# Computer Program for Parameterization of Nucleus-Nucleus Electromagnetic Dissociation Cross Sections 

John W. Norbury, Lawrence W. Townsend, and Forooz F. Badavi

JUNE 1988

## NASA Technical Memorandum 4038

# Computer Program for Parameterization of Nucleus-Nucleus Electromagnetic Dissociation Cross Sections 

John W. Norbury<br>University of Idabo<br>Moscow, Idabo

Lawrence W. Townsend
Langley Research Center
Hampton, Virginia
Forooz F. Badavi
Planning Research Corporation
Hampton, Virginia

National Aeronautics and Space Administration

Scientific and Technical Information Division

## Symbols

| $A$ | nucleon number |
| :--- | :--- |
| $d$ | overlap distance, fm |
| EM | electromagnetic |
| $E_{\text {photonmax }}$ | maximum photon energy, MeV |
| GDR | giant dipole resonance |
| $g_{n}$ | neutron branching ratio |
| $g_{p}$ | proton branching ratio |
| $N_{\mathrm{pts}}$ | number of integration intervals |
| $R_{0.1}$ | $10-$ percent-charge density radius, fm |
| $T_{\mathrm{th}}$ | threshold energy, MeV |
| $Z$ | proton number |
| $\Gamma$ | GDR width, MeV |
| $\sigma_{\mathrm{EM}}$ | electromagnetic dissociation cross section, mb |

## Introduction

As the United States space program heads toward the era of permanent occupation of the nearEarth environment via the habitation of a permanent Space Station, the problem of protection of astronauts from the harmful effects of cosmic radiation assumes greater and greater importance. Of special concern are the effects of galactic cosmic rays in the form of relativistic nuclei (ref. 1). When a relativistic nucleus impinges upon a spacecraft wall, it undergoes several reactions, an important one of which is fragmentation, whereby the nucleus breaks up into smaller pieces which subsequently decay. It is these secondary particles which contribute to the radiation environment inside a spacecraft. The problem of fragmentation of relativistic nuclei is the subject of a continuing research effort by the present authors and others (ref. 2). An alternative mechanism, which can produce the same sort of radiation environment as the fragmentation mechanism, is that of electromagnetic dissociation by which the electromagnetic field of one nucleus excites states in another nucleus which subsequently decay. Norbury and Townsend have led a study (ref. 3) of the significance of this mechanism to galactic heavy ion break up and have concluded that it is of major importance (i.e., large cross section) for the removal of a few nucleons when a relativistic nucleus impinges upon a spacecraft wall. Consequently, the mechanism of the electromagnetic dissociation must be included when one is trying to predict the radiation environment in the interior of a spacecraft when the exterior environment is composed of galactic heavy ions.

In the present work, it is assumed that the photonuclear cross section is totally dominated by the giant dipole resonance (GDR) (refs. 4 through 9 ) and, furthermore, that the GDR decays only via single nucleon emission.

## Parameterizations

The theoretical formulations of electromagnetic (EM) dissociation cross sections (ref. 3) are certainly adequate as they stand. However, because of the large number of parameters that need to be input "by hand" into the EM code (ref. 3) in an interactive session, one cannot use the EM code as an integral part of a heavy ion transport code. Thus, parameterizations are provided for the giant dipole resonance width $\Gamma$, the 10 -percent-charge density radius $R_{0.1}$, the photoneutron and photoproton threshold energies $T_{\text {th }}$ and branching ratios $g_{p}$ and $g_{n}$, the nucleusnucleus overlap distance $d$, and finally the number of integration intervals used in the numerical
integration of the photon spectrum and photonuclear cross section.

An adequate parameterization of all of these quantities means that the only inputs required for the EM code are the projectile kinetic energy and the mass $(A)$ and charge $(Z)$ numbers of the projectile and target.

## Giant Dipole Resonance Width

Inspection of table 1 of reference 3 indicates that light nuclei have large widths (of the order of 10 MeV ) and heavy nuclei have relatively small widths (around $4-5 \mathrm{MeV}$ ). However, attempts to parameterize $\Gamma$ have not been very successful (ref. 5) as it can be sensitive to nuclear structure effects. Fortunately, the EM cross sections are not very sensitive to $\Gamma$ (ref. 3), and a very simple parameterization seems to be adequate. Thus, we take

$$
\begin{array}{ll}
\Gamma=10 \mathrm{MeV} & (A \leq 50) \\
\Gamma=4.5 \mathrm{Mev} & (A \geq 50) \tag{2}
\end{array}
$$

These values are listed for a representative sample of some nuclei in table 1, together with the values from reference 3 .

## Branching Ratios

Consistent with our assumption that the GDR decays only via single nucleon emission, the neutron branching ratio is

$$
\begin{equation*}
g_{n}=1-g_{p} \tag{3}
\end{equation*}
$$

where it remains to parameterize $g_{p}$, the proton branching ratio. We shall use the one provided by Westfall et al. (ref. 6) as

$$
\begin{equation*}
g_{p}=\operatorname{Min}[Z / A, 1.95 \exp (-0.0075 Z)] \tag{4}
\end{equation*}
$$

which denotes the minimum value of the two quantities in brackets. Again these values are listed in table 1.

## Photonuclear Reaction Thresholds

The cross section is not strongly dependent upon the particle reaction thresholds; therefore, we use 0.001 MeV to avoid obtaining an infinite value in the EM codes (note that a value of 0 MeV would cause numerical difficulty). However, the true value is on the order of 10 MeV (see table 2), and one would therefore think that this would be a poor approximation, especially as the dominant contribution to the virtual photon spectrum occurs at low energy. This effect is offset due to the giant dipole cross section becoming negligible near the threshold and therefore
contributing nothing to the total EM cross section. As a result of

$$
\begin{equation*}
T_{\mathrm{th}}=0.001 \mathrm{MeV} \tag{5}
\end{equation*}
$$

(see table 2), the code now no longer requires nuclear mass excesses as input; this is a considerable improvement in simplicity.

## 10-Percent-Charge Density Radius

Nuclear radii are well parameterized by $1.18 A^{1 / 3} \mathrm{fm}$. Motivated by this result, we investigated the possibility of adding a constant to this form in order to fit the 10 -percent-charge density radii. (See table 3 of ref. 3.) The best fit was obtained with

$$
\begin{equation*}
R_{0.1}=1.18 A^{1 / 3}+0.75 \mathrm{fm} \tag{6}
\end{equation*}
$$

and the results are listed in table 3 , together with the results of reference 3 where a variety of complicated models were used to calculate $R_{0.1}$. As can be seen, equation (6) reproduces the 10 -percent-charge radii very accurately.

