1. 50.

Child Burnet

NASA Contractor Report 179469 UTRC-R86-956480-4

The Effects of Inlet Turbulence and Rotor/ Stator Interactions on the Aerodynamics and Heat Transfer of a Large-Scale Rotating Turbine Model

IV-Aerodynamic Data Tabulation

R.P Dring, H.D. Joslyn, and M.F. Blair United Technologies Research Center East Hartford, Connecticut

November 1987

(NASA-CE-179469) THE EFFECTS OF INLET TOBBULENCE AND ECTOR/STATOE INTERACTIONS ON THE ABRODYNAMICS AND HEAT THANSFED OF A ABBODYNAMIC DATA TAEULATICH (UNITED Prepared for Lewis Research Center Under Contract NAS3-23717

Date for general release _____ May 1988

FOREWORD

This report was prepared for the National Aeronautics and Space Administration, Lewis Research Center by the United Technologies Research Center, East Hartford, Connecticut, under Contract NAS3-23717. The performance period covered by this report was 11 April, 1983 to 11 June, 1986. The project monitor was Dr. Robert J. Simoneau.

i

3

ŧ

è

R86-956480-4

.. .

Dago

THE EFFECTS OF INLET TURBULENCE AND ROTOR/STATOR INTERACTIONS ON THE AERODYNAMICS AND HEAT TRANSFER OF A LARGE-SCALE ROTATING TURBINE MODEL

VOLUME IV

AERODYNAMIC DATA TABULATION

TABLE OF CONTENTS

	Tage
FOREWORD	i
INTRODUCTION	1
OBJECTIVES	2
DESCRIPTION OF EXPERIMENT	3
Turbine Facility	, 3
Airfoil Coordinates and Aerodynamics	. 3
Inlet Turbulence	, 4
Heat Transfer Instrumentation	. 4
Aerodynamic Instrumentation and Data	, 5
NOMENCLATURE	. 9
REFERENCES	• 11
FIGURES	. 34

PRECEDENG PAGE BLANK NOT FILMED

PAUL IN MALLA BLANK

Þ

*

- ">

INTRODUCTION

The primary basis currently used by the gas turbine community for heat transfer analysis of turbine airfoils is experimental data obtained in linear cascades. These data have been very valuable in identifying the major heat transfer and fluid flow features of turbine airfoils. The question remains, however, as to how well cascade data translate to the rotating turbine stage. It is known from the work of Lokay and Trushin (ref. 1) that average heat transfer coefficients on the rotor may be as much as 40 percent above the values measured on the same blades without rotation. Recent work by Dunn and Holt (ref. 2) supports the conclusions of reference 1. It is widely recognized that at this time a need exists for a set of heat transfer data from a rotating system which is of sufficient detail to allow careful local comparithat this data set include sufficient flow field documentation to support the computer analyses being developed today.

Other important questions include the impact of both random and periodic unsteadiness on both the rotor and stator airfoil heat transfer. The random unsteadiness arises from stage inlet turbulence and wake generated turbulence and the periodic unsteadiness arises from blade passing effects. A final question is the influence, if any, of the first stator row and first stator inlet turbulence on the heat transfer of the second stator row after the flow has been passed through the rotor.

OBJECTIVES

The first program objective has been to obtain a detailed set of heat transfer coefficients along the midspan of a stator and a rotor in a rotating turbine stage (fig. 1). The experimental program was designed such that the rotor data could be compared directly with data taken in a static cascade. The data are compared to a standard analysis of blade boundary layer heat transfer which is widely available today. In addition to providing this allimportant comparison between rotating and stationary data, this experiment provides important insight to the more elaborate full three-dimensional programs being proposed for future research. A second program objective has been to obtain a detailed set of heat transfer coefficients along the midspan of a stator located in the wake of an upstream turbine stage. The axial location of the second stator relative to the upstream turbine stage is shown in figure 2. Particular focus here was on the relative circumferential location of the first and second stators. Both program objectives were carried out at two levels of inlet turbulence. The low level was on the order of 1 percent while the high level of approximately 10 percent is more typical of combustor exit turbulence intensity. The final program objective is to improve the analytical capability to predict the experimental data.

A 14 19

- 2 t. at. 5

DESCRIPTION OF EXPERIMENT

1. Turbine Facility

All experimental work for this program was conducted in the United Technologies Research Center Large Scale Rotating Rig (LSRR) shown in figure 2. This test facility was designed for conducting detailed experimental investigations of flow within turbine and compressor blading. Primary considerations were to provide a rig which would: (1) be of sufficient size to permit a high degree of resolution of three-dimensional flows, (2) possess a high degree of flexibility in regard to the configurations which can be tested, and (3) enable measurements to be made directly in the rotating frame of reference.

The facility is of the open circuit type with flow entering through a 12ft diameter inlet. A 6-in. thick section of honeycomb is mounted at the inlet face to remove any cross flow effects. The inlet smoothly contracts the cross section diameter down to 5-ft. Flow is then passed through a series of three fine mesh screens to reduce the turbulence level. Immediately downstream of the screens is a telescoping section which slides axially and permits access to the test section. The test section consists of an axial series of constant diameter casings enclosing the turbine, compressor or, fan model assemblies. The casings are wholly or partially transparent, which facilitates flow visualization and laser-Doppler-velocimeter studies. The rotor shaft is cantilevered from two downstream bearings thus providing a clean flow path to the most upstream row of test airfoils. Axial length of the test section is 36-in. The rotor is driven or braked by a hydraulic pump and motor system which is capable of maintaining shaft speeds up to 890 rpm. Downstream of the test section flow passes through an annular diffuser into a centrifugal fan and is subsequently exhausted from the rig. A vortex valve is mounted at the fan inlet face for flow rate control.

Ě

2. Airfoil Coordinates and Aerodynamics

The surface hub, midspan, and tip coordinates (x,y) of the three airfoil rows (stator 1, rotor and stator 2) are given in Tables 1, 2, and 3 respectively. The aerodynamic documentation of the turbine stage indicated that all parameters were very close to data obtained during prior testing with this turbine model, reference 3. As an example, the first stator and rotor pressure distributions are shown in figures 3a and 3b for the case with the small (15%) axial gap, at the design flow coefficient ($C_x/U_m = 0.78$), and with the inlet turbulence generating grid installed. Agreement with a twodimensional potential flow calculation (ref. 4) at this midspan location is excellent. The computed surface velocity distributions are used as the input

to the suction and pressure surface boundary layer calculations (refs. 5, 6). The resulting calculated suction and pressure surface Stanton number distributions are presented along with the measured results in Volumes I thru III.

3. Inlet Turbulence

As part of the present contract heat transfer distributions through the LSRR turbine blading were examined for both low and high levels of inlet turbulence. Throughout this report the low and high levels are referred to as "grid out" and "grid in" respectively. With the test facility configured in the minimum inlet turbulence arrangement (grid out) the inlet turbulence was approximately 0.5% at an axial location 22% of axial chord ahead of the first stator leading edge. Higher levels of inlet turbulence were produced by installing a biplane grid upstream of the first stator. The turbulence generator consisted of a nearly square array lattice of three concentric rings spaced uniformly in the radial direction with 80 radial bars evenly spaced circumferentially. Both the rings and radial bars were of nearly square 1/2 inch cross-sections. The mesh spacing of the bars was 2.1 inches radially and 4.5 degrees (2.1 in. at mid-annulus) circumferentially. With the grid installed at the inlet turbulence intensity was typically 9.8%. The spanwise distributions at four different circumferential locations (relative to the stator leading tige) are shown in figure 4. The data indicate that the turbulence is spatially uniform, nearly isotropic, and temporally (long time average) steady. This is representative of the level of turbulence measured at the exit of aircraft gas turbine combustors.

4. Heat Transfer Instrumentation

Heat transfer measurements were obtained in this study using low conductivity rigid foam castings of the test airfoils. A uniform heat flux was generated on the surface of the foam test airfoils using electrically heated metal foil strips attached to the model surface. Conduction and radiation effects produced small departures from complete uniformity. Local airfoil surface temperatures were measured using thermocouples welded to the back of the foil while the air temperature was measured using thermocouples in the air stream. The secondary junctions to copper wire were all made on Uniform Temperature Reference blocks (Kaye Instruments, UTR-48N) and the data were recorded using a Hewlett-Packard 300 channel data acquisition unit (3497A/3498A), and an ice point reference (Kaye Instruments, K140-4). A 212 ring slip-ring unit (Wenden Co.) was used to bring heater power onto the rotor and to bring out the thermocouple data. Instrumentation locations for the first stage stator and rotor are given in figures 5a and 5b. Locations for the second stator are given in Volumes I and III.

5. Aerodynamic Instrumentation and Data

The steady aerodynamic measurements' consisted of hub and casing flowpath static pressures acquired downstream of each airfoil row, midspan surface static pressure distributions obtained on each airfoil and circumferential distributions of total and static pressures and the flow yaw and pitch angles obtained from a 5 hole pneumatic probe (United Sensors USC-F-152) traverse downstream of each airfoil row. The hub and casing flowpath static pressures and probe traverse data were acquired at stations 2, 3 and 4 (fig. 2). The location of the airfoil surface static pressure measurement sites is given in Tables 7 through 9 in terms of the axial distance (DIST = X/B_X) from the airfoil leading edge tangency plane.

A dedicated online Perkin Elmer (PE 8/16E) minicomputer controls the online calibration of all pressure transducers (Druck model PDCR-22), radial and circumferential positioning and yaw nulling of stationary and rotating frame probes (United Sensors USC-F-152) and the acquisition and online reduction of all steady aerodynamic data. Electrical communication with the rotating frame instrumentation package, transducers and traverse system was through a Fabricast (model 1273) slip-ring assembly mounted on the rotor drive shaft.

High response inter-row velocity and unsteadiness measurements were made by traversing a radially oriented, single element hot film probe (Thermo Systems Inc., TSI model 1211-20) downstream of each airfoil row (stations 2, 3 and 4, fig. 2) at midspan. The probe was calibrated from 40 to 200 feet per second, was powered by a TSI Model 1050 anemometer and was traversed in the stationary frame of reference. Positioning of the hot film probe and data acquisition was controlled by the PE 8/16E minicomputer.

The aerodynamic instrumentation and data are presented in the following Tables and Figures.

Airfoil geometryTablFlowpath static pressuresTablAirfoil pressure distributionsTablFigureFigurePitch-averaged unsteadinessTabl

Stage-geometry Inlet turbulence (Grid In) Heat transfer instrumentation 5-Hole probe traverse data Hot-Film probe traverse data

۲

Tables 1 through 3 Tables 4 through 6 Tables 7 through 9, and Figures 3, and 6 through 14 Table 10 Figures 1 and 2 Figure 4 Figure 5 Figures 15 through 32 Figures 33 through 41 A brief overview of the tables and figures containing the aerodynamic data follows:

Flowpath Static Pressures

The hub, mean and outer casing flowpath static pressures at the exit of the first stator, the rotor and the second stator are presented in Tables 4, 5, and 6 respectively. The hub and outer casing flowpath pressures presented are averages based on measured pressures and account for blade-to-blade as well as circumferential (annulus) variations. The mean (i.e. midspan) flowpath static pressure is calculated from a free vortex distribution between the measured hub and outer casing flowpath static pressures (pitch and annulus averages). Results are shown for all three flow coefficients ($C_x/U_m =$ 0.68, 0.78, 0.96), for two first stator/rotor axial spacings ($x/B_x = 0.15$ and 0.50) and for two inlet turbulence levels (grid out and grid in).

Airfoil Pressure Distributions

Turbine stage (first stator and rotor) sirfoil midspan pressure distributions obtained at all three flow coefficients and at axial spacings of 15 and 50 percent axial chord are presented in Tables 7a,b and 8a,b respectively. Tables 7a and 8a contain the data acquired with the grid out; Tables 7b and 8b contain the data acquired with the grid in. The second stator midspan pressure distributions acquired with the grid out and with the grid in for a first stator/rotor axial spacing of 50 percent are presented in Tables 9a and 9b respectively. In all tables (7 through 9), the static pressure coefficient (Cps) is tabulated along with the axial distance (DIST = X/B_X) from the airfoil leading edge tangency plane. The base pressures measured on each airfoil at midspan are also included in the appropriate data set.

The airfoil midspan pressure distribution data are plotted as the symbols in figures 3, and 6 through 14. In figures 6 through 11, all the data sets are presented in terms of a pressure coefficient based on the inlet (station 1) total pressure and the first stator exit (station 2) dynamic pressure, Q2. This permits all of the airfoil data to be compared directly on the same basis. From these results it is clear that the addition of the grid had little impact on the airfoil midspan pressure distributions. Also, it is evident that the first stator midspan pressure distribution was virtually the same at all three flow coefficients. The abbreviations (SS, PS, TE, BP, CG2, CGT1) on the right hand side of the figures represent suction surface, pressure surface, trailing edge, base pressure, airfoil exit static pressure and the rotor inlet relative total pressure respectively. In figures 3 (grid in) and 12 through 14 (grid out), the data is presented along with the results ulation (Ref. 4). Here, the pressure coefficient is of a potential flow based on the inlet tot pressure and exit static pressure relative to a particular airfoil row.

