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I. INTRODUCTION 

Microwave imaging techniques have been widely used by the 

scattering community to identify the scattering centers associated with 

a complex target [l]. For example, a two-dimensional image is typically 

formed in the radial (down-range) and normal to the radial (cross-range) 

directions. 

by processing the backscattered fields from the object with a wide-band 

signal illuminating the object. The cross-range scattering centers can 

be determined by either Doppler processing or synthetic aperture 

processing the backscattered fields with a constant frequency signal 

illuminating the object. 

shown in Figure 1 [l] indicates the scattering intensity level 

associated with various scattering centers of the target. 

data is extremely useful for diagnostic purposes because one can 

evaluate the various scattering centers and their relative scattering 

levels. 

observe how a given scattering center is affected by the changes even 

though the change might be insignificant in terms of the total 

structural scattering level. 

The down-range scattering centers are normally determined 

The two-dimensional image of a target such as 

This type of 

Then as changes are made on the structure one can quickly 

Microwave holographic techniques (21  have been used recently for 

the determination of amplitude and phase of the principal and cross- 

polarized aperture fields of large aperture antennas. 

approach, the complex far-zone fields of the antenna in e-+ directions, 

around the main beam, are processed via a Fourier Transform to obtain 

the aperture fields. 

Using that 

From the aperture phase data, one can further 
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determine the possible antenna surface deviations relative to its ideal 

geometry [ 3 ] .  Using a similar method, one can determine the locations 

of the various radiation centers which contribute to the far out 

sidelobes of an antenna pattern. This technique, which forms the basis 

of this report, utilizes the amplitude and phase of the antenna pattern 

to identify the appropriate centers. The formulation of this technique 

is given in the next section. Results of cross range processing the 

radiation patterns for two 8' reflector antennas, a prime focus fed and 

a Cassegrainian, are presented later. 

11. F0R)IIILATION 

Let P(e) be the radiation pattern of an antenna in a given p-z 

plane (constant 9) with its phase center at a coordinate origin, which 

is also the center of rotation, as shown in Figure 2(a). If the phase 

center of the antenna is moved to point A ,  as shown in Figure 2(a), the 

pattern of this same antenna is given by 

-jkRdcos( ed-8) 
Pr(e) = P(8)e 

where R and 8 define the new phase origin, A. Note that the e-jkr/r 

factor has been suppressed from the antenna pattern. 

integrated over a small angular region around %Bo;  i.e., e0-A0 5 8 

e0+A8, the following integral is obtained: 

d d 
If Equation (1) is 

3 
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(b) Rotation of coordinate system, @&eo 

Figure 2. Geometry of an antenna on a given p-z plane (constant 0 
plane). 
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Let 9 = &eo, then Equation (2) becomes 

The cosine term in the above integral can be written as 

cos(e -e -9) = cos(e -e )COS+ + sin(ed-e0) sin* . d o  d o  

If it is assumed that JI is small; i.e., Ae is small since -Aes+<be, then 

one obtains 

Thus, Equation (3) becomes 

U J-Ae 
or 

The rotation in the coordinate system, +&eo, is illustrated in Figure 

2(b). 

written in the following form: 

By neglecting the constant phase term, Equation (5) can now be 

5 



where y=Rdsin(B -8 ). 

yi<y<yf, one obtains a response function, I ( y ) .  

using an isotropic point source that the response I ( y )  provides 

information about the location of the radiation center along the y-axis; 

i.e., the cross range location of a source of radiation or radiation 

center. Note that the pattern function of the antenna, P ( 8 ) ,  is 

measured or calculated with respect to the coordinate origin. 

By making y an independent variable such that 

It is shown next by 
d o  

The radiation pattern of an isotropic point source located at point 

A as shown in Figure 2(a) with its phase center at the coordinate origin 

is given by 

From Equation ( 6 ) ,  one obtains that 

J-fle J-se 

Note that y is now an independent variable. By using the same 

approximation given in Equation (4) since JI is small, Equation (7) 

becomes 

J-Ae 
or 
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The magnitude of I(y) after normalization is given by 

It is apparent from Equation ( 8 )  that II(y)IN is a function of the form 

l y l ,  which has a maximum at u=O. Consequently, the maximum of the 

response I(y) occurs at 

which is exactly the position of the isotropic point source along the 

cross range axis; i.e., the y-axis. 

