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Evaluation of a Theory for Pressure-Strain Rate

By J. WEINSTOCK 1, and K. SHARIFF 2

A theoretical expression for the slow part (the non-linear fluctuation part) of the

pressure-strain rate is compared with simulations of anisotropic homogeneous flows.

The objective is to determine the quantitative accuracy of the theory and to test its

prediction that the generalized Rotta coefficient, a non-dimensionalized ratio of slow

term to the Reynolds stress anisotropy, varies with direction and can be negative.

Comparisons are made between theoretical and simulation values of the slow term

itself and of the generalized Rotta coefficients. The implications of the comparison

for two-point closure theories and for Reynolds stress modeling are pointed out.

1. Introduction and background

The slow pressure-strain rate correlation _j is a key term that occurs in Reynolds

stress modeling. Until recent years it was almost universally modeled according to

Rotta's (1951) prescription as

s= C _
_ij - q2 bij,

(empirical model)

where bij =< u_u_ > -[1/3(q28ij)], u I is the fluctuating velocity along direction i,

q2 __< uiui > is twice the turbulent kinetic energy density, e is the rate of turbulent

kinetic energy dissipation, and C is an empirical constant referred to as Rotta's

constant. However, Lumley (1978) has shown that C cannot be constant and more

recently, it has been shown (Weinstock, 1981; 1982; 1985) that C is neither constant

nor the same for different directional components ij. These variations occur because

• _) depends on more than one scale of the turbulence field, and, in addition, the

scales vary with direction.

One way to account for the effect of all scales is for the slow term to be derived by

a two-point closure theory. Such a derivation has been carried out (Weinstock, 1981_

1982; 1985), a principal result of which was that _j can be expressed as an integral

over scalar energy spectra Eij(k). Standard closures such as the DIA (Kraichnan,

1959) and EDQNM (e.g., Cambon et al., 1981; Bertoglio, these proceedings) are

much more ambitious, and correspondingly complex, since they determine the en-

ergy spectrum itself. Here, Ei.i(k) is taken from simulations. It is hoped that the

relative simplicity will allow the present theory to be applied to a wider class of

flows - including those with relatively large anisotropies after suitable modeling of
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the scalar spectra. This is encouraged by a "universal" character found for the

theoretical _i'j in which its dimensionless (Rotta) coefficients are very insensitive to
the shape of the energy spectrum in the small k (energy producing) region, provided

that the Reynolds number is not too small. We believe that such a universality is

crucial for predictive modeling of flows.

The theoretical _j to be tested is given by

_2_,j = -Cijebij, (No sum on i and j) (la)

):o :oCo_ = 1.08 _3) a/3 dkl dk2
eko qbo,_

1

× k_k_E(kz)[E,_,_(kl) - _E(kl)]H(k_,k2), (lb)

(k_+ k_)'/3
1

E(k) = _ [E_(k) + E,_(k) + E33(k)],

[ 2.4k2 2 (4k, k2 ) 2( 2k_ )]H(k,,ks) _ 2 k_+ k_ 0.08 k,_+ k_ 1 + _ 1 k,_+ k_ '

where the Cij are dimensionless coefficients referred to as generalized Rotta co-

efficients, Eaa(k) is the scalar spectrum for kinetic energy along direction a,

ko = (3/3) 3/2 e/q 3, and/3 is the Kolmogorov constant. The various numerical factors

arise from angular integrations of spectra in wave space. The specific angular de-

pendence of the spectra had to be modeled to make this possible. The off-diagonal

elements C12, Ca3, (723 are given elsewhere (Weinstock, 1981) and have not been

evaluated. A much simpler form of C,_ for use in Reynolds stress modeling is
a.213_.-s/3obtained by use of the model spectrum E_ = w_,_ 0_ for ko < k < k_,, and

2/3trnt--rn-5/3
E,_ = PQ1 x Xo for k < ko, where k_ is the viscous "cut-off" wavenumber.

We refer to this E,_ as the model spectrum.

Our primary goal is to test expression (1) by comparison with computer simu-

lations. This test has also implications for standard two-point closures in general,

since such closures have in common with our closure the neglect of a two-time

fourth-order velocity cumulant.

