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ABSTRACT

An abstract approximation framework for the identification of nonlinear distributed parameter
systems is developed. Inverse problems for nonlinear systems governed by strongly maximal mono-
tone operators (satisfying a mild continuous dependence condition with respect to the unknown
parameters to be identified) are treated. Convergence of Galerkin approximations and the corre-
sponding solutions of finite dimensional approximating identification problems to a solution of the
original infinite dimensional identification problem is demonstrated using the theory of nonlinear
evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups
of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing
linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic
operators and the corresponding nonlinear parabolic partial differential equations to which they
lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is

discussed.
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1. Introduction

In this paper we develop a general abstract approximation f{ramework
for the identification of nonlinear distributed parameter evolution systems.
Our intent is to define relatively straightforward and easily verified
criteria that are applicable to broad classes of nonlinear systems; these
criteria will guarantee the convergence of solutions to a sequence of finite
dimensional Galerkin approximation based parameter estimation problems to
a solution of the original, underlying, infinite dimensional identification
problem. The results that we present below generalize and extend the
theory recently developed by Banks and Ito in [2] and [3] for regularly
dissipative or abstract parabolic, linear systems. It is, to the best of our
knowledge, the first such general approximation theory for inverse
problems involving nonlinear distributed systems.

The sufficient conditions set down in our framework include a
relatively mild continuity assumption with respect to the unknown
parameters to be identified, an equi-boundedness and an equi-strong
mongctonicity assumption on the nonlinear operator describing the system
dynamics. In addition our theory requires a standard approximation
assumption on the Galerkin subspaces used to effect the finite dimensional,
or finite element, approximations. We demonstrate that solutions to the
finite dimensional identification problems approximate a solution to the
infinite dimensional identification problem via a convergence result for
solutions to the forward problems. This result is obtained using the theory
of nonlinear evolution systems and a nonlinear analog of the well-known

Trotter- Kato approximation result for linear semigroups.
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In the present paper, we are concerned only with theory;
implementation questions and conclusions drawn from our numerical or
computational studies will be reported on elsewhere. Also, while we have
tried to make our framework as versitile as possible, the treatment below
does have limitations. For example, our theory can handle quasi-autonomous
systems but it is not applicable in the fully nonautonomous case. The
development of a general theory which can handle nonlinear systems
involving time dependent operators :recquires additional effort and is
currently the focus of our ongoing investigations. The particular
difficulties inherent in the time dependent case will be described in
greater detail in our discussions below.

We provide a brief outline of the remainder of the paper. In Section
2 we state a fundamental existence and uniqueness result for infinite
dimensional nonlinear systems and prove a general approximation result
which is especially well suited for application in the context of the inverse
problems which are the central focus of our study. In Section 3 we
define a <class of nonlinear distributed systems and the associated
parameter identification problems. We define the Galerkin approximations
and prove the gcnéral convergence result. Section 4 contains some examples.
We show that our nonlinear theory subsumes the linear theory presented in
{21 and [3] as a special case; we also consider the application of our
framework to a class of nonlinear elliptic operators and the corresponding
nonlinear parabolic partial differential equations to which they lead. 1In
particular, we look at the application of our results to a well known
quasilinear model for heat conduction or mass transfer. In Section 5 we

summarize our findings and provide some concluding remarks.
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2. An Approximation Result for Nonlinear Evolution Systems

Let X, be a Banach space with norm 'l We consider the nonlinear,

quasiautonomous initial value problem in Xo given by

(2.1)  x () + Agxg(t) D), 0<t<T,

(2.2) x(0) = x3

where xg € X, fy [0,T] = X, and the nonlinear operator A X, = 2)(0 is in
general multivalued, not everywhere defined, and not continuous. The
existence of solutions to the initial value problem (2.1), (2.2) and the
subsequent approximation result to follow, are both consequences of Theorem
2.1 to be given below.

We shall require the following definitions. Let X be a Banach space with
norm |-|y. For A: X - ZX, a nonlinear, multivalued operator, the domain and
range of A are defined by Dom(A) = {(x € X: Ax # 0} and R(A) = de‘«;Jm(A) Ax

respectively. We say that the operator A is accretive if for every \ > 0,

XX, € Dom(A) and Y, € Ax,, ¥, € Ax, we have

|x1 - x2ix €x; —x, + X(y1 - yz)lx

We say that A is m-accretive if A is accretive and R(I + »A) = X for some
X > 0. We note that if A is m-accretive then R(I + \A) = X for every \ > 0
and for each X > 0 the resolvent of A at ), J()\;A): X = X, a single valued,
everywhere defined, nonlinear operator on X can be defined as J()\A) =

(I + »A)L
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A two parameter family of nonlinear operators {U(ts): 0 € s € t € T)
defined on a subset Q C X is called a nonlinear evolution system on  if for
each x € Q we have U(t,s)x € Q, U(s,s)x = x and U(t,r)U(r,s)x = U(t,s)x for
0 €£s €r £t ¢ T and U(ts)x is continuous from the triangle A = {[s,t]:
0 ¢s £t £T) into X.
A strongly continuous function x: [0,t] = X is called a strong solution to

the quasiautonomous initial value problem

(2.3) x(t) + Ax(t) 2 f(t), 0<t<T

(2.4) x(0) = x9

where f: [0,T} = X and x® € X if x is absolutely continuous on compact
subintervals of (0,T), differentiable almost everywhere and satisfies f(t) —

x(t) € Ax(t) for almost every t € [0,T] and x(0) = x°

Theorem 2.1. Let X be a Banach space with norm |-lx and suppose that A: X -
2X and f: [0,T] = X appearing in (2.3) satisfy

(1) there exists an w € R for which the operator A + wl is m-accretive,

(2) f €L(0,T;X).
Then a unique, nonlinear evolution system {U(t,s): 0 €s €t € T} on Mwn

be constructed which satisfies

(i) 1U(ts)$ — Uts)dly € e¥EN¢ — Y., for 9 € Dom(A) and
0¢<s <t s<T,
t
(i1) |U(s+t,5)¢ — U(r+t,r)d‘>|x < Zj’ c‘*’(“T)lf(T+s) - f(T+r)|xdT,
0

for all ¢ € Dom(A) and all t > 0 such that s+t, r+t<T.
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(iii) if x° € Dom( A) and the initial value problem (2.3), (2.4) has a strong

solution x, then

x(t) = U(t,s)x(s), for 0 €s <t <T.

