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A low dimensional dynamical
system for the wall layer

By N. AUBRY 1 AND L. R. KEEFE 2

Low dimensional dynamical systems which model a fully developed turbulent

wall layer, for y+ < 40 have been derived (Aubry et al. 1986, Aubry, 1987). The

model is based on the optimally fast convergent proper orthogonal decomposition,

or Karhunen-Loeve expansion, proposed by Lumley, 1967. This decomposition

provides a set of eigenfunctions which are derived from the autocorrelation tensor

at zero time lag. Those used in the previous studies were experimentally determined

in a pipe flow at a Reynolds number 8750 based on the mean centerline velocity

and the diameter of the pipe. (Herzog, 1986).

Via Galerkin projection, low dimensional sets of ordinary differential equations

in time, for the coefficients of the expansion, were derived from the Navier Stokes

equations. The energy loss to the unresolved modes was modeled by an eddy vis-

cosity representation, analogous to Heisenberg's spectral model. In the previous

work the equations of a ten dimensional system, consisting of one eigenfunction per

wave number for the zero streamwise wave number, and six spanwise wave numbers

corresponding to a periodic length of 333 wall units, were examined. The solution,

which consisted of longitudinal rolls, exhibited an intermittent behavior(the zero

mode decays to zero). The rolls are initially steady, but then oscillate with slowly

growing amplitude until they "burst" into much more complicated features before

recovering their initial state. The whole sequence then repeats. This is suggestive

of the bursting event observed in visualization experiments (Kline et at., 1967).

This approach may shed light on the basic dynamical mechanism of the fun-

damental bursting event. However, until recently, it. was limited to the specific

experimental flow (Herzog, 1986).

Another set of eigenfunctions and eigenvalues have been obtained from direct.

numerical simulation of a plane channel at a Reynolds number of 6600, based on

the mean centerline velocity and the channel width (Moin & Moser, 1987). This

new set of eigenfunctions is compared to those of Herzog (1986). The expansion

still converges very quickly, since 75% of the kinetic energy is contained in the

first eigenmode. Thus it still seems quite reasonable to truncate the expansion

at the first mode. The energy content at the first eigenmode still drops faster

with streamwise wave numbers than with spanwise wavenumbers, justifying, in

a first approximation, no variations in the streamwise direction. However, the

ratio between the streamwise and cross-stream length scales is not as large as was

observed in the decomposition of Herzog, suggesting that few elongated patterns
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are present. The energy in cross- stream wavenumbers is slightly larger than in the

experimental case and the peak in the spectrum is shifted to a higher wavenumber.

Also, the peak magnitude of the numerically generated spectrum for k, = 0 seems

anomalously large. The contribution of the first eigenmode to the variance of the

velocity fluctuations in the three directions is very similar in both cases. However,

while the contribution of Herzog's first mode to the Reynolds shear stress is 50%

near the wall, 95% at. y+ = 20, 78% at the upper edge of the layer, that of Moin and

Moser exceeds 100% in the region 13 <_ y+ _< 25 (120% at y+ = 25). This apparent

paradox occurs because the contribution of higher order modes to the Reynolds

shear stress is negative in that region. The eigenfunctions themselves are quite

similar in both cases, at least amongst those selected for inclusion in the dynamical

system.

Using the new eigenvalues and eigenfunctions, a new ten dimensional set of ordi-

nary differential equations has been derived using five non-zero cross-stream Fourier

modes with a periodic length of 377 wall units. The coefficients in the equations

are similar to those of the previous study. As in the previous work, the evolution

equations are globally stable, since all the coefficients of the cubic terms are nega-

tive. This is due to the positive contribution of the first eigenmode to the Reynolds

shear stress. The coefficients of the cubic terms are larger with the present data

than in the previous studies. This appears to be caused by the higher proportion

of Reynolds shear stress carried by the first mode.

The new dynamical system has been integrated for a range of the eddy viscosity

parameter c_. For large values, the solution goes to a stable fixed point, involving

only the second and fourth Fourier mode. When tr decreases, this fixed point

undergoes a bifurcation to a limit cycle. As c_ decreases more, the solution becomes

nmch more complicated and intermittent. In contrast, the results of the previous

work showed a transition directly from a fixed point to an intermittent solution

exhibiting the bursts discussed above. The intermittent solution in the present

work exhibits the same basic features previously observed. In the previous work

the solution cyclically visited the neighborhood of two different fixed points, being

attracted to a double homoclinic orbit which connected them. In the new system

the solution switches back and forth in a similar way between different orbits and

limit cycles. When c_ decreases more, we observe much more disorganized motion.

This work is encouraging. Although we could not analyze in detail the bifurca-

tion diagram during the short period of the program, we observed intermittency

of the solution for some values of the parameter a. The appearance of limit cy-

cles introduces periodic motions superposed to the intermittency. We plan more

investigations in future work.
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