). But the needed arguments follow immediately from Theorem 2 

where K is independent of a N k  and t. 

IV. OPTIMIZATION TECHNIQUES FOR THE APPROXIhlATE ESTIh 

TION PROBLEMS 

L- 

Let aN be an optimal solution of the problem (AIDP)N.  Then a necessary condition 

for aN to be optimal is characterized by 

V , J N ( a N )  - ( q  - a N )  2 0 for VqcQ ( 4 4  

where V ,  denotes the gradient of J N ( q )  with respect to q. From Eq. (3.5), we have for 

k = 1 , 2 , . - .  ,n 

N N  [ v , J N ( q ) ] k  = q ) ) r ( c b  (t ,  q)  - y f ( t ) ) d t  
0 

Using the same procedure as in [9], we can evaluate the gradient vector by (for k = 

1 , 2 , . .  - ,n) 

where v N ( t , q )  is the solution of the adjoint equation, 

14 



W " ( t f , Q )  = 0. (4.3b) 

In Eq. (4.3a), the matrix A*"(q) is given by 

where a*(q)(., e) is the adjoint sesquilinear form of a(q)(-, e)  defined by 

:= J j &  

Consequently, the optimality condition (4.1) of the problem (AIDP)N can be characterized 

by 

In the sequel, we discuss computer implementation of numerical schemes for the prob- 

lem (AIDP)N.  Since we can evaluate the gradient of the cost function using (4.2), many 

optimization techniques for the constrained problems are readily applicable to our problem 

(see [ll] and the references therein). For ease in exposition, here the compact set Q C RN 

is assumed to be defined by 

where ll and q denote a given constraint matrix and vector, respectively. For the numer- 

ical results reported in this paper, we used the gradient projection method [12] which is 

15 



a particularly useful technique for optimization problems with the linear inequality con- 

straints such as those given in (4.5). We use this method as presented in [12]; the iterative 

algorithm for finding ijN can thus be stated as follows: 

S t e p  0: Choose an initial value q ( O )  in Q and set i = 0. 

and proceed to S t e p  S; otherwise, proceed to S t e p  2. 

S t e p  2: Compute the current direction by 

where 

P = I - l-I;(rIpn;)-lIIp 

and lIp includes the gradient of all currently active constraints associated with matrix l-I. 

If g(') # 0, proceed to S t e p  S; otherwise, proceed to S t e p  4 .  

S t e p  3: Compute Am,, ('1. satisfying 

where fi  is the largest step that may be taken from q(') along g(') witllout violating any 

constraint. If Afin = i, then add the new contraints to the matrix l-Ip and proceed to S t e p  

4 ;  otherwise, the new approximation to the solution is given by 

(;+I) = ,('I + A('). g('). 
min 

Replace i + 1 by i and return to S t e p  I .  

S t e p  4 :  Compute the vector O(q) by 

e(q(') )  = -(npnp) I -1 n,v,J(q(')). 

16 



If all components of 0 are nonnegative, then set 

and terminate the computation; otherwise, delete the column of lTp corresponding to the 

smallest component of O ( q ( i ) ) ,  replace i + 1 by i and return to Step  I .  

V. NUMERICAL PROCEDURES 

In a series of numerical experiments, we used a test example constructed as follows: 

We chose a function r (q ) ,  generated the corresponding solution numerically, added random 

noise, and then used this as "data" for our inverse algorithm. The parameter function 

r (E,q)  to be identified is a piecewise cubic polynomial function (see [6] for more details). 

We denote the knot sequence for r by 

0 = .ro" < 71" < ..- ; 7, n : 7,+1 = 1 

and the unknown function r ( ( ,  q) is given by 

r ( € , . )  = Pr(€) 
= %,i + U2,i(€ - T?) +as$(€  - T32/2 + Q , i ( E  - T 3 3 / 6  

for r? 5 € 5  i = O , l , - - - , n .  

