NASA Technical Memorandum 100619

X-Ray Production in Low Energy Proton Stopping

J. W. Wilson

G. S. Khandelwal

N. T. Fogarty

(NASA-TM-100619) X-RAY PRODUCTION IN LOW N88-23582

(NASA-TM-100619) X-RAY PRODUCTION IN LOW TRACLAS
ENERGY PROTON STOPPING (NASA) 12 PCSCL 20H

G3/72 0145972

April 1988

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665-5225

X-RAY PRODUCTION IN LOW ENERGY PROTON STOPPING

J. W. Wilson, G. S. Khandelwal and T. N. Fogarty

Abstract

The X-ray yields of stopping protons in an iron-nickel-cobalt alloy are calculated for use in predicting radiation damage in encased electronic devices.

INTRODUCTION

It is observed in some electronic devices that radiation effects result from low energy protons stopping in the external casing materials without crossing the device sensitive region (refs. 1 and 2). In order to explain this phenomenon, secondary radiations produced in the casing material are suspect. The most likely radiations to penetrate the casing material are the X-rays produced by proton impact. In the present note, the X-ray yields from stopping protons in an iron-nickel-cobalt alloy are calculated. The methods are easily extended to other materials.

X-RAY PRODUCTION CROSS SECTIONS

The K-shell and L-shell ionization cross sections for iron, cobalt, and nickel have been evaluated with the results given in Tables 1 and 2, using the work of Khandelwal, Choi, and Merzbacher (ref. 3). The X-ray fluorescence yield is in competition with Auger and Coster-Kronig transitions, and the fractional fluorescence yield is given in refs. 4, 5, and 6. The K-shell and L-shell fractional yields are shown in Table 3.

LOW ENERGY PROTON TRANSPORT

If nuclear processes and straggling are neglected, the proton transport equation is given as

$$\left[\frac{\partial}{\partial x} - \frac{\partial}{\partial E} S(E)\right] \psi (x, E) = 0 \tag{1}$$

where $\psi(x,E)$ is proton flux at x of energy E. The solution is given as

$$\psi(x,E) = \frac{S[\varepsilon(x + R(E))]}{S(E)} \psi [0,\varepsilon (x + R(E))]$$
 (2)

where $r(E) = \int_0^E dE'/S(E')$ and $\varepsilon(x)$ is inverse of R(E). The result (equation 2) can now be used to calculate the X-ray yields $Y_\chi(x)$ as

$$Y_{\chi}(x) = \overline{w}_{\chi} \int_{0}^{\infty} \sigma_{\chi}(E) \psi(x,E) dE$$
 (3)

where $\sigma_{\chi}(E)$ is the macroscopic ionization cross section and \overline{w}_{χ} is the shield's

fractional fluorescence yield. The yield for a monoenergetic beam of protons is

$$Y_{\chi}(x) = \overline{w}_{\chi} \int_{0}^{\infty} \sigma_{\chi}(E) \phi_{p} \frac{S[\varepsilon(x + R(E))]}{S(E)} \delta(\varepsilon[x + R(E)] - E_{0}) dE$$

$$= \overline{w}_{\chi} \int_{0}^{\infty} \sigma_{\chi} [\varepsilon(r)] \phi_{p} \delta(x + r - r_{0}) dr$$
(4)

where $r_0 = R(E_0)$ and r = R(E). The result is

$$Y_{\chi}(x) = \overline{w}_{\chi} \sigma_{\chi}[\varepsilon(r_0 - x)] \phi_{p}$$
 (5)

as one would presume. The total yield \overline{Y}_{x} in stopping is then

$$\overline{Y}_{X} = \overline{w}_{X} \phi_{P} \int_{0}^{r_{0}} \sigma_{X} \left[\varepsilon (r_{0} - x) \right] dx$$
 (6)

The required functions will now be approximated to evaluate the integral (equation 6).

STOPPING POWER AND CROSS SECTION PARAMETERS

The low energy portion of the stopping power curve was shown by Fermi to be

$$S(E) \approx a \sqrt{E}$$
 (7)

The stopping power to several MeV is adequately approximated by

$$S(E) = \frac{a\sqrt{E}}{(1+bE)}$$
 (8)

and is known to have a maximum at approximately $\rm E_{m} \approx 100~keV$ so that

$$\frac{dS}{dE} \mid E_{m} = 0 \tag{9}$$

and

$$S_{m} = S(E_{m}) \tag{10}$$

are sufficient to determine the coefficients a and b to find

$$S(E) = Z S_{m} \sqrt{\frac{E}{E_{m}}} / (1 + \frac{E}{E_{m}})$$
 (11)

The range is then found to be

$$R(E) = \frac{\sqrt{E_m E}}{S_m} \left(1 + \frac{E}{3 E_m}\right)$$
 (12)

Assuming the density to be 8.4 g/cm³ and taking $S_m \approx 246 \text{ keV/}\mu$, we find the ionization cross sections can be reasonably approximated by

$$\sigma_{\chi} [E(r)] \simeq \sigma_{\chi} (E_0) \left(\frac{r}{r_0}\right)^{2.2}$$
 (13)

which holds below 1 MeV. This gives a total yield of

$$Y_{\chi} = \frac{\overline{w}_{\chi}}{3 \cdot 2} r_0 \sigma_{\chi}(E_0) \phi_{P}$$
 (14)

We have taken the composition of the alloy to be 54 percent Fe, 29 percent Ni, and 17 percent Co to find the K shell fluorescence yield for 1 MeV protons to be

$$\overline{Y}_{K} = 9 \times 10^{-4} \text{ X-rays/proton}$$
 (15)

To assess the effects of these X-rays on device performance requires additional transport calculations of the X-rays through the device itself.

