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I. INTRODUCTION

Objectives

This project was set to examine the evolution of damage density and
active zone of a crack layer (CL) under different fatigue loading histories in
a model material. The effect of damage on the near crack tip stress field was
studied by employing a newly developed technique pf semi-empirical stress

analysis.

Achievements

- On the basis of the observed damage growth, we tested the basic hypothesis
of the crack layer theory, i.e., a self-similarity of damage distribution in
process of crack layer propagation.

~ A new semi-empirical crack tip stress analysis, based on experimental meas-
urements of the discontinuity density and the double layer potential
technique, has been developed as a solution of crack-damage interaction
problem. Evaluation of the stress intensity factor illustrates the method-
ology. This illustrative example suggests an alternative to the
Dugdale-Barenblatt model.

- The first step in construction of the CL constitutive relationship has been

made.

Analysis of the experimental results showed that Arrhenius type constitutive
relationship describes very well the expansion of the active zone.
In three consecutive parts we describe our findings. This work is being

prepared for publication:




(a) J. Botsis and B. Kunin, 'On Self-Similarity of Crack Layer,’ Intern. J.

Fracture, to appear.

(b) A. Chudnovsky and M. Ben Onenzdon, ‘Semi-Empirical Crack Tip Analysis,’

Intern, J. Fracture, to appear.

(c) J. Botsis and A. Chudnovsky,

Layer,’ to be published.

'On the Expansion of Active Zone of a Crack
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I. DAMAGE ANALYSIS OF A RECTILINEAR CRACK LAYER

Early results of investigations in this program showed that fracture pro-
pagates as a crack surrounded by a layer of damage, namely, a CL. A well
developed CL in our model material is shown in Fig. 1la.

The self-similarity hypothesis states that the value of the damage den-
sity p at a point x of the active zone at a time t coincides with that
at the corresponding point in the initial (t = 0) configuration of the active
zone, the correspondence being given by a time-dependent affine transformation

of the space variables
Pe(x) = polhp © (x = 2¢)) , (I.1)

where P¢(x) 1is the value of the damage parameter at the point x at the
time t, p, = ptlt—o’ Aty is a time-dependent 2x2 matrix for a plane problem
(At £=0 being the identity matrix), and 2; 1is the position of the crack tip
at the time t (&t|t=0 = 0). Note that, as any matrix, Ay can be uniquely

decomposed as a product of threée time-dependent matrices: a scalar matrix
(expansion of the active zone), a symmetric positive definite matrix whose
determinant equals one (distortion of the active 2zone), and an orthogonal
matrix (rotation of the active zone). The above formulation of ’'self-similar-
ity’ is contained in [I.1] in its infinitesimal form.

The requirement (1) has two major implications. 1) It reduces the evo-

lution of the function P(f) to the evolution of six scalar parameters: four

components of the matrix A, and two components of the vector %£;. ii) It
allows to express the energy release rates associated with the translation
rotation, and expansion of the active zone (the ’'driving forces' in the termi-

nology of [I.1]) in the form of the well-known J, L an M integrals,




respectively [I.4]. The corresponding energy release rate for active zone
distortion has a similar integral representation [I.1,2].

A complete examination of the self-similarity hypothesis would require
comparison of damage distribution within the active =zone at different
instances of its evolution. However, such complete data is not available at
present. Instead, available is damage distribution within a well developed
CL.

Notice that, ﬁt any instance t, the trailing edge is the only portion
of the active zone along which the damage parameter will remain unaltered as
tne CL continues to evolve.

For this reason we examine the implications of the self-similarity
hypothesis for the evolution of damage distribution along the trailing edge.
The latter is approximated by a straight segment perpendicular to the crack
path.