Pitch-Averaged Unsteadiness

The average total (U_T) , periodic (U_p) and random (U_R) unsteadiness at a single radial/circumferential hot film traverse location in the turbine model are defined in Table 10a. $V_k(t)$ represents the instantaneous film speed measured with a radially oriented single element hot film probe during a specific rotor revolution. It is composed of a periodic component, $\tilde{V}(t)$ and a random component, $v'_k(t)$. Vo is the time average speed at this location. At each radial/circumferential traverse location at stations 2, 3, and 4 (fig. 2), one hundred sets ($N_{rev} = 100$) of instantaneous speed data were acquired and processed (ensemble and time averaged) to obtain the midspan circumferential distributions of average total, periodic and random unsteadiness presented in figures 33 through 41. Measurements were made at all three flow coefficients with the grid out and with the grid in. The midspan circumferential distributions of the average total, periodic and random unsteadiness were pitch averaged and the results are summarized in Tables 10b, 10c, and 10d for the flow coefficients of 0.68, 0.78 and 0.96 respectively.

5-Hole Probe Traverse Data

A single 5 hole pneumatic probe (United Sensor model USC-F-152) was traversed circumferentially at midspan to measure total and static pressures and the flow yaw and pitch angles downstream of each airfoil (stations 2, 3 and 4). The resulting circumferential distributions taken over two first stator pitches are presented in figures 15 through 32. The results obtained with the grid out and with the grid in at three flow coefficients are presented for each airfoil (first stator, rotor and second stator).

The results for each airfoil are presented in the same sequence as that which follows for data in the absolute frame downstream of the first stator (for flow coefficients of 0.68, 0.78 and 0.96).

Figure	Symbol .	Quantity	Grid
15 a- c	CPTABS CTOT	Total pressure Flow speed	Out
16 a- c	CPS CX/UM	Static pressure Axial velocity	Out
17 a- c	YAWABS Ph I	Flow yaw angle Flow pitch angle	Out
18 a- c	CPTABS CTOT	Total pressure Flow speed	In

19a-c	CPS CX/UM	Static pressure Axial velocity	In
20 a- c	YAWABS Phi	Flow yaw angle Flow pitch angle	In

For the data in the rotating frame downstream of the rotor these quantities are as follows, CPTREL, WTOT, CPS, CX/UM, YAWREL, and PHI.

Hot Film Probe Traverse Data

The midspan circumferential distributions of ensemble-time averaged flow speed (VTAVG) and unsteadiness (total, periodic and random) at the exit of each airfoil are presented in figures 33 through 41. These results were obtained with the grid out and with the grid in by traversing a radially oriented single element hot film probe over two first stator pitches downstream of each airfoil row. Figures 33a to 35b show the results for the first stator, rotor and second stator at a flow coefficient of 0.68 with the grid out and with the grid in. The results obtained at flow coefficients 0.78 and 0.96 are presented in figures 36a and 39a to 41b respectively.

Access to Aerodynamic Data

Copies of the aerodynamic data can be obtained by contacting Robert Dring of UTRC by phone at 203-727-7044.

NOMENCLATURE

+)

5

18-

^E x	airfoil axial chord
с _Р	pressure coefficient (based on turbine inlet total pressure and Q_{U_m})
C _{Tot}	absolute flow speed normalized by U _m
с _ж	axial flow speed
P	static pressure
P T	total pressure
Q _{Um}	dynamic pressure based on U m
S	surface arc length from trailing edge
U	streamwise velocity
U m	rotor midspan wheel speed "
U	stage inlet flow velocity
Ū	unsteadiness (T: total, R: random, and P: periodic) $(\overline{U}_T = \overline{U}_R + \overline{U}_P)$
W _{Tot}	relative flow speed normalized by U _m
x	axial distance
α	absolute flow angle from axial
ß	relative flow angle from axial
ρ	density
ф	flow coefficient (C _x /U _m)
c _p	pressure coefficient (based on turbine inlet total pressure and first stator exit dynamic pressure Q ₂)

Superscripts

time average Subscripts model inlet upstream of turbulence grid 0 1 first stator inlet 2 first stator exit 3 rotor exit 4 second stator exit absolute (stationary) frame ABS inlet properties relative to airfoil rows IN REL relative frame

Service and an

REFERENCES

- Jokay, V. I., and Trushin, V. A.: Heat Transfer from the Gas and Flow-Passage Elements of a Rotating Gas Turbine. Heat Transfer - Soviet Research, Vol. 2, No. 4, July 1970.
- Dunn, M. G., and Holt, J. L.: The Turbine Stage Heat Flux Measurements. Paper No. 82-1289, AIA./ASME 18th Joint Propulsion Conference, 21-23, June 1982, Cleveland, Otio.
- Dring, R. P., Joslyn, H. D., Hardin, L. W., and Wagner, J. H.: Turbine Rotor-Stator Interaction. ASME J. Eng. for Power, Vol. 104, pp. 729-742, October 1982.
- Caspar, J. E., Hobbs, D. E. and Davis, R. L.: Calculation of Two-Dimensional Potential Cascade Flow using Finite Area Methods, AIAA Journal, Vol. 18, No. 1, January 1980, pp. 103-109.
- Carter, J. E., Edwards, D. E. and Werle, M. J.: Coordinate Transformation for Laminar and Turbulent Boundary Layers, AIAA Journal, Vol. 20, No. 2, February 1982, pp. 282-284.
- 6. Edwards, D. E., Carter, J. E. and Werle, M. J.: Analysis of the Boundary Layer Equations Including a Coordinate Transformation--The ABLE Code, UTRC81-30, 1981.

TABLE 10 AIRFDIL GEDMETRY

,

AIRFOIL: FIRST STATOR (HUB) PITCH (ins.): 6.88865

		LEADING EDGE	TRAILING EDGE
RADIUS (ins.)		0.44485	0.10988
METAL ANGLE (degr.)		90.00395	22.44246
WEDGE ANGLE (degr.)		31.79000	6.85000
	X(ins.)	Y _L (ins.)	Y _U (ins.)
1	0.00000	5.98844	5.98844
- 7	0.05932	5.76650	6.21038
	0.11854	5.68598	6.29089
	0.17/96	5.63254	6.34433
÷ ř	0.23720	5.59498	6.38189
-	0.29500	5.55902	6.40786
3	0.41524	5.00114	6.42555
9	0.47456	5.51555	5.44182 6.45343
10	0.53388	5.49688	6. 47730
11	0.59320	5.47760	6.48668
12	0.74150	5.42681	6.51919
13	0.88980	5.37219	6.54678
14	1.03810	5.31366	6.56894
15	1.18640	5.25111	6.58508
10	1.33470	5.18440	6.59454
19	1.48300	5.11341	6. 5966 7
10	1.031.10	5.03800	6.59063
1 -	1.77960	4.95798	6.57559
21	2 07620	4.8/318	6.55065
22	2.22450	4.70339	6.51481
23	2.37280	4.58791	6 40627
24	2.52110	4.48160	6.33143
25	2.66940	4.36922	6.24143
26	2.81770	4.25033	6.13530
27	2.96600	4.12450	6.01210
28	3.11430	3.99119	5.87111
30	3.20200	3.84973	5.71175
31	3.55920	3.53938	5.53366
32	3.70750	3 36863	5.130//
2.2	3.85580	3.18656	4 RR773
34	4.00410	2.99229	4.63534
<u>ر</u> ۹	4.15240	2.78525	4.36603
35 7 C	4.30070	2.56517	4.07986
39	4.44900	2.33245	3.77749
39	4 74560	2.08792	3.45958
40	4.89300	1.032/1	3.12684
41	5.04220	1 29464	2.78000
42	5.19050	1.01365	2.91901
43	5.33880	0.72592	1.66229
44	5.39812	0.60905	1.50524
15	5.45744	0.49120	1.34645
46	5.51676	0.37243	1.18595
447 710	5.5/608	0.25271	1.02380
40	5.03340 5 69/71	0.13213	0.86004
50	5 75404	0.01077	0.69471
51	5.81336	-0.08624	0.52383
52	5.87268	-0.10/52	0.35547
53	5.93200	0.00001	0.00001

12

ورود والمعالية المحالية محالية المحالية المحالية محالية محالية محالية محالية المحالية المحالية محالية محالية محالية المحالية محالية محا

TABLE 15 AIRFOIL GEDMETRY

×.,

1

İ

AIRFOIL: FIRST STATOR (MIDSPAN) PITCH (ins.): 7.71118

	LEADING EDGE	TRAILING EDGE
RADIUS (ins.)	0.44484	0.10987
METAL ANGLE (degr.)	90.00000	21.42000
WEDGE ANGLE (degr.)	31.80000	6.84000

	X(ins.)	$Y_{L}(ins.)$	Y _U (ins.)
1	0.00000	6.80766	6.80756
2	0.05932	6.44830	7.15365
3	0.11864	6.43405	7.17319
4	0.17796	6.41912	7.19210
⇒	0.23728	6.40354	7.21034
5	0.29660	6.38729	7.22791
0	0.35592	6.37035	7.24476
0	0.41524	6.35273	7.26089
10		6.33441	7.27624
1 7	0 503300	6.31540	7.29080
1.	0.09320	6.29568	7.30453
• 7	0.74150	6.24325	7.33502
• •	1 03910	0.18623	7.35957
15	1 18640	6 05703	7.37758
16	1 33470	5.05/81	7.38835
17	1 48300	5.90003	7.39114
18	1.63130	5 82633	7.30513
14	1.77960	5 73787	7.30940
20	1.92790	5.64326	7 30490
11	2.07620	5.54212	7.25403
22	2.22450	5.43404	7.18927
23	2.37280	5.31852	7.10949
24	2.52110	5.19498	7.01363
25	2.66940	5.06273	6.90066
20	2.81770	4.92096	6.76967
28	2.90000	4.76873	6.61989
29	3.26260	4.00490	6.450/8
30	3.41090	4.23771	6 05354
31	3.55920	4.03254	5.82550
32	3.70750	3.81279	5.57826
3,	3.85580	3.57948	5.31230
34	4.00410	3.33397	5.02816
35	4.15240	3.07798	4.72650
35	4.30070	2.81269	4.40803
3 / 20	4.44900	2.53937	4.07350
20	4.29730 A 74560	2.25873	3.72369
40	4.74300	1.9/1/2	3.35942
41	5 04220	1.0/884	2.98147
	5.19050	1.30002	2.59066
43	5.33880	0.76951	1 77352
44	5.39812	0.64517	1.60482
45	5.45744	0.52020	1.43448
46	5.51676	0.39451	1.26252
47	5.57608	0.26816	1.08901
48	5.63510	0.14117	0.91397
49	5.69472	0.01364	0.73745
51	5./5404	-0.11456	0.55950
52	5,01,335 5,07,260	-0.24329	0.38014
53	5.93200	0.00000	0.19943

ORIGINAL PAGE IS DE POOR QUALITY

*

. . .

TABLE 1c AIRFOIL GEOMETRY

AIRFOIL: FIRST STATOR (TIP) PITCH (ins.): 8.53371

	LEADING EDGE	TRAILING EDGE
RADIUS (ins.)	0.44487	0.10986
METAL ANGLE (degr.)	90.00401	0.25751
WEDGE ANGLE (degr.)	31.79000	6.79000

	X(1ns.)	Y _L (ins.)	Y _U (ins.)
1	0.00000	57702	7.57702
2	0.05932	7.35507	7.79897
5	0.11864	7.27456	7.87949
	0.17796	7.22112	7.93293
ś	0.23728	1.18355	7.97049
-	0.29560	7.15759	7.99646
£	0.32092	7.13967	8.01409
ζ.	0.41524	7.12193	8.02987
	0.53388	7.10338	8.04449
<u>}</u>	0.59321	7.00402	8.05803
12	0.74151	7 00967	8.07044
13	0.88480	6 95010	0.09515
14	1.03810	6 88487	0.11400
15	1.18640	6,81377	8 1746E
16	1.33470	6.73650	8 11627
17	1.48300	6.65274	8.09803
18	1.63130	6.56207	8.06935
19	1,77960	6.46407	8.02955
20	1.92790	6.35817	7.97793
21	2.07620	6.24376	7.91381
<u> </u>	2.22450	6.12004	7.83635
\ 	2.37280	5.98609	7.74477
1.14 115	2.52110	5.84072	7.63818
26	2.00940	5.68263	7.51566
27	2.01//0	5.51023	7.37624
28	2.90000	5.32200	7.21892
29	3,26260	0.11093 A 80536	7.04264
30	3.41090	4 65850	0.84031
31	3.55920	4.40859	6 38910
32	3.70750	4.14741	6 12648
33	3,85580	3.87650	5.84072
34	4.00410	3.59714	5.53208
37	4.15240	3.31031	5.20125
10	4.30070	3.01688	4.84935
3/	4.44900	2.71730	4.47775
30	4.59730	2.41223	4.08802
35 40	4.74560	2.10214	3.68183
41	4.09390	1.78726	3.26080
12	5 19050	1.46798	2.82654
43	5 33880	1.19958	2.38047
44	5.39812	0.01/23	1.92403
45	5.45744	0.00329	1.73880
46	5.51676	0.33272	1.55219
47	5.57608	0.28587	1.30422
48	5.63540	0.15177	G 98458
49	5.69472	0.01698	0.79299
56	5.75404	-0.08620	0,60033
5!	5.81336	-0.10950	0.40651
5.	5.87268	-0.09754	0.21192
53	5.93200	0.00001	0.00001

TABLE 2a AIRFOIL GEDMETRY

ORIGINAL PAGE 13

OF POOR QUALITY

4

2

. .

