
Nss-23 s4
POPEYE: A PRODUCTION RULE-BASED MODEL OF MULTITASK

SUPERVISORY CONTROL (POPCORN)

James T. Townsend, Helena Kadlec, and Barry H. Kantowitz ,_O

Purdue University ._ / ,j/

West Lafayette, Indiana t_ _ _''

• i I

Recent studies of relationships between subjective ratings"

of mental workload, performance, and human operator and task

characteristics have indicated that these relationships are quite

complex. In order to study the various relationships and place

subjective mental workload within a theoretical framework, we

developed a production system model for the performance component

of the complex supervisory task called POPCORN. The production

system model is represented by a hierarchial structure of goals

and subgoals, and the information flow is controlled by a set of

condition-action rules. The implementation of this production

system, called POPEYE, generates computer simulated data under

different task difficulty conditions which are comparable to

those of human operators performing the task. This model is the

performance aspect of an overall dynamic psychological model

which we are developing to examine and quantify relationships

between performance and psychological aspects in a complex

environment.

Introduction

With increased automation in the working environment,

physical demands of tasks have, in many situations, become

secondary to mental or psychological demands. Automation has

changed the role of the operator from one of direct control to

one where the operator primarily monitors and schedules multiple

tasks. This has resulted in complex systems which place greater

demands on the operator's information processing capabilities.

In these situations it is often assumed that performance on tasks

is mediated by the allocation of processing resources which are

limited (ref. I). Mental workload is then operationally defined

in relation to the overall ability of the human processing system

to process information and generate responses as the task demands

change (ref. 2).

Human factors and cognitive psychologists have recently

begun to investigate potential variables contributing to mental

workload using a variety of methods. Since mental processes are

not directly observable, they are often inferred from the

operator's performance or physiological measures. Alternatively,

estimates of mental workload may be obtained directly from the

operator's subjective judgments of the workload imposed by the

task. Because of its high face validity, the latter approach of

obtaining subjective ratings of workload has become widely used

in human factors research.

189

https://ntrs.nasa.gov/search.jsp?R=19880014000 2020-03-20T06:19:44+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42832456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The relationships between the performance measures and
subjective ratings of workload, however, are not clear and
sometimes the measures do not correlate as task demands change.
In addition, many results have been accumulating (see, e.g.,
ref. 3 for a review), without a coherent theory to bring the
observations together. Consequently, a more unified approach,
which would embed the various aspects of this research area such
as would be provided by a modeling approach, could clarify the
relationships between performance and subjective workload
measures. Our model of the complex task POPCORN,which will be
described in the next section, is an attempt at this approach.

Relationships between the task type and task difficulty on
the one hand, and subjective workload ratings and performance
measures on the other are complex. Results seem to depend on the

task itself, as well as how and when the workload manipulation is

accomplished (refs. 4 and 5). Other task characteristics, e.g.,

task priority and reference task (ref. 6), also play a role.

Most important, however, is the result of the latter study which

shows that performance and workload ratings do not correlate

under all conditions. Finally, while task characteristics

certainly affect workload, recent investigations also seem to

suggest that operator characteristics may affect not only

performance but also workload ratings, at least under certain

conditions (refs. 7, 8 and 9).

The considerations that are involved in examining subjective

workload, some of which were briefly discussed above, underscore

the importance of modeling, since from a practical, as well as a

scientific view, it seems extremely important to be able to

identify and quantify these various factors contributing to

subjective mental workload. That is why we feel that a model,

which would represent the performance as well as the

psychological aspects of the operator in a dynamic way, could

prove very useful in this area of research. With a working

model, we could elucidate the relationships between workload (as

well as other psychological) and performance measures in a

quantitative way as various task characteristics are manipulated.

One such possible dynamic model is shown in Fig. I.

We began by modeling the performance component of the task.

In particular, we developed a production system model of POPCORN,

utilizing some of the production systems ideas developed by

Newell (ref. 10) and later elaborated by John R. Anderson (refs.

11 and 12). Production systems have been useful in modeling

various cognitive skills, such as general problem-solving (ref.

12) and a computer text editing task (ref. 13). Our production

system will be presented following a brief description of the
POPCORN task.

190

Description of the POPCORN Task

A complex task, called POPCORN, was recently developed at

NASA by Sandra Hart for studying psychological variables that may
contribute to the experience of workload. This task simulates a

relatively complex automated system where the operator is

responsible primarily for decision-making and the scheduling of

the different components of the task in order to maximize the

score in a minimum amount of time.

