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Ejection mechanisms in the sublayer
of a turbulent channel

By J. JIMENEZ 1, P. MOIN 2,3, It. D. MOSER 3 AND L. R. KEEFE 4

It has long been recognized that the structure of wall bounded turbulence in

boundary layers and channels is three-dimensional (Kline et al., 1967). A generally

accepted picture is that low velocity streaks are ejected from the wall layer and

are responsible for a large fraction of turbulence production. (see e.g., Cantwell,

1981). The mechanism that triggers the initial ejection is, however, not understood,

and there are indications that the processes controlling the behavior of the viscous

sublayer, where these ejections originate, are different from those active in the outer

parts of the boundary layer.

Recently, Jimenez (1987), while studying numerically the behavior of a two.

dimensional channel flow, found a simple mechanism giving rise to spontaneous

ejections of vorticity, and of the associated low momentum fluid, away from the

wall and into the core flow. In that 2-D case, once the vorticity is ejected, it is

stretched into long thin shear layers which periodically release part of their vor-

ticity into the laminar core of the channel, where it is eventually dissipated by

viscosity (figure 1). It should be stressed that tile only vorticity component present

in a 2-D flow is _., and that this process is essentially different from any of the

usually accepted mechanisms involving induction by hairpin vortices, which include

important contributions from w_, and _%. As such, it was not expected that this

complete picture would survive in fully developed three-dimensional channel flows,

but one of our goals during this workshop was to check whether some aspect of it

could still be useful in describing fully turbulent situations.

A particularly appealing possibility was that the same mechanism could con-

tribute to the origin of the ejections in natural channels, especially since it was

shown in Jimenez (1987) that the site of the basic ejection instability for the 2-D

flow is tile viscous sublayer, where it can reasonably be expected to be approx-

imately independent of tile three-dimensional phenomena occurring in the outer

part of natural boundary layers.

The general behavior of the 2-D solution is that of a periodic train of nonlinear

Tollmien-Schlichting (T-S) waves, of the kind described in (Herbert, 1976). This

wave train is characterized by a succession of strong vorticity peaks at the wall,

separated by regions of weaker, or even negative vorticity. This alternation of strong

and weak vorticity generates local updrafts, corresponding to stagnation points in
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FIGURE 1. Two dimensional ejection in the boundary layer of a 2-D channel.

The periodic ejections from the train of nonlinear Tolhnien- Schlichting waves are

equivalent to a limit cycle of the system (from Jimenez, 1987). Flow runs from left

to right, and time, from top to bottom. Axes move with primary T-S wave. Each

frames spans from the lower wall to the channel centerline.

a frame of reference moving with the wave train, which tend to draw vorticity away

from the wall, producing the protruding shear layers (see figure 2). The stability of

this situation depends on the Reynolds number. Above Re = Uh/u = 5500, and for

a wave number a = 1.0, the uniform wave train becomes unstable and bifurcates

into a limit cycle, giving rise to the periodic ejections described above. At a higher

Re = 9100, it bifurcates again into more complicated dynamical behavior (a torus).

Here, U refers to the center-line velocity of a parabolic profile with the same mass

flux, and h, to the channel half width. Throughout this paper we will use this
non-dimensionalization.

Our first step was to check the accuracy of the original 2-D calculations. To do

that, some initial conditions from Jimenez (1987) were used with a 2-D version of

the channel flow described in (Kim, Moin & Moser, 1987). Although both numerical

codes are spectral, they are essentially independent, and differ in many important
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FIGURE 2. The basic mechanism for the two dimensional ejection of vorticity is

the creation of an updraft between a pair of spanwise vortices of opposite sign (or

unequal magnitude) in the sublayer.

details, including different dependent variables used in the integration. Neverthe-

less, the results of both codes did check in detail. The comparisons included a limit

cycle (Re = 7000), and a torus (Re = 9200). In both cases, not only the qualitative

nature of the results from both codes were similar, but the quantitative values of

the wall stress, and of its oscillations as a result of the instability, agreed to within

plotting accuracy.

