
* - e

NASA Technical Memorandum 1006 13

STRUTEX

INITIALLY CONFIGURING A STRUCTURE TO
SUPPORT POINT LOADS IN TWO DIMENSIONS

A PROTOTYPE KNOWLEDGE-BASED SYSTEM FOR

James L . Rogers, Stefan Feyock,
and Ja ros 1 aw Sob i es z cza nsk i -So b i es k i

(NASA-TM-100613) STRUTEX: A PROTOTYPE N88-23448
KNOYLEDGE-BASED SYSTEM F O R INITIALLY
C O N F I G U R I N G A STRUCTURE TO SUPPORT P O I N T
LOADS IN TWO DXT:ENSIOEIS /NASA) 24 p Unclas

CSCL O9B 63/51 0342702

April 1988

NASA
National Aeronautics and
Space Administration

Langley Research Center
Hampton. Virginia 23665

https://ntrs.nasa.gov/search.jsp?R=19880014064 2020-03-20T06:19:00+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42832440?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

STRUTEX

INITIALLY CONFIGURING A STRUCTURE TO SUPPORT
POINT LOADS IN TWO DIMENSIONS

A PROTOTYPE KNOWLEDGE-BASED SYSTEM F-OR

J. Rogers', S. Feyock J. Sobieszczanskl-Sobieski'

' NASA Langley Research Center, Hampton, Virginia, USA

VAIR. Inc., Williamsburg, Virginia. USA

ABSTRACT The purpose of this research effort is to investigate the benefits that might be
derived from applying artificial intelligence tools in the area of conceptual design. Therefore,
the emphasis in this paper is on the artificial intelligence aspects of conceptual design rather
than structural and optimization aspects. A prototype knowledge-based system, called
STRUTEX. has been developed to initially configure a structure to support point loads in two
dimensions. This system combines numerical and symbolic processing by the computer with
interactive problem solving aided by the vision of the user by integrating a knowledge base
interface and inference engine, a data base interface, and graphics while keeping the
knowledge base and data base files separate. The system writes a file which can be input into
a structural synthesis system, which combines structural analysis and optimization.

One objective was to investigate methods for passing data between a data base and a
knowledge base. This was accomplished by separately integrating two types of inference
engines, one forward chaining based on production rules, and one backward chaining based on
PROLOG, into the system and determining their effects on the flow of data between the
knowledge base and the data base. No significant problems were encountered in integrating
either of the inference engines. Nor did one inference engine run significantly faster than the
other for this small knowledge base. It was concluded that these two systems supplement
rather than compete wrth one another, and further research is warranted to investigate the
simultaneous integration of both inference engines into the system and determine the effects on
conceptual design.

A second objective was to examine when it is preferable for a computer to supply the
data and when it is preferable for the data to be supplied by human vision. It was also
concluded during the development of this system, that there are times to rely on the computer
and there are times to rely on the vision of the user. For small problems such as the ones used
for testing, there were several instances where the user's vision was more preferable than
relying on the computer, such as determining the location of the support surface relative to the
loads. However, for larger, more complex problems, it might be preferable to add symbolic
rules to the knowledge base, numerical algorithms to the main program, and rely on the
computer. More research is also needed in this area.

1

INTRODUCTION

Engineers and management are always concerned about reducing the costs
and time involved in completing a design project. Therefore, many hours of
research have been devoted to speed and sensitivity improvements in the
area of structural analysis. Additional research effort has been applied to the
improvement of optimization algorithms. From a numerical standpoint, these
areas are nearing a point of diminishing returns when using conventional
computer hardware. However, one area which shows a potential for reducing
design cost and time, but has had little research, is the determining and
refining of an initial configuration before beginning the analysis and
optimization process (figure 1). One reason is because this is a problem that
is not easily solved numerically, but one that seems to require using heuristics
from experienced designers.

i
Initial

c o n f i g u r a t i o n
I 1 C I

0 Void 0 S p e e d 0 Op t im iza t i on

0 S e n s i t i v i t y A lgo r i t hms

Figure 1. Research efforts in design.

Several years ago, engineers began applying artificial intelligence (AI)
tools and techniques to problems in different engineering disciplines. There
are excellent overviews of these applications by Sriram [16,17]. Next, these
tools were applied to optimization problems by Baenzinger [l] , Chieng [3], and
Rogers [14]. The use of AI tools was expanded to applications in the decision
making processes of design by Gero [8] and Mistree [lo]. Only recently have
engineers begun making use of the AI tools in the area of conceptual design
by MacCallum [9] and Shah [15].

To continue filling this void in the design process, a prototype
knowledge-based system, called STRUTEX, has been developed to initially
configure a structure to support point loads in two dimensions. This prototype
was developed for testing the application of AI tools to conceptual design as
opposed to being a testbed for new methods for improving structural analysis
and optimization. This system combines numerical and symbolic processing
by the computer with interactive problem solving aided by the vision of the

2

OPERATION OF THE SYSTEM

user. One of the objectives of this project was to investigate methods for
passing data between a data base and a knowledge base. Therefore, both
the data and the knowledge (rules) are kept in different files separated from
the main program. The other objective was to examine when it is more
appropriate to rely on the computer for data and when it is more appropriate to
rely on the vision of the user.

