
NASA Technical Memorandum 100820
ICOMP-88-4

Two-Dimensional Graphics Tools for
a Transputer Based Display Board

[N A S A - T H - 1 0 0 8 2 0) T W O - D I H E N S I O N A L GRAPHICS N 8 8- 225 91
TOOLS FOR A T R A N S P U T E R B A S E D DISPLAY B O A R D
[N A S A) 16 p CSCL 098

U n c l a s
63/61 0142358

Graham K. Ellis
Lewis Research Center
Cleveland, Ohio

Prepared for the
Parallel Computing Workshop/OCCAM User Group Meeting
cosponsored by OSUtOCATE and INMOS
Portland, Oregon, April 11-13, 1988

9

JCOMP

. . ~ ,,... ,
- -.~

, .

https://ntrs.nasa.gov/search.jsp?R=19880013207 2020-03-20T06:15:58+00:00Z

TWO-DIMENSIONAL GRAPHICS TOOLS FOR A
TRANSPUTER BASED DISPLAY BOARD

Graham K. Ellis*

NASA Lewis Research Center
Cleveland, Ohio 44135

Institute for Computational Mechanics in Propulsion

ABSTRACT

A package of two-dimensional graphics routines has been developed
in an effort to standardize and simplify the user interface for a
transputer based graphics display board. The routines available
take advantage of the graphics board's capabilities while also
presenting an intuitive approach for generating drawings. The
routines allow a user to perform graphics rendering in a two-
dimensional real-coordinate space without regard to the actual
screen coordinates. Multiple windows, which can be placed
arbitrarily on the screen, as well as the ability to use double-
buffering techniques for smooth animations are also supported.

The routines are designed to be run on a transputer other than
the graphics display board. The window and screen parameters are
maintained locally. The conversion to device coordinates is also
performed locally. The only data sent to the display board are
control and device coordinate display commands.

The routines available include: rotation, translation, and
scaling commands: absolute and relative point and line commands;
circle, rectangle and polygon commands: and window and viewport
definition commands.

*Senior Research Associate (work funded under Space Act
Agreement C99066G).

INTRODUCTION

The ability to render graphics images is important for
interpreting the results of many types of scientific and
engineering simulations. Because the INMOS IMS BO07 transputer-
based graphics board[l] is supplied with simple routines that are
based on integer device coordinates, a set of routines, the
Transputer Graphics Package (TGP), has been developed that allows
users to work in their own coordinate system. All TGP procedures
are written in Occam and British spellings are used throughout
f o r compatibility reasons. TGP allows images to be described in
two-dimensional real-coordinate space, the world coordinate
system (W C S) . The routines provided support all of the BO07
graphics commands including multiple windows and screen double-
buffering. Additionally, routines have been developed that allow
translation, rotation and scaling of 2D objects.

The current implementation of TGP is designed to run on a
processor other than the BO07 graphics board. The connection
architecture of the TGP-BO07 system is discussed below.

The routines available in TGP free the application programmer
from many of the details of the operation of the BO07 display
board. Most of the ,procedures provided perform the channel 1/0
automatically without user intervention. The low-level integer
device coordinate BO07 commands are also hidden from the user.
However, in order to take full advantage of the TGP's
capabilities, an understanding of the B007's operation is
essential.

In addition to the TGP, two new BO07 graphics commands have been
developed. These new commands allow block transfers of pixel
coordinate data to be sent to the BO07 from the TGP. These new
protocols reduce 1/0 overhead and allow increased graphics
rendering performance using the B007.

This document discusses the configuration and operation of TGP.
Some of the capabilities and limitations of both the BO07
graphics board and the 2D display routines in TGP will also be
discussed below.

TGP-BO07 CONFIGURATON ARCHITECTURE

The current implementation of the TGP uses two processors in a
pipeline: the TGP processor and the BO07 graphics board. The TGP
processor takes data from an application program in two-
dimensional world coordinates and converts it to integer device
coordinates (I D C) . The IDC are sent to BO07 graphics board and
the BO07 performs scan-conversion and display tasks. A block
diagram of the processor configuration is shown in Figure 1.