The next step was to investigate the degree of similarity between nonlinear T-S

waves and thin layers of z-vorticity present in natural channel flows. For that,

we used a short time series of flow fields extracted from the numerical simulation

described in (Kim, Moin & Moser, 1987). This is a fully resolved numerical simu-

lation, Re = 4200, of a channel which is defined as 47rh periodic in the z direction,

and as 4rrh/3 periodic in tile z direction. The Reynolds number is based on the

centerline velocity of a parabolic profile with the same mass flux. It was shown in

thai. reference that its statistical properties are in good agreement with those of

experimental flows, and we will consider it here as a "natural" turbulent channel.

The first surprising observation is that thin layers of z-vorticity are indeed a very

common feature of this channel flow, and that they protrude from the wall in a

manner which is strongly reminiscent of the features observed in the 2-D calculations

(figure 3). To our knowledge, this is a new observation, although Kim (1987) had

described the formation of thin layers of high vorticity magnitude as part of the

evolution of an isolated "hairpin" vortex in the neighborhood of a channel wall.

There are some important differences between the structures observed in the

channel and those in the 2-D calculations. To begin with, the "wavelength" seems

to be shorter, with an average longitudinal separation between consecutive features

of the order of 1 to 3h. (200-600 wall units), while the 2-D nonlinear T-S waves

can only exist, as equilibrium solutions, for wavelengths in a range between 4b and

6.5h. Also, the channel layers penetrate less into the core of the channel, appearing

to level off at a distance of 0.3h. (35 wall units) away from the wall, while the 2-D
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FIGURE 3. Lateral view of a train of projecting shear layers of z-vorticity in a

natural, fully developed three dimensional channel flow. Note the similarity to the

structures in the 2-D calculations. Dotted lines correspond to _o, = -1,0; dashed:

_o_ = 1,2; solid: wz = 3 to 17. Average vorticity at the wall is w_ = 7.67.
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FIGURE 4. Distribution of spots of high spanwise vorticity in the viscous sublayer

(y+ = 6). These spots are the roots of the structures in figure 3. The line marked

"A" corresponds to the position of the cross section in figure 3.

solutions extend all the way to the channel center line. On the other hand, there is

some evidence, in the natural flow, of weaker layers that do extend deeper into the

core.

The main difference, however, is that the shear layers in the natural channel are

three dimensional structures, with a spanwise extent of no more than 0.2h, or about

35 wall units, at y+ = 6 (and about twice as much at the wall). They appear to

be rooted at the wall in elliptical "hot" spots in which the spanwise vorticity is at

least 25% higher than its average wall value, and to extend into the channel with a

characteristic S-shape , and an average ejection angle of a few degrees. These spots

can be used to detect and count the protruding layers and to follow their motion

(figure 4). They appear to move with a convection velocity of 60% of the center line

velocity, or 0.47U, where U refers to the centerline velocity of the laminar profile

at the same mt_ss flux. This last number is in surprisingly good agreement with the

convection velocity of the 2-D nonlinear waves. Although the significance of this
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FIGURE 5. Three dimensional representation of z-vorticity structures extending

away from the viscous sublayer. The vorticity iso-surface represented is approxi-

mately 25% higher than the average wall vorticity, and the first tick mark in the

y-axis corresponds to y+ = 17.

agreement is not clear, this convection velocity is quite high, showing that the spots

are linked to some structure extending outside the viscous sublayer.

In fact, when these hot spots are followed into the flow in the form of three di-

mensional iso-surfaces of z-vorticity, they form a "forest" of leaning curving "necks"

that covers much of the wall (figure 5). It is possible to follow the evolution of these

structures as they move in time, and some of them were followed for fairly long

periods, long enough for the structure to move several channel half widths. In the

course of their life they reproduce, giving origin to new structures, and we were able

to observe several of these reproduction processes. An example is given in figure

6, where time runs from top to bottom. In the first frame of this time sequence

a structure has began to stretch, producing a small vorticity blob at its top end.