The POPCORN task is implemented on the IBM PC AT, and the

operator interacts with it via a mouse. The complexity of a

particular simulation can be manipulated primarily by the number

of functions available to the operator, and ranges from level I

(least complex) to level 5 (most complex). To begin the

modeling, we chose level 2 since it has only six of the twelve

functions available and thus is easier to model, yet it is

psychologically interesting since some decision strategies must

be employed.

The monitor display, as it appears for a level 2 scenario,

is shown in Fig. 2. The larger boxes along the bottom of the

display are the task boxes, with the smaller boxes beneath them

used to select the different tasks. There are five task boxes,

each of which will contain a task of a different type, and one

penalty box which has no lid. The boxes along the right hand

side are the functions used to operate on the tasks. At the

second level of complexity, the functions OPEN, CLOSE, STUFF, Y-

>G, R->Y and SEE are available. The OPEN function opens the task

box, while the CLOSE function closes it. The STUFF function is

used to replace all the individual "kernels" of the task that

have popped out back into their task box. The other three

functions are used for kernels that have changed their state

(i.e., color or visibility) in the warning zone (see below).

The scenario would proceed as follows. At specified times

the task boxes are filled with the "tasks"; each task is a group

of identical "kernels", the five different tasks being

represented by kernels of different symbols, # - + = and *. The

kernels can be released from their particular task box by first

selecting that task (by moving the mouse to the smaller box

underneath the task box and clicking the mouse), followed by

clicking the mouse in the OPEN function box. Once the task box

is open, the kernels "pop out", one at a time, and float in an

upward direction at a predetermined speed specified by the

experimenter. Each click of the PERFORM function (lower right

hand corner of the display and available at all levels of

complexity) renders one kernel of that task done, whereby the

kernel disappears from the screen and the score is incremented.

Only popped kernels may be performed, and only one at a time.

As the kernel moves up the screen, it may be performed as

long as it has not crossed the warning line. Once the kernel

191

crosses the warning line, it can change its state to one of the
warning states (which was predetermined by the experimenter).
The "normal" state of the kernel is green. In the warning zone,
it can change to either yellow, red, or invisible. As the
changed kernel moves up through the warning zone, it can still be
performed for points if its state is first returned to green by
pressing the appropriate sequence of functions. When the kernel
is returned to its green state it must first be performed before
the next kernel can be operated on. These warning states are one
of the ways of penalizing the operator for lagging behind. If
the kernel is not performed in time, it moves to the top of the
screen where it disappears and goes to the graveyard. An
optional penalty for each dead kernel can be imposed by
subtracting points from the score for each dead kernel.

If there is another task scheduled to enter into a task box
which still has some (or all) kernels in it, the operator is
given a 20 second warning by a red flashing bar under that task
box. If the kernels in the task box are not done within that 20
second warning, the unperformed kernels are sent to the penalty
box. There the kernels lose their identity, and since the
penalty box has no lid, they begin to exit as soon as they arrive
there. The points for performing these kernels are no longer
obtainable; however, performing them does avoid the penalty for
dead kernels.

The object of the simulation task is to obtain as many
points as possible in the least amount of time. Often,
therefore, the scenarios can be performed faster and more
efficiently if two or more tasks are worked on simultaneously, by
alternating between them. The higher levels include
progressively more functions which allow the operator a wider
range of options and strategies. These will not be described
here since they are not included in the model at the present
time. As an operator plays POPCORN,the functions and the times
at which those functions are performed are stored in a response
file by POPCORN.

In addition to the complexity level and also within each
complexity level, the difficulty of each POPCORNscenario can be
manipulated by four major variables: I) the number of kernels in
each task, 2) the total number of tasks, 3) the task schedule
(i.e., the schedule of the arrival times of the tasks; a massed
schedule results when all tasks arrive simultaneously, while
different arrival times result in a staggered schedule), and 4)
the speed of the kernels' movement. These variables will be used
to examine the effects of environmental factors on the
performance of POPCORN,and later to study the influences of the
psychological variables of the model. We next describe the
production system for the performance component of the POPCORN
task.

192

Production System Model o_ffPOPCORN Performance

Performance of POPCORN lends itself to a production system

approach since it can be readily interpreted as a hierarchy of

goals and subgoals. The hierarchial goal structure is presented

in Fig. 3 and the corresponding productions controlling the flow

of control of the system are given in Table I.