Our article is outlined as follows: Straight forward comparisons are given in Sec.

2 where values of ¢_,_ and C,m = -@_,.,/(eb,.,,.,) obtained directly from simulations

are compared with (lb). Improvements and generalizations of the theory suggested

by simulations are in Sec. 3, and Sec. 4 contains suggestions for further simulation

tests.

2. Comparison between theory and simulation

The theory was compared with several simulations of homogeneous shear and

straining flows. Typical examples are given in Figures 1 through 3 for two cases of

homogeneous shear (S = U1,2, simulation runs C128U and C128X of Rogers, Moin
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FIGURE 1. Slow pressure strain components for homogeneous shear (moderate

shear case C128U of Rogers, Moin & Reynolds, 1986). (a) Comparison of theory

with simulation for the diagonal components. (b)-(d) Generalized Rotta coefficients

as computed from the simulation data and using the simulation spectra in the

theory.

and Reynolds 1986) and for plane strain (strain directions are 2 and 3, simulation

run PXA of Lee and Reynolds 1985). For the shear cases the horizontal axis is the

total shear, St. For the plane strain case the horizontal axis is the eddy turnover

time. Figures 1 show the evolution of _ scaled on the initial dissipation rate, and

C',_,_ for run C128U, Figures 2 for run C128X and Figures 3 for plane strain run

PXA. Each graph includes simulation and theoretical values.
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FIGURE 2. Slow pressure strain components for homogeneous shear (high shear

case C128X of Rogers, Moin & Reynolds, 1986). a) Comparison of theory with

simulation for the diagonal components, b)-d) Generalized Rotta coefficients as

computed from the simulation data and using the simulation spectra in the theory.

(a) Dominant features of the (slow) pressure-strain rate

The simulation data show the following features:

- C_a varies between components.

- The normal components 611, 6'22, C33 each vary greatly during the simu-

lations. For example, 6'11, in plane strain run PXA, varies from -5 To +10

(in the unstrained direction). The Reynolds number defined as q4/(u_) varied

between 39.1 nad 69. Another example is that 6'22 varies from 0.6 to 2.5 in

homogeneous shear flow (C128U).

- C1] can be negative for many conditions. However, this does not imply that



Evaluation of a Theory for Pressure-Strain Rate 217

"o.
v

A

(m)

• THEORY 11

• THEORY 22

ni THEORY 33

SIMULATION 11

• SIMULATION 22• gee•o• De

.... SIMULATION 33
.06 .... ! .... i .... ! .... m .... i .... i ....

.04 • •

.02

0 "::"-_.......................................................................

-.02

(a) " •
_,04 .... l .... I .... i .... i . . . , i, , , n i, I n ,

r.)

(b)-(d)

• INTEGRATION OF SIMULATION SPECTRA

LI SIMULATION

5 .... i .... i .... _ .... i .... i .... i ....

A

10

-S
(b)

ra

.5

A

.3

.2

.1 A A

A

(c)
.... I .... | .... | .... I .... I .... I . I i

•2 .4 .6 .8 1.0 1.2

teo/q _

1.4

.6

.S

.4

°_ .3'

.2

.... I .... I .... ! .... I .... I .... ! ....

A

(d) *
ol .... I .... I .... I .... I . . . i I i i , , i , , , ,

0 .2 .4 .6 .8 1.0 1.2

teo/qo2

FIGURE 3. Slow pressure strain components for homogeneous plane strain (case

PXA of Lee & Reynolds, 1985). a) Comparison of theory with simulation for the

diagonal components, b)-d) Generalized Rotta coefficients as computed from the

simulation data and using the simulation spectra in the theory.

1.4

the flow will not return to isotropy were the mean deformation to be removed

at that instant. The Lumley return to isotropy tensor, of which the pressure

strain rate is only a part, determines this.