From this simple example, the interpretation of Equation (6)  

becomes clearer. 

pattern function P(++e0) and the phase factor e 

will be coherent. Consequently, the summation of these coherent 

integrands, I(yo) ,  provides a higher response than the responses for 

other y's.  This is the same idea as the synthetic aperture processing 

If the radiation center is at pro ,  the product of the 

for small JI angles 
-jkv,J, 

used for scattering problems. 

If more than one radiation center is present, the integral given by 

Equation (6 )  can be used to find the cross range response and their 

positions provided that the adjacent centers are separated far enough so 

that their locations can be resolved. It is also noted that for 

different pattern angles, eo, one obtains different response functions, 

I ( y ) ,  to determine where the radiation contributions t o  the pattern at 

7 



8 are coming from. In the next sections, the radiation patterns of an 

8' prime focus fed reflector antenna and an 8 '  Cassegrain reflector 

system are used to illustrate the value of this cross range processing 

technique. 

0 

111. " E R I C A L  RESULTS 

A. 8' Prime Focus Fed Reflector 

In this section, the results of cross range processing of the 

patterns of an 8' prime focus fed reflector are presented. The 

reflector had a 48" focal length and a feed support structure which 

includes a circular ring and four struts with a 0.84" diameter and 90° 

angular separation. The geometry of this reflector is illustrated in 

Figure 3(a). The measured far-zone H-plane pattern at 11.0 GHz with a 

corrugated horn feed is shown in Figure 3(b ) .  

based on the measured data and for eO=Oo, 20°,  and 40° with 80=5O are 

shown in Figure 4. In order to determine the locations of the radiation 

centers, the reflector geometries and the projections of the struts are 

also shown in the same figure. Note that the center of rotation of the 

reflector was 21.5" from the vertex of the reflector. It is apparent 

from Figure 4(a) that the contributions to the radiated field at 80=Ou 

are from the whole aperture of the reflector, as expected; although 

there are minor perturbations associated with the scattered fields from 

the feed support structure. From Figures 4(b) and 4(c), one can 

identify the radiation centers, which are two edge diffraction points, 

the end points of the struts attached to the reflector and the feed 

The cross range responses 

8 



Figure 3. 

(a) Geometry 

STRUT LOBE STRUT LOBE I 

1 I- 
1 

0 

*180. -150. -120. -90. -60. -30. 0. 30. 60. 90. 120. 150. 180. 
(0 

T H E T A  ( D E G R E E S )  

;:i,,, 
(b)  Measured €I-plane pattern 

Geometry and measured H-plane pattern of the 8 '  prime 
fed reflector. 
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Figure 4. Cross range response of the measured H-plane pattern for the 
8' prime focus fed reflector. 
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(A) : MAIN REFLECTOR EDGE 
(B)  : FEED SPILLOVER, SUPPORT STRUCTURE, 

STRUT END POINTS 

( c )  e0=400, A & 5 O  

Figure 4. Continued. 
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-- - 

support structure in the neighborhood of the focus. It is also seen 

from Figures 4(b) and 4(c) that there is a very strong response at y=- 

7.5" for eo=2O0 and at y=-14.0" for 8 =40°. 

diameter hole centered at the vertex of the reflector which was created 

during the manufacture process of the reflector. Although this hole was 

taped from behind the dish during the pattern measurement, the effects 

due to this hole and its discontinuity still shows up in the patterns. 

This fact is further verified by processing the measured off-principal 

plane patterns (+=15' and 30' cuts) at eO=2Oo which are shown in Figure 

5. Note that the cross range processing indicates a radiation center at 

the center of the reflector for each + pattern cut which identifies the 
hole as a significant scattering center. This example illustrates the 

diagnostic value of this processing technique in that the level of the 

scattered field associated with the taped hole was unexpected. 