AIRFOIL: FIRST ROTOR (HUB) PITCH (ins.): 5.41251

		LEADING EDGE	TRAILING EDGE
RADIUS (ins.)		0.34867	0.19000
METAL ANGLE (degr.)		39.56323	25.97078
WEDGE ANGLE (degr.)	I.	31.19000	5.31000
	X(ins.)	Y _L (ins.)	Y _U (ins.)
	0.00000	2.86604	2.86604
3	0 12682	2.66555	3.08102
J J	0.12002	2.59706	3.21151
-	0.19023	4.55545 3.53057	3.33187
6	0 31705	2.53057	3.44344
-	0.3802/	2.01001	3.54722
Q	0.4438	2 53062	3.54405 2.73444
2	0.50728	2.03002 CEES3	3.73464
1.2	0.57069	2.59558	3 8991
· · ·	0.63410	2.63747	3 97388
12	0.79262	2.73147	4 14166
<u>د</u> .	0.95115	2.81137	4 28528
14	1.10967	2.87832	4.40773
15	1.26820	2.93322	4.51126
16	1.42672	2.97676	4.59755
1 6	1.58525	3.00948	4.66791
10	1.74377	3.03180	4.72339
. 7	1.90230	3.04408	4.76477
20	2.00082	3.04653	4.7925*
22	2.21930	3.03939	4.80757
23	2.53640	3.02278	4.80981
2 / 2 4	2.69492	2,99081	4.79963
) e	2.85345	2.90137	4.77715
26	3.01197	2 86339	4.7424
27	3.17050	2.80050	4.0303
28	3.32902	2.72831	4,03004
23	3.48755	2.64670	4,30339
30	3.64607	2.55547	4.37924
	3.80460	2.45445	4.26599
32	3.96312	2.34348	4.13761
	4.12165	2.22234	3.99304
3.	4.2801	2.09081	3.83080
	4.43870	1.94860	3.64903
36	4.59722	1.79535	3.44572
37	4.75575	1.63070	3.21968
10	4.9142	1.45405	2.97070
40	5.07280	1.26487	2.69996
41	5 18985	1.06245	2.40938
42	5.50905	0.84595	2.10143
43	5.70690	0.01432	1.1875
::	5.77031	0.30049	1.44378
45	5.83372	0.1.541	1.30081
46	5.89713	0.04543	1 02861
47	5.96054	-0.06777	1.02001 0.89757
40	6.02395	-0.16117	0 74577
49	6.08736	-0.19892	0 60194
50	6.1507 /	-0.20989	0.45759

15

6.21418

6.27759 6.34100

-0.20989 -0.19908

-0.16158

0.45759

0.31234

0.16622

TABLE 25 AIRFOIL GEOMETRY

#

1

AIRFOIL: FIRST ROTOR (MIDSPAN) PITCH (ins.): 6.05879

	LEADING EDGE	TRAILING EDGE
RADIUS (ins.)	0.34872	0.19000
METAL ANGLE (degr.)	42.18646	25.97093
WEDGE ANGLE (degr.)	31.24000	5.31000

	X(ins.)	Y _L (ins.)	Y _U (ins.)
1	∩.00000	3.41970	3.41970
2	. 96341	3.21919	3.62774
3	0.12682	3.15069	3.74347
4	0.19023	3.10908	3.84906
5	0.25364	3.08419	3,94593
÷.	0.31705	3.07242	4.03518
-	0.38046	3.07243	4,11769
â	0.4438	3.08422	4.19414
9	0.50724	3.10912	4.26511
10	0.57069	3.14694	4.33106
11	0.63410	3.18401	4.39236
12	0.79262	3.26583	4.52752
12^{-1}	0.95115	3.33349	4.63984
14	1.10967	3.38822	4.73220
15	1.26820	3.43094	4.80674
16	1.42672	3.46228	4.86506
17	1.58525	3.48271	4.90837
10	1.74377	3.49248	4,93760
ic	1.90230	3.49176	4.95347
4.5	2.06082	3.48053	4.95652
21	2.21935	3.45868	4.94712
22	2.37787	3.42596	4.92555
23	2.53640	3.38201	4.89193
24	2.69492	3.32633	4.84632
25	2.85345	3.25830	4.78863
26	3.01197	3.17735	4.71868
27	3.17050	3.08283	4.63616
28	3.32902	2.97433	4.54063
29	3.48755	2.85162	4.43151
3C	3.64607	2.71488	4.30799
31	3.80460	2.56463	4.16905
32	3.96312	2.40136	4.01334
33	4.12165	2.22577	3.83912
24	4.28017	2.03852	3.64406
35	4.43870	1.84022	3.42595
36	4.59722	1.63139	3.18387
37	4.75575	1.41252	2.91861
τ μ 30	4.91427	1.18402	2.63221
39	5.07280	0.94623	2.32774
40	5.23132	0.69955	2.00932
41	5.38985	0.44403	1.67680
4	5.54837	0.19008	1.33571
43	5.70690	-0.09214	0.98699
44	5.77031	-0.20337	0.84573
45	5.83372	-0.31578	0.70359
40	5.89713	-0.42949	0.56065
4/	5.96054	-0.54448	0.41698
48	6.02395	-0.63800	0.27261
44 50	6.0873E	-0.67575	0.12765
50	6.15077	-0.68673	-0.01791
51 - 1	6.21418	-0.675 9 1	-0.16397
52	6.27759	-0.63841	-0.31052
53	6.34100	-0.49672	-0.49672

TABLE 2c AIRFOIL GEOMETRY

ORIGINAL PAGE IS

OF POOR QUALITY

-

, **r** :

AIRFOIL: FIRST ROTOR (TIP) PITCH (ins.): 6.70506

		LEADING EDGE	TRAILING EDGE
RADIUS (ins.)		0.34881	0.19000
METAL ANGLE (degr.)		46.66805	25.96767
WEDGE ANGLE (degr.)		31.26000	5.31000
	X(ins.)	Y _L (ins.)	Y _U (ins.)
2	0.00000	3.97348	3.97348
2	0.06341	3.77294	4.17540
3	0.12682	3.66280	4.36353
4	0.19020	3.63790	4.44573
6	0.31705	3.62612	4.52127
, ,	0.38046	3.62611	4.59084
8	0.44387	3.63787	4.65499
à	0.50728	3.66275	4.71419
10	0.57069	3.69488	4.76883
11	0.63410	3./2462	4.01924
	0./9262	3./000/	5 01637
13	1 10967	3.87814	5 08539
14	1.10907	3.90472	5.13737
16	1.42672	3.91989	5.17369
17	1.58525	3.92388	5.19537
18	1.74377	3.91674	5.20321
19	1.90230	3.89838	5.19778
4 10	2.06082	3.86851	5.17950
21	2.21935	3.82665	5.14862
22	2.37787	3.7/210	5.10529
· · ·	2.53640	3.70385	& 98122
24	2.09492	3.52045	4.90012
25	3 01197	3.40033	4.80585
27	3.17050	3.25903	4.69788
28	3.32902	3.09581	4.57543
29	3.48755	2.91352	4.43757
3.0	3.64607	2.71577	4.28296
: 5	3.80460	2.50562	4.10990
32	3.96312	2.28505	3.91008
37	4.12165		7 45544
34	4.28017	1.57520	3,18730
36	4.59722	1.32521	2.89675
37	4.75575	1.06966	2.58780
2 0	4.91427	0.80884	2.25420
39	5.07280	0.54319	1.92951
40	5.23132	0.27306	1.58629
41	5.38985	-0.00136	1.23004
47	5.54837	-0.2/9/5	0.52368
4 s	5.70090	-0.50201	0.37945
4-4 A.C.	5 83372	-0.79046	0.23478
45	5,89713	-0.90562	0.08974
40	5,96054	-1.02119	-0.05569
48	6.02395	-1.11481	-0.20147
49	6.08736	-1.15257	-0.34753
50	6.15077	-1.16355	-0.49387
<u>د ا</u>	6.21418	-1.15274	-0.64045
۰.	6.27759	-1.11524	-0.78728
53	6.34100	-0.9/355	-CCC/K.V-

ORIGINAL PAGE IS OF POOR QUALITY

ALC: N

A

-

ξ.,

.

TABLE 3a

AIRFOIL GEOMETRY

AIRFOIL: SECOND STATOR (HUB) PITCH (ins.): 5.41251

		LEADING EDGE	TRAILING EDGE
RADIUS (ins.)		0.34999	0.19000
METAL ANGLE (degr.)		41.01068	4.98619
WEDGE ANGLE (degr.)		29.91000	8.91000
	X(ins.)	Y _L (ins.)	Y _U (ins.)
;	0.00000	3.68263	3.68263
2	0.00432	3.48015	3 84472
4	0.19356	3.41120	4.01869
-	0.25908	3 34413	9.1.9.9.9.9 8.9.8.4.4
b	0.32260	3, 33372	7 · L 7 1 L . 3 · 3 * C ? ?
-	0.38712	3.33462	4 - 14 - 14
8	0.45164	3.34773	4 5347 8
9	0.51616	3.37461	4.6.955
1 U	0.58068	3.41583	4.1500+
• •	1.64520	3.45739	1 77676
• •	C.80650	3.55269	4.94580
÷ *	0.95780	3.63560	5.09069
15	1,12910	3.70599	5.21267
16	1.29040	3.76376	5.31424
17	1.61300	3.80880	5.39634
16	1.77430	3.04100	5.46037
۰ د	1,93560	3.86704	5.50735
	2.09690	3 86072	5.55317
	2.25821	3.84153	5 55310
	2.41950	3.80950	5.53852
	2.58080	3.76468	5.50948
	2.74210	3.70714	5.46629
	2.90340	3.63698	5.40908
2 ⁽¹⁾	3.064/0	3.55430	5.33790
28	3.22000	3.45921	5.25273
21:	3.54860	3.35188	5.15348
3.	3.70993	3.23245	5.03995
•	3.87120	2 95802	4.91189
*2	4.03250	2.80339	4.76892
2 :	4.19380	2.63745	4 43638
14	4.35510	2.46037	4.2452
	4.51640	2.27244	4.03662
34 27	4.67770	2.07384	3.80928
s	4.83900	1.86483	3.56222
25	5 16160	1.64562	3,29479
£*	5.10100	1.41563	3.00662
41	5 48420	1.1/789	2.69784
	5 64550	0.92975	2.36890
43	5,80680	0 40629	2.02058
44	5.87132	0.29738	1.00431
45	5.93584	0.18710	1 34900
46	6.00036	0.07548	1.19252
47	6.06488	-0.03748	1.03361
48	6.12940	-0.13608	0,87238
49	6.19392	-0.17738	0.70890
50	6 25844	-0.18997	0.54327
	5.32296	-0.17996	0.37560
⊃.≟ ⊑. 1	0.38/48	-0.14267	0.20595
.2.3	0.15200	0.00000	0.00000

