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On Local Approximations of the
Pressure-Strain Term in Turbulence Models

By P. BRADSHAW 1, N. N. MANSOUR 2 and U. PIOMELLI 3

The reason for the success of the approximation that uses the mean velocity

gradient OU/Oy outside the integral solution of the Poisson equation for pressure,

and sets the gradient equal to its value at the point where the pressure is being

calculated, has been explored. This approximation is implicit in most existing

turbulence models, where the pressure-strain terms are assumed to be functions of

local variables rather than of the proper spatial integrals. Direct simulation data

for the channel were used to evaluate spatial correlations of pressure and velocity

gradients. The results show that a correlation coefficient of about -0.5 between

the rapid pressure and its Laplacian (proportional to Ov'/Oz); this is in favor of

the local assumption. Analysis of the solution to the Poisson equation indicates

that the assumption will be valid when the mean velocity gradient varies slowly as

compared to the correlation length of the fluctuating velocity gradients.

1. Introduction

The pressure-strain "redistribution" terms in the Reynolds-stress transport equa-

tions, which are mean products of the pressure fluctuation and various components

of the fluctuating rate of strain, have received much attention from turbulence mod-

elers for two reasons: first, the pressure-strain terms in the shear stress equations are

the largest of the terms that need to be modelled in those all-important equations;

secondly, little experimental data is available to properly assess the models.

In an experimental setup, pressure fluctuations within a boundary layer cannot be

measured with any assurance of accuracy, because the velocity fluctuations induce

pressure fluctuations on any solid probe inserted in the flow, and these spurious

fluctuations are usually larger than those in the undisturbed flow. Using the in-

stantaneous velocity field in the entire domain, turbulence simulations (numerical

solutions of the full time-dependent Navier-Stokes equations without any modeling
approximations) can be used to deduce statistics of measurable and of "unmeasur-

able" quantities such as those we will discuss in the next section. We shall discuss

in this paper an approximation to the pressure-strain term which is commonly used

in modeling the Reynolds-stress transport equations.
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2. Local approximation to the pressure

For an incompressible flow the fluctuating pressure can be obtained from the

velocity field by solving the Poisson equation

02P - 2 0Ui Ou_ I Ou_ Ou_ Ou_ Ou_ _ (la)

O_jO_,j _ OX i _ OZj OX i OXj OZ i ]

with the boundary condition at the walls

Op = l___O_v ' (lb)
Oy Re Oy 2"

Equation (la) shows that any correlations of the pressure with other fluctuating

quantities will have a part proportional to the mean velocity gradients OUi/Oxj

and a part depending only on velocity fluctuations. These are called the "rapid"

and "slow" parts respectively, because only the former will respond at once to a

change in the mean velocity field. An inhomogeneous boundary condition makes

the split less obvious. However, for the case of the fully developed channel the

volume integrals of each of the terms on the right hand side of (la) will integrate

to zero and pressure in this case can be split in three parts: the rapid pressure pl,

which satisfies

02p I _ 2 0Ui Ou_ (2a)

OxjOxj Oxj Ozi

with the boundary condition at the walls

pl
-0; (2b)

0y

the slow pressure p2, which is the solution to:

]
(3a)

with the boundary condition at the walls

aPl O; (3b)
oy

and, finally, the Stokes pressure pS, which is the solution to Laplace's equation with

the boundary condition (lb) at the walls.

The pressure-strain terms that appear in the Reynolds stress equations are linear

in p, so that the total term will be equal to the sum of the rapid pressure-strain, slow
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FIGURE 1. Pressure-strain term in the -_-_ transport equation.

pressure-strain and Stokes pressure-strain. The solution of (2a) with the boundary

condition (2b) at the walls is

p] _ 1 Iv OUi Ou_4rr 2 0zj Oxi
Gdl; (4)

in which G is Green's function with homogeneous Neumann boundary conditions at

the walls. Note that most modelers neglect the surface integral terms that should be

added to (4) if non-homogeneous Neumann conditions are used for the pressure. The

use of the homogeneous boundary condition (2b) at the walls for the rapid pressure

is consistent with (4) and the approximation used by the modelers. Although, by

(4), the rapid pressure is an integral of the weighted mean velocity gradients over

the entire domain, in modeling the assumption is often made that pl depends only

on the local mean velocity gradient, which allows one to take the mean velocity

gradients outside of the integral in (4) to yield the following approximation for the

pressure:

pB 1 _ OUi Ou_ 'd

Direct experimental measurement of either p] or pB is impossible, but the use

of direct simulation results allows us to test the approximation (5) directly by

computing the integrals in (4) and (5) and comparing the approximate value pB with

p]. The purpose of the present paper is to examine the results of this comparison

for channel flow at low Reynolds number.