Due to the symmetry of the loading-specimen geometry and the homogeneity
of the material, (a) the crack follows the straight path along along X;-axis,
(b) there is no rotation of the active zone, hence Ay is a symmetric matrix,
(e) the principal axes of Ay coincide with the coordinate axes x1, X3
(Fig. I.1). Thus at a time t the position &t of the crack tip, the gen-

eric point X of the trailing edge and the matrix Ay have the form

() a(t) a (t) 0
(1.2)

l
ct
!
4
I
=
ct
"

0 X 0 az(t)

Taking (I.2) into account, equation (I.1) for the points of the trailing edge

reduces to

pt(Q(t),xz) = po(O,az(t)xz) . (I.3)
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(a) General view of a CL in polystyrene.
fication of the boxed area B after thinning.
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Equation (I.3) implies that, for any two positions of the trailing edge,
the corresponding along-the-trailing edge damage distributions are related by
scaling (in x,-direction).

This restricted form of the self-similarity hypothesis was tested using
data on crazing distribution in a CL grown under fatigue in polystyrene load-
ing [I.6]. Quantitative damage analysis was carried out on a thinned specimen
employing optical microscopy and principles of quantitative stereology [I.5].
A micrograph of a typical portion of the CL is shown in Fig. T.1b, Details on
the experimental proceduresAcan be found in [I.6].

Figure I.2 represents the histograms of craze distribution in vertical
cross sections at eight locations along the crack path. As a result of the
present symmetry, the odd central moments of damage distributions in the ver-
tical cross sections are negligibly small. As simplest indicators of whether

the shape of the craze distribution stays the same up to a uniform_dilation

from section to section, we take the following two: a) the ratio of the total
amount of crazes for a cross section to six times the standard deviation of
the damage distribution for the same cross section (this is, for practical
purposes, the average damage density in the cross section); b) the ratio of
the variance of the cross—-sectional damage distribution to the square root of
its fourth central moment. Both raticos are independent of scaling and thus
should remain constant, if ’self-similarity’ holds.

Figure I.3 (I.4) represents the values of the first (second) of the above
ratios for the eight aforementioned sections. From the data in Figs. I.3 and

I.4, we conclude that both ratios stay constant to within experimental error.
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II. SEMI-EXPERIMENTAL STRESS ANALYSIS

1. Introduction

Determination of near and far fields for a crack surrounded by an array
of microcracks is a key problem for modelling of crack propagation and stabil-
ity. We approach this problem in two steps: at first a multiple crack
interaction 1is characterized experimentally in terms of Crack Opening
Displacements (CODs). Then, as a second step, we reconstruct the displace-
ment, strain and stress fields by analytical means employing the results of
the first step.

The problem of multiple crack interaction has been recently addressed by
various authors (a brief review can be found in [II.1-3]). This problem can
be expressed formally as a system of singular integral equations with respect
to unknown CODs. These equations represent the boundary conditions on the
surfaces of the cracks. Constructive solutions of the problem have been for-
mulated for Jjust a few types of crack configurations. In general, for a
random configuration of a large number of microcracks the solution implies
extremely tedious and time-consuming numerical procedure [II.4-6].

In this section, we employ experimentally observed COD’s as the solution
of the multiple crack interaction problem. Then the near and far fields will
be reconstructed by means of the double layer potential technique. The foun-
dation of the analysis is outlined in the second section and the evaluation of
an effective Stress Intensity Factor (SIF) reflecting crack-microcrack inter-

action is presented in the third section as an illustrative example.



2. Formulation of a Semi-Empirical Analysis
Let us consider a microcrack of length 2% at a distance S from the

main crack tip (Fig. II.1). In this work, we assume plane stress; the case of
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Fig. II.1 A single microcrack near a main crack, illustrating the
coordinate system employed.

plane strain can be treated similarly. The microcrack is characterized as a

discontinuity b(¢), 4i.e., COD (double layer potential). As a result, it

~

induces an additional opening displacement on the main crack. Adopting the
symbols of the previous work of Chudnovsky, et al. [II.6-8], we express the

displacement field u(x) generated by a microcrack as

Upje(X) = /E(i) °(§,x) d§ (II.1)

[L)]
where ¢ 1s the microcrack line (surface in 3-D) and ?(S‘f) is the second
Green'’s tensor which is defined as the displacement response at the point X
due to a unit discontinuity at the point of discontinuity E (Fig. II1.1).