18

المتصفارين مجرد المدا

TABLE 36 AIRFOIL GEOMETRY

•1

\$

1

AIRFOIL: SECOND STATOR (MIDSPAN) PITCH (ins.): 6.05879

		LEADING EDGE	TRAILING EDGE
RADIUS (ins.)		0.34999	0.19000
METAL ANGLE (degr.)		45.66800	25.00000
WEDGE ANGLE (degr.)		27.50000	23.00000
-		21.00000	6.50000
	X(ins.)	Y _L (ins.)	Y _U (ins.)
1	0.00000	4.10291	4.10791
2	0.06452	3.47786	4.30650
4	0.12904	3.52885	4.40610
۲. ۲.	0.19350	3.57793	4.50013
6	0.32260	3.62510	4.58895
۲ ۲	0.38712	3.07035	4.67285
8	0.45164	3.75508	4.75210
à	0.51616	3.79454	4.02095
10	0.58068	3.83206	4 96425
11	0.64520	3.86762	5.02707
12	0.80650	3.94796	5.16834
13	0.96780	4.01599	5.28865
14	1.12910	4.07162	5.38963
15	1.29040	4.11482	5.47259
17	1.45170	4.14552	5.53859
18	1 77430	4.16371	5.58849
19	1 93560	4.16934	5.62296
~ .	2.09690	4.10244	5.64258
21	2.25820	4.11101	5.62000
22	2.41950	4.06655	5 61615
23	2.58080	4.00965	5.57973
24	2.74210	3.94037	5.52972
20	2.90340	3.85879	5.46611
20	3.064/0	3.76498	5.38882
28	3.22000	3.65906	5.29771
29	3.54860	3.54111	5.19255
30	3.70990	3.4112/	5.07300
31	3.87120	3.11644	4.93863
32	4.03250	2.95172	4./8891
33	4.19380	2.77568	4.02310
34	4.35510	2.58849	4.24001
35	4.51640	2.39030	4.02052
30	4.67770	2.18130	3.78134
י כ אר	4.83900	1.96166	3.52218
39	5.16160	1.73160	3.24330
40	5.32290	1.49128	2.94535
41	5.48420	0 98064	2.62941
42	5.64550	0.71074	2.29082
43	5.80680	0.43141	1.54914
44	5.87132	0.31707	1.43996
45	5.93584	0.20126	1.29018
46	6.00036	0.08400	1.13867
4	6.06488	-0.03471	0.98552
48	6.12940	-0.15484	0.83080
47	0.19392	-0.27639	0.67459
50	0.43044	-0.39934	0.51699
52	6 38748	-0.52368	0.35805
53	6.45200	0.04939	0.19786
	0.1J200	0.0000	U.00000

TABLE 3c

AIRFOIL GEOMETRY

AIRFOIL: SECOND STATOR (TIP) PITCH (ins.): 6.70506

		LEADING EDGE	TRAILING EDGE
RADIUS (ins.)		0.35006	0.19000
METAL ANGLE (degr.)		50.49115	24.98778
WEDGE ANGLE (degr.)		25.12000	4.09000
	X(ins.)	Y _L (ins.)	Y _U (ins.)
2	0.00000	4.53429	4.53429
2	0.06452	4.33178	4.73679
3	0.12904	4.26282	4.81836
4	0.19356	4.22116	4.89463
	0.25808	4.19652.	4.96641
6	0.32260	4.18530	5.03396
1	0,38,12	4.18519	5.09/51
	0.45164	4.19929	5.15/28
10	0.51616	4.22602	5.21343
10	0.58068	4.25/62	5.20013
••	0.04520	4.20729	D.31002
12	0.80650	4.35297	5.42530
13	0.96780	4.4064/	5.51708
14	1.12910	4.44///	5 65117
16	1.29040	4.47003	5 69551
10	1 61 300	A A9819	5 72567
18	1.01300	4 49045	5 74219
19	1 93560	4 47047	5 74550
-	2.09690	4.43822	5.73570
23	2,25820	4.39375	5.71360
22	2.41950	4.33706	5.67874
22	2.58080	4.26823	5.63135
24	2.74210	4.18728	5.57140
25	2.90340	4.09426	5.49876
26	3.06470	3.98924	5.41323
27	3.22600	3.87229	5.31449
28	3.38730	3.74348	5.20215
29	3. 5486 C	3.60289	5.07566
30	3.7099C	3.45062	4.93435
31	3.87120	3.28675	4.77738
32	4.03250	3.11139	4.60366
33	4.1938(2.92465	4.41196
34	4.35510	2.72666	4.20118
35	4.51640	2.51749	3.97077
36	4.67770	2.29731	3.72077
37	4.83900	2.06620	3.45177
11	5,00030	1.82435	3.16495
39	5.16160	1.5/18/	2.861/6
40	5. 32290	1.30009	2.34309
41	5.40420	0 75100	1 97091
43	5 80680	0.75199	1 51902
43	5 87132	0 33818	1 37585
45	5.93584	0.21639	1.23140
46	6.00036	0.09302	1.08577
47	6.06488	-0.03190	0.93902
48	6.12940	-0.13607	0.79122
49	6 19392	-0.17738	0.64244
50	6.25844	-0.18996	0.49272
51	6.32296	-0.17995	0.34214
54	6.38746	-0.14267	0.19073
53	6.45200	0.00000	0.00000

TABLE 4

۰.

- 4⁰⁰

FLOWPATH STATIC PRESSURES AT. 1ST STATOR EXIT (STA. 2)

				C _{Ps}	= (P _{To} -	P) / Q _{Um}
	4	GRID	v /n		ME 411	0.1750 0.0500
KURZTI	Ψ	INZOUT	X/BX	HUR	MEAN	UUTER CASING
13/1	0.68	0:JT	0.15	4.306	3.588	3.074
31/2		IN	θ.15	4.927	4.225	3.722
79/1		DUT	0.50	4.106	3.395	2.887
83/3		IN	0.50	5.040	4.270	3.720
12/1	0.78	OUT	0.15	5.616	4.680	4.010
30/3		IN	0.15	6.518	5.599	4.942
80/4		OUT	0.50	5.414	4.477	3.806
82/2		IN	0.50	6.589	5.592	4.879
14/1	9e.96	OUT	0.15	8.695	7.261	6.235
32/2		IN	0.15	9.826	8.468	7.497
81/2		OUT	8.50	8.129	6.736	5.739
81/7		IN	0.50	9.892	8.422	7.370

 Calculated from a free vortex distribution between the measured hub and outer casing flowpath static pressures (pitch and annulus averages).

TABLE 5

FLOWPATH STATIC PRESSURES AT ROTOR EXIT (STA. 3)

		CPTD		C _{Ps}	= (P _{To} ·	- P) / Q _{Um}
RUN/PT	φ	IN/OUT	X/Bx	HUB	MEAN *	DUTER CASING
13/1	0.68	OUT	0.15	5,271	5 308	5 224
31/2		IN	0.15	6.024	5 984	5.554
79/1		OUT	0.50	5 042	5.004	5.336
83/3		IN	0.50	5.951	5.971	5.982
12/1	0.78	OUT	0.15	6.729	6,709	6.694
30/3		IN	0.15	7.832	7.709	7 621
80/4		OUT	0.50	6.535	6.509	6 490
82/2		IN	0.50	7.630	7.685	7.682
14/1	0.96	OUT	0.15	9,751	9,791	9 819
32/2		IN	0.15	11.491	11.245	11 029
81/2		OUT	0.50	9.514	9 352	9 226
81/7		IN	0.50	11.286	11.108	10.930

Calculated from a free vortex distribution between the measured hub and outer casing flowpath static pressures (pitch and annulus averages).

TABLE 6

FLOWPATH STATIC PRESSURES AT 2ND STATOR EXIT (STA. 4)

		CPTD		C _{Ps}	= (P _{To} -	- P) / Q _{Um}
RUN/PT	φ	IN/OUT	X/B×	HUB	MEAN	OUTER CASING
13/1	0.68	OUT	0.15	5.405	5.377	5 357
31/2		IN	0.15	6.041	5 991	5 955
96/4		OUT	0.50	7.606	7 009	J.333 6 600
90/2		IN	0.50	8.717	8.079	7.623
12/1	0.78	OUT	0.15	6.871	6.777	6.710
30/3		IN	0.15	7.807	7.724	7.664
87/1		OUT	0.50	9.690	8.924	8 377
89/2		IN	0.50	11.133	10.311	9.722
14/1	0.96	OUT	0.15	10.256	10.017	9 846
32/2		IN	C.15	11.458	11.227	11 061
68/1		OUT	0.50	14.157	12 942	12 074
88/3		IN	0.50	16.207	14.914	14.028

.

in the second

F...

Calculated from a free vortex distribution between the measured hub and outer casing flowpath static pressures (pitch and annulus averages).

ORIGINAL PAGE IS OF POOR QUALITY

ید مر

C

TABLE 7a

TURBINE STAGE MIDSPAN PRESSURE DISTRIBUTIONS

AXIAL GAP 15% GRID OUT $CP = (PTO - P)/1/2 \rho U_m^2$

$\phi = 0.68$		$\phi = 0.78$		4-0.00			
	• -		Ψ=0.78		¢=0.96		
	STA	IOR-1	STATOR-1		STA	STATOR-1	
	CFT1 CrS2	0.000 3.568	CPT1 CPS2	0.00 0 4.69 0	CPT1 CPS2	0.0 00 7.2 01	
	SUCTION DIST 0.012 0.070 0.251 0.426 0.554 0.455 0.554 0.651 0.734 0.209 0.279 0.279 0.945 1.000	SURFACE CP3 1.465 2.215 3.731 5.275 5.015 4.659 4.089 3.961 3.578	SUCTIO DIST 0.012 0.251 0.426 0.554 0.651 0.651 0.639 0.809 0.879 0.945 1.000	N SLRFACE 2PS 2.165 2.895 4.827 6.941 6.519 6.061 5.589 5.316 4.318 4.863	SUCT 10 DIST 0.012 0.251 0.426 0.554 0.554 0.554 0.554 0.734 0.809 0.879 0.879 0.945 1.000	N SURFACE CFS 3.368 4.465 7.507 10.586 10.067 9.322 8.650 8.164 7.869 6.666 7.429	
	PRESSURE D:3T 0.005 0.025 0.251 0.423 0.524 0.527 0.729 0.527 0.729 0.927	SURFACE CPS 0.059 0.219 0.233 0.294 0.294 0.436 0.791 1.352 2.218 3.643	PRESSURS DI3T 0.005 0.027 0.0066 0.25: 0.423 0.504 0.667 0.789 0.856 0.967	E SURFACE CPS 0.103 0.136 0.285 0.292 0.369 0.568 1.046 1.795 2.917 4.738	PRESSURE DIST 0.005 0.027 0.006 0.251 0.423 0.564 0.667 0.769 0.886 0.967	E SURFACE CPS 0.129 0.207 0.437 0.437 0.598 0.875 1.563 2.771 4.456 7.284	
	BASE PRI DIST 0.990	ESSURE CPS 3.755	BASE PR DIST C.990	ESSURE CPS 4.652	BASE PE DIST .990	ESSURE CF 5 7.217	
	RUT	0R-1	ROTOR-1		RO	TUR-1	1
	CFTR2 CF33	2.567 5.307	CFTR2 CPS3	3.143 6.709	CPTR2 CPS3	4.192 9.791	
	SUCTION DIST 0.005 0.011 0.117 0.220 0.117 0.200 0.107 0.200 0.107 0.200 0.107 0.200 0.107 0.200 0.107 0.200 0.107 0.200 0.107 0.200 0.107 0.200 0.107 0.2000 0.200000000	SURFACE CPS 4.532 4.893 5.770 6.311 6.370 6.450 6.365 5.912 5.732 5.732 5.630 5.523	SUCTION DIST 0.005 0.011 0.117 0.269 0.437 0.578 0.695 0.695 0.695 0.695 0.695 0.695 0.695 0.695 0.695 0.695 0.937	SURFACE CFS 7.164 7.229 7.727 8.294 8.116 8.277 8.022 7.450 7.322 7.212 7.069	SUCTION DIST 0.005 0.011 0.117 0.269 0.437 0.578 0.695 0.863 0.937 1.003	SURFACE CFS 14.024 13.014 12.822 12.165 12.170 11.911 11.137 10.917 10.631 10.474	
	PRESUM DIST 0.012 0.049 0.246 0.425 0.570 0.678 0.775 0.868 0.951	SURFACE CF3 2.458 2.791 2.975 2.757 2.723 2.843 3.138 3.568 4.241 5.515	PRESSURE DIST 0.012 0.049 0.246 0.426 0.426 0.570 0.578 0.578 0.578 0.578 0.578	SURFACE CFS 3.482 3.441 3.326 3.331 3.476 3.856 4.428 5.250 4.601	PRESSURE D157 0.012 0.049 0.246 0.426 0.570 0.673 0.673 0.575 0.563 0.952	SURFACE CFS 5.946 4.215 4.593 4.496 4.465 4.747 5.317 6.167 5.327 10.234	
	BASE PRE DIST 0.935	SSURE CF:3 5.570	BASE PRE DIST 0.965	ESSURE CF:5 7.120	BASE PRI DIST 0.955	ESSURE CPS	

والادمار بيوج مستشكاته بنيار أتجمه الالتهار

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 7b

Π.