## Overlap Distance

The nucleus-nucleus overlap distance was chosen as

$$
\begin{equation*}
d=0 \mathrm{fm} \tag{7}
\end{equation*}
$$

## Integration Variables

The simple trapezoidal rule was used in the numerical integration. A very reliable result can be obtained with the number of integration intervals being

$$
\begin{equation*}
N_{\mathrm{pts}}=50 \tag{8}
\end{equation*}
$$

Furthermore, just as the lower limit in energy is taken as 0.001 MeV , inspection of figures 10 through 30 of reference 3 indicates that an upper energy limit

$$
\begin{equation*}
E_{\text {photonmax }}=70 \mathrm{MeV} \tag{9}
\end{equation*}
$$

is sufficient to cover the entire GDR region. The reader is reminded that the relatively small value used in equation (9) results from the dynamics of the GDR and is not strongly dependent upon the incident kinetic energy of the projectile.

## Results

Equations (1) through (9) summarize all the parameterizations of the nucleus-nucleus EM dissociation cross sections. The only required inputs to the new EM code (see listing in the appendix) are the
projectile kinetic energy and the charge and mass numbers of the projectile and target.

The theoretical (ref. 3) and experimental GDR photonuclear reaction cross sections (refs. 5, 10, and 11), which appear in figures 1 through 13, are presented with these parameterizations. The comparison between the present work and that of reference 3 is quite good except for ${ }^{58} \mathrm{Ni}$ and ${ }^{54} \mathrm{Fe}$. The case of ${ }^{54} \mathrm{Fe}$ is particularly bad because the present parameterization of $g_{p}$ leads to poor results for nuclei far from stability. We shall return to this point later.

The total nucleus-nucleus EM dissociation cross sections are presented in tables 4 through 8. (Note that table 7 presents results for target fragmentation, whereas all the other results are for projectile fragmentation. To calculate target fragmentation with the code in the appendix, one should simply swap the projectile and target.) Also included in these tables are the calculations of reference 3 . Experimental data (refs. 7, 8, and 9) are also included in tables 5, 6 , and 7.

The agreement between the parameterization of $\sigma_{\text {EM }}$ and the data is reasonably good. However, generally the parameterization gives a larger result than the projectile fragmentation data of tables 5 and 6 and a smaller result than the target fragmentation data of table 7. The reason for this is that the parameters were adjusted to give the best overall agreement with the data. Note however, that the errors associated with the data are very large. The errors in the data of Heckman and Lindstrom (ref. 7) in table 5 are typically 50 percent and those of Mercier et al. (ref. 9) in table 7 are around 25 percent. Thus, even though our parameterization agrees with the data usually within 20 percent, this very large uncertainty in the data means that the parameterizations are really as uncertain as the data. Therefore, there is a very urgent need for more accurate data.

The ${ }^{18} \mathrm{O}$ (ref. 8 ) in table 6 has very small errors, and our parameterization typically overestimates the data. There are two reasons for this. First, the photonuclear cross section (figs. 10 and 11) displays features very different from the normal giant dipole resonance. Thus, any attempt to fit the standard GDR is bound to fail. Second, the parameterization of the branching ratio in equation (4) is most accurate for stable nuclei. For unstable nuclei like ${ }^{18} \mathrm{O}$ and ${ }^{54} \mathrm{Fe}$ (refer to earlier discussion), its accuracy is limited. Fortunately, however, the production cross section of these rare nuclei is reasonably small, and the corresponding inaccuracy will not manifest itself as a large inaccuracy in a transport code. Nevertheless, a good description of the electromagnetic cross sections for unstable nuclei would be valuable.

Finally, as seen from tables 4 through 8, agreement between our parameterizations and the results of reference 3 is excellent.

## Concluding Remarks and Future Needs

The parameterizations presented herein are able to match the experimental data to within the uncertainty of the data. This work has demonstrated that the following points need to be further addressed (in order of importance):

1. Much more accurate data are needed
2. A more accurate theoretical model is needed to describe the photonuclear reaction cross sections; this would consequently improve the parameterizations
3. A better description of unstable nuclei (such as ${ }^{18} \mathrm{O}$ and ${ }^{54} \mathrm{Fe}$ ) is needed, particularly
the branching ratios and photonuclear cross sections
4. Multiple nucleon emission should be included
5. Alternatives to the Weizsäcker-Williams method for obtaining the photon spectrum should be investigated
6. The size of the interference between the strong and electromagnetic forces needs to be determined (we have assumed that it is zero (refs. 8 and 12))
7. Multipolarities other than electric dipole need to be included (refs. 12 and 13)
8. Curvilinear, rather than straight-line, trajectories should be considered (refs. 12 and 13)

NASA Langley Research Center
Hampton, Virginia 23665-5225
May 4, 1988

## Appendix

## Computer Code

The computer program of reference 3 has been modified to include the parameterizations of the present work. The only required inputs are the projectile kinetic energy and the projectile and target mass and charge numbers. At the end of the program, a sample output is provided.

## Program Listing

20
30

## 40

50 60 70 80

130 REM
$140 \quad F E C=1 / 137.03604$
150 Hbarc=197.32858
160 Mnceq=938.95
170 Mneutron=939.5731
180 Mprotori=933.2796
$190 \quad \mathrm{Amu}=931.5016$
200 Mstar=. $7 *$ Mncsq
210 J=36.8
$220 \quad Q=17$
230 Epsilon=. 0768
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
40 G INPUT WHAT IS KE H
$410 \quad G a m m=1+T 1 a b / M n c s q$
$420 \quad V E 1=5 Q R(1-1 / G a m m a へ 2)$
430
440
456
460
$470 \quad \mathrm{U}=3 * \mathrm{~J} * \mathrm{AD}^{2}$ ( $-1,3$ )