This paper describes how the system is constructed to interact with the
user. Of special interest is the information flow between the knowledge base
and the data base under control of the algorithmic main program- This paper
also examines the trade-off in computing data within the program versus
entering data interactively after making a visual determination. Examples of
computed and refined structures are presented during the explanation of the
system. Plans for enhancements to the system and conclusions are
discussed.

STRUTEX emulates an engineering student taking a blank sheet of paper to a
teacher to discuss an idea for building a structural model to support one or
more point loads in two dimensions. As the teacher asks questions about the
loading conditions and the support surface, the student responds with
answers or by sketching ideas on the piece of paper. Based on what is seen
and heard the teacher can help the student determine a reasonable initial
structure for supporting the given loads. In STRUTEX, a knowledge base
replaces the teacher, a graphics window on the computer replaces the piece
of paper, and a dialog area in the graphics window replaces the verbal
question and answer. The user interactively interfaces with the system
through two methods, typed dialog and mouse-oriented graphics. The user
graphically inputs loading and support surface data using the mouse in
response to questions from the system. The user also types in responses to
system questions about the load points, support surface, and support
structure. The data is stored in a relational data base.

Once all questions are answered, the appropriate data is transferred
from the data base to the knowledge base and the system determines the
type of structure most suitable for satisfying the input conditions. If the
structure is determined to be a beam@) or a string(s), then the structure is
drawn on the graphics window and the session is completed. If there is only
one load and the structure is determined to be a truss, then other rules are
invoked to determine whether or not bracing is needed, and, if so, the type
and amount of bracing. This structure is then drawn on the graphics window.
If there is more than one load point and the structure is determined to be a
truss, then the user is guided by recommendations in a step-by-step approach
to building the truss. The truss built by the user is then tested against rules in
the knowledge base and recommendations are given for the user to improve
the model. This is done iteratively until all rules are satisfied and no
recommendations for improvements are made. An input file for a structural

3 .

analysis program is written for a truss so that the model can be analyzed and
optimized by a previously developed system for structural synthesis.

COMPONENTS OF THE SYSTEM

The main driver program for STRUTEX is written entirely in FORTRAN. Other
components were added by linking existing software - DI-3000 (51 for the
graphics, RIM (Relational Information Management, Erickson [SI) for the
relational data base management, and CLIPS (C Language Production
System, Riley [12] for the inference engine - to the main driver pcogram. The
data for RIM and the knowledge base (rules) for CLIPS are maintained in
different files separated from STRUTEX. EAL (Engineering Analysis
Language, Whetstone (211) for the structural analysis, and CONMIN
(Constraint Minimization, Vanderplaats [20]) for the optimization are coupled
in PROSSS (Programming System for Structural Synthesis, Rogers [13]) to
perform the analysis and optimization (figure 2).

k n o w l e d g e
b a s e I

~

I
I

STRUTEX 1 ,
E A L ‘I CONMIN

a n a l y s i s o p t i m i z e r I
A n a l y s i s

No Yes

PROSSS

Figure 2. Diagram of STRUTEX with PROSSS.

Graph ics
The 01-3000 graphics package is a device independent system and is the
primary graphics system used at NASA Langley Research Center. However,
in STRUTEX all calls to 01-3000 are made from a single routine making it
simple for a user to replace 01-3000 with another graphics package. Graphics
calls include moving the cursor, drawing lines and circles, text, and receiving
data from the mouse.

The graphics window is divided into two parts, a graphics part with a grid
to aid the user in drawing the structure and a dialog area for the user to
receive questions and type responses. The mouse is used to place the
crosshairs on a particular point to input a piece of data.

.

4

c

Data base
RIM is a relational data management system used for storing data about the
structure. Like the graphics part of the system, all calls to RIM are made from
a single routine to make it simple for the user to replace RIM with another data
management system. Data base calls include opening and closing the data
base, finding a relation, loading data, retrieving data, and deleting data.

STRUTEX uses three relations to store the data. The load relation
contains the load number, type of load (ex. gravity load), X-Y coordinates of
the load point, magnitude of vertical and horizontal loads, and the distance
from the load to the support surface. The surface relation contains the
location of the support surface with respect to the load, the X-Y coordinates of
the endpoints and midpoint of the support surface, and the area of the support
surface if it is not a point. The support relation contains the member number,
the type of support (ex. truss), the weight of the support, the X-Y coordinates
of the endpoints of the member, and the length of the member.