The conversion of 2D world data into IDC on the TGP is performed

2

in three steps. The first step is to read or store the 2D model
data in an array or user generated primitive data base. The user
defines a world window in 2D world coordinates. The user then
specifies the viewport size on the CRT screen that the world
window will be mapped into. The placement of the world window
into a viewport is specified in normalized device coordinates
(NDC). The NDC are from (0 , O) to (1,l) with the origin at the
lower left corner of the screen. The advantage to placing
viewports in this manner is that the actual screen resolution
never appears in any of the user graphics calls. The last step
is to convert from NDC to IDC. This transformation is totally
transparent to the user. A tranformation from NDC to IDC is
never invoked directly from a user procedure call. A block
diagram of the 2D world coordinate to IDC conversion is shown in
Figure 2.

The current implementation of the WCS to IDC conversion as shown
above is not easily mapped o n t o multiple processors, for example,
a pipeline of three processors. This is due to the sharing of
global window and parametric data among the three stages shown in
Figure 2. Intelligent buffer routines would be required to keep
copies of relevant data on each processor in order to distribute
this portion of the TGP routines onto several processors.

IMPLEMENTATION

The mathematics behind the two-dimensional graphics
transformations used in TGP are well documented [2-51 and will
not be discussed here. What will be covered is the method of
handling the screen and window variables in the graphics tools
package as well as how the global transformation matrix is used.

Because the graphics tool package runs on a processor other than
the BO07 display board, the window and screen variables such as
world coordinates, viewport coordinates (position on the screen),
and graphics cursor coordinates are maintained locally in the TGP
and the only information sent to the BO07 are the hardware
control and device coordinate display commands.

In order to simplify the user interface, i.e. the procedure
calls, many of the window and screen variables are hidden from
the user in global variables. Because of the way Occam handles
storage, a decision was made to simplify the parameter lists of
the various procedures by modifying global variables from within
a procedure without rescoping or putting additional variables in
the parameter list. A side effect of this decision is that it is
no longer possible to make a library out of TGP that a programmer
can implement using the #USE statement in a program. The
programmer must physically place a copy of the TGP source code in
a program.

Another sacrifice made in order to keep the procedure parameter
list small is that channels placed on the link to the BO07
graphics board uses pre-defined channel names with global scope.

3

The only bookkeeping required for a programmer is to keep track
of the windows defined starting with window number 0. An example
of this is shown below. All other bookkeeping tasks are taken
care of automatically by TGP. For example, TGP keeps track of
active window, world and device coordinates in a globally scoped
two-dimensional array that the various procedures can access as
required. The most significant index is the window number and
the least significant is a parameter such as the minimum world x-
coordinate for that window. A corresponding integer array keeps
a copy of the window numbers that the BO07 graphics board has
assigned to a given window.

TGP also contains procedures for translation, rotation, and
scaling of arbitrary data. There is a 3x3 global transformation
matrix, trans.2d, that is used for storing composite coordinate
transforms. The trans.2d matrix can be modified by the following
routines :

scale ()
rotate ()
translate ()

The two-dimensional transformations are performed using
homogeneous coordinates. A full discussion of the method can be
found in References 2, 4, and 5. Composite transformations
(essentially matrix multipliation) can be generated by

Note , consecutive calls to the routines described above.
however, that the generation of the composite matrix is order
specific. A rotation then a translation is not the same as a
translation followed by a rotation.

It is also the users responsibility to initialize the trans.2d
matrix using the make.identity() procedure. An example of using
the transformation routines is given below. The trans.2d matrix
will be generated that will contain the information to translate
and then rotate an array of data points. Note the user
procedures use the WCS coordinates.

-- initialize trans.2d
make.identity(trans.2d)

-- translate x-coordinate 10.0 in WCS, y-coordinate same
translate(l0.0 (REAL32), 0.0 (REAL32))

-- rotate 45 degrees about WCS origin (0 , O)
rotate(45.0 (REAL32), 0.0 (REAL32), 0.0 (REAL32))

-- transform the data points
transform.points(num.points, x, y)

4

In addition to the 2D transformations mentioned above, TGP can
perform both absolute and relative draw commands. The current
graphics cursor for each window is maintainted in WCS by the TGP
and any user specified absolute or relative move commands are
translated into the appropriate BO07 IDC commands and sent to the
display board. The graphics cursor in the current implementation
is currently uninitialized. It is the users responsibility to
initialize the graphics cursor using the move.abs() procedure.
Note that the BO07 graphics display board does not support
relative draw routines directly.

