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Modeling of turbulent transport
as a volume process

By MARK J. JENNINGS ] AND THOMAS MOREL s

Introduction

One of the issues in turbulence modeling is the representation of turbulent trans-

port of Reynolds-averaged quantities, both mean values and turbulent statistics.

The process of turbulent transport is one of dispersion due to the fluctuating tur-

bulent motions, which span a wide range of spatial scales. In the current models

of turbulence, some of the transport terms are calculated from transport equations

for the terms themselves. Specifically, the turbulent transport of a quantity _ due

to velocity-_ correlations may be calculated from higher-order equations obtained

by manipulation of the _-equation and the momentum equation. However, each

such equation introduces additional transport terms due to velocity and pressure
correlations.

At any selected level of turbulence modeling, there remains a number of these

correlations, and those are almost universally being modeled by gradient diffu-

sion, analogous to the laminar diffusion, with an isotropic scalar diffusivity. More

recently, Rogers, Mansour and Reynolds (1987) have proposed a mode] which em-

ploys tensorial diffusivity for heat transfer. The analogy of turbulent transport with

laminar diffusion is only distant. This is in part because the seemingly random tur-

bulent motions responsible for the transport can be relatively large compared to

the scale of the entire flow region and thus they can communicate with adjacent

flow regions. Also, in strained flows these motions have preferred directions and

consequently their contributions are not isotropic.

The objective of this work has been to give consideration to an alternative class of

methods for the representation of turbulent transport, which would incorporate the

effects of (1) the surrounding finite volume, and (2) preferred lines of communication

within the flow. These methods, if successful, should have the potential of removing

the drawbacks of the current gradient diffusion models.

In a broader sense, all of the turbulence correlations appearing in the Reynolds-

averaged equations are the result of non-linear interactions of turbulent motions of

various scales_ Their modeling has traditionally followed the path of representation

in terms of ]o_al variables, be it mean gradients or other turbulence correlations.

This approacli _ has been moderately successful, although much work remains. It

is likely that modeling of terms other than turbulent transfer would also benefit

from the consideration of the surrounding volume and of the preferred directions
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of strained turbulence. In fact, some work along these lines has already been done,

e.g., by Miklavic and Wolfshtein (1987).

Conceptual model of turbulent transport

One concept for alternative description of turbulent transport is to represent it

as net convection by fluctuating turbulent, motions, which exchange small volumes

of fluid between neighboring points. It is assumed that one needs to consider only

points that are close enough to be able to influence each other directly. This is

based on the premise that the spatial extent of turbulent transport is controlled

by the extent over which the motions are coherent. That implies that the turbu-

lent transport of any quantity is directly linked to the coherence and dynamics of

the fluid motions. A further premise is that the influence of mean shear on the

turbulent transport of a scalar quantity _b (which appears in the governing equa-

tions of velocity-_b correlations as a consequence of manipulation of the momentum

equation) is accounted for indirectly, through the action of mean shear on the ve-

locity fluctuation field, resulting in its distortion, anisotropy, and preferred lines of

communications within it. The turbulent, transport of the scalar can then be de-

duced from the interaction of the distorted turbulent velocity field with the spatial

distribution (gradients) of the mean scalar _.

Assuming that. the above premises are valid, one may proceed to search for an

appropriate formulation of the transport term, which would properly represent, this

physical picture. Consider two small volumes, one centered on a given point x and

the other on some arbitrary point x' in the neighborhood of x. These two volumes

interact, and exchange fluid carrying the scalar. Based on the discussion above, we

propose to model the scalar transport in terms of the mean field q_ by

=C/[q,(x,t)-_(x',t)]XD v ri 1 d3 r (1)T¢_(x,t) L r 4_r 2g

where r = x - x', X is a dimensionless spatial function descriptive of the velocity

fluctuation field, V/L is the time scale of turbulent motions with V being a velocity

scale and L an integral length scale, D is a scalar function of r/L discussed below,

and r_/r is the direction cosine of the vector r in the/-direction. The factor 1/(4nr 2 )

is introduced to represent the decaying influence of a volume as the distance r

increases. The introduction of the direction cosine into the relationship implies that

the contribution to transport between any two given points in the flow is directed

along the vector connecting these points. The function D is included to represent

changes in the convected scalar during the transit time r = r/L due to diffusion.