Analysis and optimization
Once the conceptual design of the truss has been completed, an input file for
the EAL structural analysis code is written. The user is questioned about the
initial design variables which are the cross-sectional areas of the members.
The user must also input the upper and lower bounds for these variables. The
final input consists of the material properties. The properties and allowable
stress for aluminum and steel are coded into the system. Users can choose
one or the other, or users can input their own material properties and
allowable stress. The program ends and the user can execute PROSSS.
PROSSS, which uses a finite difference technique, will loop between EAL and
CONMIN until the objective function, weight for this problem, is minimized or
the system terminates because the maximum number of iterations has been
reached without minimizing the objective function.

FLOW OF DATA BETWEEN THE KNOWLEDGE BASE
AND THE DATA BASE

Data base systems typically have little knowledge, much data, and rely on fast
secondary storage techniques. Knowledge- based systems, on the other
hand, have much knowledge, little data, and work within main memory. If
knowledge-based systems are to be integrated into the design process, new
methods must be developed so that they can handle the large amounts of
data typically created during a design project.

There are three approaches in current long-term research efforts which
are trying to determine the best way to couple these two types of system into
a single system with the best features of both, Nguyen [l l] , van Biema [19],
Ceri [2]. One approach is to begin with an existing data base system and add
knowledge base features to it. A second approach is to begin with an existing

5

knowledge-based system and add data base features to it. The third
approach, and probably the most promising, is to start from scratch and
develop a completely new system combining the best features of both data
and knowledge-based systems. The best short-term solution appears to be
taking an existing knowledge-based system and an existing data base system
and coupling them with an interface such as the one used by Feyock [7]. This
is the approach taken with STRUTEX.

The rules for STRUTEX are very simple and could probably have just as
easily been incorporated into the main driver program with IF-THEN
statements. However, one of the objectives of this project was to investigate
methods for passing data between a data base and a knowledge base.
Therefore the knowledge base and the data base are maintained in different
files separate from the main program. The interface is made through
STRUTEX by linking a RIM interface library and a knowledge base interface
library with STRUTEX. If data is needed from the knowledge base, a rule or
rules must be executed. If the data is not available within STRUTEX, it is
retrieved form the data base by calling RIM interface subroutines. That data is
then asserted into the knowledge base again using interface subroutines.
Data is returned from the knowledge base to STRUTEX which, in turn, stores
the data in the RIM data base if it is necessary.

To better understand the interface between the knowledge base and the
data base, two completely different types of knowledge-based systems were
integrated into STRUTEX. One system is fomvard chaining and based on
production rules, while the other system is backward chaining and based on
PROLOG.

A production rule knowledge base/inference engine
CLIPS is a knowledge-based system tool developed at NASA Johnson Space
Center. It is written in C, performs forward chaining based on the Rete pattern
matching algorithm, and has a FORTRAN interface. The knowledge base is
composed of rules which are defined by the "defrule" construct. A rule states
specific actions, the Right-hand side (RHS), that are to be taken if certain
conditions, the Left-hand side (LHS) are met. An "= >I' separates the LHS and
the RHS. If and only if all of the conditions on the LHS are satisfied, then the
actions on the RHS are performed sequentially. Each rule must contain at
least one condition and one action, however there is no upper limit on either
the number of conditions or actions.

Pieces of information represented by facts, the basic form of data in
CLIPS, are contained in a facts-list. A fact is composed of several fields with
each field being separated by a space. A field can contain a number, a word,
or a string. Facts are asserted into the facts-list before execution by the
"deffacts" construct or by an assert command in the calling program, or during
execution as the action caused by executing a rule. A rule executes based on
the existence or non-existence of facts in the facts-list. For example, the rule

6

for selecting a string as the type of support is:

(defrule string
(SURFLC ABOVE)

(assert (SUPPORT STRING))
(KBANSl SUPPORT STRING 0.0))

(PLOADT GL) =>

This is read: If the location of the support surface is above the load and
the load is a gravity type of load then the support type is a string. This rule will
execute when the two facts (SURFLC ABOVE) and (PLOADT GL) are
asserted from STRUTEX and placed into the facts list. The actions, based
upon a match on the two facts (conditions), are to return to STRUTEX via the
KBANSl parameter the fact that the support is a string, and to assert the fact
that the support is a string into the facts-list. The KBANS1 parameter,
discussed below in more detail, is the name of the subroutine in STRUTEX.
In this example, only the parameters SUPPORT and STRING are needed.
The 0.0 is a dummy parameter.

Currently there are only thirteen rules in the knowledge base. There are
three rules for determining the type of support, beam, truss, or string. The
rules for choosing the beam or truss are more complex than that of the string
and use an explicit "or" coupled with three or four explicit "and"s. Another rule
in the knowledge base explains the choice of support type when executed.
The remainder of the rules determine whether or not bracing is required and
the type of bracing that is required in a truss by comparing the length of
members and checking certain angles the members make with each other. A
simple structural analysis is used to create facts for the rule to determine the
type of bracing based on the length of the members in ratio to the loads. The
type of bracing is chosen between a "Z" or "V" type. Other rules determine if
there any angles formed which are greater not within a given range. If so, a
recommendation is made to correct the problem. The action parts of the
bracing rules are more complex than those of the rules for choosing the type
of support. Some of the bracing actions are based on mathematical
computations within the rule, while others have choices of actions within a
single rule with the choice being determined by the facts.