Đ,

4

TURBINE STAGE MIDSPAN PRESSURE DISTRIBUTIONS

AXIAL GAP: 15% GRID IN CP = (PTO - Ρ)/1/2 ρ U_m²

\$ = 0.68	\$ = 0.78	\$ = 0.96	
STATOR-1	STATOR-1	STATOR-1	
CPT1 0.708 CPS2 4.225	CPT1 0.934 CPS2 5.599	CPT1 1.403 CPS2 8.468	
SUCTION SURFACE DIST CPS 0.012 2.386 0.070 2.891 0.251 4.337 0.426 5.778 0.554 5.574 0.651 5.257 0.734 4.980 0.809 4.711 0.879 4.595 0.945 3.997 1.000 4.407 PEESSIDE SIDEACE	SUCTION SURFACE DIST CPS 0.012 3.190 0.070 3.823 0.251 5.723 0.426 7.678 0.554 7.426 0.651 6.937 0.734 6.596 0.809 6.237 0.879 6.056 0.945 5.276 1.000 5.882	SUCTION SURFACE DIST CPS 0.012 4.749 0.070 5.791 0.251 6.661 0.426 11.607 0.554 11.143 0.651 10.423 0.734 9.854 0.809 9.415 0.879 9.123 0.945 7.930 1.000 8.744	
DIST CPS 0.005 0.792 0.027 0.801 0.026 0.933 0.251 0.946 0.423 1.005 0.564 1.143 0.687 1.479 0.789 2.069 0.886 2.892 0.967 .352	DIST CPS 0.005 1.035 0.027 1.066 0.066 1.224 0.251 1.251 0.423 1.334 0.564 1.509 0.687 1.972 0.785 2.724 0.886 3.826 0.967 5.735	Dist CPS 0.005 1.575 0.027 1.629 0.066 1.862 0.251 1.875 0.423 2.000 0.564 2.274 0.687 2.969 0.789 4.113 0.886 5.817 0.967 8.712	
BASE PRESSURE DIST CPS 0.990 4.228	BASE PRESSURE DIST CPS 0.990 5.638	BASE PRESSURE DIST CPS 0.990 B.489	
ROTOR-1	ROTOR-1	ROTOR-1	
CPTR2 3.447 CPS3 5.984	CPTR2 4.279 CPS3 7.709	CPTR2 5.778 CPS3 11.245	
SUCTION SURFACE DIST CPS 0.005 5.342 0.011 5.559 0.117 6.436 0.269 7.122 0.437 7.152 0.578 7.206 0.695 7.145 0.785 6.678 0.937 6.459 1.003 6.376	SUCTION SURFACE DIST CPS 0.005 7.839 0.011 7.986 0.117 8.795 0.269 9.362 0.437 9.123 0.578 9.289 0.695 9.099 0.785 8.528 0.863 8.469 0.937 8.188 1.003 8.159	SUCTION SURFACE DIST CPS 0.005 14.921 0.011 13.463 0.117 14.008 0.269 14.009 0.437 13.388 0.578 13.437 0.695 13.128 0.785 17.460 0.863 12.241 0.937 12.063 1.005 11.836	
PRESSURE SURF ACE DIST CPS 0.012 3.495 0.049 3.722 0.089 3.859 0.248 3.645 0.426 3.593 0.570 3.786 0.678 4.039 0.775 4.441 0.868 5.068 0.952 6.335	PRESSURE SURFACE DIST CPS 0.012 4.651 0.049 4.402 0.069 4.663 0.249 4.463 0.426 4.461 0.570 4.641 0.678 5.069 0.775 5.579 0.868 6.452 0.952 8.145	PRESSURE SURFACE DIST CPS 0.012 7.499 0.049 5.779 0.089 6.123 0.248 6.031 0.426 6.056 0.570 6.327 0.678 6.875 0.775 7.709 0.868 9.074 0.952 11.683	
BASE PRESSURE DIST CPS 0.985 6.398	BASE PRESSURE DIST CPS 0.965 0.217	BASE PPESSURE DIST CPS 0.985 12.005	

(A)

E

4

1.6

TURBINE STAGE MIDSPAN PRESSURE DISTRIBUTIONS

AXIAL GAP: 50% GRID OUT CP=(PTO-P)/1/2 ρU_m²

ĺ	\$ = 0.68		¢ =	= 0.78	Т	\$ = 0.96		
	STATOR-1		STA	TOR-1		STATOR-1		
	CPT1 0.0 CPS2 3.3	90 95	CPT1 CPS2	0.000		CPT1 CPS2	0.000	
	SUCTION SURF DIST CP 0.012 1.6 0.070 2.1 0.251 3.5 0.426 5.0 0.554 4.8 0.651 4.5 0.734 4.1 0.809 3.9 0.879 3.8 0.945 3.6 1.000 3.62 PRESSURE SURF	ACE 5 17 557 43 48 67 70 13 16 39 48	SUCTIC DIST 0.012 0.251 0.426 0.554 0.651 0.734 0.809 0.879 0.945 1.000 PRESSUR	IN SURFACE CPS 2.117 2.959 4.705 6.731 6.423 5.953 5.532 5.216 5.031 4.808 4.705 E SURFACE		SUCTIO DIST 0.012 0.070 0.251 0.426 0.554 0.651 0.734 0.809 0.879 0.945 1.000	ON SURFACE CPS 3.215 4.328 7.115 10.112 9.726 8.960 8.276 7.856 7.604 7.232 7.173	
	DIST CPS 0.005 0.06 0.027 0.06 0.026 0.19 0.251 0.22 0.423 0.29 0.564 0.42 0.564 0.42 0.687 0.77 0.789 1.34 0.886 2.16 0.967 3.49 BASE PRESSURE DIST CPS 0.990 3.45	6 6	DIST 0.005 0.027 0.066 0.251 0.423 0.564 0.564 0.687 0.789 0.886 0.967 BASE PF DIST 0.990	CPS 0.111 0.108 0.254 0.374 0.563 1.019 1.779 2.864 4.650 ESSURE CPS 4.535		Pressur DIST 0.005 0.027 0.066 0.251 0.423 0.564 0.687 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.967	E SURFACE CPS 0.180 0.159 0.381 0.435 0.565 0.843 1.536 2.678 4.298 6.971 RESSURE CPS 6.852	
	ROTOR-1	T	ROTOR	-1	1-	ROTO	8-1	┥
	CPTR2 2.58 CPS3 5.06	5	CPTR2 CPS3	3.184 6.509		PTR2	4.100	
	SUCTION SURFA DIST CPS 0.005 4.05 0.011 4.26 0.117 5.25 0.269 5.90 0.437 5.94 0.578 6.03 0.695 5.90 0.785 5.49 0.963 5.31 0.937 5.32 1.003 5.21	CE 2 7 2 6 6 1 2 7 9 1	SUCTION DIST 0.005 0.011 0.117 0.269 0.437 0.578 0.695 0.785 0.863 0.937 1.003	SURFACE CPS 6.477 6.507 7.211 7.903 7.722 7.754 7.591 7.017 6.925 6.889 6.746		SUCTION DIST 0.005 0.011 0.117 0.269 0.437 0.437 0.437 0.437 0.455 0.955 0.963 0.937 0.003	N SURFACE CPS 12.857 11.828 11.744 11.829 11.252 11.146 10.880 16.278 10.001 9.882 9.722	
	PRESSURE SURF AC DIST CPS 0.012 2.648 0.049 2.744 0.049 2.764 0.049 2.890 0.426 2.724 0.570 2.841 0.578 3.003 0.775 3.355 0.868 3.724 0.952 5.063		PRESSURE DIST 0.012 0.049 0.248 0.426 0.570 0.478 0.775 0.848 U.952	SURFACE CPS 3.579 3.236 3.411 3.267 3.360 3.501 3.661 4.216 4.830 6.569	P 000000000000000000000000000000000000	RESSURE DIST .012 .049 .089 .248 .426 .570 .678 .775 .868 .952	SURFACE CPS 5.92? 4.141 4.342 4.200 4.463 4.663 4.662 5.052 5.927 6.900 9.436	
	DIST CPS 0.995 8.079		BASE PRE DIST 0.995	SSURE CPS 6.636	0.	ASE PRI	ESSURE CPS 9.591	

TABLE 8b

ORIGINAL PAGE IS OF POOR QUALITY

٢

TURBINE STAGE MIDSPAN PRESSURE DISTRIBUTIONS

AXIAL GAP: 50% GRID IN CP=(PTC-P)/1/2 ρU_m^2

• = 0.68	\$ = 0.78	\$ = 0.96	
STATOR-1	STATOR-1	STATOR-1	
CPT1 0.717 CPS2 4.270	CPT1 0.934 CPS2 5.592	CPT1 1.418 CPS2 8.422	
SUCTION SURFACE DIST CPS 0.012 2.346 0.070 2.940 0.251 4.379 0.426 5.977 0.554 5.745 0.651 5.345 0.734 5.119 0.809 4.878 0.879 4.713 0.945 4.549 1.000 4.554	SUCTION SURFACE DIST CPS 0.012 3.105 0.070 3.890 0.251 5.819 0.426 7.921 0.554 7.569 0.651 7.054 0.734 6.711 0.809 6.408 0.879 6.230 0.945 6.002 1.000 6.013	SUCTION SURFACE DIST CFS 0.012 4.755 0.070 5.892 0.251 8.695 0.42c 11.852 0.554 11.314 0.651 10.678 0.734 10.134 0.809 9.679 0.879 9.353 0.945 9.060 1.000 9.051	
PRESSURE SURFACE DIST CPS 0.005 0.797 0.027 C.799 0.066 0.911 0.251 0.946 0.423 1.005 0.564 1.160 0.687 1.520 0.789 2.105 0.886 2.990 0.967 4.438	PRESSURE SURFACE D1ST CPS 0.005 1.069 0.027 1.060 0.066 1.214 0.251 1.240 0.423 1.329 0.564 1.532 0.687 2.011 0.789 2.801 0.886 3.893 0.967 5.875	PRESSURE SURFACE DIST CPS 0.005 1.587 0.027 1.593 0.066 1.813 0.251 1.886 0.423 1.991 0.564 2.310 0.687 2.997 0.789 4.203 0.886 5.938 0.967 8.873	
BASE PRESSURE DIST CPS 0.990 4.338	BASE PRESSURE DIST CPS 0.990 5.721	BASE PRESSURE DIST CPS 0.990 8.591	
ROTOR-1	ROTOR-1	RUTOR-1	
CPTR2 3.386 CPS3 5.964	CPTR2 4.128 CPS3 7.685	CPTR2 5.710 CPS3 11.194	
SUCTION SURFACE DIST CPS 0.005 5.203 0.011 5.272 0.117 6.240 0.269 6.825 0.437 6.837 0.578 6.981 0.695 6.835 0.785 6.356 0.863 6.225 0.937 6.174 1.003 6.178	SUCTION SURFACE DIST CPS 0.005 7.971 0.011 7.684 0.117 8.700 0.269 9.157 0.437 9.996 0.578 9.009 0.695 8.715 0.765 8.311 0.863 7.918 0.937 8.098 1.003 7.831	SUCTION SURFACE DIST CPS 0.005 15.107 0.011 13.042 0.117 13.722 0.269 13.926 0.437 13.121 0.578 12.949 0.695 12.685 0.785 12.066 0.863 11.836 0.937 11.670 1.003 11.603	
PRESSURE SURFACE DIST CPS 0.012 3.401 0.049 3.487 0.069 3.645 0.248 3.474 0.426 3.531 0.678 3.793 0.775 4.158 0.868 4.662 0.952 6.071 BASE PRESSURE	PRESSURE SURFACE DIST CPS 0.012 4.654 0.049 4.194 0.0699 4.392 0.246 4.311 0.424 4.315 0.570 4.516 0.775 5.282 0.846 5.967 0.952 7.922	PRESSURE SURFACE DIST CPS 0.012 7.767 0.049 5.712 0.089 5.946 0.248 5.858 0.426 6.002 0.570 6.265 0.678 6.620 0.775 7.532 0.868 8.635 0.952 11.388	
DIST CPS 0.985 6.017	BASE PRESSURE DIST CPS 0.985 7.894	BASE PRESSURE LIST CPS 0.985 11.517	

3

1.