When x° € Dom( A), the strongly continuous function x: [0,T] = X given by x(t)

U(t,0)x° is referred to as a mild or generalized solution to (2.3), (2.4).

Theorem 2.1 is a direct consequence of results given by Crandall and
Evans and Evans in [7] and [9]. Henceforth, we shall assume that Ay X, - 2%o
and f; [0,T] = X, satisfy (1) and (2) in the statement of Theorem 2.1 and

that x, € Dom(A,). We then let {Uyts): 0 € s ¢t ¢ T} denote the
corresponding nonlinear evolution system on Dom(Ao) and consider the

approximation of mi!d solutions to the initial value problem (2.1), (2.2).

Qur approximation result is in the spirit of those given for nonlinear
semigroups and evolution systems by Crandall and Pazy in [8] and Goldstein
in [10]. However, our theorem differs from these earlier treatments in two
ways. First, we require that the time dependent perturbation f be only L, as
opposed to it being continuous as in [8] and it satisfying a Lipschitz-like
condition in [10]. This distinction is especially relevant in the case of control
systems where discontinuous input is common. The second difference is that
we give our result in a form that is most appropriate for application to the
development of a general approximation theory or framework and
computational schemes for the parameter identification problems to be
discussed in the next section.

We shall require some set theoretic notation. For sets H , n=0,1,2,..., by
lim HnDH0 we shall mean: Given x, €Hg, there exist xneHn such that X,— Xq as

n-<



Theorem 2.2. Foreachn € Zt =(1,2,3, ...} let X, bea closed linear subspace of Xo
Forn= 0,1,.., let AX - 2x“ be a possibly multivalued nonlinear operatoron X ,and
let fn: [0,T ]~ X, be an Xn-valued measurable function defined on [0,T]. Suppose
that there existsan w, € R, independentof n, for which the operators A+ w,l
are m-accretive, that there existsa function g€EL (O,T;XO) for which lfn(t)l <g(t),

a.e.t€[0,T}, and that lim 1_)n D —Do where D_ = Dom(A )and D, = Dom(A).

Suppose further that for some ),>0 we have
(2.5) lim JO A+ wD)é = IO Ay + w D,
n—=®

whenever ¢ € X with lim ¢ = $.€ X5
n—®

and that

lim £ (t) = f,(t) for a.e.t€ [0,T].

n-»m

Then for each n € Z% there exists a unique nonlinear evolution system (U (t,s):
0 $s<t<T)on Bn corresponding (in the sense of Theorem 2.1) to A and fn

and for ¢ € _Dn with Ll_‘rg o, =9, € I_)0 we have

(26)  lim U (ts)¢, = Uyt,5)h, 0 ¢s <t < T,
n—ocn

with the limit being uniform in t for t € [s,T).

Proof. We follow Goldstein (see [10], [11]) and use an approach first suggested
by Kisynski [13] for demonstrating the convergence of approximations to
linear semigroups, to prove the theorem via an application of our existence

result, Theorem 2.1.
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Let X = {;c = {xn}::zoz x, € X,n = 0,1,2, .., and Lx_{g X, = Xg} and for
X € x set Ixl = sx\:plxnlo. Then fl- Il defines a norm on the linear vector space
x, and the space X together with the norm -l is a Banach space. Define the
operator A: X - 2X by
dom(4) = (x = {x_)>_, € X: X, € Dom(A_), and for each n = 1,2, ...
there exists a y_ € A x_such that }]l_{g Y. = Yo € AgXehs

for x € Dom(A4), 9 = {yn}:’=0 € AX if and only if Yo, €A X,

n=0l12 .andlimy =y,

n—-oo

Define an essentially Xx-valued function f on the interval [0,T] by f(t) =
{fn(t)):=o~ The assumptions on the f are such that f (t) = fy(t) for almost
every t € [0,T]. However, by appropriately redefining on a set of measure
zero, we may infer from the assumptions on the functions f  that f:[0,T] ~ X
with f € L,(0,T;x).

It is readily seen that the operator A4 + w,l is m-accretive. Let X! =
(x1)7_, X2 = (x2)°_, € Dom(4) and let y! = (y}}”_ € 4x! and y% = (y})7_; €
AX%. Since for each n = 0,1,2, .., A  + wl is assumed to be m-accretive, for

A > 0 we have

122y _ 1,2 ¢ 1,2 1 1 (2 2
Ix I = srllxp Ix, = x;l, € slxlxplxn xo + My, + wex, = (y + wx))l,

A A A A A
Ix! —x2 + My! + wo;cl —(y? + wx),

and therefore that 4 + wyl is accretive. Now let § = {yn)::;0 € x and set x =
{(x ). _owith x_ = JO\; A_+wy_, n=0,12, .. where ) is chosen as in (2.5). It

is immediately clear that for each n = 0,1,2, .., x, € Dom(A|) C X . Since



;' € X we have lim y = y, and therefore, by assumption (2.5), that lim x_ = x,
n—® n—®
or X € X. Setting z_ = (v, = (1 + xx )/2g, n = 0,1,2, .., it follows that

z, € Ax and lim z =z, € Aj;x, We conclude that X € Dom(4), (I +

n bt 0
A(A+w D)X 3 ¥, and that R(I + (4 + ugl) = x

We have shown that the operator 4 and the function f satisfy conditions
(1) and (2) given in the statement of Theorem 2.1. Therefore, a unique
nonlinear evolution system {U(t,s): 0 €s €t € T} on I—)—(;—m(—A)— corresponding to
A and f can be constructed with U(t,s) = {Un(t,s)}:zo. Using assumption (2.5)

it can be shown that Dom(A4) = {;\( = {xn):=0 €Xx x, € I_)n, n = 0,1,2, .. and

lim x_ = xg}. Since R(U(t,s)) C X, it follows that

n—;m

(2.7) lim U (t8)6 = Ug(ts)d, 0 €s €t €T
n—un

whenever ¢ € D_ and lim ¢ =49, € 50. Since each of thc operators A_ and
n p=o 0 n