The general nature of equation (1) is such that the transport calculated using that

expression can produce counter-gradient flux in certain types of non-homogeneous

flows. Furthermore, this term is in general non-isotropic (depending on the function

X) and thus is more general than commonly used scalar diffusivity models.

A key element in the model is the selection of the function X. Building on the

premises of this approach, it seemed worthwhile to investigate the usefulness of

basing this function on the two-point velocity correlation Q_ which correlates the
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velocity component along the vector r. Such a correlation can be shown to be

related to the commonly used two-point correlation Qij

= (2)

by a relation

Qrr - rirjQiJ
r2 (3)

The scalar Q,.,. is a function of the spatial position. In an isotropic flow this function

has spherical contours centered on the correlating point and its value decays along

any ray extending from the origin according to the longitudinal correlation function

f(r). In a shear flow this function is much more complex, as will be discussed below.

Two-point velocity correlations

Homogeneous shear flow

To test the ideas proposed above, advantage was taken of the available data pro-

duced through direct numerical simulations of turbulent flows at Stanford University

and at NASA-Ames. One such flow was the homogeneous shear flow calculated by

Rogers et al. (1986), specifically the flow C128U. Analysis was made of the two-

point correlations at dimensionless time St = 12. At that instant, the flow may

be characterized by Sq2/¢ = 11, q4/cv = 800, ut/v = 13, P/_ = 1.7, where S is

the mean shear rate dU/dy, q2/2 is the turbulent kinetic energy, _ is the turbulent

dissipation rate, P is the production rate, v is tile molecular kinematic viscosity,

and u_ is the effective turbulent kinematic viscosity. This is a fully-developed tur-

bulent, flow, albeit at fairly low Reynolds number as evidenced by the low value of

ut/u. The ratio of longitudinal length scale A1 to the computational grid spacing

in the x-direction was about 5, and tile computational domain spanned 128 nodes

in all three directions. The simulation included a cross-stream vertical gradient of

a passive scalar with molecular Prandtl number of 0.7.

Using tile data base, two-point velocity-velocity and velocity-scalar correlations

were obtained. The two-point ulul, ul_p, u2u2, and u2_b correlations are shown in

Figures 1-4 for the x-y and y-z planes through the correlating point. Inspection of

the contours shows a distinct similarity between the two types of correlations. The

ulq5 correlation appears to be strongly influenced by the ulul correlation. The u2_b

contours are somewhat similar to the u2u2 contours, although there also appears to

be some influence from the ulu2 correlation. This tends to support the view that

two-point velocity correlations are relevant to scalar transport.

An interesting, and perhaps surprising observation, is that the contours of the

U2U 2 correlation have no inclination, while the ulul and USU 3 correlation contours

are very strongly inclined in a direction that is consistent with the mean shear and

with the orientation of the flow structures (hairpins) that develop in the flow. This

surprising behavior of the vertical fluctuations has been previously observed in ex-

periments, e.g., in a boundary layer by Kovasznay et al. (1970) and in homogeneous
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FIGURE 1. Comparison of velocity-velocity and velocity-scalar correlations in a ho-

mogeneous shear flow with a vertical mean temperature gradient. Note compressed

x-scale. (a) x-V plane, ulul and (b) x-y plane, u15.
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FIGURE 2. Comparison of velocity-velocity and velocity-scalar correlations in a

homogeneous shear flow with a vertical mean temperature gradient. (a) y-z plane,

ulul and (b) y-z plane, u3_b.

shear layer by Townsend (1970). The contours of the ulu2 correlation, being re-

lated to both ul and u2, have an inclination which lies between the ulul and u2u2

inclinations.