$10 n+U)$ )
49 REM
500 REM NUMERICAL INTEGRATION OR FLOT

```
    Ephoton<1\rangle=.001
    REM IF Ethreshgn>Ethreshgp THEN Ephoton(1)=Ethreshgp
    Ephotonmax=?0
    Npts=50
    REM
    REM Eint is defined as the integration or plot interval
    REM
    Eirit=\langleEphotonmax-Ephoton(1))/(Npts-1)
    Sum=0
    Sump=a
    Sumn=0
    REM
    REM
    REM
    FOR I=1 TO Npts
        Ephoton=Ephoton(1)+(I-1)*Eint
                            Ephoton(I)=Ephoton
        Sigmanu=Sigmam<(1+(Ephoton^2-Egdr^2)^2)(Ephoton^2*Width^2))
                            Sigmanu(I)=Sigmanu
        Ecut off=Htarc*Gamma*VEl/Bmin
        G=Ephoton/Ecutoff
        CALL Bessel(G,K0,K1)
        Ne=2*Zt^2*Fsc/(Ephotor*PI*VE1^2)*(G*KG*K1-.5*VE1^2*G*2*(K1*2-KG*2))
                    Ne<I
            Function=Sigmanu*Ne
            IF I=1 THEN Function=.5*Function
            IF I=Npts THEN Function=.5*Function
            Sum=Sum+Fumet i on
                Funct ionp=Fracproton*Funct ion
                Functionri=(1-Fracproton)*Function
                IF Ephoton<Ethreshgp THEN Functigrp=0
                IF Ephoton<Ethreshgn THEN Functionm=0
                Sump=Sump+Functionp
                Sumn=Sumn+Functionn
    NEXT I
REM
REM
REM
            Integralp=Eint**Smp
            Integraln=Eint*Sumn
            Integral=Integralp+Integraln
            IF Ephotonmax-Egdr<40 THEN PRINT "WARNING: increase Ephotonmax"
            PRINT
PRINT
PRINT "Width (MEV)",Width
PRINT "Zt",Zt
PRINT "At",Ht
PRINT "Zp",Zp
FRINT "Ap",Ap
PRINT "KE/N (MeV/N)",Tlab
PRINT
PRINT
PRINT
FRINT "Lower limit of integration (MEV)",Ephoton(1)
PRINT "Upper limit of integration (MeV)",Ephotonmax
PRINT "Humber of integration intervals is",Npts
PRINT "Value of integration interval width <MeV)",Eint
PRINT
PRINT
PRINT "Sigmanu (mb)",sigmanu
PRINT "Sigmam (mb)",Sigmam
PRINT "Ro (fm)",Ro
```

1140
1160 PRINT
1170 PRINT
1180 PRINT
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
PRINT

PRINT
PRINT
PRINT

PRINT

STOP
END

PRINT "U", U
PRINT "GDR Energy (Mev)", Egdr

PRINT "FROJ VELOCITY \&=Beta factory-units of c", Vel
PRINT "RELATIVISTIC GAMMA FACTOR OF PROJ (MEV CN)", Gamma
PRINT "Ecutoff (MEU)", Ecut off
PRINT "10 percent charge radius of target 〈fm〉 ",R10t
PRINT "10 percent charge radius of projectile (fm)",R10p
PRINT "Dee", Dee
PRINT "Bmin (fm)",Bmin

FRINT "COULOMB IISSOCIRTION CROSS SECTION (Sigmaww) (mb)", Integral
PRINT "sigma(gamma, $p$ ) (mb)", Integralp
PRINT "Sigma(gamma,n) (mb)", Integraln

SUB Bessel (G,Ka,K1)

$$
\mathrm{A} 1=3.5156229
$$

$\mathrm{A} 2=3.0899424$
$\mathrm{A} 3=1.2067492$
A4 $=.2659732$
$\mathrm{A} 5=.0360768$
A6=. 0045813
A7 $=.39894228$
$\mathrm{A} 8=.01328592$
$\mathrm{A9}=.00225319$
F10 $=.00157565$
A11 $=.00916281$
A12=.02057706
A13 $=.02635537$
A14 $=.01647633$
A15 $=.00392377$
A16=.87890594
$\mathrm{A} 17=.51498869$
A18 $=.15084934$
A19 $=.02658733$
R20 =. 00301532
$\mathrm{A} 21=.00032411$
R22 $=.39894228$
A23 $=.03988024$
A24 $=.00362018$
$\mathrm{A} 25=.00163801$
A $26=.01031555$
$\mathrm{A} 27=.02282967$
A28 $=.02895312$
$\mathrm{A} 29=.01787654$
$\mathrm{A} 30=.00420059$
B1=. 57721566
B2=.42278420
B3 $=.23069756$
B4 $=.0348859$
$B 5=.00262698$
B6=. 0001075
$B 7=.0000074$
ORIGINAL PAGE IS
OF POOR QUALITY
B8=1.25331414
$B 9=.07832358$
B10=.02189568

```
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940 IF G<<=3.7
1950 IF G>3.75 THEN IQ=1/SQR(G)*EXP(G)*(AT+A8/T+A9/T^2-A10/T^3+A11/T^4-A12/T^5+
A13/T^6-R14/T^7+A15/T^8)
1960 IF G<=3.75 THEN I I=G*<.5+A16*T^2+A17*T^4+A18*T^6+A19*T^8+A20*T^10+A21*T^12
)
1970 IF G>3.75 THEN I =1/SQR(G)*EXF(G)*(A22-R23/T-A24/T^2+A25/T^3-H26/T^4+R27/T
^5-R28/T^6+R29/T^7-A30/T^8)
1980 S=G/2
1990 IF G<=2 THEN K0=-LOG(S)*I日-B1+B2*S^2+B3*S^4+B4*S^6+B5*S^8+B6*S^10+B7*S^12
2000 IF G>2 THEN KG=1/SQR(G)*EXP(-G)*(B8-B9/S+B1日/S^2-B11/S^3+E12/S^4-B13/S^5+B
14/5^6)
2010 IF G<=2 THEN K1=LOG(S)*I1+1/G*(1+B15*S^2-B16*S^4-B17*S^6-E18*S^8-B19*S^10-
B20*5^12)
2020 IF G>2 THEN K1=1/SQR(G)*EXP(-G)*(B21+E22/S-B23/S^2+B24/5^3-B25/S^4+B26/5^5
-B27/5^6)
2030 SUBEND
```


## Sample Output

| Width (MeV) | 4.50 |
| :--- | :--- |
| $Z t$ | 82.00 |
| $A t$ | 208.00 |
| $Z p$ | 26.00 |
| $A p$ | 56.00 |
| $K E / N(M E V / N)$ | 1880.00 |



| Sigmanu (mb) | .56 |
| :--- | :--- |
| Sigmam (mb) | 118.23 |
| Ro (fm) | 4.51 |
| $U$ | 1.70 |
| GDR Energy (Mev) | 18.40 |


COULOME IISSOCIRTIOH CROSS SECTION 〈Signaww (mb) 1020.044

| Sigma(gamma,p) | (mb) | 283.00 |
| :--- | :--- | :--- |
| Sigma(gamma, $)$ | $(m b)$ | 737.05 |