the functions f satisfy conditions (1) and (2) of Theorem 2.1, unique

nonlinear evolution systems (U (t;s): 0 € s €t € T) on _Dn corresponding to A_

and fn can be constructed. Recalling that Dom(4) C x Bn, we may
n=0

define the family of operators {V(t,5): 0 €s €t € T} on Dom(4) by

<
n=0

(2.8) V(ts)x = (V_(t8)x )0 = (U (t.5)x_ )

for X = {xn}:’=O € Dom( A4). Uniqueness (see [9]) dictates that for each n =

0,1,2, .., U(ts)x, = V (ts)x whenever {xn}::° € Dom( 4). This together

=0
with (2.7) and (2.8) establish (2.6). The fact that the convergence in (2.6)
is uniform in t for t € [s,T] is argued exactly as it was for the

convergence of approximations to nonlinear semigroups in the proof of

Theorem 3.2 in [10].
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We note that (2.5) is also a necessary condition for the conclusion to

hold (see, for example, Theorem 1 in [14]).
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3. An Approximation Theory for Identification Problems

Let H be a real Hilbert space with inner product <.,-> and
corresponding norm |-|. Let V be a reflexive real Banach space with
norm I-I and let V* be its dual. (All of our theory can be developed in
complex spaces if necessary; see [6].) We denote the usual dual norm on V*
by UI-¥, and assume that V is densely and continuously embedded in H
with |v| € plvl, v € V, for some positive constant . Identifying H with
its dual, we obtain V C H = H* C V* For ¢ € V* and v € V the duality
pairing between ¢ and v is denoted by <¢,v>. When ¢ € H, its pairing
with v € V agrees with the inner product of ¢ with v. It follows for u €
H and v € V that lull, € gu| and ¥vl, < p?lvi. Let Q and Z be metric
spaces and let Q be a nonempty, sequentially compact, subset of Q. The
spaces Q and Z, and the set Q are referred to as the parameter space, the
observation space, and the admissible parameter set respectively.

We recall that a single valued operator A:V-V* is hemicontinuous if

lim A(u+tv) = Au for all u,v€V where the limit is taken in the weak sense.
t=0

For each q € Q let A(q): V = V* be a single valued, hemicontinuous, (in

general, nonlinear) operator satisfying:

(A) (Continuity): For each v € V, the map q = A(q)v is continuous from
Q C Q into V*,
(B) (Equi V- monotonicity): There exist an W € R and an « > 0, both

independent of q € Q, such that
<A(Q)u — A@Q)V, u—v> + Wu—v|® > alu—vli?

for every u,v € V.
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(C) (Equi-boundedness): There exist a constant B > 0, independent of
q € Q such that
HA(q)vi. € B(lvi + 1),

for every veEeYV,

For each q € Q, let f(-;q) € L,(0,T;H) and u%q) € H and assume that
the mapping q - u%q) is continuous from Q C Q into H and that the
mapping q - f(t;q) is continuous from Q C @ into H for almost every t €
[0,T}. Also, for every z € Z, let u - &(u;z) be a continuous map from
C(0,T;H) into R™.

We consider parameter identification or inverse problems of the form:

(ID) Given observations z € Z, determine parameters q € Q which
minimize
®a) = Huy(a);z)

where ug(q) = uy(-;q) is a mild solution to the initial value problem

3.n u(t) + A(Qu(t) = f(tq), 0<t <T,

(3.2) u(0) = u%aq)
corresponding to q € Q.

By a mild solution to (3.1), (3.2) we mean a solution in the sense of
Theorem 2.1. To be more precise, for each q € Q we define the operator
A,(q): Dom(A(q)) C H » H to be the restriction of the operator A(q) to the
subset of V given by Dom(A q)) = {v € V: A(q)v € H}, and prove the

following theorem.
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Theorem 3.1. For each q € Q the operator Ao(q): Dom(AO(q)) CH -~ His

densely defined and the operator Ao(q) + Wl is m-accretive.

Proof. We first show that for each q € Q the operator A(q) + wl: V = V* js

coercive. If {v } CV with lim Ilvnll = « then from assumptions (B) and (C) we
n—®
obtain

lirg (A(q) + wI)vn,vn>/lIvnll

lim ((<A(Q)v, — A(Q)8,v, > + wv 5/ I+ <A(q)8,v_>/lv_I)

w

li Iv_I%2/1v_Il —|<A(q)®, Iv i
lim {alv 1%/0v I —|<A(q)8,v _>/1v I}

w

lim («lv_I — 1A(Q)81) > lim «lv I =B = =
n—*® n—+®

where © denotes the zero vector in V. It follows that for each X > 0, the
operator I + MA(q) + wI): V = V* is monotone, everywhere defined on V,
hemicontinuous, and coercive. Consequently R(I + MA(q) + wl)) = V*. (see
Barbu [6], Theorem IL.1.3) and therefore R(I + MA,(q) + wl)) = H. Also, for

u,v € Dom(A(q)), we may use assumption (B) to conclude
ha
[l + —2]|u—v|2 ¢ lu—v)? + ralu—vi?
u

< ju—vj? + .)‘<(A(q) + WwhDu — (A(q) + wl)v, u—v>

= (T + MA(q) + wD)u — (I + MA(qQ) + w))v,u—v>

<iI+ X(Ao(q) + whu — (I + MA (@) + whv] Ju~v]
or

[lu—v] € Ju — v + x((Ao(q) + whu — (Ao(q) + whv)|

which proves that Ay(q) + wl is m-accretive on Dom(Ao(q)) C H.

To show Dom( Ay q)) =H,weletu€Hand foreachn=1,2, .. weset
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u, = J(1/n;A(q)+wl)u € Dom(A(q)). Then, arguing as we have above, we
find
lu 2 + (1/n)alu_I% < <u = (1/n)A(q)8,u >

€ Juf [u | + (l/n)llA(q)Gll,llunll
where 0 is again the zero vector in V. But then

(33)  (1/Dhu, P + (1/n)(e/2)hu 17 € (1/2)uf? + (1/n)(1/2)FA(a)817

< (1/2)luf® + (1/n)(82%/20),

from which it immediately follows that the u_ are uniformly bounded in H.
Indeed, from (3.3) we see that (l/n)llunl2 and, hence lu I/vT, is bounded so
that lu 1/n-0 as no=.