Ż,

TABLE 9a

5

1

A. ()

1

1.12

STATOR-2 MIDSPAN PRESSURE DISTRIBUTIONS

AX!AL GAP: 50% GRID OUT CP=(PTO-P)/1/2 ρU_m^2

\$ = 0.68	♦ = 0.78	\$ = 0.96
STATOR-2	STATOR-2	STATOR-2
CPT3 4.551 CPS4 7.009	CPT3 5.570 CPS4 8.924	CPT3 7.700 CPS4 12.942
SUCTION SURFACE DIST CPS 0.000 5.392 0.022 5.096 0.135 6.106 0.291 7.428 0.459 8.004 0.598 8.160 0.704 8.144 0.791 7.894 0.868 7.670 0.933 7.629 0.995 7.587	SUCTION SURFACE DIST CPS 0.000 7.479 0.022 6.796 0.135 8.110 0.291 9.658 0.459 10.176 0.598 10.385 0.704 10.428 0.791 10.115 0.868 9.807 0.933 9.706 0.995 9.681	SUCTION SURFACE DIST CPS 0.000 12.329 0.022 11.687 0.135 12.670 0.291 14.485 0.459 14.932 0.596 15.217 0.704 15.258 0.791 14.705 0.868 14.303 0.933 14.091 0.995 14.065
PRESSURE SURFACE DIST CPS 0.023 4.602 0.107 4.958 0.265 4.747 0.425 4.758 0.564 4.861 0.679 5.117 0.777 5.551 0.865 6.132 0.946 7.192 BASE PRESSURE DIST CPS 0.986 7.271	PRESSURE SURFACE DIST CPS 0.023 6.019 0.107 6.146 0.265 5.870 0.425 5.832 0.564 5.983 0.679 6.341 0.777 6.901 0.865 7.706 0.946 9.128 BASE PRESSURE DIST CPS 0.986 9.292	PRESSURE SURFACE DIST CPS 0.023 9.708 0.107 8.424 0.265 8.117 0.425 8.078 0.564 8.423 0.679 9.028 0.777 9.989 0.865 11.253 0.946 13.418 BASE PRESSURE DIST CPS 0.986 13.535

.t

a second

ORIGINAL PAGE IS OF POOR QUALITY

150

200

TABLE 9b

STATOR-2 MIDSPAN PRESSURE DISTRIBUTIONS

AXIAL GAP: 50% GRID IN CP=(PTO-P)/1/2 ρU_m²

• = 0.68	\$ = 0.78	\$ = 0.96	
STATOR-2 CPT3 5.483 CPS4 8.079 SUCTION SURFACE DIST CPS 0.000 6.380 0.022 6.099 0.135 7.167 0.291 8.512 0.459 9.107 0.598 9.273 0.704 9.297 0.791 9.012 0.868 8.785 0.933 8.695 0.995 8.691 PRESSURE SURFACE DIST CPS 0.107 5.901 0.265 5.672 0.425 5.700 0.544 5.810 0.679 6.078 0.777 6.500 0.865 7.170 0.946 9.301 BASE PRESSURE DIST CPS 0.996 8.328	STATOR-2 CPT3 6.801 CPS4 10.311 SUCTION SURFACE DIST CPS 0.000 8.669 0.022 8.237 0.135 9.477 0.291 11.113 0.459 11.689 0.598 11.944 0.704 11.920 0.791 11.578 0.868 11.265 0.933 11.170 0.995 21.061 PRESSURE SURFACE DIST CPS 0.023 7.288 0.107 7.344 0.265 7.074 0.564 7.280 0.425 7.074 0.564 7.280 0.425 9.076 0.946 10.551 BASE PRESSURE DIST CPS 0.986 10.679	STATUR-2 CPT3 9.560 CPS4 14.914 SUCTION SUFFACE DIST CPS 0.000 14.162 0.022 13.408 0.135 14.706 0.291 16.578 0.459 17.206 0.598 17.370 0.791 16.716 0.868 16.286 0.933 15.980 0.995 16.003 PRESSURE SURFACE DIST CPS 0.107 10.193 0.265 9.899 0.425 9.945 0.564 10.258 0.679 10.889 0.777 11.839 0.865 13.267 0.946 15.433 BASE PRESSURE DIST CPS 0.986 15.400	

DEFINITION OF AVERAGE TOTAL, PERIODIC, AND RANDOM UNSTEADINESS

1

1

$$\overline{U}_{T} = \frac{1}{N_{REV}} \sum_{k=1}^{N_{REV}} \frac{1}{\tau} \int_{0}^{\tau} (V_{k}(t) - V_{0})^{2} dt / V_{REF}^{2}$$

$$\overline{U}_{T} = \frac{1}{\tau} \int_{0}^{\tau} (\overline{V}(t) - V_{0})^{2} dt / V_{REF}^{2} + \frac{1}{N_{REV}} \sum_{k=1}^{N_{REV}} \frac{1}{\tau} \int_{0}^{\tau} v_{k}^{\prime 2} dt / V_{REF}^{2}$$

$$\overline{U}_{T} = \overline{U}_{P} + \overline{U}_{R}$$

TABLE 10b

.

¥ 4.3.

PITCH AVERAGED UNSTEADINESS RESULTS AT Cx/Um = 0.68

	TOTAL √Ū _T	RANDOM $\sqrt{\overline{u}_R}$	
1st STATOR EXIT			
• GRID OUT	0.024	0.018	0.014
GRID IN	0.034	0.030	0.014
ROTOR EXIT			
• GRID OUT	0.155	0.115	0.101
GRID IN	0.154	0.132	0.078
2nd STATOR EXIT			
GRID OUT	0.057	0.054	0.017
• GRID IN	0.058	0.056	0.016

and the second
TABLE 10c

.

\$

- Contraction

Ē

PITCH AVERAGED UNSTEADINESS RESULTS AT Cx/Um = 0.78

	TOTAL $\sqrt{\overline{U}_T}$	RANDOM $\sqrt{\overline{U}_R}$	
1st STATOR EXIT			
GRID OUT	0.030	0.022	0 019
GRID IN	0.036	0.031	0.017
ROTOR EXIT			
GRID OUT	0.155	0.120	0.096
• GRID IN	0.155	0.137	0.069
2nd STATOR EXIT			
GRID OUT	0.061	0.058	0.020
• GRID IN	0.061	0.058	0.017

32

PL ----

TABLE 10d

· .

.

PITCH AVERAGED UNSTEADINESS RESULTS AT Cx/Um = 0.96

	TOTAL VUT	RANDOM $\sqrt{\overline{U}_R}$	
1st STATOR EXIT			
GRID OUT	0.028	0.018	0.020
GRID IN	0.037	0.030	0.020
ROTOR EXIT			
• GRID OUT	0.159	0.123	0.098
• GRID IN	0.169	0.146	0.084
2nd STATOR EXIT			
	0.071	0.066	0.026
GRID IN	0.073	0.068	0.025

.

÷,

U

.:

4

1

N A

i i

E

FIG. 2 UNITED TECHNOLOGIES RESEARCH CENTER LARGE SCALE ROTATING RIG

بر ب

4

ł

FIG. 3a

ROTOR PRESSURE DISTRIBUTION

FIG. 3b

STREAMWISE TURBULENCE (RMS)

4

.*

FIG. 4

ROM MIDSPAN

INSTRUMENTATION DIAGRAM FOR THE FIRST STAGE STATOR -5a F16.

THE CENTRE STATIONS TO SLOUATED AT 30 % SPAIN ANU 183 166 AND 25% AWAY FROM MIDSO	* AT THESE AXIAL	STATIONS TC's LOCATE	D AT 50% SPAN AND	±83 166 AND 25%	AWAY ERCINA MIDSDAN
---	------------------	----------------------	-------------------	-----------------	---------------------

- 1 -	r .	TALC TOURSENTATION.	DIACOAM	600	T 1.0	~	

27	0 524	1 192	53	0 037	1 892
2A	0 464	1 277	54	0.044	1 900
29	0 396	1 361	55	0 052	1 909
33*	0 324	1 445	56	C 060	1 917
37	0 169	1 529	57	0 068	1 926
38	0 155	1 614	58	0 076	1 934

T C #	×в,	s' в,
59	0 064	• 941
6 0	0 092	1.951
61	0.130	1 9 93
62	0 172	2 0 3 5
63	0 209	2 077
64	0.246	2 1 1 9
65	0 285	2 162
69*	0 35ë	2 246
73	0.421	2 330
74	÷≠ 0 484	2.414
75	0 538	2 494
79*	0.590	2 583
83	0 63 "	2.667
84	0 6 7 9	2 75;
8ť	0 72 3	2 83t
89*	0 764	2.92
9 3	0.801	3 004
94	0.840	3 089
95	0 878	313
96	0 91 4	3 257
5 97	0 949	3 342

TC#	×B,	\$ [†] /8,
1	0 995	0.012
2	0 968	0 096
3	0 941	0 181
4	0 91 5	C 265
5	0 887	0 349
6	0 858	0 434
7	0 829	0 518
115	0 7 9 9	0 6 02
15	0 767	0 68 €
16	0 7 3 5	0 771
17	0 700	0.855
18	0 66 3	0 9 39
22 *	0 620	1 024
26	0 575	1 108
27	0 524	1 192
2A	0 464	1 277
29	0 396	1 361
33*	0 324	1.445
37	0 169	1 529

SUCTION SURFACE AIRFOIL TC's 1-60	
PRESSURE SURFACE AIRFOIL TC's 40-97	

5⁰/8

1 698

1 782

1 791

1 799

1 808

1 816

1 824

1 833

1 841

1 850

1 858

1 867

1 875

1 883

X/B

0 073

0.007

0.004

0 001

0000

0 000

0.001

0 002

0 005

0 008

Ũ Ú I 3

0 018

0 023

0 0 3 0

TC#

39

40

41

42

43

44

45

46

47

48

49

50

51

52

- -

ORIGINAL PAGE IS POOP OITALITY

TC#	х/8 _к	s'e,
1	0 975	0 069
2	0 945	0148
3	0 912	0 227
4	0 878	0 306
8*	0 845	0 385
12	C 81 1	0 463
13	0 773	0 542
14	0 735	0.62
15	0 69 2	C 7 O G
16	0.643	0 779
20 *	0 588	0.858
24	0 525	0 936
25	0 456	1 015
26	0 3 8 2	1 094
27	0 303	1 173
28	0 226	1 252
32 •	0 155	1 33 .
36	0.095	1 410
37	0.044	1 488
38	0 00 3	1 567

TC#	X/8 _x	S [†] /B ₂
39	0.001	1 575
40.	0 000	1 583
41	0 000	1 591
42	0 00 2	1 59 9
43	0 004	1 607
44	0 007	1 615
45	0.012	1 622
46	0.017	1 630
47	0 02 3	1 638
48	0 030	1 646
49	U 037	1 654
50	D 044	1 662
51	0 052	1.670
52	0.061	1 678
53	0 068	1 686
54	0 076	1 693
55	0.083	1 701
56	0 09 0	1 709
57	0 096	1 717
56	0 103	1 725

TC#	х/B	S [†] B,
59	0 1 3 9	1 764
60	0 172	1 804
61	0.211	1 843
62	0 251	1 883
63	0 29 0	1 922
67 *	0 371	2 000
71	0 445	2 080
72	0 513	2 159
73	0 574	2 237
77 *	0 629	2 316
81	0 68 0	2 395
82	0 7 30	2 474
83	0774	2 553
87 *	0 820	2 632
9 1	0 858	2 711
92	0 899	2 789
93	0 940	2 868

 AT THESE AXIAL STATIONS T C s LOCATED AT 50% SPAN AND ±8.3, 16.6 AND 25% AWAY FROM MIDSPAN

FIG. 56 INSTRUMENTATION DIAGRAM FOR THE FIRST STAGE ROTOR

40

ORIGINAL PAGE IS OF POOR QUALITY

r

FIG. 6a AIRFOIL MIDSPAN PRESSURE DISTRIBUTIONS, X/Bx = 0.15, GRID OUT, Cx/Um = 0.68

Ì

41

una sama.

Star Pheres

Å

FIG. 6b AIRFOIL MIDSPAN PRESSURE DISTRIBUTIONS, X/Bx = 0.15, GRID IN, Cx/Um = 0.68

1,

*

 \mathbf{C}

1,

*=

FIG. 8b AIRFOIL MIDSPAN PRESSURE DISTRIBUTIONS, X/Bx = 0.15, GRID IN, Cx/Um = 0.96

4

,*:

FIG. 9a AIRFOIL MIDSPAN PRESSURE DISTRIBUTIONS, X/Bx = 0.50, GRID OUT, Cx/Um = 0.68

دي ر

15 11 1 10 TOT

ţ

FIG. 10a AIRFOIL MIDSPAN PRESSURE DISTRIBUTIONS, X/Bx = 0.50, GRID OUT, Cx/Um = 0.78

. . ..

and the state of t

2

E

÷.

Ĵ

1.

ļ

· .

FIG. 11b AIRFOIL MIDSPAN PRESSURE DISTRIBUTIONS, X/Bx = 0.50, GRID IN, Cx/Um = 0.96

1

.....

. N 38

....

Ĩ

\$

1,

.**V** 1 a

ł

i

1

n a

55

Ø

. .

. .

•

t.

......

*

1.00

PITCH

1.50

2.00

1.50

1.00

0.00

0.58

FIG. 15b ABSOLUTE TOTAL PRESSURE AND VELOCITY FROM 5-HOLE PROBE TRAVERSE AT 1ST STATOR EXIT (X/Bx = 0.17), GRID OUT

FIG. 15c ABSOLUTE TOTAL PRESSURE AND VELOCITY FROM 5-HOLE PROBE TRAVERSE AT 1ST STATOR EX!'T (X/Bx = 0.17), GRID OUT

STE SETT

÷ .

1.50

4

Ŀ

ORIGINAL PAGE IS OF POOR QUALITY

FIG. 16b STATIC PRESSURE AND AXIAL VELOCITY FROM 5-HOLE PROBE TRAVERSE AT 1ST STATOR EXIT (X/Bx = 0.17), GRID OUT

64

ور و مر با و مسلمی از مر از مر از مر

1%

r

FIG. 16c STATIC PRESSURE AND AXIAL VELOCITY FROM 5-HOLE PROBE TRAVERSE AT 1ST STATOR EXIT (X/Bx = 0.17), GRID OUT

1%

FIG. 17b ABSOLUTE YAW AND PI CH ANGLES FROM 5-HOLE PROBE TRAVERSE AT 1ST STATOR EXIT (X/Bx = 0.17), GRID OUT

67

-

ORIGINAL FAGE IS OF POOR QUALITY

FIG. 17¢ ABSOLUTE YAW AND PITCH ANGLES FROM 5-HOLE PROBE TRAVERSE AT 1ST STATOR EXIT (X/Bx = 0.17), GRID OUT

AT

1

ł

69

7 87 (7)

. . .