The contracted correlation Q_r, defined in equation (3), is a linear combination of
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FIGURE 3. Comparison of velocity-velocity and velocity-scalar correlations in a ho-

mogeneous shear flow with a vertical mean temperature gradient. Note compressed

z-scale. (a) x-y plane, u2u2 and (b) z-y plane, u2¢.
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FIGURE 4. Comparison of velocity-velocity and velocity-scalar correlations in a

homogeneous shear flow with a vertical mean temperature gradient. (a) y-z plane,
u2u2 and (b) y-z plane, u2¢.

the individual velocity correlations. Its contours are shown in Figure 5 for the three

planes x-y, y-z, and x-z. It may be seen that this correlation is very different from

the individual components Qij. Its values are mostly positive with only very weak
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FIGURE 5. Contracted two-point correlation Q,r. (a) z-y plane; (b) y-z plane and

(c) z-z plane.
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negative lobes. In the z-!/plane (Figure 5a) this correlation has a very distinctive

shape. This is partly caused by the fact that Q_, has a singular behavior at the

origin, where its value depends on the direction from which this point is being

approached. The butterfly-like shape seen in this plane is mainly produced by the

contributions from the Q12 and QzI correlations, and it is absent in the other two

planes. In the spirit of the discussion above, this shape of the correlation volume

may be interpreted as an indication of the preferred lines of communication set up

in a strained turbulent field. It is seen that the preferred communication is along a

direction close to the mean flow direction, while a very poor communication is set up

along a direction inclined about 70 degrees from the z-direction. This anisotropy

may be expected to have a major effect on turbulent transport and perhaps on

other processes as well. The correlation volume reflects the effects of the dominant

turbulent motions and should be consistent with their orientation and shape; in the

case of the homogeneous shear flow these are hairpin-shaped, and their relationship

to the correlation volume shape is not immediately obvious.

In the case of homogeneous shear flow equation (1) simplifies to

c /Tq_i = -_ _,jV Qrrrirj d___rr
r2

(4)

or

Tcki = -Dijcb,j • (5)

Evaluating the integral in equation (4) over the entire domain one obtains a

tensorial diffusivity Dij. The values calculated for this particular flow are given
below:

1.80 -0.23 0.05)
(Dij/D22)mode! = -0.23 1.00 -0.04

0.05 -0.04 1.00

6.5 -2.4 0.0)
(Dij/D22)°im_,la_ion = -1.1 1.0 0.0

0.0 0.0 1.8

The first of the two tensors is that calculated by the present model, the second

one has the values deduced by Rogers et al. (1986) from the direct simulation.

The model values are seen to exhibit correct trends, with high values of Dll and

with negative off-diagonal contributions D12 and D_1. However, the magnitudes of

the departures from isotropy are not predicted well. By contrast, scalar diffusivity

models contain only diagonal terms that are equal in magnitude.

Channel flow

To complement the data presented above, a brief study was made of a two-point

correlation in a channel flow simulation data of Kim, Moin and Moser (1987). The

Reynolds number based on wall friction velocity ur and channd half-width H was

180. The contours of the ulul, u_u2, u3u3 and ulu2 two-point correlations at



140 Jennings and Morel

distances of one-quarter and one-half H from the wall were computed. At the one-

quarter H location, ulul and tt3U 3 contours are stretched and inclined towards the

channel, wall. The u2u2 contours are seen to be affected by the presence of the

wall, especially those at lower correlation levels which are farther away from the

origin. This general behavior is also seen at the half H point, except that the wall

effects are diminished and some similarities with the homogeneous shear flow begin

to emerge.

Summary

An alternative type of modeling has been proposed for the turbulent transport

terms in Reynolds-averaged equations. During the Summer Program, one particular

implementation of the model has been considered, based on the two-point velocity

correlations. The model was found to reproduce the trends but not the magnitude

of the non-isotropic behavior of the turbulent transport. Some interesting insights

have been developed concerning the shape of the contracted two-point correlation

volume. This volume is strongly deformed by mean shear from the spherical shape

found in unstrained flows. Of particular interest is the finding that the shape is

sharply waisted, indicating preferential lines of communication, which should have

a direct effect on turbulent transfer and on other processes.
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