Also, assumption (C) yields
hu_—ul, = (1/n)k(Ayq) + wDu B, € (1/n)}{(B + wu)lu I + B).

Since the last term in the estimate above tends to zero as n = =, we find
u - uin V¥ as n = « This, together with the fact that V is dense in H
imply that u - u weakly in H as n ~ « from which m=H
immediately follows.

In light of Theorem 3.1, we may apply Theorem 2.1 with X = H, A =
Aya) and [ = f(-;q). We conclude that there exist a unique nonlinear

cvolution system {Uy(t,s;q): 0 € s €t € T} on H satisfying (i), (i) and (iii).
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The mild solution uy(-;a): [0,T] ~H to the initial value problem (3.1), (3.2) is given

by uy(t;q) = U(t,0;a)u’(q) for t €[0,T}.

Rcmark. Under additional hypotheses on f(-:q) and u%q) other existence
results can be applied to obtain somewhat different notions of a solution to
the initial value problem (3.1), (3.2). For example (see [6, p.140-144]) if
f(-;q) € WHY0,T;H) and u%q) € Dom(A(q)), then there exists a unique u(-,q):
[0,T] = V satisfying u(-;q) € WH¥(0,T;H), A(q)u(-:q) € Lo(0,T:H) and u(t;q) +
A(q)u(t;q) = f(t;q) a.e. t €[0,T] Or, if u%q) € H and f(-;q) € L,(0,T;V*)
then there exists a unique u(-;q) which is V*-valued absolutely continuous
almost everywhere on [0,T], u(-;q) € C(0,T;H) n L,(0,T;V), u(-;q) € L,(0,T;V¥)
and u(t;q) + A(q)u(t;q) = f(t;q), a.e. t € [0,T). If, in addition, the mapping t -
t7f'(t;q) is an element in L,(0,T;V*) for some 7 2 1, then the mapping t -
t71'x(t;q) is in L,(0,T;V) n L4(0,T;H). In particular, when f(-;q) = 0, the
nonlinear semigroup {Sy(t;q): 0 € t € T} on H defined by Se(t:a) = U(t;0;a),
t € [0,T], with generator —Ao(q) behaves like a holomorphic linear semigroup
in that it smooths. That is, Sy(t;q)u’(q) € Dom(A,(q)), t € (0,T], and the
mapping t » t $- S(t;q)u’(q) is an element in L.(0,T;H) for every u%q) € H.
Also, some generalizations are possible. For example, in assumption (B). the
term ollu — vlIZ can be replaced by a term of the form o lu—vi)llu — vl where
of -) is a continuous, strictly incrcasing function on
[0,2) satisfying o(0) = O and }(1_21 ofx) = «  Or, the terms lu — vi? in (B)
and hvl in (C) can be replaced by lu — vIP and IviP-l respectively, for

any p 2 2.
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The development of computational methods for the solution of the
infinite dimensional optimization problem (ID) requires the finite dimensional
approximation of the abstract initial value problem (3.1), (3.2). The general
framework that we are proposing is based upon a classical Galerkin approach.
For each n = 1,2, .. let H denote a finite dimensional subspace of H which is
a subset of V. Let P:H = H_ denote the orthogonal projection of H onto H_
with respect to the <-,-> inner product. We assume that the approximating

subspaces H , and the projections P satisfy
(D) For each v € V, limliP v —vll = 0.
n—e®

Note that assumption (D) and V densely and continuously embedded in H

imply that lim [P u —u| = 0 for each u € H.
n—+®

For each q € Q and n = 1,2, ... we define the single-valued operator A (a)

H - H by A (q)u, =v_ foru €H_ where v_satisfies
CA(Qu,w > =<v w > w €H.

That A (q) is a well defined operator from H_into H_follows from the Riesz
Representation Theorem applied to the Hilbert space Hn and the bounded
linear functional <A(q)u_,-> on H . Also, define f (-;q): [0,T] - H_  and
ul(q) € H_ by f (;,q) = P_f(t;q), 0 <t ¢ T, and ul(q) = P_u%q), respectively.
Note that f (-;q) € L,(0,T;H_) C L,(0,T;H) and that If (ta)l €|f(t;a)l for q €Q
and almost every t€ [0,T].

We consider the sequence of approximating identification problems given

by:
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(ID,) Given observations z € Z, determine parameters q_n € Q which
minimize
¢.(q) = Hu (q);z)

where u _(q) = u (-;q) is a mild solution to the initial value problem

in Hn
(3.4) a () + A (@u () =f(tq), 0<t<T
(3.5) u_(0) = u(a)

corresponding to g € Q.

From the definition of the A (q) and the assumptions (B) and (C) on A(q),
using arguments analogous to those used to prove Theorem 3.1, it can be
shown that the operators A (q) + wl are m-accretive on H_. It then follows
from Theorem 2.1 that for each n = 1,2, ... there exists a unique nonlinear
evolution system {U (ts;q): 0 ¢ s €t € T} on H satisfying (i) - (iii) in the
statement of that theorem with X = H_, f(t) = f (t;q), and x® = u%aq). The
mild solution to the initial value problem (3.4), (3.5) is given by u (tiq) =
U, (t,0;a)u%(a), t € [0,T].

If we assume for the moment that the approximating identification
problems (ID_) have solutions Ein € Q, then it is desirable that they in some
sense approximate a solution q to the original identification problem (ID).
This is in fact the case. For suppose that it can be shown that for any

sequence {q ) CQ with lim q = q € Q we have
n—e

(3.6) li_.rgun(qn) = uy(q,) in C(0,T;H).

Then {q_n} C Q and Q a compact subset of the metric space Q imply that there
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.. = q. For any

exist a subsequence (q,} C {q.) and a q € Q such that lim q
J e

q € Q the continuity of ¢ implies

®a)

Hug@:2) = @ (limu, @, )2)

lim &u_(q )z) = lim ¢_(q.)
= B s B

N

lim ¢ (q) = lim &u (q);2)
J J J J

¢ (}1’2 Unj(Q);Z) = H(ugy(a);2)

= ¥q).