For example, in plane stress, the second Green's tensor for an infinite plane

is given by (see, e.g., [I.8])

(1+V) 1=V e

4nR2
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where Be is the unit normal vector to the line (surface) across which the
discontinuity takes place, Vv 1is Poisson’'s ratio, I 41is the unit second rank
tensor and R 1s the position vector, i.e., B = §-x (Fig. I1.1).

The displacement u, at an arbitrary point x caused by a Microcrack
Array (MA) is the sum of the displacements generated by each microcrack, i.e.,

N N

(k)

(0 = 3 upge (0 = 1 / b @acg.n ag (11.3)
k=1 k=1 (k)

where N 1s the total number of microcracks in the array. If the size of the
microcracks is small in comparison with the domain of the array and the number
N of microcracks is sufficiently large, the summation in Eq. (II.3) can be
substituted by integration of an appropriately introduced microcrack density
over the array domain. Let us introduce a mesh within the domain (Fig. II.2a)
and consider a typical square (with an area Aap = AglaAgzﬂ) which contains
NGB microcracks (Fig. II.2b). Then the displacement vector due to the MA can

be written as
a) b)
}xi 1] e!
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Fig. II.2a Schematic representation of the Microcrack Array (MA) surrounding
the main crack and the subdivision of the domain into a rectili-
near mesh.

Fig. II.2b A typical square for the determination of microcrack opening
density.
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Nl N2 N
ap (k)
ulx) = 3 > 3 b ¥ (2)8(8,%) dE (II.4)
a=1 =1 k=1 (x)
0 CAaB
where N; and N, are the numbers of rows and columns in the mesh, respec-

tively. For infinitesimal squares, |&-x| 1is much larger than the maximum of

o o
x) can be approximated by &(§¢,, E2p» <B>aB' x), in which

o~

Iael, then §(%,
E:a and :gp are the coordinates of the center of the square and <5>GB is
an average orientation of the microcracks within the square (Fig. II.2b).
Then using the mean value theorem, Eq. (II.4) can be rewritten as
N1 N2
up(x) = 2;1 52-:1 02348252108 2p Mg WIAE14AE2g (II.5)

where the vector ¢ represents the microcrack opening density

-

N

a
)1 ff bV () ag (I1.6)

(o] 0
AL =)

= (A A
B) ( c10. E2
(k)
W C Aas
This can be measured directly as the ratio of the area of the opened cracks
within a square (shadowed area in Fig. II.2b) and the area of the square. The

sum in Eq. (II.5) becomes an integral over the entire domain of the MA after

an obvious 1imiting procedure ([Ag¢l -0, N->=):

up(x) = ./[c(§)¢(§.<n>.x) dt (I1.7)

Va
where V, represents the volume of the MA domain. The corresponding stress
field o,(x) 4induced by the microcracks array interacting with the main crack

is presented as

~

op(x) = Ty /g(g)g(gxy.{) dg (II.8)

12
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where T, 1is the stress operator which transforms the displacement field uy

into stress 04 j

Here p and A are Lame’'s constants, Bij is the Kronecker's delta (i,j =
1,2) and k = 1,2,3. The subscript x in (II.8) indicates that the differen-

tiation in (II.9) is to be performed with respect to x.

3. An Illustrative Example: Evaluation of the SIF

In this section we evaluate the SIF at the crack tip caused by combina-

tion of the externally applied stress o, and the MA induced stress oj. This
particular example is suggested and closely related to the experimental obser-
vation of an array of crazes preceding and surrounding fatigue crack in

polystyrene (Fig. II.3) [II.9].

Fig. II.3 An optical micrograph displaying the Crazed Zone (CZ) surrounding
the crack tip in PS.