USER ROUTINES

A list of the user procedure routines along with the variables
used in the parameter list is shown below.

Startup and Shutdown Procedures:

init.graphics()

init.db.graphics()

f init. graphics ()

Geometric Transformation Procedures:

transform.points(VAL INT count, []REAL32 x, y)

transform.point(REAL32 x, y)

make.identity([3][3]REAL32 trans.matrix)

scale(VAL REAL32 scale.x, scale.y, x. fixed, y. fixed)

rotate(VAL REAL32 alpha, x.pivot, y.pivot)

translate(VAL REAL32 translate.x, trans1ate.y)

Screen and Window Manipulation Procedures:

clip.line.2d(REAL32 xl, y l , x2, y2, BOOL display)

clip.point.2d(VAL REAL32 x, y, BOOL display)

set.window.2d(VAL REAL32 x.min, y.min, x.max, y.max,
VAL INT window. number)

set.viewport.2d(VAL INT x.min, y.min, x.max, y.max,
VAL INT viewport. number)

activate.viewport.2d(VAL INT viewport.number)

5

display.viewport.2d(VAL INT viewport.number)

select.screen(VAL INT screen.number)

Absolute and Relative Draw Procedures:

move.abs.2d(VAL REAL32 x, y)

move. re1 .2d (VAL REAL3 2 dx, dy)

point.abs.2d(VAL REAL32 x, y)

point.rel.2d(VAL REAL32 dx, dy)

line.abs.2d(VAL REAL32x, y)

line.rel.2d(VAL REAL32 dx, dy)

draw.line.2d(VAL REAL32 xl, yl, x2, y2)

draw.rectangle.2d(VAL REAL32 x, y, x-length, y.length)

draw.polygon.2d(VAL INT num.sides, VAL []REAL32 buffer)

draw.circle.2d(VAL REAL32 x.center, y-center, radius)

draw.arc.2d(VAL REAL32 xl, yl, x2, y2, x3, y3)

Miscellaneous Display Procedures:

f 1 ip. screen ()

activate.screen.2d(VAL INT screen.number)

display.screen.2d(VAL INT screen.number)

clear.screen(VAL INT colour)

clear. window (VAL INT colour)

select.colour. table (VAL INT number)

set.colour(VAL INT entry, red, green, blue)

fg. colour (VAL INT entry)

bg. colour (VAL INT entry)

fill.polygon(VAL INT x, y)

quick.fill.polygon(VAL INT x, y)

6

fill.polygon.2d(VAL REAL32 x, y)

quick.fill.polygon.2d(VAL REAL32 x, y)

int.line(VAL INT xl, yl, x2, y2)

New BO07 Procedures :

pixel.line(VAL INT size, [IINT buffer)

colour.line(VAL INT size, [IINT buffer)

Internal Graphics System Procedures:

combine.transformations[3][3]REAL32 mat.a, mat.b)

map.to.screen.coords(VAL REAL32 x, y,
INT x.screen, y.screen)

g.send(VAL INT32 command, VAL [IINT params)

g. send1 (VAL INT32 command)

g.send2(VAL INT32 commandl, VAL INT32 command%)

c.draw.line(VAL INT xl, yl, x2, y2)

g.draw.line([2]INT PO, pl)

NEW BO07 GRAPHICS COMMANDS

Two new graphics commands have been added to the BO07 graphics
board's driver software. The need for these new transfer
protocols arose from having to send many individual c.draw.point
commands to the B007. Because of the way link data transfers
take place, multiple invocations of a

command can be quite slow. The slowdown arises because each
invocation of a out ! variable command takes about 20
microseconds for the processor to set up. The two new BO07
protocols take advantage of the variable length array transfer
protocol[6]. The new protocols allow either a block of (x, y)
coordinate pairs that assumes every pixel is the same color, or a
block of (x, y, color) triplets to be sent using the

Occam command. The out ! size::buffer requires only one 20
microsecond set up by the main processor and the Direct Memory
Access (DMA) link engines can perform the transfer without any
further processor intervention[7].

out ! c.draw.point; x; y

out ! size::buffer

7

Note that the new BO07 commands use a common storage buffer for
each command in the display board software. The format of the
common storage buffer is appropriately retyped within the scope
of the requested command. Because of the rescoping, the size in
the size::buffer command is really

An excerpt of the code added to the BO07 driver software is shown
below.

size := SIZE(x.variab1es.to.transfer).