Note that in the discussion above we did not assume that a solution to
problem (ID) exists. But rather we have shown that the existence of solutions
En to the approximating problems (ID ) and (3.6) imply the existence of a
solution q to problem (ID). When the solution to problem (ID) is unique, the
sequence {q )} itself converges to q.

The existence of a solution En to problem (ID)) for each n = 1,2, ... will
follow from the compactness of Q and the continuity of ¢ once the continuous
dependence result: g_rpm u (q.) = u(fay in C(0,T;H,) whenever {q } C Q with
Lil_rpw q,, = 4g has been established. Although continuous dependence for the
finite dimensional systems (3.4), (3.5) could be demonstrated via a
modification to any one of a number of familiar continuous dependence
results for ordinary differential equations (see, for example, Hale [12],
Theorem 1.3.4), it is also easily handled with the approximation theory

developed in the previous section. This and the convergence in (3.6) are

addressed in the following theorem.
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Theorem 3.2. If assumptions (A) - (D) hold, then
(a) 1f{q )} € Q withlim q_ = q, then lim un(qn) = uy(q,) in C(0,T;H), and
n—+® n—®

(b) 1f{a,_) CQ with Li]_rpmqm = q, then g_rywun(qm) = u_(q,) for each n € Z™.

Proof. Assumption (D) and the continuity of the map q - uo(q) from Q into H
imply lim u%(q ) = u%gqy) in H. Hence, we will have verified (a) if we can
n—=®
show that lim U (t,s;q )w = Uy(ts;qe)w, 0 €5 €t < T, uniformly in t for
n—e®

t € [s,T] whenever w_ € H with lim w_ = w
n n no® n 0

€ H. We argue this using
Theorem 2.2. Note that assumption (D) implies },1-12 H_ > H and assumption
(D) together with the assumed continuity of the map q - f(t;q) from QCQ
into H for almost every t €[0 ,T] imply },ng f (t;q) = f(t;qy) in H for almost
every t€ [0,T] with the fn(';qn) dominated by a function g€L, (0,T;H)
which is independent of n. Thus, we need only to demonstrate

that for some Ay > 0 we have
(3.7) LLU;J(XO;An(qn) + whw = J(h;Al(q,) + WDw,

in H whenever w_ € H , n € Zt with lim w_ = w_.
n n now R 0

Let %, > 0 and set v = J(xo;An(qn) + whw_and v, = J(XO;AO(q) + whw,,

We first show that llvnll is uniformly bounded in n. From assumption (B) we

obtain

oy 12 € gulv 12+ N <A(a,)v, — Aq,)8.v >

I+ 2(A (a) + wD)v v > — v |

n’ n

+ %,<A(qy)8 — A(q)8,v > — 2 <A(qy)8,v >

w_v > = v |+ 2,<A(qy)® — A(a,)8,v, > — 2 <A(ay8,v, >

N

Iw v I+ 2 1A(qy)8 — A(q )8l v I+ X FA(qy)0l.dv 1
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where 8 denotes the zero vector in V. This estimate together with assumption

(C) yields

v I € (\ge) uw | + o 1IA(q )8 ~ A(q,)8ll, + o'B.

Recalling assumption (A) and that lim w_= w, in H, we find that the desired
n—QQ

uniform bound on Ilvnll has been established.
Once again, from assumption (B), we find

Xoozllvn-—voll2 < XO(.\)lvn—vO|2 + 3 <A(q v, — A(@ )VpV, ~ Vo

Awlv —vol? + 2 <A )V, — AQg)Vgv, — P vyd
+ 3 <A(q v, — A(Q) VP, v, — V2

+ 3 <A(aglvy — A(Q VeV, — Vo2

AWCP vy = v, v = v+ LI+ XN (A (q) + w))v_
— (I + 2 (Agay) + wD))vyv, —P vid+ <v
+ XO<A(qn)vn - A(qo)vO,an0 - v0>

+ N <A(qpvy — Ala vV, — vy

n

+ 2 <A(a )V, — A(QyVeP vy — Vo>

+ 2 <A(qgvy — AQ VeV, — Vo

£
< xowlanvo—voll,llvn—voll + llwn—woll,llvnwoll

+ llwn—woll.lanvo—voll + M HA(q)v, — A(qV i IP v, — v

+ M MA(g v, — A(qn)voll,.lvn = v, .

The estimate ab ¢ — a?
2n 2

argue

Ao 3w
L jy —v 12 ¢ —2Q)Pp v ~v 12 +
n 0 2 n0C 0

Xooz

—Vv.,.v,~P vy

AwSP vy = Vg,V VD + w,—wgv, =P ve>—|v —P v,

— 2 _
lIwn woll‘ + llwn woll..lanv

2
I

n
aZ + — b? for any n > 0 and assumption (C) allow us to

~V, [}
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3
— - -0 - 2
+ XOIIA(qn)vn A(qo)volI.Ian0 voﬂ + 3 llA(qO)v0 A(qn)voﬂ,

3w ut €o+1 3u? 2
s{ ok +(0 )}HP vo—voﬂz+{ a +E——}|w —w0|2
2a 2 n ZXOa 2 n

3
+ 2 (B, I+ vy} + 2MIP v — vl + ZQ- 1A(qg)v, — Aa, v i3 .

From this, the uniform bound on llvnll, Iim w_ = W, in H and assumptions
n-®

(A) and (D) allow us to conclude lim V.=V, in V and that (3.7) holds.

n-om

An analogous, but somewhat simpler argument can be used to verify (b).
We use Theorem 2.2 to show that for n € Z*t fixed, lim U (tsqw =
m-é&

Un(t,s;qo)wo, 0 ¢€s £t €T, uniformly in t for t € [5,T] whenever w W, € H

with lim w_ = wg in H. Clearly Lll_rp@ f.(-;a,) = £,(-;q9) in L(0,T;H ) so that

m—oco

we need only to show that for some )\, > 0,
li_xzxm IOgA () + whw = J(;A (q) + wh)w,
m

‘ in H whenever lim w = wgin H. Let Vo, = JOgA (g ) + ww and v,

| m—®

Il

JOgA (g + wl)w,. Then from assumption (B)

)Oozllvm—voll2 < Xoujlvm—v0|2 + 2 <Ada v, — A(q, ) vy,v  — V>

AL+ (A (q) + whv =1+ M A (ag) + WD)vv = v >

_ 2 — _
N +X0<A(q0)v0 A(qm)vo,vm v0>

= Aw_~Wg, v Vv > — lvm—vol2 + 2<A(ggvy — AQ VeV, ~ Vo

N

Iw _—wolllv_—v I + MlA(ggv, — Alq Jvllellv = vl

or

u 1
v, — voll ¢ E— w,, —wgl + ; VA(qpv, — A(q, )Vl
0

P

T S
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Assumption (A) and lim w_ = w, in H yield the desired result and the
m~—®

theorem is proved.