Choosing a cartesian coordinate system with the origin at the crack tip

(Fig. II.1), one can express the SIF as follows

- 0
geff - _1

Vi 4,

(II.10)
G(xl)p(xl) dxq

13



Here L 1is the length of the main crack; G(xl) is the Green's function for
the SIF due to a dipole unit force applied at Xy. In case of a crack in a
single edge notch (SEN) specimen under mode I loading, G(xl) is given in
[II.10]. The term p(xy) 1is the traction at the line of the main crack
caused by the external load in combination with the MA interacting with the
crack, i.e.,

p(xy) = [o, + g&(xl)]g (II.11)

where n 1s the unit normal vector to the main crack face. Thus the total
(effective) SIF is naturally decomposed into a sum of the conventional SIF Ko

due to the externally applied load and the SIF KA due to the MA, i.e.,

eff _
K =Ky * Ky (II.12)
where
. 0
Ky, = G(x4)0,(xq) dx (IT.13)
A f 194 X100y GX3
vnL L

) is the stress due to the entire MA expressed by Eq. (II.8). The SIF K,

is then given by

0
1
Ky = / G(xl)/S(S)F(E'<E§>'x1) didxl (II.14)
nL -L Va

c¢(¢) 1s the microcrack opening density defined by Eq. (II.6§ and F(&,n(&),xq)
is Tx[¢(§),<g§>.x]nx at x9 = 0.

In the case considered, i.e., the crazes are parallel to the main crack,
<g§> is the unit vector perpendicular to the main crack for all points

(37,82). Then the function F(§,<ng>,x1) 4n Eq. (II.14) can be written as

(see Appendix)

14
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4 2.2 4
E (61 - xl) + 6(§1 - xl) &2 - 3§2

4n B§1 _ x1)2 . §%]3

where E and Vv are Young's modulus and Poisson’'s ratio, respectively. 1In

addition, we assume that the MA size at the viecinity of the main crack tip is
small with respect to the main crack length as well as with the distances from
the specimen edges. Hence the second Green'’s tensor for an infinite plane
(Eq. (IX.2)) can be employed to approximate the second Green’s tensor for the
considered boundary value problem.

It is useful to introduce the Green's function Ggip for the SIF due to a
unit discontinuity at the point ({;,%,) normal to a line parallel to the main

crack. Using Eqs. (II.14) and (II.15) and dimensionless coordinates xi, §i

and té representing x;, §; and §, normalized by the crack length L,

respectively, we obtain

0
’ ] L ' ' ’ '
nL A1

Depending on the location of the discontinuity (&;,%,) Ggrr can be positive
or negative. A positive Ggip reflects an amplifying effect of the discontinu-
ity, while a negative Ggyp 1indicates shielding. A plot of the contours of
equal values of the Ggip near the crack tip is shown in Fig. II.4. The con-
tours are calculated using a numerical integration of Eq. (16) for L/B = 0.5.
We note that this plot is very similar to the one obtained by Shiue and Lee
[II.1]) using the energy method for the case of a normal strain dislocation
dipole. Rose [II.2] and Rubinstein [II.11] also reported similar results.
The effect of a microcrack is symmetric with respect to the crack line. The

border 1line between the amplification and shielding 1is a curve which

15



approaches the origin at an angle of about 69°. Apparently, the amplification
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Fig. II.4 Contours of equal level of Green's function Ggyp_ for the SIF Kp
due to a unit discontinuity, normalized by 10° E/ﬁf]bow. gi and
gé are the coordinates of the discontinuity, normalized by the
length of the crack L. Here L/B = 0.5.

zone for mode I loading is located ahead of the crack tip.

In the considered case of an array of horizontal crazes [II.9], the only
detectable non-zero component of the vector of craze opening density c¢(§) is
the vertical component c,(f), which i1s a product of craze opening bj(%)
and the craze density p(¢). The latter is the total length of the craze mid-

dleline per unit area. This parameter has been studied by Botsis, et al., by

means of optical microscopy [II.9]. An example of equal craze density con-

16
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tours taken from [II.9] 1is shown in Fig. II.5. Using these data we employ an

exponential-type approximation of the craze distribution

L 23143 €1 20
ey (E) = byp, (1I1.17)
RN13RYY g4 £ O
£4=0

\‘"\\\x\ Aex

‘ )
=01F crack t1|\ \ \
1200 1000 600 800 400 Yoo - .05 wn
—

2
X
X
A\

Active Zone Width.mm
1 m

Fig. II.5 Contours of equal craze density in mmz/mm3 [II1.9] for crack length
L =1.9 mm.

where ¢, and w are the length and the width of the crazing zone (CZ) ahead
of the crack tip, respectively. Po is the maximum craze density at the crack
tip estimated as 1400 mm?/mm3 and b, 1is the average of the craze openings
by(E). The coefficients aypy are evaluated from the craze density measure-

ment [II.9] and found to be

1.07 -0.8
akl =
-0.8 5.5
The overall effect of the CZ can be readily evaluated employing GSIF of

Eq. (II.16) and the measured craze opening density g(g) approximated by Eq.