There are two main branches in the system. The first branch

(productions PI to P13) consists of the strategy selection that

an experienced operator may engage in to prepare for playing

POPCORN. Prior to the task, the operator is given a brief

description of the upcoming task, called the flight plan. The

flight plan provides information about the number of tasks to be

done, the number of kernels in each task, the arrival schedule

(massed or staggered), the speed with which the kernels move, the

rewards/penalties for performed/dead kernels, and the state of

the kernels in the warning zone. Based on this information and

the operator's experience, (s)he can form an initial opinion

about the difficulty of the upcoming scenario and decide, perhaps

tentatively, on an initial strategy. The second branch

(productions P14 to P44) is the production system of the actual

performance of the POPCORN task. It should be emphasized that

the operator is not bound in any way to use the initial strategy

once (s)he starts playing. The playing strategy can be re-

evaluated at any time if it is not conforming to the proper

execution of the task. A demonstration of the production system

follows.

The performance of the POPCORN task begins with the goal to

'play POPCORN'. Since the flight plan is the first thing to

appear on the monitor, production PI applies and the new goal

becomes to 'choose an initial strategy'. If the flight plan has

not yet been read and processed by the operator, production P3

applies and the goal becomes to 'read the flight plan'.

Production P4 is the only one that applies here, and the operator

reads the flight plan, stores the levels of the variables

pertaining to the scenario (e.g., whether the speed of the

kernels is slow, moderate or fast, whether the arrival schedule

is massed or staggered, etc.)in working memory (WM), brings into

WM the weightsof these variables from long-term memory (LTM),

and initializes the variable DIFF (difficulty) to zero and

VARIABLE to I. These latter two variables will be used in

calculating the perceived difficulty of the scenario on which the

strategy will subsequently be based.

The weights of the flight plan variables pertain to the

importance of each variable in contributing to the difficulty of

the scenario. For example, the speed with which the kernels move

may contribute more to determining the difficulty than the number

of kernels in each task, and will thus have a greater weight.

Our pilot work indicates that the speed variable is the most

important variable in determining the perceived difficulty of a

193

scenario. These weights are parameters of an operator which get
updated, or tuned, based on the operator's experience. Table 2
shows a possible way of breaking down each variable into its
levels, which are the independent variables of our studies by
which we manipulate the difficulty or complexity of the
environment. An example of the calculation of the perceived
difficulty is also presented in Table 2. For illustrative
purposes, the parameter values are chosen such that the DIFF
variable lies between 0 and 10.

Once the flight plan is read but the strategy has not yet
been chosen, production P5 applies and the goal becomes to 'weigh
the variables' of the flight plan which are now stored in WMby
P4. Production P7 calculates the perceived difficulty (DIFF) of
the scenario in a manner analogous to the example shown in Table
2. When all the variables have been calculated into the
DIFFiculty score, P8 makes the new goal to 'pick one strategy Si'
(i = I, 2, ..., 5). Here, depending on the result of the DIFF
score, one of productions P9 to P13 will apply and a strategy is
chosen.

The strategies are labeled $I through $5. Strategy Si

denotes that the operator will work on i tasks simultaneously.

Thus, for example, when the perceived difficulty is less than 2

(i.e., a very easy scenario), production P9 will apply and the

operator chooses to work on all five tasks simultaneously,

strategy SS. As the difficulty increases, fewer tasks can be

done simultaneously.

When the strategy is chosen, P6 and P2 return the system to

the goal to 'play POPCORN' again. This time the conditions of

P14 apply and the new goal becomes to 'work on the tasks'.

Initially all the task boxes are closed and the kernels cannot

get out. Thus if the i task boxes that the operator wants to

work on are not open, P16 applies and the goal becomes 'open all
i task boxes'.

Since at the second level of complexity only one task can be

attended to at any one time, in this production system, task X

will refer to the task the operator is currently attending to.

(Note that in productions P19, P25, P26, P27 and P35 task X can

also include the penalty box; however, opening or closing the

penalty box constitutes an error.) From P2 task X has been

tagged as the first task to be opened. But task X has not yet

been selected thus P18 applies and the goal becomes to 'select

task X', which is accomplished by P19 where the mouse is moved to

the smaller box under task X and the mouse is clicked. When task

X has been selected P20 applies and the goal becomes to 'open

task X', which is accomplished by P21. When task X has been

opened, but not all i tasks have yet been opened, P22 makes the

next task the current task, which is then selected and opened in

the same manner. Upon opening all i task boxes, P17 applies and

the new goal becomes to 'work on tasks' again. Now the task

194

boxes are open and kernels are popping out, so P23 applies. Here
the operator decides which popped kernels will have to be
performed first (if i_2). It is assumed that the task with the
most popped kernels will always be chosen to be operated on
first. Now the new goal becomes to 'perform popped kernels'
which is where the majority of the actual playing of POPCORN
takes place.