Remark. Inpractice, theapproximatingidentification problems(ID )are solved
using standard iterative search techniques (for example, steepest descent, Newton’s
method, etc.) requiring the evaluation of ¢ (q) for g €Q at each step. This in turn
requires the integration of the finite dimensional initial value problem (3.4), (3.5).
Oncea basisfor H_has been chosen, the solution to(3.4), (3.5) can be computed using
any standard numerical integrator for ordinary differential systems.  Also, the
parameter space @ and the admissible parameter set Q are frequently functional in
nature and infinite dimensional.  When this is the case the set Q must also be
discretized. Suppose that foreachm=1,2,.., 1™ QCQ ~Qis a continuous map with
finite dimensional range and that Li‘glwlm(q) = q with the convergence uniform
in q for g € Q. Set Q™ = I™(Q) (note that Q™ is a compact subset of Q) and
consider the identification problems (ID:‘) defined to be the problems (IDn)
with Q replaced by Q™ It is clear that each of these problems admit a

am

solution q' and it is not difficult to argue that there exists a subsequence

(c_;:‘i} C (q'} with ‘lgm E:‘i= q, q a solution to problem (ID) (see, for example,
k>
[4]). Once bases for H_ and the range of I™ have been chosen, problem (ID])

involves the minimization of a functional over a compact subset of Euclidean

space subject to finite dimensional constraints.

Remark (Nonautonomous systems). Theorems 2.1 and 2.2 remain valid for
certain classes of temporally inhomogeneous or time dependent operators A =
A(t). To be more precisé, the family of operators A(t): X - 2X must be

m-accretive on X for almost every t € [0,T] and must satisfy
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(3.8) BOSA()x — J(GA(s)xly € Mh(t) — h(s)lxL(xly)

for each x € X, every ) satisfying 0 < » ¢ X, for some X\, > 0, some h €
L,(0,T;X), some continuous, non decreasing function L:[0,*) - {0,) and

almost every t,s € [0,T] (see [8], [9]). (Note that for simplicity we have taken
w = 0; however, the discussion to follow remains valid for any w € R.) The
primary motivation for developing the framework outlined above was to
define readily verifiable conditions on the operators A(q): V = V* that if
satisfied would (i) also automatically be satisfied by the Galerkin
approximation A (q) and (i1) lead to the desired convergence of solutions to
the approximating identification problems to a solution to problem (ID). The
natural assumption to add to (A) - (C) that certainly satisfies criterion (i) and

that could conceivably lead to an estimate of the form (3.8) in H is that
(3.9) FA(t;a)v — A(s;a)vil, € jh(t) = h(s)| L(Iv])

for ecach v € V, almost every s,t € [0,T] and some h € Ll(O,T;H) and some
continuous nondecreasing f: [0,) = [0,=), both of which do not depend upon
g € Q. Unfortunately, however, we can only show that (3.9) leads to an

estimate of the form
(3.10)  PBAL(ta)u — J(GA (s;a))ul € v [h(t) — h(s)] L(lu])

for each u € H. Moreover, it is not clear to us how, or if, the proof of the
fundamental Theorem 2.1 given in [9] could be modified so that (3.10) would
suifice. We have explored alternative approaches and developed other

techniques for treating the nonautonomous case (for example, in the linear
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case, based upon some ideas in Tanabe [18], and in the strongly monotone case,
via a variational formulation which can be found in Barbu [6]). These

results will appear soon in forthcoming papers.
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4. Applications and Examples

We briefly describe some classes of systems to which the general
framework developed in the previous section applies. In our discussion below
we consider theoretical aspects only. Implementation questions will be treated

and the results of our numerical studies will be reported on elsewhere.

Example 4.1. Linear regularly dissipative operators. The approximation
theory for inverse problems for systems involving linear regularly dissipative
obcrators was treated in detail by Banks and Ito in, and is the central focus
of, [2] and [3]. We show here that the linear theory is a special case of the
nonlinear theory given in Section 3.

Let the spaces H, V, V* and Q and the set Q be as they have been defined
above. For each q € Q let a(q)(-,-) be a sesquilinear form defined on V x V
which satisfies the conditions:

(A') For each v € V the mapping q — a(q)(-,v) is continuous from Q C Q

into V*. That is given € > 0 there exists a & > 0 such that

sup [a(gg)(u,v) —a(g)(u,v)l < €
lull=1
whenever d(qo,q) < 6 where d denotes the metric on Q.
(B') There exist an w € R and an « > 0, both independent of q € Q, for
which a(q)(v,v) + Wv|® > allvl? for every v € V.