والمرايان فتتشكن فنواجم المعا

CTOT

Ĵ

FIG. 18c ABSOLUTE TOTAL PRESSURE AND VELOCITY FROM 5-HOLE PROBE TRAVERSE AT 1ST STATOR EXIT (X/Bx = 0.17), GRID IN

1. 1. 5

ð

¢

72

مريوم مستحدهمي المح

FIG. 19b STATIC PRESSURE AND AXIAL VELOCITY FROM 5-HOLE PROBE TRAVERSE AT 1ST STATOR EXIT (X/Bx = 0.17), GRID IN

ORIGINAL PAGE IS

FIG. 19c STATIC PRESSURE AND AXIAL VELOCITY FROM 5-HOLE PROBE TRAVERSE AT 1ST STATOR EXIT (X/Bx = 0.17), GRID IN

....

٢,

FIG. 20a ABSOLUTE YAW AND FITCH ANGLES FROM 5-HOLE PROBE TRAVERSE AT 1ST STATOR EXIT (X/Bx = 0.17), GRID IN

مهرج المتهان

0.30

-12.00

0.00

1.00

PITCH

1.50

2.00

*

21.9

\$

FIG. 20b ABSOLUTE YAW AND PITCH ANGLES FROM 5-HOLE PROBE TRAVERSE AT 1ST STATOR EXIT (X/Bx = 0.17), GRID IN

.

4

12

2

Ĩ

ţ

والمحاج والمحا

31/1

1

78

and the state of the second

Ż

۲.

ł

80

a the second

ł

Ś

.

FIG. 226 STATIC PRESSURE AND AXIAL VELOCITY FROM 5-HOLE PROBE TRAVERSE AT ROTOR EXIT (X/Bx = 0.36), GRID OUT

Å

1

Ť

Ŧ

i.

2

1

t.

FIG. 23a RELATIVE YAW AND PITCH ANGLES FROM 5-HOLE PROBE TRAVERSE AT ROTOR EXIT (X/Bx = 0.36), GRID OUT

84

Chit 4

and the state of the

FIG. 23b RELATIVE YAW AND PITCH ANGLES FROM 5-HOLE PROBE TRAVERSE AT ROTOR EXIT (X/Bx = 0.36), GRID OUT

12

۲.

the state

1

)

1.00

PITCH

0.50

-12.00

0.00

1.50

2.00

• •

Ľ,

87

and the second second second

۲

í.,

FIG. 24b RELATIVE TOTAL PRESSURE AND VELOCITY FROM 5-HOLE PROBE TRAVERSE AT ROTOR EXIT (X/Bx = 0.36), GRID IN

A service of the serv

<u>,</u>

نہ ۔

والمراجع مستشبكا والمراجع

FIG. 25a STATIC PRESSURE AND AXIAL VELOCITY FROM 5-HOLE PROBE TRAVERSE AT ROTOR EXIT (X/Bx = 0.36), GRID IN

ł

٢.

٤

2

, e

p

۲.

ſ

. .

92

ما بروم معدر معد بارین بر المام ال

1.00

PITCH

1.50

2.00

4

_N¥

÷

Ч

12

0.50

-65.00

6-2

0.00

FIG. 26a RELATIVE YAW AND PITCH ANGLES FROM 5-HOLE PROBE TRAVERSE AT ROTOR EXIT (X/Bx = 0.36), GRID IN

FIG. 26b RELATIVE YAW AND PITCH ANGLES FROM 5-HOLE PROBE TRAVERSE AT ROTOR EXIT (X/Bx = 0.36), GRID IN

1.00

PITCH

1.50

2.00

e.50

-12.00 _

0.00

94

and the second second second

FID. 26¢ RELATIVE YAW AND PITCH ANGLES FROM 5-HOLE PROBE TRAVERSE AT ROTOR EXIT (X/Bx = 0.36), GRID IN

.

96

والمروح المحمد منجرو والمحمول المواجع المحم

łi

FIG. 27° ABSOLUTE TOTAL PRESSURE AND VELOCITY FROM 5-HOLE PROBE TRAVERSE AT 2ND STATOR EXIT (X/Bx = 0.14), GRID OUT

E

FIG. 28a STATIC PRESSURE AND AXIAL VELOCITY FROM 5-HOLE PROBE TRAVERSE AT 2ND STATOR EXIT (X/Bx = 0.14), GRID OUT

FIG. 28b STATIC PRESSURE AND AXIAL VELOCITY FROM 5-HOLE PROBE TRAVERSE AT 2ND STATOR EXIT (X/Bx = 0.14), GRID OUT

FIG. 28c STATIC PRESSURE AND AXIAL VELOCITY FROM 5-HOLE PROBE TRAVERSE AT 2ND STATOR EXIT (X/Bx = 0.14), GRID OUT

-

FIG. 29a ABSOLUTE YAW AND PITCH ANGLES FROM 5-HOLE PROBE TRAVERSE AT 2ND STATOR EXIT (X/Bx = 0.14), GRID OUT

102

الرامانية ومعتاجين ومعاداتهما

FIG. 29b ABSOLUTE YAW AND PITCH ANGLES FROM 5-HOLE PROBE TRAVERSE AT 2ND STATOR EXIT (X/Bx = 0.14), GRID OUT

FIG. 29c ABSOLUTE YAW AND PITCH ANGLES FROM 5-HOLE PROBE TRAVERSE AT 2ND STATOR EXIT (X/Bx = 0.14), GRID OUT

10

N, I

;

1.

Ì

L

4

Ï,

107

ì

14.

والتكازي فالكراف الكريد

10.

1.00

PITCH

0.50

1

1.50

2.00

0.550

0.500

0.00

4

0.50 1.00 1.50 2.00 PITCH FIG. 316 STATIC PRESSURE AND AXIAL VELOCITY FROM 5-HOLE PROBE TRAVERSE AT 2ND STATOR EXIT (X/Bx = 0.14), GRID IN

I

0.650

0.600

0.00

C,

'n.

2

4

1

FIG. 32a ABSOLUTE YAW AND PITCH ANGLES FROM 5-HOLE PROBE TRAVERSE AT 2ND STATOR EXIT (X/Bx = 0.14), GRID IN

111

والمحاج والمحاجب والمحاجب والمحاج والمح

.

FIG. 325 ABSOLUTE YAW AND PITCH ANGLES FROM 5-HOLE PROBE TRAVERSE AT 2ND STATOR EXIT (X/Bx = 0.14), GRID IN

AND AND AND

41

113

16-

R R

Ł

FIG. 33a CIRCUMFERENTIAL DISTRIBUTION OF TIME AVERAGED SPEED AND UNSTEADINESS AT 1ST STATOR EXIT, GRID OUT

FIG. 336 CIRCUMFERENTIAL DISTRIBUTION OF TIME AVERAGED SPEED AND UNSTEADINESS AT 1ST STATOR EXIT, GRID IN

115

200

ر بياد منظر منظرة خور المحمد المحمد

-

Ę

March 1994

K

10

1

. *

FIG. 34a CIRCUMFERENTIAL DISTRIBUTION OF TIME AVERAGED SPEED AND UNSTEADINESS AT ROTOR EXIT, GRID OUT

*

1

1

117

and the second second second second

A STATE

1

1

alter all and

-

ALT.N

4

-1

1.

119

and the second states in

.

FIG. 36a CIRCUMFERENTIAL DISTRIBUTION OF TIME AVERAGED SPEED AND UNSTEADINESS AT 1ST STATOR EXIT, GRID OUT

120

والمريوم المعدممين والمرج

STA 2 HOT FILH, CX/UR: 0.70, X/0X: 0.50, GRID IN CIRC AVG.: 2.115 3.00 2.50 2.50 1.50 1.50 0.00 0.00 0.50 1.00 0.100 0.00 0.50 1.00 0.100 0.50 0.00 0.100 0.50 0.00 0.100 0.50 0.00

FIG. 366 CIRCUMFERENTIAL DISTRIBUTION OF TIME AVERAGED SPEED AND UNSTEADINESS AT 1ST STATOR EXIT, GRID IN

.

\$

× .

1,

.∦ Za 5.0

FIG. 37a CIRCUMFERENTIAL DISTRIBUTION OF TIME AVERAGED SPEED AND UNSTEADINESS AT ROTOR EXIT, GRID OUT

.

FIG. 37b CIRCUMFERENTIAL DISTRIBUTION OF TIME AVERAGED SPEED AND UNSTEADINESS AT ROTOR EXIT, GRID IN

123

1

•

*

ł

1

۲

1.4

FIG. 38a CIRCUMFERENTIAL DISTRIBUTION OF TIME AVERAGED SPEED AND UNSTEADINESS AT 2ND STATOR EXIT, GRID OUT

124

State -

÷

t

FIG. 386 CIRCUMFERENTIAL DISTRIBUTION OF TIME AVERAGED SPEED AND UNSTEADINESS AT 2ND STATOR EXIT, GRID IN STA 2 HOT FILM, CX/UN= 8.95, X/8X= 8.58, GRID OUT CIRC AVG.= 2.672

4

F

S.

10

1

0101

STA 2 HOT FILM, CX/UM: 0.96, X/BX: 0.50, CRID IN CIRC AVG.: 2.586

. .

-

.....

CTUT

1

FIG. 396 CIRCUMFERENTIAL DISTRIBUTION OF TIME AVERAGED SPEED AND UNSTEADINESS AT 1ST STATOR EXIT, GRID IN

t

UNSTEADINESS (SQRT)