## References

1. Todd, Paul: Unique Biological Aspects of Radiation Hazards-An Overview. Adv. Space Res., vol. 3, no. 8, 1983, pp. 187-194.
2. Townsend, L. W.; Wilson, J. W.; and Norbury, J. W.: A Simplified Optical Model Description of Heavy Ion Fragmentation. Canadian J. Phys., vol. 63, no. 2, Feb. 1985, pp. 135-138.
3. Norbury, John W.; and Townsend, Lawrence W.: Electromagnetic Dissociation Effects in Galactic HeavyIon Fragmentation. NASA TP-2527, 1986.
4. Spicer, B. M.: The Giant Dipole Resonance. Advances in Nuclear Physics, Volume 2, Michel Baranger and Erich Vogt, eds., Plenum Press, Inc., 1969, pp. 1-78.
5. Berman, B. L.; and Fultz, S. C.: Measurements of the Giant Dipole Resonance With Monoenergetic Photons. Reviews Modern Phys., vol. 47, no. 3, July 1975, pp. 713-761.
6. Westfall, G. D.; Wilson, Lance W.; Lindstrom, P. J.; Crawford, H. J.; Greiner, D. E.; and Heckman, H. H.: Fragmentation of Relativistic ${ }^{56} \mathrm{Fe}$. Phys. Review, ser. C, vol. 19, no. 4, Apr. 1979, pp. 1309-1323.
7. Heckman, Harry H.; and Lindstrom, Peter J.: Coulomb Dissociation of Relativistic ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ Nuclei. Phys. Review Lett., vol. 37, no. 1, July 5, 1976, pp. 56-59.
8. Olson, D. L.; Berman, B. L.; Greiner, D. E.; Heckman, H. H.; Lindstrom, P. J.; Westfall, G. D.; and Crawford, H. J.: Electromagnetic Dissociation of Relativistic ${ }^{18} \mathrm{O}$ Nuclei. Phys. Review, ser. C, vol. 24, no. 4, Oct. 1981, pp. 1529-1539.
9. Mercier, M. T.; Hill, J. C.; Wohn, F. K.; and Smith, A. R.: Electromagnetic Dissociation of ${ }^{197} \mathrm{Au}$ by Relativistic Heavy Ions. Phys. Review Lett., vol. 52, no. 11, Mar. 12, 1984, pp. 898-901.
10. Woodworth, J. G.; McNeill, K. G.; Jury, J. W.; Alvarez, R. A.; Berman, B. L.; Faul, D. D.; and Meyer, P.: Photonuclear Cross Sections for ${ }^{18}$ O. Phys. Review, ser. C, vol. 19, no. 5, May 1979, pp. 1667-1683.
11. Norbury, J. W.; Thompson, M. N.; Shoda, K.; and Tsubota, H.: Photoneutron Cross Section of ${ }^{54} \mathrm{Fe}$. Australian J. Phys., vol. 31, no. 6, Dec. 1978, pp. 471-475.
12. Goldberg, A.: On the Virtual Photon Spectrum for Electromagnetic Dissociation of Relativistic Nuclei in Peripheral Collisions. Nucl. Phys., ser. A, vol. 420, no. 3, June 4, 1984, pp. 636-644.
13. Bertulani, C. A.; and Baur, G.: Electromagnetic Processes in Relativistic Heavy Ion Collisions. Nucl. Phys., ser. A, vol. 458, no. 4, Oct. 20, 1986, pp. 725-744.

Table 1. Resonance Widths and Proton Branching Ratios

| Nucleus | $\Gamma, \mathrm{MeV}$ |  | $g_{p}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Reference 3 | Present work | Reference 3 | Present work |
| ${ }^{7} \mathrm{Li}$ |  | 10.0 |  | 0.43 |
| ${ }^{9} \mathrm{Be}$ |  | 10.0 |  | 0.44 |
| ${ }^{12} \mathrm{C}$ | 8.0 | 10.0 | 0.5 | 0.5 |
| ${ }^{16} \mathrm{O}$ | 10.0 | 10.0 | 0.5 | 0.5 |
| ${ }^{18} \mathrm{O}$ | 12.0 | 10.0 | 0.4 | 0.44 |
| ${ }^{20} \mathrm{Ne}$ | 10.0 | 10.0 | 0.5 | 0.5 |
| ${ }^{28} \mathrm{Si}$ | 10.0 | 10.0 | 0.5 | 0.5 |
| ${ }^{32} \mathrm{~S}$ |  | 10.0 |  | 0.5 |
| ${ }^{40} \mathrm{Ar}$ | 10.0 | 10.0 | 0.45 | 0.45 |
| ${ }^{40} \mathrm{Ca}$ | 10.0 | 10.0 | 0.5 | 0.44 |
| ${ }^{48} \mathrm{Ti}$ |  | 10.0 |  | 0.37 |
| ${ }^{54} \mathrm{Fe}$ | 3.0 | 4.5 | 0.7 | 0.28 |
| ${ }^{56} \mathrm{Fe}$ | 5.0 | 4.5 | 0.28 | 0.28 |
| ${ }^{58} \mathrm{Ni}$ | 10.0 | 4.5 | 0.5 | 0.24 |
| ${ }^{63} \mathrm{Cu}$ | 5.0 | 4.5 | 0.28 | 0.22 |
| ${ }^{90} \mathrm{Zr}$ | 4.0 | 4.5 | 0.05 | 0.10 |
| ${ }^{107} \mathrm{Ag}$ | 5.0 | 4.5 | 0 | 0.06 |
| ${ }^{106} \mathrm{Gd}$ | 4.0 | 4.5 | 0 | 0.02 |
| ${ }^{181} \mathrm{Ta}$ |  | 4.5 |  | 0.01 |
| ${ }^{197} \mathrm{Au}$ | 3.5 | 4.5 | 0 | 0.01 |
| ${ }^{208} \mathrm{~Pb}$ | 3.9 | 4.5 | 0 | 0 |
| ${ }^{238} \mathrm{U}$ | 5.0 | 4.5 | 0 | 0 |

Table 2. Giant Dipole Resonance Particle Thresholds

| Nucleus | Proton threshold, <br> MeV |  | Neutron threshold, <br> MeV |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Reference 3 | Present work | Reference 3 | Present work |
| ${ }^{12} \mathrm{C}$ | 15.46 | 0.001 | 18.74 | 0.001 |
| ${ }^{16} \mathrm{O}$ | 11.62 | 0.001 | 15.67 | 0.001 |
| ${ }^{18} \mathrm{O}$ | 15.44 | 0.001 | 8.05 | 0.001 |
| ${ }^{40} \mathrm{Ar}$ | 12.02 | 0.001 | 9.87 | 0.001 |
| ${ }^{56} \mathrm{Fe}$ | 9.67 | 0.001 | 11.20 | 0.001 |
| ${ }^{197} \mathrm{Au}$ | 5.27 | 0.001 | 8.07 | 0.001 |