In the next frame the blob has grown considerably, and a small patch of strong

vorticity appears at the wall. Finally the vortex at the walls grows out into the

boundary layer and fuses with the tip of the stretching layer. At this moment, the

tip separates from its parent structure, forming what appears to be the "embryo"

of a new spot. The last frame shows both spots as essentially independent units.

A closer examination of the vorticity field shows that there is a region of con-

centrated z-vorticity of opposite sign (negative), underneath the top part of the

structure. These regions of reverse vorticity are visible in the lateral view of this

same structure in figure 3. The whole reproduction process is strikingly reminiscent

of the instability process for 2-D linear Tollmien-Schlichting waves (see Betchov &

Criminale, 1967). Basically, vorticity is created at the wall and diffuses into the

main flow through viscosity. In a frame of reference moving with the structure, the

fluid below the critical layer is moving backwards, while that on top moves forward.
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FIGURE 6. Splitting process of a structure to create a new one. See text for

explanation. Time difference between frames is approximately 6 wall units (t,/u_).
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As a result, as the vorticity diffuses away from the wall, it takes a backwards point-

ing "V" shape that is visible in figure 3. Eventually, the positive vorticity in the

main structure (above the critical layer) induces a negative vortex near the wall,

to accommodate the no slip condition. This vorticity of opposite sign is convected

backwards by the flow, as it diffuses outward, and forms a negative vortex layer un-

derneath the original positive one. This new layer eventually overcomes the effect

on the wall of the original structure, and begins to induce a new positive vortex.

The moment that a strong vortex pair in formed in this fashion, underneath the

original structure, an updraft is created that carries part of the positive and neg-

ative vorticity into the upper part of the structure. The negative vorticity in the

rear cuts the connection between the head and the base of old structure (through

viscous annihilation), while the positive vorticity connects with the head of the

old structure to form a new one (see figure 7). Note that the mechanism invoked

here, for the production of the updraft, is the same one proposed in figure 2 for the

ejection of shear layers into the flow.

As noted previously, this is the mechanism responsible for the linear 2-D T-S

waves, and it seems to explain approximately the behavior of z-vorticity in the

splitting mechanism in figure 6. This suggests that the mechanism for the generation

of ejections in the sublayer may be essentially two dimensional, although there are

undoubtedly some three dimensional effects present, as shown by the fact that the

structures do not spread laterally into spanwise bands. In fact a map of y-vorticity

in the sublayer shows long active streaks, delimiting quiescent "corridors" between

them (figure 8). The hot spots, and their associated shear layers seem to ride those

corridors, as a necklace of beads, x-vorticity is also present in the sublayer, but

it. seems to be weaker, and harder to correlate with the structures studied here.

Also, there is little doubt that, as the shear layers are ejected further into the main

stream, longitudinal vorticity and three dimensional effects are important in their
evolution.

The general picture of the sublayer suggested by this simplified model is a col-

lection of patches of the high vorticity in the wall layer, which are lifted into little

"ramps" corresponding to the shear layers described in this paper. Since the vortex

lines cannot end in the nfiddle of the flow, these ramps are linked to the wall by

"sidewalls" which correspond to the regions of high V-vorticity observed in figure 8.

It is easy to see that, if the ramps are constrained to be in between the streaks, the

picture becomes something like the one in figure 9, and the induced longitudinal

velocity fluctuations in the sublayer should consist of high velocity narrow streaks,

bounding wider bands of lower velocity. This is precisely the pattern observed ill

experiments.