The inference engine in CLIPS applies the knowledge (rules) to the data
(facts). Pattern matching occurs on the LHS for single- and multiple-fields,
single- and multiple-field wildcards, and single- and multiple-field variables.
The basic execution cycle begins by examining the knowledge base to see if
the conditions of any rules have been met. All rules with currently met
conditions are pushed onto the "agenda" which is essentially a pushdown
stack. Once the agenda is complete the top rule is selected and the RHS is
executed. As a result of these actions, new rules can be placed on the
agenda and rules on the agenda may be removed. This cycle is repeated until
all rules that can execute have done so.

7

STRUTEX has three subroutines which interface with CLIPS by calling
subroutines in the CLIPS FORTRAN interface library. Subroutine KBXEC
initializes CLIPS, loads the rule base, and is called by other subroutines to
assert facts into the knowledge base and execute the inference engine. Once
all of the rules on the CLIPS agenda have been executed, control is returned
to this subroutine which allows STRUTEX to continue processing. The other
two routines, KBANS1 and KBANS2, receive data from CLIPS after the
appropriate rule (or rules) has been executed. These two subroutines are
called as an action in CLIPS. KBANS1 has three parameters, two
alphanumeric and one numeric, while KBANS2 has three numeric
parameters. The data returned from CLIPS are stored in these parameters for
later use in other subroutines in STRUTEX.

A PROLOG-based knowledge basehnference engine
To better understand the flow of data between the knowledge base and the
data base, CLIPS was removed from the system and replaced by another type
of knowledge-based system. The replacement knowledge-based system is
based on the PROLOG programming language Clocksin [4], the most
important implementation of logic programming. While CLIPS operates in the
forward chaining mode, the PROLOG inference engine is based on Horn
clause resolution theorem proving. Since PROLOG operates as a backward
chaining system, it requires a programming style that is largely declarative
rather than procedural.

The PROLOG implementation is the University of York interpreter by
Spivey [18], which is written in PASCAL. An interesting and powerful feature
of this and other PROLOG implementations is the fact that the main
interpreter loop is written in PROLOG rather than being embodied in the
interpreter’s PASCAL code. The actual processing of user input is performed
by PROLOG rules which define the PROLOG procedure $top and are read
when the interpreter is initialized. This PROLOG code, which effectively
defines the PROLOG runtime system, is thus accessible to, and modifiable by,
the user.

To allow PROLOG to be called in embedded mode, it was sufficient to

make the interpreter code that calls $top available to outside programs
as an external procedure
add two new built-in predicates,import and export, to the interpreter.
import(>() retrieves data which the non-AI calling program has placed in
a common area and binds it to X; export(>() places the data bound to X
in the same common area for the calling program to find
change the PROLOG rules defining $top as follows:
$top :- import(X), process(>().
The process(>() procedure is defined by the user to perform any desired
AI processing, and return to the caller after completion. In this case,

make the following modifications:
1.

2.

3.

8

process(>() triggers a set of rules concerned with conceptual design.

I -

As with CLIPS, the user inputs data such as the number of loads, the
type of load, the load magnitude, and similar information. All of this data is
stored in the RIM database. The knowledge base is then executed to
determine the type of support that is required. The PROLOG knowledge base
contains the same knowledge as is found in the CLIPS knowledge base, only
in a different format. For example, here is the PROLOG rule similar to the
above CLIPS rule for selecting a string as the support type:

string :- surflc(ABOVE), ploadt(GL).
/* a string support is appropriate if the support surface location is above
the load and the type of load is gravity'/

As is the case with the CLIPS-based system, features of the design are
checked against the knowledge base and recommendations for improvements
are made. The interaction continues until the user is satisfied. For more
details on this knowledge base and inference engine, the reader is referred to
Feyock (71.

Comparison of the two systems
The chief distinction between the PROLOG knowledge base and the CLIPS
knowledge base is the underlying model. A forward chaining system is based
on production rules which monitor database updates, and perform the actions
stipulated in their RHS, generally further database updates, if their
antecedents are satisfied. PROLOG, on the other hand, operates on the
basis of logical proofs. The above rule, for example, indicates that to prove
that a string support is indicated, it is necessary to prove the subgoals
surflc(AB0VE) and ploadt(GL).

From the preceding discussion, it is evident that while CLIPS and
PROLOG rules may have a superficial similarity, the operations of their
respective inference engines are very different. It is therefore appropriate to
note that these systems supplement rather than compete with one another. A
production system, like CLIPS, is preferred when the programmer wants to
retain a significant degree of procedural control of the computation, but
requires flexibility and pattern-matching beyond those that FORTRAN can
easily provide. Logic programming, on the other hand, allows for a declarative
programming style, and furnishes the programmer with the great power of a
backtracking theorem prover. Either or both of these systems can be
integrated into STRUTEX and invoked as required. This is possible within
STRUTEX because the database and the knowledge base are completely
separate, and the knowledge bases have separate interfaces for passing data
to and receiving data from STRUTEX.