Table 3. The 10-Percent-Charge Density Radii

| Nucleus | 10-percent radius, fm |  |
| :--- | :---: | :---: |
|  | Reference 3 | Present work |
| ${ }^{7} \mathrm{Li}$ | 3.04 | 3.01 |
| ${ }^{9} \mathrm{Be}$ | 3.32 | 3.20 |
| ${ }^{12} \mathrm{C}$ | 3.33 | 3.45 |
| ${ }^{16} \mathrm{O}$ | 3.77 | 3.72 |
| ${ }^{18} \mathrm{O}$ | 3.88 | 3.84 |
| ${ }^{20} \mathrm{Ne}$ | 4.06 | 3.95 |
| ${ }^{27} \mathrm{Al}$ | 4.21 | 4.29 |
| ${ }^{28} \mathrm{Si}$ | 4.18 | 4.33 |
| ${ }^{32} \mathrm{~S}$ | 4.53 | 4.50 |
| ${ }^{40} \mathrm{Ar}$ | 4.73 | 4.79 |
| ${ }^{40} \mathrm{Ca}$ | 4.80 | 4.79 |
| ${ }^{48} \mathrm{Ti}$ | 5.00 | 5.04 |
| ${ }^{54} \mathrm{Fe}$ | 5.19 | 5.21 |
| ${ }^{56} \mathrm{Fe}$ | 5.28 | 5.26 |
| ${ }^{58} \mathrm{Ni}$ | 5.37 | 5.32 |
| ${ }^{64} \mathrm{Cu}$ | 5.45 | 5.47 |
| ${ }^{90} \mathrm{Zr}$ | 5.90 | 6.04 |
| ${ }^{108} \mathrm{Ag}$ and ${ }^{107} \mathrm{Ag}$ | 6.32 | 6.37 |
| ${ }^{160} \mathrm{Gd}$ |  | 7.16 |
| ${ }^{181} \mathrm{Ta}$ | 7.79 | 7.42 |
| ${ }^{197} \mathrm{Au}$ | 7.56 | 7.62 |
| ${ }^{208} \mathrm{~Pb}$ | 7.83 | 7.74 |
| ${ }^{238} \mathrm{U}$ | 8.13 | 8.06 |

Table 4. Calculated Total Electromagnetic Absorption Cross Section for $1.88 \mathrm{GeV} / \mathrm{N}{ }^{56} \mathrm{Fe}$ Incident Upon Various Targets

| Projectile | Energy,$\mathrm{GeV} / \mathrm{N}$ | Target | $\sigma_{\mathrm{EM}}(\mathrm{~W}), \mathrm{mb}$ <br> (a) | $\sigma_{\mathrm{EM}}, \mathrm{mb}$, for $d=0 \mathrm{fm}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Reference 3 | Present work |
| ${ }^{56} \mathrm{Fe}$ | 1.88 | ${ }_{3}^{7} \mathrm{Li}$ | 2 | 1.9 | 2.1 |
|  |  | ${ }_{4}^{9} \mathrm{Be}$ | 3 | 3.3 | 3.7 |
|  |  | ${ }_{6}^{12} \mathrm{C}$ | 7 | 7.3 | 8.0 |
|  |  | ${ }_{16}^{32} \mathrm{~S}$ | 46 | 46 | 52 |
|  |  | ${ }_{29}^{63} \mathrm{Cu}$ | 130 | 140 | 156 |
|  |  | ${ }_{47}^{107} \mathrm{Ag}$ | 306 |  | 377 |
|  |  | ${ }_{73}^{181} \mathrm{Ta}$ | 629 | 717 | 830 |
|  |  | ${ }_{82}^{208} \mathrm{~Pb}$ | 834 | 901 | 1020 |
|  |  | ${ }_{92}^{238} \mathrm{U}$ | 1008 | 1105 | 1250 |

${ }^{a}$ This column represents the isotope-averaged calculations of Westfall et al. (ref. 6).

Table 5. Calculated Total Electromagnetic Reaction Cross Sections for ${ }^{12} \mathrm{C}$ and
${ }^{16}$ O Incident Upon Various Targets