The most straightforward way to play is to select task X, if
it is not already selected (P25), perform all the popped kernels
of that task (P27), then select a new task with the most popped
kernels (P26), perform those (P27), select another task with the
most popped kernels (P26), perform those (P27), and so on until
all popped kernels are done. However, other conditions may

arise, particularly in faster scenarios, where the operator has

to switch tasks or the order of performing the popping kernels in

order to accommodate new incoming tasks without losing points or

to take care of kernels that have gone into the warning zone.

If the kernels of the current task have entered the warning

zone and changed to yellow, then one of productions P28, P29, or

P32 applies depending on further conditions of the scenario. If

there are no kernels popping out of any of the other (open) task

boxes (i.e., only the current task is left to do at this point)

and the scenario is not too difficult, then the operator can

process the warning state and P32 applies to make the new goal to

'process the warning state' This is the most efficient strategy

in this case since a minimal amount of time is lost. Production

P34 changes the top kernel in the warning zone from yellow to

green, and P33 brings the system back to the goal to 'perform

popped kernels' where P27 now applies. The sequence of P32, P34,

P33, and P27 must be applied for each kernel in the warning zone,

thus it is assumed that the warning state can only be efficiently

processed in situations where there is enough time and there are

no other demands on the operator. The experienced operator knows

from past experience in which situations the warning states can

be efficiently proces6ed, and some pilot work has supported this

assumption. For the other warning states, red or invisible,

productions similar to P34 can simply be included in this part of

the production system.

If the scenario is too fast (i.e., the DIFF is greater than

some critical value which can be thought of as another operator

parameter; here 5 is chosen somewhat arbitrarily for

illustration), then P29 applies and the operator stuffs the task.

This loses some time but prevents the loss of points if there is

not enough time to process the warning state.

If the kernels of the current task have entered the warning

zone and kernels are also popping out of other tasks, some of

which may also be near or entering the warning zone, then P28

applies and the new goal becomes to 'stuff task X' in order to

avoid losing them whereby their performance is postponed until

195

later. In this case, if the scenario is too difficult, the best
strategy is to stuff the kernels back into their box and close

the box (P31) in order to have sufficient time to perform the

other popping kernels. If the scenario is relatively easy, then

only stuffing the task (P30) may be sufficient to provide enough

time to catch up with the other popping kernels.

Another situation where the straightforward sequence of

selecting and performing kernels as they pop out (using

productions P25, P26, and P27) may be disrupted arises when the

20 second warning flashes under a closed task box signalling the

upcoming arrival of a new task in that box. In such a case, the

task (called task Y in P35) has not yet been selected, and if the

situation permits the processing of an additional task (e.g.,

when other open tasks are finished, or their kernels are popping

slowly and not approaching or inside the warning zone), as judged

by the operator, then production P35 applies and that task is

selected and then opened (P36). In this situation the new task

is incorporated into the ongoing strategy [Si becomes S(i + I)].

If the scenario is fast and there are already many popping

kernels, the operator may elect to stuff, and possibly close, one

of the current tasks (P37). In this way the task box with the

flashing warning in essence takes the place of one of the current

tasks in the strategy, and the performance of the popping kernels

can proceed in a "normal" fashion. However, the experienced

operator can judge how much time is required to pop and perform

the kernels, and may even be able to finish a started task before

switching to the new one.

When all the kernels of the i tasks have been performed,

then the best strategy is to close at least some of the finished

task boxes if more tasks are expected to arrive in those boxes.

If the empty task boxes remain open, then the kernels of the

newly arrived task will begin to leave as soon as they arrive.

Production P39 will apply in this case, and the new goal becomes

to 'close (5-i) task boxes'. (Note that closing (5-i) tasks

assumes that the strategy Si remains effective; this assumption

seems reasonable for an experienced operator.) Again the task to

have the close function performed on it must first be selected,

if it is not already selected, (P43 and P]9) before it can be

closed (P41 and P42).