9

USER INTERACTION WITH STRUTEX

When STRUTEX begins execution, the user first answers questions about the
loads. The number of load points is the first input. The next input is the type
of load which can be a gravity load, vertical load, sideways load, or a
combination of gravity or vertical and sideways. This is followed by an
iterative process through the load points where the user inputs the vertical and
horizontal magnitudes of each load and then uses the mouse to locate the
load point on the graphics window. Since no units are required by STRUTEX,
the user must determine the correct units for the distances and loads.

The second stage of user input concerns the support surface. The
system must know where the support surface is in relation to the load points -
above, below,or to the side. This is an area where a computation could be
done to determine the position, but it is much easier to let the user make this
determination visually. The user then uses the mouse to place the midpoint of
the support surface on the graph. The distance from the support surface to
the first load is input without units. The distances from the remaining loads to
the support surface are computed. The user inputs whether or not the support
surface is a point. If it is not then the length of the support surface is input,
again with no units.

The final piece of data that is needed before the system can determine
the type of support is whether or not the support must be lightweight. Once
this data is known, facts are asserted into the knowledge base and the
inference engine executes the rules. The type of support is returned from the
rules and stored into the data base. The choice and explanation of that choice
are displayed on the dialog screen such as:

Figure 3. Beam supporting a single load.

10

A truss is the choice for a support.
.....~...~t.........~............~.~.

Reasons:
The support surface location is to the side of the loads.
The support surface is not a point.
The support must be lightweight.

If the choice is a beam or a string the system draws the support (figure
3) and that ends the program. Currently, no input file for the structural
analysis program is written for the beam or the string. If the choice is a truss
and there is only one load point, a triangular structure is drawn (figure 4a).
The system then determines whether or not bracing is needed by checking the
ratio of the forces in the members against the length of the members
(equation 1). The forces are computed from equation 2 representing static
equilibrium of the loaded point.

S u r f ace

Figure 4a. Truss to support a single load checked by simple analysis

N1/L1 2 TOLERANCE N 2 / U 2 TOLERANCE (1)

(Nl)(COS p) + (N2)(COS a) - P =O

=O (Nl)(SIN p) - (N2)(SIN a) + P

Facts are asserted into the knowledge base. The inference engine
executes the rules and the choice is returned to the main program. If bracing
is needed, the two side members are divided, and depending on the angle
Delta, either a "Z" brace (figure 4b) or "Vu brace (figure 4c) is chosen by the
knowledge base. An input file is created for the analysis program and the
program ends.

11

Surface

Figure 4b. "2" bracing of truss to support a single load if 6 >40'.

Surface
Figure 4. Y" bracing of tkss to support a single load if 6 5 40'. (see fig. 4b)

1 2

If the choice is a truss and there is more than one load point. then the
user must build the truss guided by recommendations from the system. The
user begins with the load points and the support surface (figure 5a).

L

0 e
S u r f a c e

Figure Sa. Starting point to build a truss to support multiple load points.

A recommendation is made to connect all the load points forming
triangles whenever possible, but not connect the load points to the support
surface. Using vision rather than the computer, members are added by
placing the mouse on the end points (figure 5b).

.
e e

S u r f a c e

Figure 5b. Load points connected to form a triangle.

Once this has been completed, there is a second recommendation for
the user to connect the load points to the support surface without having a
new member intersect an existing member (figure 5c). (The reason for using

13

two recommendations to build the truss is discussed below.) This step is also
accomplished with the aid of the user's vision.

Surface
Figure 5c. Load points connected to support surface.

After this step is complete, the system determines all the triangles
formed by the members and checks their angles. If the knowledge base finds
that there are angles in the model outside a given range a recommendation is
made to correct the problem. The limiting values for the angles are
judgmental and can be changed based on the experience of the user. An
example of such a recommendation based on the angles in figure 5c is:

RECOMMENDATIONS""" ...*..
The following triangles contain angles that are less than 15 degrees, therefore
a modification may be required.

TRIANGLE ANGLE OPPOSITE MEMBER
1 2 3 13.7 1
1 2 3 12.4 2

N1
/ \

I \
N2/ \N3

If two external members form the angle then to expand the angle

(1) Remove the two members N1 -N2 and N1 -N3 that form the angle.

(2) Add two new members N1 -N4 and N1 -N5 to form a larger angle.

14

(3) Add a new member to connect N4 and N5.

(4) Add two members to connect N2-N4 and N3-N5.

N1
/ \

/ \
N4/ \N5

I I
N2 I I N 3

If this recommendation can be implemented in more than one way, choose the
way that will contract the structure, rather than expand it.

.tt4..t...ttt.tCtttt.**t..t........4*t.8..t.+

The following triangles contain angles that are greater than 120 degrees,
therefore a modification may be required. such as adding a new member to
divide the angle into two smaller angles.