| Projectile | Energy,$\mathrm{GeV} / \mathrm{N}$ | Target | - Final state | $\sigma_{\mathrm{EM}}(\mathrm{HL}), \mathrm{mb}$$(a)$ | $\sigma_{\mathrm{EM}}, \mathrm{mb}$, for $d=0 \mathrm{fm}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Reference 3 | Present work |
| ${ }^{12} \mathrm{C}$ | 2.1 | ${ }^{208} \mathrm{~Pb}$ | ${ }^{11} \mathrm{C}+\mathrm{n}$ | $50 \pm 18$ | 54 | 68 |
|  |  |  | ${ }^{11} \mathrm{~B}+\mathrm{p}$ | $50 \pm 25$ | 60 | 68 |
|  | 1.05 |  | ${ }^{11} \mathrm{C}+\mathrm{n}$ | $38 \pm 24$ | 32 | 43 |
|  |  |  | ${ }^{11} \mathrm{~B}+\mathrm{p}$ | $50 \pm 26$ | 36 | 43 |
| ${ }^{16} \mathrm{O}$ | 2.1 |  | ${ }^{15} \mathrm{O}+\mathrm{n}$ | $50 \pm 25$ | 78 | 99 |
|  |  |  | ${ }^{15} \mathrm{~N}+\mathrm{p}$ | $97 \pm 17$ | 87 | 26 |
| ${ }^{12} \mathrm{C}$ | 2.1 | ${ }^{108} \mathrm{Ag}$ | ${ }^{11} \mathrm{C}+\mathrm{n}$ | $22 \pm 12$ | 21 | 26 |
|  |  |  | ${ }^{11} \mathrm{~B}+\mathrm{p}$ | $20 \pm 12$ | 23 | 26 |
|  | 1.05 |  | ${ }^{11} \mathrm{C}+\mathrm{n}$ | $22 \pm 12$ | 13 | 17 |
|  |  |  | ${ }^{11} \mathrm{~B}+\mathrm{p}$ | $25 \pm 20$ | 15 | 17 |
| ${ }^{16} \mathrm{O}$ | 2.1 |  | ${ }^{15} \mathrm{O}+\mathrm{n}$ | $26 \pm 13$ | 30 | 37 |
|  |  |  | ${ }^{15} \mathrm{~N}+\mathrm{p}$ | $29 \pm 18$ | 33 | 37 |
| ${ }^{12} \mathrm{C}$ | 2.1 | ${ }^{64} \mathrm{Cu}$ | ${ }^{11} \mathrm{C}+\mathrm{n}$ | $10 \pm 6$ | 9 | 11 |
|  |  |  | ${ }^{11} \mathrm{~B}+\mathrm{p}$ | $4 \pm 8$ | 10 | 11 |
|  | 1.05 |  | ${ }^{11} \mathrm{C}+\mathrm{n}$ | $10 \pm 7$ | 5.9 | 7.4 |
|  |  |  | ${ }^{11} \mathrm{~B}+\mathrm{p}$ | $5 \pm 8$ | 6.5 | 7.4 |
| ${ }^{16} \mathrm{O}$ | 2.1 |  | ${ }^{15} \mathrm{O}+\mathrm{n}$ | $10 \pm 7$ | 12.7 | 16 |
|  |  |  | ${ }^{15} \mathrm{~N}+\mathrm{p}$ | $14 \pm 9$ | 14 | 16 |
| ${ }^{12} \mathrm{C}$ | 2.1 | ${ }^{27} \mathrm{Al}$ | ${ }^{11} \mathrm{C}+\mathrm{n}$ | $0 \pm 3$ | 2.1 | 2.5 |
|  |  |  | ${ }^{11} \mathrm{~B}+\mathrm{p}$ | $0 \pm 3$ | 2.3 | 2.5 |
|  | 1.05 |  | ${ }^{11} \mathrm{C}+\mathrm{n}$ | $1 \pm 3$ | 1.5 | 1.8 |
|  |  |  | ${ }^{11} \mathrm{~B}+\mathrm{p}$ | $1 \pm 3$ | 1.6 | 1.8 |
| ${ }^{16} \mathrm{O}$ | 2.1 |  | ${ }^{15} \mathrm{O}+\mathrm{n}$ | $0 \pm 3$ | 2.9 | 3.6 |
|  |  |  | ${ }^{15} \mathrm{~N}+\mathrm{p}$ | $0 \pm 0$ | 3.2 | 3.6 |
| ${ }^{12} \mathrm{C}$ | 2.1 | ${ }^{12} \mathrm{C}$ | ${ }^{11} \mathrm{C}+\mathrm{n}$ | $0 \pm 1$ | 0.50 | 0.58 |
|  |  |  | ${ }^{11} \mathrm{~B}+\mathrm{p}$ | $0 \pm 3$ | 0.54 | 0.58 |
|  | 1.05 |  | ${ }^{11} \mathrm{C}+\mathrm{n}$ | $0 \pm 2$ | 0.36 | 0.43 |
|  |  |  | ${ }^{11} \mathrm{~B}+\mathrm{p}$ | $0 \pm 1$ | 0.40 | 0.43 |
| ${ }^{16} \mathrm{O}$ | 2.1 |  | ${ }^{15} \mathrm{O}+\mathrm{n}$ | $0 \pm 2$ | 0.70 | 0.83 |
|  |  |  | ${ }^{15} \mathrm{~N}+\mathrm{p}$ | $0 \pm 3$ | 0.76 | 0.83 |

${ }^{a}$ This column represents the measurements (isotope averaged) of Heckman and Lindstrom (ref. 7).

Table 6. Calculated Total Electromagnetic Reaction Cross Sections for ${ }^{18} \mathrm{O}$ at $1.7 \mathrm{GeV} / \mathrm{N}$ Incident Upon Various Targets

| Projectile | Energy, <br> $\mathrm{GeV} / \mathrm{N}$ | Target | Final state | $\sigma_{\mathrm{EM}}(\mathrm{O}), \mathrm{mb}$ <br> (a) | $\sigma_{\mathrm{EM}}, \mathrm{mb}$, for $d=0 \mathrm{fm}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & \text { Reference } 3 \\ & \left(g_{p}=0.2\right) \end{aligned}$ | Present work |
| ${ }^{18} \mathrm{O}$ | 1.7 | ${ }^{48} \mathrm{Ti}$ | ${ }^{17} \mathrm{O}+\mathrm{n}$ | $8.7 \pm 2.7$ | 12 | 11 |
|  |  |  | ${ }^{17} \mathrm{~N}+\mathrm{p}$ | $0.5 \pm 1.0$ | 2 | 9 |
|  |  | ${ }^{208} \mathrm{~Pb}$ | ${ }^{17} \mathrm{O}+\mathrm{n}$ | $136 \pm 2.9$ | 123 | 112 |
|  |  |  | ${ }^{17} \mathrm{~N}+\mathrm{p}$ | $20.2 \pm 1.8$ | 24 | 89 |
|  |  | ${ }^{238} \mathrm{U}$ | ${ }^{17} \mathrm{O}+\mathrm{n}$ | $140.8 \pm 4.1$ | 151 | 136 |
|  |  |  | ${ }^{17} \mathrm{~N}+\mathrm{p}$ | $2.51 \pm 1.6$ | 30 | 109 |

${ }^{a}$ This column represents the measurements (isotope averaged) of Olson et al. (ref. 8).

Table 7. Target Fragmentation-Calculated Total Electromagnetic Reaction Cross Sections for Various Projectiles Incident Upon ${ }^{197} \mathrm{Au}$

| Projectile | Energy, <br> $\mathrm{GeV} / \mathrm{N}$ | Target | Final state | $\sigma_{\mathrm{EM}}(\mathrm{M}), \mathrm{mb}$ <br> (a) | $\sigma_{\mathrm{EM}}, \mathrm{mb}$, for $d=0 \mathrm{fm}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Reference 3 | Present work |
| ${ }^{12} \mathrm{C}$ | 2.1 | ${ }^{197} \mathrm{Au}$ | ${ }^{196} \mathrm{Au}+\mathrm{n}$ | $66 \pm 20$ | 37 | 39 |
| ${ }^{20} \mathrm{Ne}$ | 2.1 |  |  | $136 \pm 21$ | 97 | 104 |
| ${ }^{40} \mathrm{Ar}$ | 1.8 |  |  | $420 \pm 120$ | 278 | 299 |
| ${ }^{56} \mathrm{Fe}$ | 1.7 |  |  | $680 \pm 160$ | 546 | 588 |

${ }^{a}$ This column represents the data of Mercier et al. (ref. 9).