The unknown parameter vector q = {qi}rZ1 is then given by 

Further, we assume 

P o p ,  q) = PJ1, q) = e (5.3) 

Pb(0, q)  = P X l ,  q) = 0. (5.4) 

Substituting (5.2), (5.3), and (5.4) into (5.1), the coefficients {ak , i }  can be determined 

uniquely and r ( t ,  q)  satisfies the hypotheses (H-1), (H-2), and (H-4). In order to guarantee 

the hypothesis (H-3), we impose the constraints 

17 



Hence, the matrix ll (2n x n) and the vector 

class Q (see (4.5)) is given by 

(2n x 1) defining the admissible parameter 

- 
0 

1 

n =  
1 

-1 

c 

1 
-1 

0 

- 
!I= 

- P2 - 
-A 

i 
P 2  

~ -P1- 
1 -1 1 

To discretize the system model by the finite element method, the domain G is divided 

into a finite number of elements {ek}fZ1 (K 5 N) and a number of nodes defined by 

{zi = ( z ~ , ~ ~ ) } ~ ~  are selected in G. For convenience of computations, we set A! = 1 in e. 
Each element is preassigned as an axiparallel rectangle with nodes at the vertices. The 

restriction of 4: to any element e k  is given by the bilinear polynomial form, 

.., 

for z = (21, z2)cek  k = 1 ,2 , - .  - , K and i = 1 , 2 , - .  - , N .  

The coefficients {c!?} can be chosen such that each polynomial form (5 .5 )  satisfies the 

properties of a piecewise bilinear basis function (see e.g., [l], Ch. 5 ) .  The integration of 

element matrices CN,AN(q) ,A*N(q) ,  and Cf, and the element vectors F N  and Y/ can 

be computed numerically by a Gauss-Legendre formula. Thus, the state model (3.3) and 

its adjoint system (4.3) can be solved numerically by an implicit scheme with respect to 

discrete time t = ih ( i  = 0,1, - - - , m) where h = t j / r n .  The evaluation of cost functional J N  

and its gradient V,JN is the computationally expensive part of our algorithm since these 

involve the integration of the states w N ( t ,  q)  and the adjoint states w N ( t ,  q)  with respect 

to time t over T. This can be accomplished by using the two-point Gauss formula. 

The input data are preassigned as 

f(E) = 0, for EdG1. 

18 



The known parameters c1, CO, and h in Ea. (1.1) were set as 

~1 = 0.034, ~2 = 0.001, h = 0.1. 

The observed data {yd(t)} were generated by solving the finite element model (3.3). The 

number of finite elements and nodes in the numerical experiments were set as K = 256 (= 

16 x 16) and N = 289 (= 17 x 17), respectively. The final time and number of time 

divisions were taken as t i  = 10 and m = 100. Random noise at various levels from 0% to 

50% was added to the numerical solution, thereby producing simulated noisy "data" for 

the algorithm. The set C relative to data acquisition was given by 

P 
C = u Nzj  

j=l 

where Nzj denotes a neighborhood of points xi at a G 1 ,  i.e., 

Nzj  = ( ~ j  - E , X ~  + E )  for j ' =  ? , 2 , - - - , p .  

Using such data, the estimation algorithm given in Section 4 was tested. 

Example 1: In this example, the dimension of unknown vector was taken as n = 4 and the 

knot sequence {r~};"=+o' was given by 

r,? = i / 5  for i = 1,2,.-.,5. 

The values of the true parameters were chosen as 

qi = r(r,?) = 0.8 for i = 1,2,3,4. 

The lower and upper bounds of the unknown parameter vector were taken as PI = 0.3 and 

P 2  = 1.1, respectively. The initial guesses for the parameters were given by 

Q~O) = 1 for i = 1,2,3,4. 

The number of sensors was taken as p = 9. Table 1 shows the estimated parameter numer- 

ical results for the data with noise free, 5%, lo%, and 50% relative noise and Figure 5.1 

19 



shows the estimated parameter function r (  6, a”) and true function r (  6, q)  which correspond 

to the estimated boundary shape and true boundary for the 10% noise case. 