TRIANGLE ANGLE OPPOSITE MEMBER
1 2 3 154. 3

The user then removes all members which contribute to the problem.
This is another point where the user’s vision can aid in determining which
members to remove. The user then adds new members to satisfy the
recommendation. If the user desires, the angles in the model can again be
checked for problems. This is repeated until the user is satisfied (figure 5d).
The input file for the structural analysis program is written and the program
ends.

S u r f a c e

Figure 5d. Refined truss based on recommendations.

For the truss with multiple load points, there are two recommendations
instead of one to allow the knowledge base to determine the bracing required
between two members connecting a load point to the support surface. When
two members connecting a load point to the support surface form a
quadrilateral, the knowledge base is given the lengths of the two members. If
the two lengths are the same, an "X" bracing is added. If the two lengths are
different, a brace is added from the bottom of the longer member to the top of
the shorter member (figure 6).

t 10 t

Surface

Figure 6. Initial bracing for members connecting load to support surface, OK if a 5 75'

The angle, a, made by the two members is passed to the knowledge
base, and a recommendation is made if the angle is not within the proper
range. An example of such a recommendation is:

"""RECOMMENDATIONS"""
Because the angles made by the diagonals and the support surface are
greater than 75 degrees (Angle = 76.), it is recommended that members 5 and
6 be removed and that members 2 and 4 be divided in two and reconnected
with an X bracing.
Because the angle made by the diagonal and the support surface is greater
than 75 degrees (Angle = 7 7 3 , it is recommended that member 3 be
removed and that member 2 be divided in two and connected to the ends of
member 1.
Because the angle made by the diagonal and the support surface is greater
than 75 degrees (Angle = 7 7 3 it is recommended that member 8 be
removed and that member 4 be divided in two and connected to the ends of
member 7.

16

4

The truss in figure 7 reflects the refinements made from this
recommendation. It is possible, especially in a very complex truss, that this
recommendation might come out in addition to the recommendation about the
triangles. This is another place where the user's vision will be needed to
make the best choices about what members need to be removed and what
members need to be added to make the best refinement to the structure.

A A
4

S u r f a c e

Figure 7. Bracing for members connecting loads to support surface if a >75'

COMPUTER VERSUS HUMAN VISION

One of the key lessons learned in the development of this prototype system
was when to rely on the computer and when to rely on the vision of the user.
In the paragraphs above, there are four stages in the design process where it
is seems preferable to rely on vision rather than on the computer. These
include:

(1) Determining the location of the support surface relative to the loads.
(2) Connecting the load points when building a truss.
(3) Determining what members to add based on recommendations.
(4) Determining what members to remove based on recommendations.

The first attempt at determining the location of the support surface
relative to the loads was done with the.computer by checking X-Y coordinates
of the end points of the support surface against the X-Y coordinates of the
load. As long as there was a single load, this method worked well. When the
capability of handling multiple loads was added, some of the loads for a single
problem were found to be to the side while others were found to be above or
below. Since there was no clear-cut way to resolve this problem, the easiest

1 7

solution was to let the user input the location based on vision and the user's
knowledge of the problem.

When building a truss, the first step is to connect the load points into a
series of triangles. Determining the most appropriate triangles becomes a
very complex programming problem as the number of load points increases.
For a relatively small truss, it is much simpler to form the initial triangles with
the aid of the user's vision, and then check those triangles for angles that are
not within the required limits. The second step in building a truss is to connect
all load points to the support surface without having a new member intersect
an existing member. The potential intersection poses the problem within this
step. For smaller trusses, it is much easier to visually make the connection
between the load point and the surface and avoid the intersection, rather than
check all the possible intersections and connections with the computer.

When adding members to satisfy a recommendation, it was very difficult
to program the computer to do anything more than add joints to anywhere
other than a known piece of information, a load point or the support surface. If
a new joint for a member was needed, for example, to make a small angle
larger, it would usually be placed somewhere other than a load point or the
support surface. This is very complex for the computer to determine, but quite
simple when relying on vision.

When removing members to satisfy a recommendation, the computer
could only "see" a portion of the structure when making a recommendation. It
could "see" a triangle or it could "see" a quadrilateral and make a
recommendation based on that element. The complexity arises when one
must determine the effects that changing one element will have on other
elements. Selecting the correct members to remove (and subsequently add)
is easier when the entire structure can be seen by the user.

The examples used to test STRUTEX were typically very small, less
than 50 members. The numerical and symbolic techniques that would be
required to handle the above problems would be difficult, but not impossible to
program. Therefore, the decision was made to rely on vision to solve the
problems for the time being. However, if larger, more complex structures
were to be developed, it is doubtful that vision would still be the best choice in
all instances. The tradeoffs need to be investigated further.

FUTURE PLANS FOR STRUTEX

Currently, there is no feedback from the analysis and optimization into
STRUTEX. Plans call for the addition of a quick analysis capability which
would create a file containing stress and force data about each member of the
truss. A restart feature would be added to STRUTEX to allow the system to
retrieve the model from the data base and plot it on the graphics window. A
new rule (or rules) will be added to the knowledge base and the stress and
force data will be asserted as facts to determine if there are any members

.