Table 8. Electromagnetic Dissociation Cross Sections for a Variety Of Reactions With $d=0 \mathrm{fm}$

| Projectile | Energy | $\Gamma, \mathrm{MeV}$ | $g_{p}$ | Target | Final state | $\sigma_{\mathrm{EM}}, \mathrm{mb}$, for $d=0 \mathrm{fm}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Reference 3 | Present work |
| ${ }^{12} \mathrm{C}$ | $86 \mathrm{MeV} / \mathrm{N}$ | 8.0 | 0.5 | ${ }^{12} \mathrm{C}$ | $\begin{aligned} & { }^{11} \mathrm{C}+\mathrm{n} \\ & { }^{11} \mathrm{~B}+\mathrm{p} \end{aligned}$ | 0.09 | 0.19 |
|  |  |  |  |  |  | 0.11 | 0.19 |
|  | $350 \mathrm{MeV} / \mathrm{N}$ |  |  | ${ }^{107} \mathrm{Ag}$ | $\begin{aligned} & { }^{11} \mathrm{C}+\mathrm{n} \\ & { }^{11} \mathrm{~B}+\mathrm{p} \end{aligned}$ | 67 | 1010 |
|  |  |  |  |  |  |  |  |
|  | $1.05 \mathrm{GeV} / \mathrm{N}$ |  |  | ${ }^{197} \mathrm{Au}$ | $\begin{aligned} & { }^{11} \mathrm{C}+\mathrm{n} \\ & { }^{11} \mathrm{~B}+\mathrm{p} \end{aligned}$ | $\begin{aligned} & 31 \\ & 34 \end{aligned}$ | $\begin{aligned} & 41 \\ & 41 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
|  | $2.1 \mathrm{GeV} / \mathrm{N}$ |  |  | ${ }^{197} \mathrm{Au}$ | $\begin{aligned} & { }^{11} \mathrm{C}+\mathrm{n} \\ & { }^{11} \mathrm{~B}+\mathrm{p} \end{aligned}$ | $\begin{aligned} & 53 \\ & 57 \end{aligned}$ | $\begin{aligned} & 64 \\ & 64 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
| ${ }^{16} \mathrm{O}$ | $2.1 \mathrm{GeV} / \mathrm{N}$ | 10.0 | 0.5 | ${ }^{9} \mathrm{Be}$ | $\begin{aligned} & { }^{15} \mathrm{O}+\mathrm{n} \\ & { }^{15} \mathrm{~N}+\mathrm{p} \end{aligned}$ | 0.310.34 | 0.380.38 |
|  |  |  |  |  |  |  |  |
|  |  |  |  | ${ }^{12} \mathrm{C}$ | $\begin{aligned} & { }^{15} \mathrm{O}+\mathrm{n} \\ & { }^{15} \mathrm{~N}+\mathrm{p} \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 0.76 \end{aligned}$ | $\begin{aligned} & 0.83 \\ & 0.83 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  | ${ }^{208} \mathrm{~Pb}$ | $\begin{aligned} & { }^{15} \mathrm{O}+\mathrm{n} \\ & { }^{15} \mathrm{~N}+\mathrm{p} \end{aligned}$ | 8087 | $\begin{aligned} & 99 \\ & 99 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
| ${ }^{40} \mathrm{Ar}$ | $213 \mathrm{MeV} / \mathrm{N}$ | 10.0 | 0.45 | ${ }^{12} \mathrm{C}$ | $\begin{aligned} & { }^{39} \mathrm{Ar}+\mathrm{n} \\ & { }^{39} \mathrm{Cl}+\mathrm{p} \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 0.9 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.2 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
| ${ }^{56} \mathrm{Fe}$ | $1.88 \mathrm{GeV} / \mathrm{N}$ | 5.0 | 0.28 | ${ }^{12} \mathrm{C}$ | $\begin{aligned} & { }^{55} \mathrm{Fe}+\mathrm{n} \\ & { }^{55} \mathrm{Mn}+\mathrm{p} \end{aligned}$ | $\begin{aligned} & 5.3 \\ & 2.1 \end{aligned}$ | $\begin{aligned} & 5.8 \\ & 2.2 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
|  |  |  | 28 | ${ }^{108} \mathrm{Ag}$ | $\begin{aligned} & { }^{55} \mathrm{Fe}+\mathbf{n} \\ & { }^{55} \mathrm{Mn}+\mathrm{p} \end{aligned}$ | $\begin{array}{r} 242 \\ 97 \end{array}$ | $\begin{aligned} & 272 \\ & 105 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  | ${ }^{208} \mathrm{~Pb}$ | $\begin{aligned} & { }^{55} \mathrm{Fe}+\mathrm{n} \\ & { }^{55} \mathrm{Mn}+\mathrm{p} \end{aligned}$ | $\begin{aligned} & 645 \\ & 258 \end{aligned}$ | 737 |
|  |  |  |  |  |  |  | 283 |
| ${ }^{238} \mathrm{U}$ | $900 \mathrm{MeV} / \mathrm{N}$ | 5.0 | 0 | ${ }^{12} \mathrm{C}$ | $\begin{aligned} & { }^{237} \mathrm{U}+\mathrm{n} \\ & { }^{237} \mathrm{~Pa}+\mathrm{p} \end{aligned}$ | $\begin{array}{r} 33 \\ 0 \end{array}$ | $\begin{gathered} 36 \\ 0.1 \end{gathered}$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  | ${ }^{27} \mathrm{Al}$ | $\begin{aligned} & { }^{237} \mathrm{U}+\mathrm{n} \\ & { }^{237} \mathrm{~Pa}+\mathrm{p} \end{aligned}$ | $\begin{array}{r} 142 \\ 0 \end{array}$ | $\begin{gathered} 158 \\ 0.3 \end{gathered}$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  | ${ }^{28} \mathrm{Si}$ | $\begin{aligned} & { }^{237} \mathrm{U}+\mathrm{n} \\ & { }^{237} \mathrm{~Pa}+\mathrm{p} \end{aligned}$ | 165 | 182$-\quad 0.4$ |
|  |  |  |  |  |  | 0 |  |
|  |  |  |  | ${ }^{64} \mathrm{Cu}$ | $\begin{aligned} & { }^{237} \mathrm{U}+\mathrm{n} \\ & { }^{237} \mathrm{~Pa}+\mathrm{p} \end{aligned}$ | 628 | 704 |
|  |  |  |  |  |  | 0 | 1.4 |
|  |  |  |  | ${ }^{181} \mathrm{Ta}$ | $\begin{aligned} & { }^{237} \mathrm{U}+\mathrm{n} \\ & { }^{237} \mathrm{~Pa}+\mathrm{p} \end{aligned}$ | 3208 | 3760 |
|  |  |  |  |  |  | 0 | 7.4 |
|  |  |  |  | ${ }^{208} \mathrm{~Pb}$ | $\begin{aligned} & { }^{237} \mathrm{U}+\mathrm{n} \\ & { }^{237} \mathrm{~Pa}+\mathrm{p} \\ & \hline \end{aligned}$ | $\begin{array}{r} 4034 \\ 0 \end{array}$ | $\begin{array}{r} 4617 \\ 9.1 \end{array}$ |
|  |  |  |  |  |  |  |  |



Figure 1. Theoretical, parameterized, and experimental photoneutron reaction cross sections for ${ }^{12} \mathrm{C}$. Theoretical $\Gamma=8 \mathrm{MeV}$; Parameterized $\Gamma=10 \mathrm{MeV}$; Theoretical $g_{p}=$ Parameterized $g_{p}=0.5$; thus, photoneutron and photoproton cross sections are identical.