3. Results

The results of the direct numerical simulation of fully developed channel flow at

Re,. = 180 (Kim, Moin and Moser, 1987) were used to compute all the statistics

presented in this work.
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FIGURE 2. Two point correlation of the rapid-pressure term with Ov/Oz.

Figure 1 shows the contribution of the rapid pressure-strain term in the -u'v'

transport equation. All results are normalized by pub�v: on this scale the maximum

rate of production of turbulent energy, which occurs where r = r_/2, i.e. at about

y+ = 12, is 0.25. Note that the plotted terms are negative if -u'v' is being reduced

and positive if it is being increased by the pressure-strain redistribution.

The accuracy of the local approximation to the pressure-strain terms is sur-

prisingly good: differences between the exact and approximate values are gener-

ally within the scatter of the statistical averaging, except in the viscous sublayer

(y+ < 30). The rapid pressure-strain contribution to the other Reynolds stress

transport equations shows similar trends.

To further investigate the reasons for the success of the approximation outside of

the sublayer, as well as to ascertain the causes of its failure inside it, we examined

the correlation coefficient between the rapid pressure pl and various components of

the fluctuating strain-rate tensor for varying distances from the wall.

The most noticeable feature of the simulation results is the high correlation be-

tween pressure and velocity gradients. In particular, the coefficient of correlation

between pl and Ov'/Oz (Figure 2) is numerically as large as 0.5. This implies a

correlation coefficient of -0.5 between the pressure and its Laplacian. The rela-

tively high value for pl is noteworthy. It is not high enough to legitimize the pB
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FIGURE 3. Two point auto-correlation of the rapid-pressure.

approximation directly, but it suggests that the rapid pressure is not so dependent

on contributions from distant parts of the flow as its governing Poisson equation

nominally implies. A demonstration of this dependency is the rapid increase of

the length scale of pl near the channel centerline, which can be inferred from the

auto-correlation of pZ Figure 3. Near the centerline the source term in the Poisson

equation for pl, being proportional to the mean shear, vanishes; contributions to p_

on the centerline, therefore, must necessarily come from regions off the centerline,

and have their high wavenumber parts attenuated by distance.

For homogeneous flows in the z and z directions, the pressure-strain term can be
written as follows:

Substitution of (4) into (6) gives

' f?£ " "7
OUt . t

-_x (z - z',y',z - z') COu_(z,y,z)G(x',y,y',z')dxdzdx'dz'dy '
Oxj

(7)
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whereas the local approximation (5) yields

o.,_ 1 O0

Ov' ,, ,)
-_z (z - x ,y ,z - z -_zj(:c,y,z)G(x',y,y',z')dz'dz'dxdzdy'.

(8)

The two inner integrals in (7) and (8) represent the two-point correlation between

Ov(y')/Ox and Ouj(y)/Ozi, weighted by Green's function G, as a function of y and

y'. This correlation can be expected to vanish as y - y' increases, since Green's

function decreases as y - y' increases and the velocity gradients are not correlated

over large distances. As long as the length scale of this correlation is small with

respect to the length over which the mean shear can be considered constant, the

local approximation will hold. In the logarithmic region the mean shear varies

slowly (02U/Oy _ ..- 1/y 2 ) and the local approximation holds• At the sublayer edge,

where the velocity gradient changes significantly, this is not true and the local

approximation fails.

4. Conclusions

The results of numerical simulations of turbulent channel flows have been used to

exanfine the validity of the local approximation of the pressure-strain term in the

Reynolds stress transport equation.

Outside of the viscous sublayer the local approximation compares very well with

the exact pressure strain. This agreement is due, at least in part, to the high

correlation between the rapid pressure and its Laplacian, which suggests that only

the nearer parts of the flow contribute to the rapid pressure at a point.

In the viscous sublayer the distance over which the mean shear can be considered

constant is comparable to the length scale in the normal direction of the correlations

of velocity gradients, leading to failure of the local approximation.
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