-- 1ine.heap.size := (SQRT (x.screen.size-2 + -- y.screen.size-2) + const
-- where the constant lets 1ine.heap.size be divisible by
-- both 2 and 3
-- 1ine.heap.size gives enough storage for a diagonal illle
-- on a 512x512 pixel screen to be passed in 1 block
VAL 1ine.heap.size IS 2178 :
[line.heap.size]INT line-heap :

IF
graphics.command = c.pixel.line -- block of same color

[line.heap.size /2][2]INT pixel.buffer
RETYPES 1ine.heap :

SEQ

in ? size::pixel.buffer

graphics.command = c.color.line -- block of diff. colors

[line.heap.size / 3][3]INT pixel.buffer
RETYPES 1ine.heap :

in ? size::pixel.buffer

Depending upon the size of the data transfers and whether or not
the drawing is being rendered in a window or just to the screen,

a

*

.

Drawing method

the two new protocols can give speed increases anywhere from 8
percent on a full screen draw to 3300 percent on a full-screen
sized window draw when compared to the BO07 c.plot.point command.
Actual times for a typical example problem are shown in Table 1
below.

Time* Time
Low-Pri ticks Seconds

The example problem solved is as follows:

SEQ loop of c.plot.point

c.colour.line block transfer
512 pixel coordinates per block

A complex function was evaluated over all pixel coordinates in a
2D region. Depending upon the quadrant of complex function
value, one of four colors was assigned to the pixel coordinate.
The function used in the example was:

5,307 , 227 339.66

4 , 909 , 576 314.21

g(Z) = 2-4 - 22-3 + 1.252-2 - 0.252 - 0.75

~~~ ~ 

SEQ loop of c.plot.point** 

where z = x + jy. The quadrant plot was computed for the complex 
area (-2, -j2) to. ( 2 ,  j2). 

~~ 

177,009,994 11,328.63 

The computation and TGP display processing were performed on a 
single T414 while the display was performed on a BO07 board. The 
computed pixel colors were sent to the BO07 for display using 
four different methods: 

c.colour.line block transfer 
512 pixel coordinates per block 

5,254,740 336.30 

Rev. B T414 chip, 64 microseconds per low-pri tick 
* *  Large time caused by the display board copying window 

memory to video memory for every pixel displayed. 

* 

Table 1. Typical speed increases using new drawing commands. 

EXAMPLE USER CODE 

A short example of the use of the 2D graphics tools provided in 
TGP is shown below. A world window is defined. The world window 

9 



is then mapped into a normalized device coordinate (NDC) 
viewport. The axes are from 0 to 1 in both the x and y 
coordinates. Also  note that the origin in NDC is the lower left 
corner rather that the upper left corner which is normal for the 
integer device coordinates ( I D C )  . A square is then drawn in the 
center of the window, and for each of io0 iterations, it is 
rotated 3.6 degrees and scaled down by a factor of 0 . 9  . Note 
that after the first transformation, the displayed figure is no 
longer a square. This is due to the way the composite 
transformation matrix is generated. A more complicated series of 
transformations would be required to keep the object a true 
square. 

[4]INT x, y : -- store the coordinates here 
VAL my.first.window IS 0 : 

SEQ 

-- This is the only bookkeeping 
-- I have to do. 

init. graphics ( )  

-- set the window world coordinates 
set.window.2d(-80.0 (REAL32), -50.0 (REAL32), 

80.0 (REAL32), 50.0 (REAL32), my.first.window) 

-- set the window size on the screen, starts at lower left, 
-- (0, 0) and goes to (0.75, 0.50) of whole screen 
set.viewport.2d(0.0 (REAL32), 0.0 (REAL32), 

0.75 (REAL32), 0.50 (REAL32), my.first.window) 

-- turn this window on for drawing 
activate.viewport(my.first.window) 

-- select some colors 
fg . colour (31) 
bg.colour(4) 
clear.window(4) 

-- put it on the screen 
display.viewport.2d(my.first.window) 

-- init coordinates, due to the typing, must be able to 
-- modify the values in the parameter list 
X[O] := -10.0 (REAL32) 
y[O] := x[O] 
x[1] := x[O] 

x[2] := y[l] 
Y[21 := Y[ll 
x[3] := y[l] 
y[3] := x[O] 

y[l] := 10.0 (REAL32) 

make.identity(trans.2d) -- trans.2d is the global 
-- rotate 3.6 degrees, updates trans.2d matrix 
rotate(3.6 (REAL32), 0 . 0  (REAL32), 0.0 (REAL32)) 

-- transformation matrix 

. 

10 



-- scale by 0.9 
scale(0.9 (REAL32), 0.9 (REAL32), 0.0 (REAL32), 0.0 (REAL32)) 

-- draw the square, rotate it, etc. 
SEQ i = 0 FOR 100 
SEQ 
SEQ i = 0 FOR 3 -- draw the box 

draw.line.2d(x[O], y[O], x[3], y[3]) 
draw.line.2d(x[i], y[i], x[i + 13, y[i + 13) 

transform.points(4, x, y) -- modifies x, y using trans.2d 
f init. graphic ( )  

Note in this example, the old box is not erased. Also, this is a 
single buffered routine. For double buffering the user must 
initialize the graphics using init.db.graphics() and put a 
flip.screen(), cl.ear.window() after the transform points. This 
will give a smooth scrolling animation with no visible rendering 
occuring. 

LIMITATIONS 

The current implementation of TGP has a few limitations. These 
are primarily caused by the static memory allocation of O c c a m  
though some are limitations in TGP and the BO07 driver software. 

TGP currently does not directly allow moving windows once they 
are placed on the screen. Knowlegde of BO07 operation can be 
used to circumvent this problem by direct use of low-level 
display routines. 

Because of the method used for window storage allocation on the 
B007, it is not possible to resize windows once they are defined. 
Also, window memory can not be released after a window is 
allocated, i.e. can not llclosell a window and free the window heap 
memory used by the window for a new one. 

SUMMARY 

A package of two-dimensional Occam graphics routines have been 
developed that allow model definition in 2D real-coordinate 
space. The package directly supports the IMS BO07 graphics 
display board, although the current routines were designed to run 
on a transputer other than the one on the display board. 
Features supported include multiple windows, screen doubl- 
buffering, and 2D geometric transforms such as translation, 
rotation, and scaling. 

In addition, two new data transfer protocols have been developed 
for the BO07 graphics display board software. These new 
protocols allow blocks of pixel data to be sent to the BO07 f o r  