At this point the operator opens the next i tasks which

contain kernels (P]6) and the game continues in the same manner

as above. If the operator has finished all tasks but more are to

arrive later, all there is to do is wait (P38) until the new ones

arrive. If all tasks are done, productions P]5 and P0 end the

game.

POPEYE: Computer Implementation of the Production System

Due to the IBM PC AT system limitations, the computer

196

implementation which we call POPEYEdoes not perform POPCORNin
real time. Rather, it simulates results as if it were playing
POPCORN. Each time a 'move' is executed, the scenario, as it
appears to POPEYE, is updated. Thus the program keeps track of
the running time, as well as the last time that the scenario was
updated, and updates the scenario for the time difference. The
generated responses are stored in an output file which has the
same form as the replay file generated by POPCORNwhen a human
operator is performing the task. Thus the responses generated by
POPEYEcan be checked by running the POPEYEoutput file using
POPCORN'sreplay command.

The current version of POPEYE performs the task only under
the following task constraints. I) The schedule of task arrivals
must be massed, that is, all five tasks of each set must arrive
simultaneously. This was done in order to make the initial
programming of POPEYEmanageable. 2) The current version can
only perform two sets of tasks per scenario, although it will not
be a problem to make the program flexible to include any number
of sets in the next version. Any warning state can be processed,
and there are three different speeds available; 0.3 cm/sec, 0.7
cm/sec, and 1.2 cm/sec.

POPEYEprompts the user for a "difficulty criterion", an
integer between I and 10. This is an operator parameter
corresponding to the criterion value for the DIFF variable in the
_ _,,__ouu_ion system (which was set to 5 in Table I for

illustration), and is used to determine if a task box should be

closed after all kernels in it are done, and also to determine

whether a task should be stuffed or kernels in the warning zone

processed (for productions P31, and P32). This criterion is used

in POPEYE by comparing it to the calculated difficulty (DIFF) of

the scenario based on the flight plan variables and weights.

POPEYE also prompts the user for an operator parameter

"kernels criterion", an integer between I and 4, which is used to

determine whether to close a box after it is stuffed. If the

number of kernels popped out of another task exceeds this

criterion, the current task is stuffed and closed; if not, the

task is only stuffed. Finally, the last prompt is for the

operator's "mean to move" the mouse. This mean is used to

generate an exponentially distributed random number which is

added to a constant representing the minimum time between two

moves.

In the current version of POPEYE the tasks are performed

left to right and consecutively, unless emergency situations

arise. Also all popped kernels of a selected task are completed

before the next task is selected. In our pilot work, these

performance assumptions were fairly well supported.

Game parameters which describe the scenario to be simulated

must be provided for POPEYE. These parameters include: I) the

197

number of task sets to be performed (currently only 2 are
allowed); 2) the number of kernels per task (any integer between
I and 8); 3) the schedule coda; and 4) a code for the warning

state. These are read from a file by POPEYE. In addition, each

operator has his/her own flight plan variable weights, which are

stored in a separate file. This file, in a way, represents the

long term memory of the operator, and contains the weight for

each flight plan variable and the weights for the different
levels of each.

We have not yet analyzed the performance of the model

statistically, but assessed its performance by viewing the

generated results as they were replayed in the actual POPCORN

task. The data simulated by POPEYE was virtually

indistinguishable from data produced by human operators.

Depending on the parameters given, POPEYE can generate data which

result in performance that looks either like a well-practiced
operator or a beginner.

Future Directions

The next version of POPEYE will aim toward a dynamic

interactive model which will include such psychological variables

as frustration, motivation, and working memory, as shown in Fig.

I. Throughout the report, some reference was already made to

some of these psychological variables, and in fact the current

version of POPEYE already contains and uses some of these

variables (e.g., working memory), albeit not very formally at

this stage of modeling. Thus the extension toward a dynamic

psychological model is a very natural consequence of our work so
far.

By studying the performance aspects of POPCORN as they

change with different psychological manipulations, for example, by

increasing the number of frustrating events or errors that the

operator experiences, we can examine how these psychological

variables contribute not only to the operator's performance but

also to his/her experience of the individual aspects thought to

underlie workload experience such as time pressure, physical and

mental effort, etc. In addition, we can investigate how these

individual aspects contribute to an overall experience of

workload. In this way, POPEYE can be extremely useful in the

investigation of the interactions of these (and possibly other)

psychological variables with the performance component of the

model and their contribution to the experience of workload.