18

under compression.
structure to check the compressed members for possible buckling.

A recommendation will be made for correcting the

A second rule (or rules) will be added to the knowledge base to handle
feedback from the full analysis and optimization results from PROSSS. At this
time the contents of this rule have not been decided.

Another interesting area that warrants attention is the simultaneous
integration of CLIPS and PROLOG knowledge bases and inference engines
with STRUTEX, and examine the tradeoffs between forward and backward
chaining as they apply to the conceptual design problem.

Another question that remains to be answered is when do problems
become large enough that it would be better to rely on the computer rather
than vision. If the engineer must rely on the computer rather than vision, then
what types of rules and algorithms will be required?

CONCLUSIONS

A prototype knowledge-based system has been developed to initially
configure a structure to support point loads in two dimensions. There were
two primary objectives for this project. The first objective was to investigate
methods for passing data between a data base and a knowledge base. This
was accomplished by separately integrating two types of inference engines,
one forward chaining and one backward chaining, into the system and
determining their effects on the flow of data between the knowledge base and
the data base. No significant problems were encountered in integrating either
of the inference engines. Nor did one inference engine run significantly faster
than the other for this small knowledge base. It was concluded that these two
systems supplement rather than compete with one another, and further
research is warranted to investigate the simultaneous integration of both
inference engines into the system and determine the effects on conceptual
design.

The second objective was to examine when it is preferable for a
computer to supply the data and when it is preferable for the data to be
supplied by human vision. It was also concluded during the development of
this system, that there are times to rely on the computer and there are times to
rely on the vision of the user. For small problems such as the ones used for
testing, there were several instances where the user's vision was more
preferable than relying on the computer, such as determining the location of
the support surface relative to the loads. However, for larger, more complex
problems, it might be preferable to add symbolic rules to the knowledge base,
numerical algorithms to the main program, and rely on the computer. More
research is also needed in this area.

19

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Baenzinger, G.; and Arora, J. S.: Development of an Artificially Intelligent
Nonlinear Optimization Expert System. AlAA Paper No. 86-0858, 1986.
Ceri, S.; Gottlob, G.; and Wiederhold, G.: "Interfacing Relational
Databases and Prolog Efficiently." Proceed inas of the First lnternationd
Conference on ExDert D-e Svste ms. April 1-4, 1986, pp.141-153.
Chieng, W. H.; and Hoeltzel, D. A.: "An Interactive Hybrid
(Symbolic-Numeric) System Approach to Near Optimal -Design of
Mechanical Components." Proceed inas of the 1986 ASME International
Comwters in Enaineerina Conference and Exhibition, ASME, 1986, Vol.

Clocksin, W.; and Mellish, C.: Programming in PROLOG,
Springer-Verlag, 1981.
01-3000 User's Guide, Precision Visuals Inc. Document Number 013817,
Release Number 4, March 1984.
Erickson, W. J.: "User Guide: Relational Information Management
(RIM)", Report Number D6-IPAD-70023-M, Boeing Commercial Airplane
Company, Seattle Washington, 1981.
Feyock, S.; and Rogers, J. L.: "Embedded AI for Structural
Optimization". To be presented at the International Conference on
Computational Engineering Science, April 10-1 4, 1988, Atlanta, GA.
Gero, J. S.; and Balachandran, M.: Knowledge and Design Decision
Processes. Working Paper. Computer Applications Research Unit,
Department of Architectural Science, University of Sydney, Nov. 1985.
MacCallum, K. J.; Duffy, A.; and Green, S.: "An Intelligent Concept

inas o f the IFlP W.G.5.2 Working Design Assistant." Promed

Mistree, F.; Karandikar, H.; and Kamal, S.: "Knowledge- Based
Mathematical Programming: A Hybrid Approach for Decision Making in
Design." Proceedings of the IFlP W.G.5.2 Working Conference on
Design Theory in CAD, 1985, pp.155-188.
Nguyen,G.T.: "Prototypes and Database Samples for Expert Database
Systems." Proceed inas of the First International Conference on Exoefl

Riley, G.; Culbert, C.; and Savely, R. T.: "CLIPS: An Expert System Tool
for Delivery and Training." P r o c e w s of the T hird Conference o n A[
f o r a c e Aoolications, November 1987.
Rogers, J. L., Jr.; Sobieski-Sobieszczanski, J.; Bhat, R. "An
Implementation of the Programming Structural Synthesis System
(PROSSS)", NASA TM 831 80, December 1981.
Rogers, J. L., Jr.; and Barthelemy, J-F. M.: "An Expert System for
Choosing the Best Combination of Options in a General-Purpose
Program for Automated Design." Procedags of the 1985 I n t e rn at i o n a1

rs in Ena ineerina Con ference and Fxh ibitiorl, ASME, 1985, Vol.