G1 G2 G3 G4 

True Value 0.800 0.800 0.800 0.800 
Initial Guess 1.000 1.000 1.000 1.000 

iteration 6 0.850 0.882 0.880 0.849 Noise 
Free 

5% 
Noise 

10% 
Noise 

50% 
Noise 

+Xi54 1% - & I 2  , 

3.36 x lo-’ 
0.820 0.819 0.821 0.819 
0.810 0.785 0.810 0.806 
0.851 0.879 0.878 0.844 
0.828 0.821 0.818 0.820 
0.815 0.797 0.791 0.814 

iteration 13 
iteration 17 

9.92 x lo-’ 
5.39 x lo-’ 
3.25 x lo-’ 
1.09 x 
5.61 x 

itkration 6 
iteration 13 
iteration 17 

0.849 0.853 0.861 0.834 
0.787 0.847 0.835 0.750 
0.827 0.792 0.799 0.796 
0.922 0.820 0.748 0.808 
0.902 0.793 0.772 0.886 
0.813 0.783 0.727 0.794 

iteration 6 
iteration 14 
iteration 18 
iteration 7 
iteration 15 
iteration 19 

2.51 x 
1.95 x 
7.20 x lo-’ 
3.36 x lo-’ 
3.40 x 
1.90 x lo-’ 

Table 5.1. True Value and Estimated Values in Example 1. 

Example 2: We chose the same dimension of unknown parameter vector as in Example 1 

and we also used the same knot sequence. In this example, however, the values of the true 

parameters were preassigned as 

q1 = q4 = 0.9 

respectively. The lower and upper bounds, initial guess of unknown vector, and number 

of sensors were given by the same values as in Example 1. Table 5.2 shows the numerical 

results obtained here for the various sets of noisy data. Figures 5.2 and 5.3 represent the 

estimated parameter function for the case of 20% and 50% noisy observation case. 
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Figure 5.1. True Function and Estimated Function in Example 1 (10% Noise). 
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True Value 
61 6 2  63 6 4  +c is4  1% - ail2 

0.900 0.600 0.600 0.900 
Initial Guess 

Noise iteration 16 
Free iteration 25 
5% iteration 16 

Noise iteration 26 
10% iteration 16 

Noise iteration 27 
20% iteration 16 

Noise iteration 27 
25% iteration 16 

Noise iteration 26 
50% iteration 16 

Noise iteration 28 
~ ~ ~ 

Table 5.2. True Value and Estimated Values in Example 2. 

1.000 1.000 1.000 1.000 
0.817 0.792 0.778 0.821 
0.894 0.607 0.602 0.893 
0.953 0.694 0.811 0.906 
0.896 0.604 0.605 0.898 
0.902 0.807 0.674 0.949 
0.908 0.594 0.581 0.896 
0.917 0.683 0.812 0.904 
0.902 0.603 0.610 0.887 
0.939 0.819 0.684 0.962 
0.868 0.563 0.563 0.874 
1.02 0.618 0.680 0.915 

0.951 0.574 0.599 0.953 

Example 3: In this example, we deal with a somewhat more difficult case as compared 

with Examples 1 and 2. We set the dimension of paraIzleter space as n = 8 and we chose 

the knot sequence as 

7.14 x 
2.85 x 10-3 
5.93 x 10-2 
1.93 x lo-’ 
5.62 x 

5.70 x 
4.19 x lo-’ 
6.15 x 
1.66 x 
3.64 x lod2 ‘ 

5.39 x 10-~  

1.95 X 

{ri 8 9  }i=o r,? = i/9 for i = 0,1,2, * ,9. 