The remaining question is whether the three dimensional structure representing

one of the protruding ramps can be studied in isolation. Numerical simulation

provides a unique opportunity to attempt this, since the behavior of structures in

natural channels is complicated by the interactions among the large number of them

present in the flow, and since it is obviously difficult to isolate a single structure in

a physical experiment. The numerical equivalent of isolating a single structure is
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FIGURE 7. Tentative mechanism for the splitting process of a structure. This

2-D mechanism corresponds roughly to the instability mechanism for Tollmien-

Schlichting waves.
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FIGURE 8. Streamwise streak pattern of 9-vorticity in the sublayer. Conditions

are identical to those of figure 4, and careful comparison with that figure shows

that the vorticity spots reside in the relatively quiescent corridors between the high

velocity streaks.

FIGURE 9. A model for the sublayer structures. The raised structures are lifted

portions of wall vorticity, and are "supported" by vorticity sidewalls that are the

origin of the 9-vorticity streaks.

to use a computational box whose z-z extent is small enough to contain only one,

or at most a few, structures. This was attempted in the course of the workshop.

Running at Re = 7000, we first tried computing a channel on a periodic box of

2_rh × 2_rh (about 1800 × 1800 wall units). The initial conditions were extracted

from the 2-D limit cycle solution, with the addition of a small 3-D perturbation.

As expected, the flow became quickly three-dimensional, and the wall shear stress

grew from the low value corresponding to the 2-D (Herbert) solution (w. = 3),

to that for a fully developed turbulent channel (_o: = 12). This solution was no(.

followed for a long time, since it was not any easier to understand than any of the

previously available flow fields. The remaining numerical experiments were carried

out using computational boxes whose spanwise extent was 7rh/8, corresponding

to approximately 113 wall units. Since the computational domain is periodic in

both z and z, this corresponds to a periodic array of structures with a spanwise

spacing close to the one found in natural flows. We tried different streamwise
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FIGURE 10. z-vorticity field of a 3-D narrow channel, as described in the text.

Note that the upper wall, at. the top of the figure, is essentially two-dimensional,

and smooth, while the lower one remains three-dimensional and "turbulent".

periods, none of which was completely successful. The most desirable boxes were

the very short ones, that could be expected to contain a single structure (actually

a doubly periodic array of them). However, attempts to introduce perturbations

in boxes with streamwise periods of rrh/8, and 27rh/5 quickly decayed to laminar

solutions. The most interesting box, up to now, has been one with an z-extent of

2rrh, and a spanwise one of rch/8. This flow cannot decay to lanfinar, since it is

linearly unstable to two dimensional perturbations of this wavelength. Apparently,

however, thai domain is neither sufficiently stable to decay to a 2-D solution, nor

sufficiently unstable to maintain a fully 3-D turbulent one. The result is a non-

symmetric channel in which one wall (the top one in our case) sustains a roughly

2-D flow, while the other one has a turbulent, 3-D boundary layer, presumably

forced by the 2-D solution at the top wall (see figure 10). This boundary layer

contains ejection structures similar to those in 3-D natural layers, and which appear

to be fairly typical, but the average shear stress at the wall falls in between the

values characteristic of 2-D and 3-D solutions. At each particular moment, the

computationa] box contains 3 or 4 sublayer structures, which are still too many for

a simple model of the layer, but constitute, at this moment, the smallest system

available for its study. Further experiments with boxes of different sizes are still in

progress.

Summary

In summary, we present here a possible model for the inception of vorticity ejec-

tions in the viscous sublayer of a turbulent rectangular channel. We have shown

that this part of the flow is dominated by protruding strong shear layers of z-

vorticity, and have proposed a mechanism for their maintenance and reproduction

which is essentially equivalent to that responsible for the instability of 2-D Tollmien-

Schlichting waves. The efforts to isolate computationally a single structure for its

study have failed up to now, since it appears that single structures decay in the ab-

sence of external forcing, but a convenient computational model has been identified

in the form of a long and narrow periodic computational box containing at each
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moment only a few structures. Further work in the identification of better reduced

systems is in progress.
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