(I1.17)
17



Ky =/ Ggype(§) dg (II.18)
Va

In the example considered, the following parameters are taken from
[TI.9]: crack length = 1.9 mm in a SEN specimen of 20 mm width, Young's modu-
lus E = 2.2 GPa, Poisson’s ratio v = 0.3, and the applied stress o, is equal
to 16 MPa. 1In this case K, = 1,378 kN/m’/2 and K, 1s found to be
-1128x106 b° kN/m5/2, in which b, stands for an average craze opening in m
upon load application. Since the latter was not measured, we use it as an
adjustable parameter. Apparently, the total SIF K®ff vanishes when b, =
1.22x1076 m. The value of 1 to 2x1076 m for craze openings under load seems
quite realistic, thus suggesting an alternative ¢to the well-known

Dugdale-Barenblatt proposition [II.12,131, i.e., Keff = 0 due to craze zone

surrounding the crack.

5. Conclusion

The proposed crack tip analysis 1s essentially based on experimental
measurements of the discontinuities and/or a discontinuity density. Then
parameters such as SIF, energy momentum tensor and energy release rates can be
evaluated by straightforward calculations based on the double layer potential
technique.

The semi-empirical method can be also employed for stress analysis of
crack damage interaction in non-polymeric (non-transparent) materials. With
this in mind, various polymers and their blends may be selected to serve two
purposes: a) mimicking brittle as well as ductile response to stress concen-
tration at the crack tip and and b) to allow an observation and measurements

of the discontinuity.

18
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APPENDIX

The displacement generated by a microcrack is

ui(x) = /bj(&)q’ij(toX) d& (A1)

W

ox

In case of an horizontal microcrack by(¥) = 0 and therefore

w

Uy () =/b2(§)¢22(§.§) dg (A2)
W

For plane stress, the stress-displacement relation is given by

0y,(x) = luy 2 (x) +vuy 1(x)] (A3)

(1-v2)

Therefore, the stress operator applied to the second Green’s tensor ¢(&,x)
glves
E

From Eq. (2) in the text, we write the second Green’s tensor as

2
R,R
(1+V) 1-v 172
O (8, x) = - —n - R, +2 ——
12(%.X
4nR2 1+v 1 R2
3
(1+v) | 1-v Ry (A5)
Bq(E.x) = = Ry t2—
anp? | 1+V R2

-w

2 2
where Ry = &; - %3, Ry = & - X5 and R% = R] + R The derivatives with

respect to Xy and to xo gilves
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aw

(1+y)
¢ (&,x) =
’1 ~.~
12 4R |
(1+v)
¢22’2(E;§) = 3
4nR

[ 1-v

——

1+v

1-v

——

1+v

(
(

4 2 2
Rl - 6R1R2 +

4 2.2
Rl + 6R1R2 -

Therefore, Eq. (A4) becomes, for Xy =0,

F(El.tz.xl) =
4nR

E 4 2.2 4
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III. EXPARSION OF THE ACTIVE ZONE

The requirement of self-similarity hypothesis (Part I) has two implica-
tions: (1) the evolution of the active zone can be approximated by four
elementary moments, namely, translation and rotation as a rigid body, expan-
sion and distortion. (1i) It allows to express the active parts of the
corresponding driving forces in the form of the J, L, M and Nij integrals,
respectively [III.1],

Crack propagation which coincides with the translation of the active zone
is a relatively fast process. The CL theory derives the kinetic equation for
active zone translation by employing the principle of minimum entropy produc-
tion [III.1,2]. On the other hand, active zone deformation and rotation
result from slow processes of damage growth.

On the basis of experimental observations, various propositions can be
made with respect to the constitutive equations for expansion, distortion and
rotation of the active zone, Herein we concentrate on the expansion of the
active zone only.