True parameter values were given by 

respectively. Figure 5.4 shows the corresponding boundary shape to be identified. The 

number of sensors was taken as p = 17. The bounds and initial guesses for the parameter 
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Figure 5.2. True Function and Estimated Function in Example 2 (20% Noise). 
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Figure 5.3. True Function and Estimated Function in Example 2 (50% Noise). 
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Figure 5.4. Unknown boundary shape in Example 3. 

vector were the same as in Examples 1 and 2. We ran numerical experiments for the case 

of noise free, 5%, lo%, 2O%, and 50% noisy observations. Table 5.3 shows the estimated 

parameter vector obtained here. Figure 5.5 represents the estimated boundary curve for 

the 10% noisy data. 
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Initial Guess 
Noise iteration 16 
Free iteration 23 
5% iteration 16 

Noise iteration 23 
10% iteration 16 

Noise iteration 24 
20% iteration 16 

Noise iteration 24 
50% iteration 16 
Noise iteration 24 

Throughout the numerical experiments, we checked the robustness of the algorithm with 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1.039 1.027 0.887 0.808 0.674 0.926 1.029 1.033 3.08 x 
1.014 1.007 0.943 0.624 0.615 0.943 1.003 1.017 7.27 x 
1.042 1.031 0.879 0.749 0.666 0.920 1.049 1.031 2.85 x 
1.023 0.987 0.948 0.626 0.628 0.937 1.002 1.020 7.90 x 
1.037 1.058 0.899 0.733 0.721 0.881 1.044 1.025 2.82 x 
1.010 1.009 0.955 0.586 0.578 0.948 0.994 1.000 6.20 x 
1.034 0.989 0.950 0.592 0.595 0.994 1.018 1.061 1.61 x 
1.022 0.985 0.915 0.616 0.610 0.941 0.993 1.061 1.06 x 
1.090 1.176 0.872 0.637 0.654 0.933 1.166 1.096 4.01 x 
1.030 1.033 0.939 0.566 0.603 0.933 1.046 1.052 1.47 x 

respect to noise in the observed data. Results in three examples indicated that the algo- 

rithm worked very well (i.e., as expected) for various noise levels. Furthermore, we checked 

the sensitivity of the algorithm with respect to the number of sensors. Specifically, we com- 

pared in Examples 2 and 3 the number of sensors (p) with the dimension of parameter 

space (n). In Example 2, for data with p = 5(> n = 4), the algorithm still yields an almost 

identical fit (to that for p = 9) even in 50% noise case while the fit could not be achieved 

under the reduced observation case p = 3(< n). Also, in Example 3, (where n = 8) the 

fit could not be obtained with p = 3 or p = 5 ,  while the algorithm performed well with 

p = 9 (> n). Carrying out a large number of other numerical tests in addition to those 

reported for Examples 2 and 3, we suggest that the aIgorithm requires a number of sensors 

which is at least equal to the number of dimensions of parameter space, i.e., p 2 n. 

VI. CONCLUDING REMARKS 

In this paper, we have discussed techniques for estimating the system boundary shape 

in two dimensional parabolic systems. By using a simple coordinate transformation tech- 

nique, the parabolic PDE defined on unknown spatially varying domain was converted 
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Figure 5.5. True Function and Estimated Function in Example 3 (10% Noise). 
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into the same type PDE with unknown coefficients defined on a fixed domain. Thus, our 

fundamental approach was placed within the theoretical framework for parameter identifi- 

cation problems given in [2],[3], and [4]. The practical utility of our algorithm is supported 

through a series of numerical experiments, a summary of which is given in Section 5 .  These 

simulations were carried out on the Sun Microsystems at ICASE, NASA Langley Research 

Center. For three different numerical examples, using data with no noise, the proposed 

algorithm yields an almost perfect fit, while, as expected, the fit degenerates significantly 

as noise in the observation becomes more pronounced. 

Although here we discuss only the case where the unknown boundary shape is rep- 

resented by a simple function of one variable, our basic parameter estimation ideas and 

techniques can be readily extended to consider more general classes of geometrical struc- 

tures for the system boundary. For example, we may also treat the case where the unknown 

boundary shape is characterized by 

r ( q , q , z 2 )  = o for ( z l , z z ) c ~ ~ .  

We are currently pursuing investigations for these cases. 
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