This is due to a 2.5" 
0 

The calculated patterns simulated by the OSU Reflector Antenna Code 

[4,5] were also processed to further verify the locations of the 

radiation centers since theoretically, one knows exactly where the 

locations of the radiation centers are for a circular reflector. The 

calculated far zone H-plane pattern is given in Figure 6. 

range responses for eO=Oo and 20" with A8=5' are shown in Figure 7. 

responses calculated from the measured pattern are also shown in the 

same figure for comparison. It is seen from Figure 7(b) that the 

contribution from the hole at the vertex does not appear since it was 

not modeled in the calculation. Also note that the contributions due to 

the edge diffractions are much stronger in the calculated pattern than 

The cross 

The 
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Figure 5. Cross range response of the measured off-principal patterns 
for the 8' prime focus fed reflector at eo=2O0, A & 5 O .  
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Figure 6. H- lane pattern of the 8' prime focus fed reflector 
ca P culated by the OSU Reflector Antenna Code. 
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Figure 7. Cross range response of the calculated H-plane patterns for 
the 8 '  prime focus fed reflector. 
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in the measured one. This is because the real reflector had a rolled 

edge; whereas, a knife edge was assumed in the simulation. It is also 

noted that the cross range response for 8 =Oo describes the distribution 

of the fields across the reflector aperture on the pattern plane. This 

distribution is similar to the YSUM distribution [5 ,6 ]  used by the OSU 

Reflector Antenna Code to improve the computation efficiency of the far 

zone aperture integration solution. The YSUM's are actually the 

summation of aperture fields along the lines perpendicular to the 

pattern plane. The YSUM distribution calculated by the Reflector 

Antenna Code is shown in Figure 8 for comparison. The difference 

between the YSUM distribution and the cross range response is that only 

the aperture fields are included in the YSUM's; whereas in the cross 

range response, the scattered fields from the feed support structure and 

feed spillover are also included. The cross range responses of the 

calculated edge diffracted fields, aperture blockage, strut scattered 

fields and feed spillover are given in Figure 9 for +=Oo and 8 =20°. 

Note that the cross range processing clearly identifies the location of 

each radiation center properly and indicates a relative radiation level 

which makes it most appropriate for diagnostic purposes. 

0 

0 

These examples illustrate other very useful applications for this 

processing. If one has a simulation of the antenna design, he can 

process his simulation data and compare the results with measured ones. 

The difference in the radiation center levels indicates improper 

radiation levels in the calculation; whereas, the lack of radiation 

centers in the model means that the simulation was not complete. Note 
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Figure 8. Calculated H-plane YSUM distribution of the 8' prime focus 
fed reflector. 
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Figure 9. Cross range responses of the different contributions to the 
calculated H-plane pattern at eo=200 of the 8’ prime focus 

I fed reflector. 
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that the lack of radiation centers can also indicate measurement errors 

in that certain centers can be associated with range problems, for 

example. 

B. 8' Cassegrain Antenna System 

In this section, the results of cross range processing of the 

patterns of an 8' Cassegrain reflector are presented. 

this reflector is shown in Figure 10(a). 

reflector was 35.8" and the distance between the two focii of the 

subreflector was 22.262". The measured H-plane pattern at 11.0 GHz for 

this antenna with a conical horn feed is shown in Figure 10(b). The 

cross range responses of the H-plane patterns at eO=Oo and 30° with 

A8=5O are given in Figure 11. 

Reflector Code is shown in Figure 12 with the cross range responses at 

8 =Oo and 30° shown in Figure 13. Note that the center of rotation was 

21.6" behind the vertex of the reflector for this case. From the 

response for 0 =Oo, one can see the significant blockage effects caused 

by the subreflector on the aperture distribution. 

identify the various radiation centers from the response for 6 =30°. I t  

is also obvious that the direct spillover from the primary feed is very 

strong compared to the other contributions. 