Shah, J.: "Development of a Knowledge Base for an Expert System for

1, pp. 149-1 59.

ence on Desian Theory in CAD, 1985, pp.233-249.

base Svstems, April 1-4, 1986, pp.3-14.

2,255-260.

,

20 .

the Design of Structural Parts." Proceed i n s o f the 1985 ASME

16. Sriram, D.: A Bibliography on Knowledge-Based Expert Systems in
Engineering. SIGART Newsletter, No. 89. July 1984, pp. 32-40.

17. Sriram, D.; and Joobbani, R.: Special Issue, AI in Engineering. SIGART
Newsletter, No. 92, April 1985, pp. 38-1 44.

18. Spivey, J.: Portable PROLOG User's Guide, Department of Computer
Science, University of York, Heslington, York, England, October 1983.

19. van Biema, M.; Miranker, D. P.; and Stolfo, S.J.:" The Do-Loop
Considered Harmful in Production System Programming." Proeedngs
nf the First -al Conference on F-ase Svstems, April

20. Vanderplaats, G. N.: CONMIN - A FORTRAN Program for Constrained
Function Minimization. User's Manual. NASA TM X-62282, 1973.

21. Whetstone, W. D.: "EISI-EAL: Engineering Analysis Language",
Proceed inas o f the Seco nd Co nference on Co rnoutina in Civil
Fnaineering, ASCE, 1980, PP. 276-285.

e, 1985, Vol. 2, pp. 131-136.

1 -4.1 986, pp. 1 25-1 38.

2 1

Report Documentation Page

_. _I___- - .
F K e y Words (Suggested t w Authorls))

1 . Report No I 2. Government Accession No.

18 Distribution Statement

NASA TM- 1006 13

___- - _- -
19' Security-Classif (of thus report) 20 Security Classif (of this page) 21 No of pages

U n c l a s s i f i e d Uncl ass i f i ed 22

4 Titlci ,irid Sihtitlo

STK UT E X
A P r o t o t y p e Knowedge-Based System f o r I n i t i a l l y
C o n f i g u r i n g a S t r u c t u r e t o Support P o i n t Loads
i n Two Dimensions

- - - _. - - _._. - _____ - - - - - . .
7 Authorlsl

22 Price

A02

James L . Rogers, S te fan Feyock, and
Jaros law Sobieszczansk i -Sobiesk i

-____. - - __ - __ _-
9 Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665

12. Sponsoring Agency Name and Address

N a t i o n a l Ae ronau t i cs and Space A d m i n i s t r a t i o n
Washington, DC 20546

_ _ _ _ _ __ _. .___ __ --__
15 Supplementary Notes

3. Recipient's Catalog No.

5 R q w t D,ite

A p r i l 1988
6 Performing 0rgarA;zation Code

-
8. Performing Organization Report No.

__-
10. Work Unit No.

505-63-11-01
11. Contract or Grant No.

13. Type of Report and Period Covered

Technica l Memorandum
14. Sponsoring Agency Code

To be presented a t t h e T h i r d I n t e r n a t i o n a l Conference on A p p l i c a t i o n s o f
A r t i f i c i a l I n t e l l i ence i n Engineer ing, S tan fo rd , CA, August 8-11, 1988.
James L. Rogers an ! Jaroslaw Sobieszczansk i -Sobiesk i , Langley Research Center,

Hampton, VA. S t e f a n Feyock, V A I R , Inc. , W i l l i amsburg , VA
____ ___ - . - -

16 Abstract

The purpose o f t h i s research e f f o r t i s t o i n v e s t i g a t e t h e b e n e f i t s t h a t m i g h t be
d e r i v e d f rom a p p l y i n g a r t i f i c i a l i n t e l l i g e n c e t o o l s i n t h e area o f conceptual
des ign. There fo re , t h e emphasis i n t h i s paper i s on t h e a r t i f i c i a l i n t e l l i g e n c e
aspects o f conceptual des ign r a t h e r than s t r u c t u r a l and o p t i m i z a t i o n aspects .
A P r o t o t y p e knowledge-based system, c a l l e d STRUTEX, has been developed t o
i n i t i a l l y con f igu re a s t r u c t u r e t o suppor t p o i n t l oads i n two dimensions. T h i s
system combines numer ica l and symbol ic p rocess ing by t h e computer w i th i n t e r a c t i v e
problem s o l v i n g a i d e d by t h e v i s i o n o f t h e user by i n t e g r a t i n g a knowledge base
i n t e r r a c e and i n f e r e n c e engine, a d a t a base i n t e r f a c e , and g r a p h i c s w h i l e keeping
t h e knowledge base and da ta base f i l e s separate.
can be i n p u t i n t o a s t r u c t u r a l s y n t h e s i s system, which combines s t r u c t u r a l
a n a l y s i s and o p t i m i z a t i o n .

The system w r i t e s a f i l e which

Knowledge base
Opt i n i i za t i on
Conceptual des ign
S t r u c t u r a l a n a l y s i s

U n c l a s s i f i e d - U n l i m i t e d
Sub jec t Category 61