With the exception of Madni and Lyman (ref. 14), no one to

our knowledge has attempted to model mental workload and its

relationships with performance and task characteristics. Madni

and Lyman's model is an extended Petri net representation by

which they attempt to describe and quantify task-imposed

workload. However, we are not aware of a computer implementation

of their petri net model. Petri nets are similar to production

198

systems in that they are formal models of information flow.
Whereas both approaches rely on some matching of conditions to

proceed from one state to another, production systems

additionally postulate a hierarchial structure of goals which

governs the overall behavior. The goal structure seems to be more

appropriate to model the goal-directed behavior of human

operators.

Thus, the production system approach is a useful and

suitable representation of POPCORN performance• It is

straightforward, and simply by adding more productions it can be

fairly easily expanded to model higher levels of complexity.

Also, since an action of an operator at any given time only

depends on the current state that he/she finds him/herself in --

that is, the transition from one state to another depends only on

the current state and not on any of the previous states -- the

production system can be naturally generalized to a state

probabilistic model by employing a Markov process approach.

The dynamic model will also be very useful in estimating

workload ratings under different environmental conditions• For

example, a straightforward estimate of workload may be obtained

by simply estimating the absolute number of productions required

to complete the task. Alternatively, a more complex and accurate

estimate may result from a weighted combination of the

productions, where a production with more conditions to be

matched or more consequents to be performed may contribute to a

greater extent. In summary, we feel that this approach to the

modeling of POPCORN and employing the model to predict workload

ratings is very useful and holds much promise.

Acknowledgment

This research was supported by Workload and Performance

Research Group, NASA-AMES, grant # NAG 2-307, to the first

author.

REFERENCES

I • Nay.n, D., & Gopher, D.: On the economy of the human-

processing system. Psychological Review, 86, 1979,

pp. 214-255.

. Gopher, D., & Braune, R. (1984). On the psych.physics of

workload: Why bother with subjective measures? Human

Factors, 26, 1984, pp. 519-532.

. Moray, N.: Subjective mental workload•

1982, pp. 25-40.

Human Factors, 24,

199

.

.

.

.

.

.

10.

11.

12.

13.

14.

Yeh, Y.-Y., Wickens, C. D., & Hart, S.G.: The effect of

varying task difficulty on subjective workload.

Proceedings of the Human Factors Society, 29th annual

meeting, 1985, pp. 765-769.

Thornton, D. C.: An investigation of the "Yon Restorff"

phenomenon. Proceedings of the Human Factors Society,

29th annual meeting, 1985, pp. 760-764.

Gopher, D., Chillag, N., & Arzi, N.: The psych.physics of

workload - a second look at the relationship between

subjective measures and performance. Proceedings of the

Human Factors Society, 29th annual meeting, 1985,
pp. 640-644.

Dam.s, D.: The relation between the Type A behavior pattern,

pacing, and subjective workload under single- and dual-task

conditions. Human Factors, 27,]985, pp. 675-680.

Dam.s, D., & Bloem, K.: Type A behavior pattern, multiple-

task performance, and subjective estimation of workload.

Bulletin of the Psychonomic Society, 23, 1985,
pp. 53-56.

Salvendy, B. (Ed.) : Responses of Type A and Type B

individuals performing a supervisory control simulation.

Proceedings of the Second International Conference on Human-

Computer Interaction, pp. 67-74. The Netherlands: Elsevier

Science Publishers, 1986.

Newell, A.: Production systems: Models of control

structures. In W. G. Chase (Ed.), Visual information

processing. New York: Academic Press, 1973.

Anderson, J. R.: Language, Memory and Thought.
N.J.: Erlbaum, 1976.

Hillsdale,

Anderson, J. R.: Acquisition of cognitive skill.

Psychological Review, 89, 1982, pp. 369-406.

Card, K. S., Moran, T. P., & Newell, A.: Computer text-

editing: An information-processing analysis of a routine

cognitive skill. Cognitive Psychology, 12, 1980,
pp. 32-74.

Madni, A. M., & Lyman, J.: Model-based estimation and

prediction of task-imposed mental workload. Proceedings

of the Human Factors Society, 27th annual meeting,]983,

pp. 314-317.

200

PO:

PI:

P2:

P3:

P4:

P5:

P6:

P7:

P8:

Table I

Production System fo___rPerforming POPCORN

If the goal is to play POPCORN

and all tasks are finished,

then pop the goal and END !!!

If the goal is to play POPCORN

and the flight plan is presented and not read

and an initial strategy has not been chosen,

then the subgoal is to choose the initial strategy.