The geometry of 

The focal length of the main 

The H-plane pattern calculated by the 

0 

0 

One can also easily 

0 

It is very interesting to note that in the prime focus fed 

reflector pattern, there were two very significant strut lobes which 

occur at 8-&7S0 as shown in Figures 3(b) and 6; however, these two lobes 

did not appear in the pattern of the Cassegrain reflector as shown in 

19 



F 
t 

lC35.9*-= 

(a) Geometry 

T H E T A  ( D E G R E E S )  

(b) Measured H-plane pattern 

Figure 10. Geometry and measured H-plane pattern of an 8 '  Cassegrain 
reflector. 
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Figure 11. Cross range response of the measured H-plane pattern for the 
8' Cassegrain reflector. 
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T H E T A  ( D E G R E E S )  

Figure 12. H-plane pattern of the 8 '  Cassegrain reflector calculated by 
the OSU Reflector Antenna Code. 
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Figure 13. Cross range response of the calculated H-plane pattern for 
the 8' Cassegrain reflector. 
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Figure 14. Illustration of scattering by struts. 
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Figures 10(b) and 12. These strut lobes were caused by the scattering 

from struts with plane wave incidence which is the reflected field from 

the main reflector. The strut scattered field is most significant along 

certain directions which lie on a diffraction cone [7,8] as illustrated 

in Figure 14. The half angle of the cone depends on the angle of the 

strut with respect to the axis of the reflector. In the 8 '  Cassegrain 

reflector, the half angle of the strut diffraction cone is larger than 

the one in the prime focus fed reflector as shown in Figure 14. 

Consequently, the strut scattered fields at the wide angles from the 

reflector axis were blocked by the main reflector surface and then 

scattered in other directions. Thus, the cross range response for  the 

Cassegrain reflector pattern indicates the secondary scattering from the 

struts . 
In order to evaluate this strut scattering for the Cassegrain case, 

let us consider the &45O measured pattern in that one can easily trace 

the rays reflected by the struts in this pattern plane. The cross range 

response for $=30° in the +45O plane is shown in Figure 15 with the 

dashed line tracing the ray: 

strut + main reflector + far zone. This contribution is normally not 

simulated in any computer code, although the cross range response shows 

that it is a very important term. 

feed -+ subreflector + main reflector + 

IV. CONCLUSIONS 

A diagnostic technique to obtain cross range radiation centers 

based on antenna radiation patterns has been presented in this report. 

This method is similar t o  the synthetic aperture processing of scattered 
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MAIN REFLECTOR EDGE,STRUT END POINT (E): 

Figure 15. Cross range response of the measured 4 5 O  plane pattern f o r  
the 8' Cassegrain reflector with eo=3O0 and A 8 = 5 O .  
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fields in the radar application. Coherent processing is used to 

determine various radiation centers based on far zone pattern data 

provided that adjacent centers are separated far enough so that their 

locations can be resolved. Although one can also increase the angular 

boundary of integration for I (y)  to improve the resolution, this is 

restricted by the assumption that cosqzl and sin$=+ in the derivation of 

I (y ) .  Cross range processing results based on the far-zone patterns 

associated with two 8' reflector antennas were presented to illustrate 

as well as validate this concept. 

This technique can be used to diagnose the radiation properties of 

an antenna and/or evaluate its radiation centers versus those used in 

the design of the antenna system. In this regard, it is used to 

indicate the unexpected radiation centers such as the hole scattering 

identified in our example. 

information about contributions from the antenna which are not modeled 

in a numerical simulation, such as the strut scattered fields which 

reflect from the main reflector surface in the 8' Cassegrain reflector 

case. Although this technique only provides cross range information, 

one can scan the antenna in the 9 and Q directions to obtain a two- 

dimensional image such as used by the holographic community, or scan the 

antenna in frequency to obtain so-called "down-range" radiation center 

information. 

On the other hand, it can provide 

Now that an antenna engineer can very easily and accurately measure 

phase, all these diagnostic processing tools are at his finger tips. 

Once the value of these methods become more widespread in the antenna 

community, it is expected that improved designs will result because one 
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can better evaluate pattern performance in terms of the individual 

mechanisms that create the resulting pattern. With this in mind, this 

report has not attempted to examine all the ways that this type of 

processing can be used for antenna applications but rather to illustrate 

their general value and strongly suggest that they be used in future 

antenna designs. 
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