(C') There exists a constant 8 > 0, independent of q € Q, such that

ja(q)(u,v)] € Blull #ivl for every u,v € V.
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When conditions (A') - (C') are satisfied it is not difficult to argue that for

each q € Q an operator A(q) € 2(V,V*) can be defined by
[A(Q)v)(u) = <A(q)v,u> = a(q)(u,v),

u,v € V and that A(q): V - V* satisfies (A) - (C). It then follows from
Theorems 2.1 and 3.1 that there exists a unique nonlinear evolution system

{Ug(t,s;q): 0 € s <t € T} on H corresponding to the initial value problem

u(t) + Ag(@)u(t) = f(t;q), 0 <t T

u(0) = v%q)

where for each q € Q, f(-;q) € L,(0,T;H), u%q) € H and A(q): Dom(A(q)) C
H - H is the restriction of A(q) to the set Dom(A(q)) = (v € V: A(q)v € H}.
The operator —A(q) is the infinitesimal generator of an analytic semigroup
{Ty(t;q): t 2 0} on H (see [18]) and for peH

.
(4.1) Uy(t,s;a)¢ = T(t-s:0)¢ + I Ty(t=T;0)f(T;q)dT.

s
It can be shown that the semigroup {T(t;q): t > 0} admits an extension {T(t;q):
t 2 0} which is an z;nalytic semigroup on V* with generator A(q): V C V¥ = V¥,
Also the restriction of (To(t;q): t 2 0} to V, call it (%(t;q): t 2 0), is an analytic
semigroup on V with generator X(q): Dom(X(q)) CV =V, the restriction of
A(q) to the set Dom(;‘(q)) ={v € V: A(q)v € V) (see [3], [18]). Consequently,
with appropriate assumptions on f(-;q), the evolution system {Uo(t,s;q): 0 <s
¢t € T) admits an extension {U(t,s;q): 0 ¢ s €t € T} which is an evolution
system on V¥ and a restriction (?J(t,s;q): 0 ¢<s £t € T) which is an evolution

system on V.
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It is clear from (4.1) that when A(q) is linear, we may take f(-;q) =0 and
consider only the approximation of the semigroup {To(t;q): t 2 0}). For each
n = 1,2, .. let the finite dimensional subspaces H of H and the corresponding
orthogonal projections P_ be as they were defined in Section 3 and assume
that condition (D) is satisfied. Denote the Galerkin approximations to A(q)
(i.e. the restriction of A(q) to an operator from H_ into H: = H ) by A _(q) and

set T _(t;q) = exp(—tA (q)), t 2 0. Theorem 3.2 then implies that
(4.2) lim [T (t;q,)P u%a,) — To(t:adu’ay) = 0
n

uniformly in t, for t € [0,T] whenever {9} C Q with l;_r& a, = q, € Q, and

the mapping q - u®(q) is continuous from Q C Q into H. In addition, recalling
that we required that H CV for all n = 1,2, ..., an inspection of the proof of
Theorem 3.2 reveals that in the linear case with the existence of the semigroup

{"i"(t;q): t 2 0) on V, we may apply Theorem 2.2 with X = V and conclude that
(4.3) lim IT (0, )P u%a,) — T(tq)ua)h = 0

uniformly in t for t € [0,T] whenever lim q_ = q,, u%4q) € V and the map
n—®
g -~ u%q) is continuous from Q into V (see also [3]). Then for ¢ € H, setting

t
U, (ts0)P ¢ =T (t-s;q)P ¢ + I T (t—T;0)P f(T;q)dT

s
under appropriate assumptions on f(-:;q), (4.2) and (4.3) continue to hold with
Tn(t;q), To(t;q), and T(t;q) replaced by Un(t,s;q), U,(t,s;a0), and ?J(t,s;q),

respectively, with the convergence being uniform in t, for t € [s,T]. Hence the
linear theory and results of [3] are a special case of the nonlinear theory of

Section 3.
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We note that in the context of the identification problem, the fact that
the stronger V-convergence given in (4.3) can be obtained is significant.
Indced, (4.3) permits the relaxation of the continuity assumption on the
performance index & to the requirement that for each z € Z, the mapping u ~
®u,z) be continuous from C([0,T};V) into R*. This can have the effect of
significantly enlarging the class of allowable observations. For example, in
the case of a onc dimensional parabolic system formulated in H = L, with V
in H!, spatially discrete (i.e. pointwise, as opposed to distributed in space)
measurements will suffice (see [3] and [5]).

Among the class of linear regularly dissipative operators which arise from
a form satisfying (A') - (C') are the familiar elliptic partial differential

2
operators on L,. Briefly, let Q be a region in R? and let 0= ! :—%HL“(Q)' Let
Q beacompact subset of @ with the property thatif q= {(aij, b,, ¢): i,j=l,...,!] € Q,
then for some « > 0 independent of q € Q.
2

I 30048, 2 «lgl?

ij=
for every x € Q, and every { € RY. For a € Q and u,v € HI(9) set

du(x) 8v(x)
Ox Ox .

2
a@wy) = [ (I 2,0
0 L= ]
du(x)

ox.

2
+ I bx) v(x) + c(x)u(x)v(x) }dx

with H = L,(Q) and V any closed subspace of HY(Q) containing H}(Q), it can be
shown (sec [18]) that a(q)(-,-) satisfies (A') - (C'). The operator A(q) is given

formally by
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4.4 A)—)E_?——()-a— ;,b()?——+()
(4.4) (@) = i,j=18xjaijx6xi+i=1ix ax, X

When 30 is sufficiently smooth, A(q) is the elliptic operator given by (4.4), and
V is chosen to be either H(IJ(Q) or HY(Q), the equation (3.1) becomes a parabolic
partial differential equation with either Dirichlet or Neumann boundary
conditions.

For H = Lz(Q) and V a subspace of HY(Q), choosing the approximating
subspaces to be the span of an appropriate collection of first order spline
functions will typically satisfy assumption (D) (see [15] and Example 4.2

below).

Example 4.2. Nonlinear Elliptic Operators. Let Q be a bounded region in R

with smooth boundary I' = 3Q. For a = (e« ., ®g) 2 multi-index, let | = o, +

@ + --- + a5 and denote the ath order generalized, or distributional

derivative of a function u by D%u; that is,

aal o
D%u(x) = —5 s u(x), x€Q.
axll ax,!

Let m be a nonnegative integer and let 6u denote the vector valued function
of length N = (!}fm) whose components are all of the partial derivatives of u
of order greater than or equal to zero and less than or equal to m.