CONCLUDING REMARKS

The present formalism provides a means of estimating the X-ray production in proton exposures. The fluorescence yield may be used as source terms in a photon/electron transport code to further evaluate their effects on device performance.

REFERENCES

- 1. K. K. Diogu, T. N. Fogarty, A. Kumar, F. C. Wang, and C. F. Herman; Charge An omaly at MOS Interfaces Submitted to One MeV Proton Radiation. Proceedings of NASA/Prairie View A & M Conference on Natural Space Radiation and VLSI Technology, to be published.
- 2. T. N. Fogarty, C. Herman, K. Diogu, and F. Wang; Simulation of Natural Space Radiation Effects on VLSI Technology; Electrochemical Society, vol. 87, no. 2, pp. 880-1, 1987.
- 3. G. S. Khandelwal, B. H. Choi, and E. Merzbacher, Atomic Data and Nuclear Data, Tables 1, 103 (1969).
- 4. W. Bambynek et al., X-Ray Fluorescence Yields, Auger, and Coster-Kronig Transition Probabilities. Rev. Mod. Phys. 44, p. 716, 1972.
- 5. M. O. Krause, Atomic Radiative and Radiationless Yields of K- and L-Shells, J. Phys. Chem. Ref. Data, vol. 8, no. 2, p. 307, 1979.
- E. J. McGuire, Atomic L-Shell Coster-Kronig, Auger, and Radiative Rates and Fluorescence Yields for Na - Tl., Phys. Rev. vol. A3, no. 2, p. 587, 1971.

Table 1 - K-shell Ionization Cross Sections (b) as a Function of Proton Energy (MeV)

 E	Fe	Со	Ni
0.1	0.054	.035	.021
0.5	11.0	8.49	5.86
1.0	70.8	50.3	35.5

Table 2 - L-shell Ionization Cross Sections (b) as a Function of Proton Energy (MeV)

E	Fe	Со	Ni	
0.	1 4.27	E4 2.71E4	1.62E4	,
0.	5 3.68	E5 2.80E5	5 2.06E5	;
1.0	0 5.28	E5 4.14E5	3.25E5	;

Table 3 - Fractional Fluorescence Yield

Element	₩ _K	₩L	
Fe	0.34	6.4E - 3	
Со	~0.37	7.7E - 3	
Ni	0.41	9.1E - 3	

	rieport bocume	entation Page			
. Report No.	2. Government Accession	n No.	3. Recipient's Catalog	g No.	
NASA TM-100619					
. Title and Subtitle			5. Report Date		
X-Ray Production in Low Energy Proton Stopping			April 1988		
			6. Performing Organi	zation Code	
7. Author(s)			8. Performing Organi	zation Report No.	
J. W. Wilson					
G. S. Khandelwal N. T. Fogarty			10. Work Unit No.		
			199-22-76-01		
9. Performing Organization Name at NASA Langley Resear Hampton, VA 23665	rch Center		11. Contract or Grant	No.	
			13. Type of Report an	d Period Covered	
2. Sponsoring Agency Name and A	ddress		Technical N		
National Aeronautic	s and Space Administra	ation	14. Sponsoring Agenc		
Washington, DC 205			і ін. эропвоніід ждепс	y Code	
6. Abstract The X-ray vields of	stopping protons in a	an iron-nickel	-cobalt allov	are	
The X-ray yields of	stopping protons in a in predicting radiation				
The X-ray yields of calculated for use					
The X-ray yields of calculated for use devices.	in predicting radiation	on damage in e	ncased electro		
The X-ray yields of calculated for use devices.	in predicting radiation	on damage in e	ncased electro		
The X-ray yields of calculated for use devices. 7. Key Words (Suggested by Authon X-ray production	in predicting radiation	on damage in e 18. Distribution Staten Unclassified	ncased electro - Unlimited		
The X-ray yields of calculated for use devices. 7. Key Words (Suggested by Author X-ray production Protons	in predicting radiation	on damage in e	ncased electro - Unlimited		
The X-ray yields of calculated for use devices. 7. Key Words (Suggested by Author X-ray production Protons radiation damage	in predicting radiation	on damage in e 18. Distribution Staten Unclassified	ncased electro - Unlimited	nic	
The X-ray yields of calculated for use devices. 7. Key Words (Suggested by Authon X-ray production Protons	in predicting radiation	18. Distribution Staten Unclassified Subject Cate	ncased electro - Unlimited		