If the goal is to choose an initial strategy

and the strategy has been chosen,

then tag task X as the first task to begin working on

and press 'return' on the keyboard,

and pop the goal.

If the goal is to choose an initial strategy

and the flight plan has not been read,

then the subgoal is to read the flight plan.

If the goal is to read the flight plan,

then read the flight plan

and store the levels of the individual variables

LEVEL(VARIABLE) in working memory (WM)

and bring in the weights of the variables

WEIGHT(VARIABLE) from long-term memory (LTM) to WM

and initialize DIFF = 0, VARIABLE = I

and pop the goal.

If the goal is to choose an initial strategy

and the flight plan is read and processed,

then the subgoal is to weigh the variables.

If the goal is to weigh the variables

and the strategy is tagged as chosen,

then pop the goal.

If the goal is to weigh the variables

and VARIABLE < 6,

then DIFF = DIFF + LEVEL(VARIABLE) * WEIGHT(VARIABLE)

and VARIABLE = VARIABLE + I.

If the goal is to weigh the variables

and VARIABLE > 6,

then the subgoal is to pick one strategy Si.

201

Table I (con't.)

P9: If the goal is to pick one strategy Si
and 0 < DIFF < 2,

then put strategy Si = S5 in WM
and tag the strategy as chosen
and pop the goal.

PI0: If the goal is to pick one strategy Si
and 2 < DIFF < 4,

then put strategy Si = S4 in WM
and tag the strategy as chosen
and pop the goal.

P11: If the goal is to pick one strategy Si
and 4 < DIFF < 6,

then put strategy Si = $3 in WM
and tag the strategy as chosen
and pop the goal.

P12: If the goal is to pick one strategy Si
and 6 < DIFF < 8,

then put strategy Si = $2 in WM
and tag the strategy as chosen

and pop the goal.

P13: If the goal is to pick one strategy Si

and 8 < DIFF < 10,

then put strategy Si = $I in WM

and tag the strategy as chosen

and pop the goal.

P14: If the goal is to play POPCORN

and the strategy is chosen

and tasks are available for play,

then the subgoal is to work on the tasks.

P15: If the goal is to work on the tasks

and no tasks are available for play

and no more tasks are expected to arrive,

then pop the goal.

P16: If the goal is to work on the tasks

and the strategy is to work on (i) tasks simultaneously

and (i) tasks with kernels have not been opened,

then the subgoal is to open (i) task boxes.

P17: If the goal is to open (i) task boxes

and (i) boxes are open,

then pop the goal.

202

Table I (con't.)

P18: If the goal is to open (i) task boxes
and less than (i) boxes have been opened
and task X is not selected,

then the subgoal is to select task X.

P19: If the goal is to select task X,
then move the mouse to task = X

and click the mouse

and pop the goal.

P20: If the goal is to open (i) task boxes

and task X is selected

and task X is not open,

then the subgoal is to open task X.

P21: If the goal is to open task X,
then move the mouse to function = OPEN

and click the mouse

and pop the goal.

P22: If the goal is to open (i) task boxes

and less than (i) boxes have been opened

and task X is open,

then tag task X as the next new task (i.e., X = new task).

P23: If the goal is to work on the tasks

and (i) task boxes are opened

and kernels are popping out,

then tag task X = task with the most popped kernels

and the subgoal is to perform popped kernels.

P24: If the goal is to perform popped kernels

and all kernels from the open task boxes are finished,

then pop the goal.

P25: If the goal is to perform popped kernels

and task X is not selected,

then the subgoal is to select task X.

P26: If the goal is to perform popped kernels
and task X is selected

and task X has no popped kernels

and task X' is open and has popped kernels,

then tag X = X'

and the subgoal is to select task X.

203

Table I (con't.)

P27: If the goal is to perform popped kernels
and task X is selected
and task X has popped kernels
and the top kernel is green,

then move the mouse to function = PERFORM
and click the mouse.

P28: If the goal is to perform popped kernels
and kernel(s) of task X is (are) in the warning zone
and other kinds of kernels are also popping,

then the subgoal is to stuff task X.

P29: If the goal is to perform popped kernels
and kernels of task X are in the warning zone
and no other kinds of kernels are popping
and DIFF > 5,

then the subgoal is to stuff task X.

P30: If the goal is to stuff task X
and DIFF < 5,

then move the mouse to function = STUFF
and click the mouse
and pop the goal.