For each multi-index o with | € m, let (x,{) - a(x,f) be a real valued
function defined on @ x RN which is measurable in x and continuous in {. We
assume that

(1) there exista g € L,(Q) and a positive constant 7 such that
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(4.5) la (x5 € (&} + g(x))
for almost every x € Q, each ¢ € RN and all « with lod € m, and

(2) there exists a positive constant ) such that

(4.6) L (ay(x0) —a (x,mM)fy — Ny 2 X az o — Mot

|} €m [ €m

for almost every x € Q and all {,n € RN.
Let H = L2(Q) and let V be any closed subspace of H™(Q) which

contains Hg(Q). Define the operator A: V = V* by
4.7 (Au)(v) = I J a(x,6u(x))D%v(x)dx,
!alSm Q

for u,v € V. The operator A given by (4.7) is the distributional form of the

formal differential operator
(4.8) (Au)(x) = L (-1)*D%(x,5u(x)).
| €m

A differential operator of the form (4.8) is referred to as a nonlinear elliptic

operator and the partial differential equation

49 Lo+ 5 ()ED% xsu(ta) = ()

. — (X - a_(x,Bu(t,x)) = ,X
ot || €m «

is said to be of nonlinear parabolic type. When V = H:)“(Q), a solution in V*

to the abstract equation
u(t) + Au(t) = f(t)

with A given by (4.7) corresponds to a variational solution to (4.9) which
satisfies Dirichlet boundary conditions. When V = H™(Q), a variational

solution to the Neumann problem is obtained. Note that in the linear case we
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have

ag(x.0u(x) = F a%B(x)DPu(x).

Under the assumptions above, it is not difficult to show that A given by
(4.7) is hemicontinuous and satisfies conditions (B) and (C) given in Section 3.
With an appropriate choice of the space Q and the set Q, condition (A) can be
satisfied as well.

A quasilinear model for heat conduction or mass transfer in which the
heat or mass flux is a function of the temperature or mass fraction gradient
discussed in [16] and [17] leads to a nonlinear elliptic operator and a nonlinear
parabolic partial differential equation of the forms (4.8) and (4.9), respectively
with m = 1. Let Q be a bounded region in R? with smooth boundary and let
Q = L@ x RY. Let Q be a compact subset of @ with the property that
q € Q if and only if the mapping { -~ q(x,{) is C! on R? for almost every

X € Q and there exists a X > 0 (which does not depend on q) such that
(4.10) eiVEQ(x’E)h:S'(; - n)+ Q(X,e)(gl - ni) 2 X(gi - ni),

for 1 = 1,2, ..., 2, almost every x € Q and all 8,{,n € RL (When £ = 1, the
2

function q(x,8) = q(§) = (1 —.5¢"%") satisfies (4.10).)

Let H = Lz(Q) and let V be any closed subspace of HYQ) which contains
HY(®). Then V CH C V* and for each q € Q define A(q): V = V* by
(4.11)  (A(Qu)(v) = I a(x,Vu(x))Vu(x)- Vv(x)dx

(0]

for u,v € V. Note that for each q € Q the operator given by (4.11) is of the

form (4.7) with
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(4.12) a(x,8u(x)) = q(x,Vu(x))D%u(x)

for x € Q and all « with |f = | and a, = 0 for |of = 0. The nonlinear

parabolic partial differential equation (4.9) takes the form
du
5 (t,x) — V-q(x,Vu(t,x))Vu(t,x) = f(t,x), t>0, x €.
Taking §-0 to be the usual norm on HY(Q), it follows that
TA(gu — A(q)ul, <ja, — qlcholluII

for each u € YV and Qp:d; € Q. Since Q is a compact subset of L(Q x R’), it is
easily verified that a  given by (4.12) satisfies a growth condition of the form
(4.5) with 7 and g independent of q € Q. An application of the _mean value
theorem together with assumption (4.10) imply the existence of a X > 0,
independent of q € Q, for which (4.6) holds. Consequently the conditions (A), (B),
and (C) given in Section 3 are satisfied, and our general theory can be applied.
With regard to approximation, polynomial spline function based Galerkin

subspaces can often be shown to satisfy condition (D). For example, when
2 =1 and Q = (0,1) in the nonlinear heat conduction/mass transfer example
discussed above, the subspaces H can be chosen as the span of the linear
B-spline ("hat") functions with respect to the uniform mesh {0, 1/n, 2/n, .., 1}
appropriately modified to satisfy stable, or geometric, boundary conditions.
Familiar error estimates for interpolation and the Schmidt inequality can then
be used to verify that condition (D) is satisfied (see [5]). Generalization to
higher dimensions is possible, and can often be achieved via tensor

products of one dimensional elements (see [15]).
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5. Concluding Remarks

We have developed a general abstract approximation framework for the
identification of nonlinear distributed parameter evolution systems. The class
of systems to which our theory applies are those whose dynamics can be
described by a nonlinear operator which satisfies conditions that are the
natural nonlinear extensions, or analogs, of the properties of regularly

dissipative, or abstract parabolic, linear operators. The approach we have

‘taken is based upon the defining of a sequence of approximating finite

dimensional identification problems in which the systems to be identified are
Galerkin approximations to the original, underlying, infinite dimensional
nonlinear dynamics. Under a weak continuity assumption with respect to the
unknown parameters to be identified, equi-boundedness and equi-
monotonicity conditions, and an approximation assumption on the Galerkin
subspaces (all of which are readily verified for wide classes of nonlinear
distributed systems and finite clcmc.nt subspaces), we are able to demonstrate
that solutions to the approximating problems exist, and, in some sense,
approximate (i.e. subsequential convergence) solutions to the original infinite
dimensional identification problem. We have shown that the linear theory
presented in [2] and [3] is a special case of our nonlinear framework and that
our results are applicable to a reasonably wide class of nonlinear elliptic
operators and corresponding nonlinear parabolic partial differential equations.
In particular, we have considered application of our theoretical framework to

a quasi-linear model for heat conduction or mass transport.
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The general approximation result for nonlinear evolution systems
discussed in Section 2 is applicable to a much broader class of nonlinear
dynamical systems than we subsequently treated in Section 3. For example,
this class of systems would include those with dynamics described by set
valued maps or multifunctions, and (after minor modification to the
general theory) time dependent or nonautonomous operators. We are
currently investigating these features of the general approximation theory
in the context of parameter estimation problems. Also, we would like to
be able to weaken the somewhat restrictive strong monotonicity condition.
Any progress that we might make in these efforts would have the potential
to significantly enlarge the class of nonlinear systems to which our theory
and framework would apply. Finally, extensive numerical or
computational studies designed to demonstrate the feasibility and point out
the Ilimitations of our schemes and general approach are currently

underway and will be reported on in a forthcoming paper.
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