In this respect we have examined two candidates for constitutive rela-

tions; Onsanger’'s type linear relation

é = LXexp (IIIcl)
and Arrhenius type exponential relation
e = Cp exp [-CpXgy,) (I11.2)

between the rate of expansion e, and the corresponding force Xexp' The
coefficients L[sec:Joules™1] (Eq. (III.1)), C [sec] and CylJoules 1] (Eq.

(I11.2)) are obtained from linear regression analysis.
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Under the assumption of homogeneous deformation within the active zone,

the rate of expansion é with the crack tip as the origin is
e—lé-}_
2\w

where w and fa are the width and length of the active zone, respectively

(Fig. I.1). The force Xexp is expressed as the difference between active

and resistive parts, i.e.,

Xexp = M = 1Ry (I1I.3)

Here M 1s the energy release rate due to expansion of the active zone, vy

is the specific enthalpy of damage and R, is the resistance moment of the
active zone assoclated with the expansion. Both M and Ro are approximated
as

-~

M aJila (III.4)

| =

~

Ry = (p, A (III.5)

where J; 1s the energy release rate due to translation of the active zone,

f2a 1s the length of the active zone and a is a dimensionless coefficient

with 0 < a { 1. <py> 1s the average damage density within the active zone and
A 1its area.

Analysis of CL stability has shown that the critical energy release rate
Alc- can be expressed as the product of the specific enthalpy of damage v*,
and the resistance moment at critical propagation, namely, A1c = y*Ri,. This
process is a manifestation of mainly new damage nucleation. Thus y* 1s
directed related to the corresponding specific energy (i.e., energy of nuclea-

tion of new damage). On the other hand, <y which appears in Eq. (III.3)
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corresponds mainly to the energy of relative slow process which follows the
nucleation. Furthermore, it is well recognized that the difference between
the energy of new phase nucleation and the energy of phase growth is essential
[II1.3]. Accordingly, it is expected that vy* 1is significantly greater than
Y.

For our model material, vy* has been found to be of the order of 30 J/m2
[III.4]. An experimental method to evaluate Yy 1is being developed. To com-
pare the two candidates (Eqs. (III.1) and (III.2)) for constitutive equations
for active zone expansion, we take Yy to be 10% of Y*.

Fracture propagation kinetics are observed under two different fatigue
load histories. Whereas the frequency and load ratio were the same, the level
of mean stress is 16.0 MPa and 10.7 MPa, respectively.

Analysis of the experimental results according to Onsanger relationship
(Eq. (III.1)) resulted in two different values of the kinetic coefficient L,
namely, L = 0.98x10"2 sec ojoules‘l for the first experiment and L =
0.68x10"2 sec-joules™] for the second experiment. In addition, in both cases
the coefficient of correlation in the linear regression analysis, in the e,
xexp plane, was low, regardless of the value of the parameter a.

This suggests that simple Onsanger relationship is not adequate.

The solid lines in Fig. III.1 represent the right-hand side of (III.2).
The data points are measurements of the rate of expansion of the active zone,
The correlation coefficient for both set of data was of the order of 0.9 and
the pre-exponent parameter C1 was 1.12x10'3 sec and 0.34x1073 sec, respec-—
tively. On the other hand, the coefficient C2 was found to be the same for
both experiments regardless of the parameter a. If an Arrhenius type consti-
tutive relationship was to describe the expansion rate, 02 should be the

same in this case since both experiments were performed under different load
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levels and the same temperature. This is very strong evidence that Eq.
(III.2) could be adopted to describe the expansion rate of the active zone.
In order, however, to unquestionably assess the applicability of an Arrhenius
type kinetic equation for active zone expansion, experiments with different

loading rates and temperatures should be available.

0

R=0.2

¥=0.2Hz
i P @ g,=16.0MPa
BDJ 0 0,=10.7TMPa
_8 n 1 i Y A
0 2 4 6 8 10 12x10°
M -YRO, Joules

Fig. III.1 Rate of expansion as a function of the expansional thermodynamic

force for two levels of mean stress. Note that the lines are
parallel.
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