P31: If the goal is to stuff task X
and DIFF > 5,

then move the mouse to function = STUFF
and click the mouse
and move the mouse to function = CLOSE
and click the mouse
and pop the goal.

P32: If the goal is to perform popped kernels
and the kernels are in the warning zone
and no other kinds of kernels are popping
and DIFF < 5,

then the subgoal is to process the warning state.

P33: If the goal is to process the warning state
and the top kernel is green (i.e., warning state is

processed),
then pop the goal.

P34: If the goal is to process the warning state
and the top kernel is yellow,

then move the mouse to function = Y->G
and click the mouse
and pop the goal.

204.

Table I (con't.)

P35: If the goal is to perform popped kernels
and a 20 sec. warning is flashing under closed task Y
and other popping kernels are not in or near the

warning zone
(and task Y is not selected),

then tag task X = Y (Y = task with warning flashing)
and the subgoal is to select task X.

P36: If the goal is to perform popped kernels
and a 20 sec warning is flashing under task X
and task X is selected
and task X is not open,

then the subgoal is to open task X.

P37: If the goal is to perform popped kernels
and a 20 sec warning is flashing under task Y
and kernels of task X are popping "too fast",

then the subgoal is to stuff task X.

P38: If the goal is to work on the tasks

and no tasks are available for play

and more tasks are expected to arrive,
then wait for the new tasks.

P39: If the goal is to work on the tasks

and (i) task boxes are opened

and all kernels of these (i) tasks are finished

and more tasks are expected to arrive into those boxes,

then the subgoal is to close (5-i) task boxes.

P40: If the goal is to close (5-i) task boxes

and (5-i) task boxes are closed,

then pop the goal.

P41: If the goal is to close (5-i) task boxes

and (5-i) task boxes are not closed

and task box X is open (and empty) and selected,

then the subgoal is to close task X.

P42: If the goal is to close task X,
then move the mouse to function = CLOSE

and click the mouse

and pop the goal.

P43: If the goal is to close (5-i) task boxes

and (5-i) task boxes are not closed

and task X is not selected,

then the subgoal is to select task X.

2O5

Table I (con't.)

P44: If the goal is to close (5-±) task boxes
and (5-i) task boxes are not closed
and task X is closed,

then tag task X = new task to close.

206

Table 2

The Variables, Weights, and Levels of the Flight Plan

Variable Description Weight Levels Weight(level)

I # of tasks to do GI (2)*

2 # kernels/task 82 (I)

4

speed of kernels G3 (5)

arrival schedule 04 (I)

5 warning state 85 (I)

5 tasks al (0.25)*

10 " a2 (0.50)

20 " a3 (I . 0)

2 kernels bI (0.6)

4 " b2 (O.8)

8 " b3 (I .0)

slow c I (0. I)

moderate c2 (0.5)

fast c 3 (I . 0)

massed d ! (0.8)

staggered d2 (I . 0)

none e I (0.0)

yellow e 2 (0.5)

red e 3 (0.75)

invisible e 4 (I .0)

Note: The numbers in brackets are example values used in the

example calculation below.

ExamRle: Suppose the scenario to be played contains 10 tasks

each with 4 kernels/task; the speed is moderate, the arrival

schedule is staggered, and the kernels turn yellow in the warning

zone. Then

DIFF = 01a 2 + 82b 2 + 03c 2 + 04d 2 + 05e 2
= 2_0.5) + 1(D.8) + 5(0.5) + I(1.0) + I(0.5)

=5.8

..... > choose strategy $3.

207

PERFORMANC E
VARIABLES

TIME
PRESSURE

PSYCHOLOGICAL
VARIABLES

FRUSTRATION

OWN
ERRORS

STAGES OF
PERFORMANCE

MODEL

STAGE LEARNING _NG- TERM

MEMORY

STAGE m

STAGE IT

ATTENTION

STAGE I

MOTIVATI(

Figure 1. A dynamic psychological model showing the possible
reciprocal relationships between the performance component
of the model and the psychological variables.

208

/one

Woxn_nq

llne. -11

opJ6o_[elispI___

/1/ °_c ¢lo-psec[_:ime
u t

I"]R'*Y'

' _$EE

E3
E3
E3
r-1

E]E] L

/

+.x_.sk_oxes pe.eYc_ box

0
[]

[] PERF

Fiqure 2. Monitor display of the POPCORN task at the second

level of complexity.

209

%

work o. _asks

Figure 3. The goal structure for the production system of the
performance component of POPCORN.

210