Each of these qualitative features is predicted by the theory. There is good quan-

titative agreement of the pressure strain rate for the shear cases, discounting times

larger than St = 12 where the "box" size has an important influence. The agreement

is weaker for the case of plane strain. In the comparisons for the generalized Rotta

coefficients C_,_, the theoretical C'_,(a = 1,2,or 3) generally follows the trend of

the simulations; being small whenever the simulation C_ is small and large when-
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ever the C_o is large, and most notably, passing through zero at the same time that

the simulation C_o (see Figure 3b) does.

During straining flows, the values of Co_, in the strained directions, were always

overpredicted by the theory. This discrepancy might be accounted for by the strong

temporal variations of b,_ which violates the present assumptions in the theory

which limit it to slow variations of boo and low mean strain-rate. Indeed, when

estimates are made to account for time-scale variation of boo by calculating the

-1 ...... :-- _1__ t _ i.lllle-Scale...... _ ,, _._ .,a_a,_h_,_ '" ' that is used to derive (lb), the discrepancies

are reduced. However, for modeling purposes the original, unextended theory may

be sufficient.

(b) Unezpected .features of 'b_,_

- Simulations show that C,_ can be very small (much less than unity) in strain-

ing flows for a wide range of anisotropies. This smallness was unexpected, al-

though it is contained in the theory. Small Co,_ implies that intercomponent

energy transfer is a very weak process in straining flows.

- Cao can vary significantly with strong temporal variations of kinetic energy.

Surprising is the extent of difference between C11 and Cs3 in homogeneous

shear flows (Figures lb and ld).

These features are also found in the theory with small quantitative discrepancies.

3. Improvement and generalization of the theory

(i) An intriguing proposition is to derive _ij(X) ----< pS(xt)Sij(X _ +X) >, the two-

point correlation of the slow pressure-strain, from the theory. This was suggested

by Brasseur and obtained from simulations by Brasseur and Lee, Schiestel and

Rogallo (these proceedings). This correlation provides a more severe and detailed

test of closure theory than does C,_,_. It also provides a direct link between spatial

structures and Reynolds stress modeling. The theoretical &ij(x) was worked out

during the summer school, but was not compared with simulations at the time; for

example, one component of _#(x) is

1

/? /• =- dk dk. dOsinOcos(k lcosO)
_,o q

kSk_E(kb)H [ 5× ( ks + k_)4/3 sin sSE_s(k_)- _sin ?

where

8 cosS6 E_(k_)-_sin'8 E33(k_)

[ 4 k k: ]k_ =(k s+k_) 1+ 3(k2-+kZa)s]

(ii) Extend the theory to include spatial and temporal variations.

(iii) Revise the model scalar spectra E.,_(k) to account for small Reynolds num-

ber.
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As pointed out by Bertoglio the theory does not account for deformation of wave

vectors by the mean strain rate and should be modified accordingly.

(iv) Attempt to model the rapid pressure-strain rate, by a k-space closure.

(v) Compare the theoretical pressure-strain rate with a k- space model of Schiestel

(these proceedings).

4. Suggestions for future simulations

(a) Regarding the pressure-strain rate:

(i) Compare the theoretical two-point pressure-strain < pS(x')Sij(x' + x) > with
simulation.

(it) Generalize the theoretical < pSSij > to apply to channel flow, and then test
with simulations.

(iii) Using simulations, calculate the two-time fourth-moment velocity cumulant.

Determine the time scale for its decay. In particular, determine if this time scale

is shorter than the time scale for decay of second-moment correlations. Such an

ordering of time scales is basic for k-space closure theories in general, and also for

the present theory.

(b) Regarding a theory for modeling inhomogeneous flows:
I I I i !

(i) Compare simulation values of < UiRjU k >, < OUiU j >, < 02U I >,

< u_u_Op/Oxk >, < Ou_Op/Oxj > with the eddy-damped quasi-Gaussian approxi-

mation (EDQG) and with a recent theory. These quantities are basic to modeling

weakly inhomogeneous and stratified flows.

(it) Verify whether or not the cumulant of

( U I I I e Ul2 12• VU )iU, iU i >=< > V < u i >. This was derived by a theory and,

if true, contradicts the quasi-Gaussian assumption for inhomogeneous flows.
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