display. The block data transfers speed communication by 

11 



decreasing the number of communication setups the main processor 
is required to perform. 

12 



REFERENCES 

DATA FROM 
APPLICATION- 
PROGRAM 

1. IMS BO07 Evaluation Board Users Manual. INMOS, Bristol, 
England, June 1986. 

. 2D WORLD PROCESSOR * GRAPHICS DISPLAY BOARD 

2. Foley, J.D.; and VanDam, A.: Fundamentals of Interactive 
Computer Graphics. Addison-Wesley, 1982. 

3 .  Newman, W.M.; and Sproull, R.F.: Principles of Interactive 
Computer Graphics. McGraw-Hill, 1979. 

4 .  Hearn, D.; and Baker, M.P.: Computer Graphics. Prentice- 
Hall, 1986. 

5. Rogers, D.F.; and Adams, J.A. Mathematical Elements for 
Computer Graphics. McGraw-Hill, 1976. 

6. Pountain, D.: A Tutorial Introduction to OCCAM Programming. 
McGraw-Hill, 1987. 

7. Atkin, P.: Performance Maximization. INMOS Technical Note 
17, INMOS, Bristol, England, Mar. 1987. 

. 

13 



DATA FROM APPLICATION 
PROGRAM 

1 
PICTURE DEF I N I T  ION 
I N  WORLD 
COORDINATES 

NORMAL I ZED 
DEVICE 
COORDINATES 

t 

DEVICE COORDINATES 

1 
TO GRAPHICS BOARD 

0 

WORLD WINDOW tY 

J 

VIEWPORl 

I 
1 

XHAX 

WINDOW 

YHAX 

FIGURE 2. - IMPLEMENTATION OF 2D VIEWING ON 2D WORLD PROCESSOR. 

14 



2. Government Accession No. NASA TM-100820 
ICOMP-88-4 

1. Report No. 

4. Title and Subtitle 

Two-Dimensional Graph ics  Too ls  for a T ranspu te r  
Based D i s p l a y  Board 

7. Author@) 

Graham K .  E l l i s  

3. Recipient's Catalog No. 

5. Report Date 

6. Performing Organization Code 

~~ 

9. Performing Organization Name and Address 

N a t i o n a l  A e r o n a u t i c s  and Space A d m i n i s t r a t i o n  
Lewis Research Cen te r  
C l e v e l a n d ,  O h i o  44135-3191 

N a t i o n a l  A e r o n a u t i c s  and Space A d m i n i s t r a t i o n  
Washington, D.C. 20546-0001 

12. Sponsoring Agency Name and Address 

17. Key Words (Suggested by Author@)) 

0. Performing Organization Report No. 

E-40 10 

18. Distribution Statement 

10. Work Unit No. 

505-33-1 B 

19 Security Classif (of this report) 20. Security Classif (of this page) 21 No of pages 

U n c l  a s s i  f i ed Uncl ass i f i ed 16 

11. Contract or Grant No 

22 Price' 

A02 

13. Type of Report and Period Covered 

Techn ica l  Memorandum 
14. Sponsoring Agency Code 

15. Supplementary Notes 

Prepared for  t h e  P a r a l l e l  Computing Workshop/OCCAM User Group Mee t ing  cosponsored 
by  OSU/OCATE and INMOS, P o r t l a n d ,  Oregon, A p r i l  11-13, 1988. Graham K .  E l l i s ,  
S e n i o r  Research A s s o c i a t e  a t  t h e  I n s t i t u t e  f o r  Computa t iona l  Mechanics i n  P r o p u l -  
s i o n ,  NASA Lewis Research Center  (work funded under Space A c t  Agreement C99066G). 

I 16. Abstract 

A package o f  two-dimensional  g r a p h i c s  r o u t i n e s  has been deve loped i n  an e f f o r t  
t o  s t a n d a r d i z e  and s i m p l i f y  t h e  use r  i n t e r f a c e  for  a t r a n s p u t e r  based g r a p h i c s  
d i s p l a y  board .  
c a p a b i l i t i e s  w h i l e  a l s o  p r e s e n t i n g  an i n t u i t i v e  approach f o r  g e n e r a t i n g  d raw ings .  
The r o u t i n e s  a l l o w  a use r  t o  p e r f o r m  g raph ics  r e n d e r i n g  i n  a two-dimensional  
r e a l - c o o r d i n a t e  space w i t h o u t  r e g a r d  to  t h e  a c t u a l  sc reen c o o r d i n a t e s .  M u l t i p l e  
windows, wh ich  can be p l a c e d  a r b i t r a r i l y  on t h e  screen as w e l l  as t h e  a b i l i t y  t o  
use d o u b l e - b u f f e r i n g  techn iques  f o r  smooth a n i m a t i o n s  a r e  a l s o  suppor ted .  
r o u t i n e s  a r e  des igned t o  be r u n  on a t r a n s p u t e r  o t h e r  t h a n  t h e  g r a p h i c s  d i s p l a y  
board .  The window and screen parameters a r e  m a i n t a i n e d  l o c a l l y .  The c o n v e r s i o n  
t o  d e v i c e  c o o r d i n a t e s  i s  a l s o  performed l o c a l l y .  
d i s p l a y  board  a r e  c o n t r o l  and d e v i c e  c o o r d i n a t e  d i s p l a y  commands. The r o u t i n e s  
a v a i l a b l e  i n c l u d e :  r o t a t i o n ,  t r a n s l a t i o n ,  and s c a l i n g  commands; a b s o l u t e  and 
r e l a t i v e  p o i n t  and l i n e  commands; c i r c l e ,  r e c t a n g l e  and po lygon  commands; and 
window and v i e w p o r t  d e f i n i t i o n  commands. 

The r o u t i n e s  a v a i l a b l e  t a k e  advantage o f  t h e  g r a p h i c s  b o a r d ' s  

The 

The o n l y  d a t a  s e n t  to  t h e  

P a r a l l e l  p r o c e s s i n g  
T r a n s p u t e r  
Graph ics  

U n c l a s s i f i e d  - U n l i m i t e d  
S u b j e c t  Ca tegory  61 

J 