Figure 2. Theoretical, parameterized, and experimental photoneutron reaction cross sections for ${ }^{16} \mathrm{O}$. $\Gamma=10 \mathrm{MeV}$; Theoretical $g_{p}=$ Parameterized $g_{p}=0.5$; thus, the photoneutron and photoproton cross sections are identical.


Figure 3. Theoretical, parameterized, and experimental photoneutron reaction cross sections for ${ }^{28} \mathrm{Si}$. $\Gamma=10 \mathrm{MeV}$; Theoretical $g_{p}=$ Parameterized $g_{p}=0.5$; thus, the photoneutron and photoproton cross sections are identical.


Figure 4. Theoretical, parameterized, and experimental photoneutron reaction cross sections for ${ }^{58} \mathrm{Ni}$. Theoretical $\Gamma=10 \mathrm{MeV}$; Parameterized $\Gamma=4.5 \mathrm{MeV}$; Theoretical $g_{p}=0.5$; thus, the theoretical photoneutron and photoproton cross sections are identical; Parameterized $g_{p}=0.24$. Resultant parameterized photoproton cross section is also displayed.


Figure 5. Theoretical, parameterized, and experimental photoneutron reaction cross sections for ${ }^{90} \mathrm{Zr}$. Theoretical $\Gamma=4 \mathrm{MeV}$; Parameterized $\Gamma=4.5 \mathrm{MeV}$; Theoretical $g_{p}=0.05$; Parameterized $g_{p}=0.1$.


Figure 6. Theoretical, parameterized, and experimental photoneutron reaction cross sections for ${ }^{160} \mathrm{Gd}$. Theoretical $\Gamma=4 \mathrm{MeV}$; Parameterized $\Gamma=4.5 \mathrm{MeV}$; Theoretical $g_{p}=0$; Parameterized $g_{p}=0.02$.


Figure 7. Theoretical, parameterized, and experimental photoneutron reaction cross sections for ${ }^{197} \mathrm{Au}$. Theoretical $\Gamma=3.5 \mathrm{MeV}$; Parameterized $\Gamma=4.5 \mathrm{MeV}$; Theoretical $g_{p}=0$; Parameterized $g_{p}=0.01$.


Figure 8. Theoretical, parameterized, and experimental photoneutron reaction cross sections for ${ }^{208} \mathrm{~Pb}$.
Theoretical $\Gamma=3.9 \mathrm{MeV}$; Parameterized $\Gamma=4.5 \mathrm{MeV}$; Theoretical $g_{p}=$ Parameterized $g_{p}=0$.


Figure 9. Theoretical, parameterized, and experimental photoneutron reaction cross sections for ${ }^{238} \mathrm{U}$. Theoretical $\Gamma=5 \mathrm{MeV}$; Parameterized $\Gamma=4.5 \mathrm{MeV}$; Theoretical $g_{p}=$ Parameterized $g_{p}=0$.


Figure 10. Theoretical, parameterized, and experimental photoproton reaction cross sections for ${ }^{18} \mathrm{O}$. Theoretical $\Gamma=12 \mathrm{MeV}$; Parameterized $\Gamma=10 \mathrm{MeV}$; Theoretical $g_{p}=0.40$; Parameterized $g_{p}=0.44$.


Figure 11. Theoretical, parameterized, and experimental photoneutron reaction cross sections for ${ }^{18} \mathrm{O}$. Theoretical $\Gamma=12 \mathrm{MeV}$; Parameterized $\Gamma=10 \mathrm{MeV}$; Theoretical $g_{n}=0.60$; Parameterized $g_{n}=0.56$.


Figure 12. Theoretical, parameterized, and experimental photoproton reaction cross sections for ${ }^{54} \mathrm{Fe}$. Theoretical $\Gamma=3 \mathrm{MeV}$; Parameterized $\Gamma=4.5 \mathrm{MeV}$; Theoretical $g_{p}=0.70$; Parameterized $g_{p}=0.28$.


Figure 13. Theoretical, parameterized, and experimental photoneutron reaction cross sections for ${ }^{54} \mathrm{Fe}$. Theoretical $\Gamma=3 \mathrm{MeV}$; Parameterized $\Gamma=4.5 \mathrm{MeV}$; Theoretical $g_{n}=0.30$; Parameterized $g_{n}=0.72$.

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| 1. Report No. NASA TM-4038 | 2. Government Accession No. | 3. Recipient's Catalog No. |  |
| 4. Title and Subtitle <br> Computer Program for Parameterization of Nucleus-Nucleus Electromagnetic Dissociation Cross Sections |  | 5. Report Date June 1988 |  |
| 7. Author(s) <br> John W. Norbury, Lawrence W. Townsend, and Forooz F. Badavi |  | 8. Performing Organization Report No. L-16427 |  |
| 9. Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665-5225 |  | 10. Work Unit No.199-22-76-01 |  |
|  |  | 11. Contract or Grant No. |  |
| 12. Sponsoring Agency Name and Address <br> National Aeronautics and Space Administration Washington, DC 20546-0001 |  | 13. Type of Report and Period Covered Technical Memorandum |  |
|  |  | 14. Sponsoring Agency Code |  |
| 15. Supplementary Notes <br> John W. Norbury: University of Idaho, Moscow, Idaho. <br> Lawrence W. Townsend: Langley Research Center, Hampton, Virginia. <br> Forooz F. Badavi: Planning Research Corporation, Hampton, Virginia. <br> This research was supported in part by NASA Research Cooperative Agreement NCC1-110 with the University of Idaho. |  |  |  |
|  |  |  |  |
|  |  |  |  |
| 16. Abstract <br> A computer subroutine parameterization of electromagnetic dissociation cross sections for nucleusnucleus collisions is presented that is suitable for implementation in a heavy ion transport code. The only inputs required are the projectile kinetic energy and the projectile and target charge and mass numbers. |  |  |  |
| 17. Key Words (Suggested by Authors(s))ParameterizationNucleus-nucleusElectromagnetic dissociationCross sections |  | 18. Distribution Statement Unclassified-Unlimited |  |
| 19. Security Classif.(of this report) Unclassified | 20. Security Classif.(of this page) Unclassified | 21. No. of Pages 26 | $\begin{array}{\|c\|} \hline \text { 22. Price } \\ \text { A03 } \end{array}$ |