و مول

*

FIG. 406 CIRCUMFERENTIAL DISTRIBUTION OF TIME AVERAGED SPEED AND UNSTEADINESS AT ROTOR EXIT, GRID OUT

Ĕ

Ķ

1

2

ſ

FIG. 41a CIRCUMFERENTIAL DISTRIBUTION OF TIME AVERAGED SPEED AND UNSTEADINESS AT 2ND STATOR EXIT, GRID OUT

1

ļ

FIG. 416 CIRCUMFERENTIAL DISTRIBUTION OF TIME AVERAGED SPEED AND UNSTEADINESS AT 2ND STATOR EXIT, GRID IN

131

الور مر غلام مطالبة ملك المحمد المحمد المحمد المحمد المحمد

Nato	onal Aeronautics and ce Administration	Repo	ort Documentation Pag	e	
1. Rep NA	NO. LSA CR-179469	2.	Government Accession No.	3. Recipient's Catalog) No.
4. Title	and Subtitle			5. Report Date	
The	The Effects of Inlet Turbulence and Rotor/Stator Interactions on the		Stator Interactions on the	November 1987	7
Aer	Aerodynamics and Heat Transfer of a Large-Scale Rotating Turbi			6. Performing Organiz	zation Code
IV-	IV—Aerodynamic Data Tabulation				
7. Auth	hor(s)	······································		8. Performing Organi	zation Report No.
R.P	P. Dring, H.D. Joslyn, a	and M.F. Blair		UTRC-R86-95	6480-4
				10. Work Linit No	
				533 04-11	
9. Peri	Performing Organization Name and Address				
Uni	ited Technologies Resea	rch Center		11. Contract or Grant	NO.
Silv	ver Lane			NAS3-23717	
Eas	st Hartford, Connecticut	06108		13. Type of Report and	d Period Covered
2. Spo	insoring Agency Name and A	ddress		- Contractor Rep	ort
Nat	tional Aeronautics and S	pace Administra	ition	FINAL 14 Sponsoring Agency	Code
Lev	wis Research Center	-			
Cle	eveland, Ohio 44135-319				
Cle 6. Absi A co	eveland, Ohio 44135. stract combined experimental and a	nalytical program	was conducted to examine the effects of	inlet turbulence on airfo	i Center,
Cle 6. Abst A co The turb low- acqu num prog surfa resu exam volu Repu	eveland, Ohio 44135. tract combined experimental and a experimental portion of the bine model configured in bot -conductivity airfoils with m uired for various combination nber and relative circumferent gram include distributions of face pressures and circumferent alts included airfoil heat tran- mination of solutions of the umes. All four have a common port Title: The Effects of Scale Rotating	inalytical program v study was conduct h single-stage and iniature thermocou ns of low or high in tial position of the f the mean and fluc ential distributions isfer predictions pro- unsteady boundary ion report title and Inlet Turbulence an Turbine Model.	was conducted to examine the effects of ted in a large-scale (approximately 5× stage-and-a-half arrangements. Heat tra- ples welded to a thin, electrically heate inlet turbulence intensity, flow coefficie truating velocities at the turbine inlet an of the downstream steady state pressure oduced using existing two-dimensional it layer equations. The results of this pro the following volume subtitles: nd Rotor/Stator Interactions on the Aer	ASA Lewis Research inlet turbulence on airfo engine), ambient tempera isfer measurements were d surface skin. Heat tran nt, first-stator/rotor axial measurements obtained a d, for each airfoil row, i is and fluctuating velocit oundary layer computati gram are reported in fou	bil heat transfer. ture, rotating obtained using sofer data were spacing, Reynolds as part of the midspan airfoil tes. Analytical on schemes and an ar separate hsfer of a Large-
Cle A co The turb low- acqu num prog surfa resu exan volu Repu Volu	eveland, Ohio 44135. tract combined experimental and a experimental portion of the bine model configured in bot -conductivity airfoils with m uired for various combinatio nber and relative circumfered gram include distributions of face pressures and circumfered lts included airfoil heat tran- mination of solutions of the umes. All four have a commo- cort Title: The Effects of Scale Rotating ume Titles: Volume I: Volume II: Volume III: Volume IV:	inalytical program v study was conduct h single-stage and iniature thermocou ns of low or high in ntial position of the f the mean and fluc ential distributions isfer predictions pro- unsteady boundary ion report title and Inlet Turbulence an Turbine Model. UTRC-R86-95644 (NASA CR-17940 UTRC-R86-95644 (NASA CR-17940 UTRC-R86-95644	was conducted to examine the effects of ted in a large-scale (approximately 5× stage-and-a-half arrangements. Heat tra- ples welded to a thin, electrically heate inlet turbulence intensity, flow coefficie truating velocities at the turbine inlet an of the downstream steady state pressure oduced using existing two-dimensional is layer equations. The results of this pro- the following volume subtitles: nd Rotor/Stator Interactions on the Aere 80-1 Final Report 80-2 Heat Transfer Data Tabulation 57) 80-3 Heat Transfer Data Tabulation 58) 80-4 Aerodynamic Data Tabulation	ASA Lewis Research inlet turbulence on airfo engine), ambient tempera isfer measurements were d surface skin. Heat tran nt, first-stator/rotor axial measurements obtained a d, for each airfoil row, i is and fluctuating velocit oundary layer computati gram are reported in fou odynamics and Heat Tran 15% Axial Spacing 65% Axial Spacing	bil heat transfer. ature, rotating solutions of the solution as part of the midspan airfoil tes. Analytical on schemes and an ur separate hsfer of a Large-
Cle A cc The turb low- acqu num prog surfa resu exan volu Repu Volu	eveland, Ohio 44135. tract combined experimental and a experimental portion of the bone model configured in bot -conductivity airfoils with m uired for various combination nber and relative circumferent gram include distributions of face pressures and circumferent uits included airfoil heat trans- mination of solutions of the umes. All four have a common port Title: The Effects of Scale Rotating ume Titles: Volume I: Volume III: Volume III: Volume IV:	nalytical program v study was conduct h single-stage and ininature thermocou ons of low or high in fital position of the ential distributions isfer predictions pro- unsteady boundary ion report title and Inlet Turbulence an Turbine Model. UTRC-R86-95644 (NASA CR-17940 UTRC-R86-95644 (NASA CR-17940 UTRC-R86-95644 (NASA CR-17940)	rhal Fluid Mechanics Division, N was conducted to examine the effects of ted in a large-scale (approximately 5× stage-and-a-half arrangements. Heat trai- ples welded to a thin, electrically heate inlet turbulence intensity, flow coefficie e first and second stators. Aerodynamic stuating velocities at the turbine inlet an of the downstream steady state pressure oduced using existing two-dimensional in layer equations. The results of this pro- the following volume subtitles: nd Rotor/Stator Interactions on the Aero 80-1 Final Report 80-2 Heat Transfer Data Tabulation 57) 80-3 Heat Transfer Data Tabulation 58) 80-4 Aerodynamic Data Tabulation 59)	ASA Lewis Research inlet turbulence on airfo engine), ambient tempera sisfer measurements were d surface skin. Heat tran nt, first-stator/rotor axial measurements obtained a d, for each airfoil row, i is and fluctuating velocit oundary layer computati gram are reported in fou odynamics and Heat Tran 15% Axial Spacing 65% Axial Spacing	bil heat transfer. ture, rotating obtained using sfer data were spacing, Reynolds as part of the midspan airfoil tes. Analytical on schemes and an ir separate hsfer of a Large-
Cle A co The turb low- acquu num prog surfa resu exar volu Repu Volu	eveland, Ohio 44135. tract combined experimental and a experimental portion of the poine model configured in bot -conductivity airfoils with m uired for various combinatio nber and relative circumfered gram include distributions of face pressures and circumfered lts included airfoil heat tran- mination of solutions of the umes. All four have a commo- bort Title: The Effects of Scale Rotating ume Titles: Volume II: Volume III: Volume III: Volume IV: Words (Suggested by Author	inalytical program v study was conduct h single-stage and iniature thermocou ns of low or high in ntial position of the f the mean and fluc ential distributions isfer predictions pro- unsteady boundary ion report title and Inlet Turbulence an Turbine Model. UTRC-R86-95644 (NASA CR-17940 UTRC-R86-95644 (NASA CR-17940 UTRC-R86-95644 (NASA CR-17940 UTRC-R86-95644 (NASA CR-17940 (NASA CR-17940	was conducted to examine the effects of ted in a large-scale (approximately 5× stage-and-a-half arrangements. Heat tra- ples welded to a thin, electrically heate inlet turbulence intensity, flow coefficie truating velocities at the turbine inlet an of the downstream steady state pressure oduced using existing two-dimensional in layer equations. The results of this pro- the following volume subtitles: and Rotor/Stator Interactions on the Aer 80-1 Final Report 80-2 Heat Transfer Data Tabulation 57) 80-3 Heat Transfer Data Tabulation 58) 80-4 Aerodynamic Data Tabulation 59)	ASA Lewis Research inlet turbulence on airfo engine), ambient tempera isfer measurements were d surface skin. Heat tran nt, first-stator/rotor axial measurements obtained a d, for each airfoil row, i s and fluctuating velocit oundary layer computati gram are reported in fou odynamics and Heat Tran 15% Axial Spacing 65% Axial Spacing	bil heat transfer. ature, rotating solutions of the solution as part of the midspan airfoil les. Analytical on schemes and an ur separate hsfer of a Large-
Cle 16. Abst A cc The turb iow- acqu num prog surfa resu exan volu Repu Volu 7. Key Hea Aer Tur Rote Tur	eveland, Ohio 44135. tract combined experimental and a experimental portion of the bone model configured in bot -conductivity airfoils with m uired for various combination nber and relative circumferent gram include distributions of face pressures and circumferent and relative circumferent gram include distributions of face pressures and circumferent transition of solutions of the umes. All four have a comment wort Title: The Effects of Scale Rotating ume Titles: Volume I: Volume II: Volume III: Volume IV: Words (Suggested by Author at transfer rodynamics rbines tor/stator rbulence	nalytical program v study was conduct h single-stage and ininiature thermocou ons of low or high in thial position of the ential distributions isfer predictions pro- unsteady boundary ion report title and Inlet Turbulence an Turbine Model. UTRC-R86-95644 (NASA CR-17940 UTRC-R86-95644 (NASA CR-17940 UTRC-R86-95644 (NASA CR-17940 UTRC-R86-95644 (NASA CR-17940 UTRC-R86-95644 (NASA CR-17940 (NASA CR-17940 (NASA CR-17940)	rhal Fluid Mechanics Division, N was conducted to examine the effects of ted in a large-scale (approximately 5× stage-and-a-half arrangements. Heat trai ples welded to a thin, electrically heate inlet turbulence intensity, flow coefficie e first and second stators. Aerodynamic stuating velocities at the turbine inlet an of the downstream steady state pressure oduced using existing two-dimensional in layer equations. The results of this pro- the following volume subtitles: and Rotor/Stator Interactions on the Aero 80-1 Final Report 80-2 Heat Transfer Data Tabulation 51 80-3 Heat Transfer Data Tabulation 58 80-4 Aerodynamic Data Tabulation 59	ASA Lewis Research inlet turbulence on airfo engine), ambient tempera isfer measurements were d surface skin. Heat tran nt, first-stator/rotor axial measurements obtained a d, for each airfoil row, r is and fluctuating velocit coundary layer computati gram are reported in fou odynamics and Heat Tran 15% Axial Spacing 65% Axial Spacing	bil heat transfer. ture, rotating obtained using sfer data were ispacing, Reynolds as part of the midspan airfoil tes. Analytical on schemes and an ur separate hsfer of a Large-
Cle 16. Abst A cc The turb low- acqu num prog surfaresu exam- volu Repu Volu 7. Køy Hea Aer Tur Rote Tur Urs	eveland, Ohio 44135. tract combined experimental and a experimental portion of the bone model configured in bot -conductivity airfoils with m uired for various combination onber and relative circumference gram include distributions of face pressures and circumference alts included airfoil heat tran mination of solutions of the umes. All four have a comm wort Title: The Effects of Scale Rotating ume Titles: Volume I: Volume II: Volume III: Volume IV: Words (Suggested by Author at transfer rodynamics rbulence steady flow for the standard of the steady flow	inalytical program v study was conduct h single-stage and innature thermocou ons of low or high in ntial position of the f the mean and fluc ential distributions safer predictions pro- unsteady boundary ion report title and Inlet Turbulence an Turbine Model. UTRC-R86-95641 (NASA CR-17940 UTRC-R86-95641 (NASA CR-17940 UTRC-R86-95641 (NASA CR-17940 (NASA CR-17940 (NASA CR-17940 (NASA CR-17940)	rhal Fluid Mechanics Division, N was conducted to examine the effects of ted in a large-scale (approximately 5× stage-and-a-half arrangements. Heat tra- ples welded to a thin, electrically heate inlet turbulence intensity, flow coefficie c first and second stators. Aerodynamic stuating velocities at the turbine inlet an of the downstream steady state pressure oduced using existing two-dimensional ic layer equations. The results of this pro the following volume subtitles: nd Rotor/Stator Interactions on the Aero 80-1 Final Report 80-2 Heat Transfer Data Tabulation 57) 80-3 Heat Transfer Data Tabulation 58) 80-4 Aerodynamic Data Tabulation 59)	ASA Lewis Research inlet turbulence on airfo engine), ambient tempera isfer measurements were d surface skin. Heat tran nt, first-stator/rotor axial measurements obtained a d, for each airfoil row, i is and fluctuating velocit oundary layer computati gram are reported in fou odynamics and Heat Tran 15% Axial Spacing 65% Axial Spacing	bil heat transfer. ature, rotating solution of the solution spacing, Reynolds as part of the midspan airfoil les. Analytical on schemes and an ur separate hsfer of a Large-
Cle 16. Abst A cc The turb low- acqu num prog surfaresu exam- volu Repu Volu 7. Køy Hea Aer Tur Rote Tur Uns Airt	eveland, Ohio 44135. tract combined experimental and a experimental portion of the bone model configured in bot -conductivity airfoils with m uired for various combination nber and relative circumferent gram include distributions of face pressures and circumferent alts included airfoil heat tran mination of solutions of the umes. All four have a comm wort Title: The Effects of Scale Rotating ume Titles: Volume I: Volume II: Volume III: Volume IV: Words (Suggested by Author at transfer rodynamics rbulence steady flow foils	inalytical program v study was conduct h single-stage and innature thermocou ons of low or high in ntial position of the f the mean and fluc ential distributions safer predictions pro- unsteady boundary ion report title and Inlet Turbulence an Turbine Model. UTRC-R86-95641 (NASA CR-17944 UTRC-R86-95641 (NASA CR-17944 UTRC-R86-95641 (NASA CR-17944 (NASA CR-17944 (NASA CR-17944)	rhal Fluid Mechanics Division, N was conducted to examine the effects of ted in a large-scale (approximately 5× stage-and-a-half arrangements. Heat tra- ples welded to a thin, electrically heate inlet turbulence intensity, flow coefficie c first and second stators. Aerodynamic stuating velocities at the turbine inlet an of the downstream steady state pressure oduced using existing two-dimensional ic layer equations. The results of this pro- the following volume subtitles: nd Rotor/Stator Interactions on the Aero 80-1 Final Report 80-2 Heat Transfer Data Tabulation 57) 80-3 Heat Transfer Data Tabulation 58) 80-4 Aerodynamic Data Tabulation 59) Date for general release STAB Concessor	ASA Lewis Research inlet turbulence on airfo engine), ambient tempera isfer measurements were d surface skin. Heat tran nt, first-stator/rotor axial measurements obtained a d, for each airfoil row, i is and fluctuating velocit oundary layer computati gram are reported in fou odynamics and Heat Tran 15% Axial Spacing 65% Axial Spacing 65% Axial Spacing	bil heat transfer. ature, rotating solution of the solution spacing, Reynolds as part of the midspan airfoil les. Analytical on schemes and an ur separate hsfer of a Large-
Cle 16. Abst A cc The turb low- acqu num prog surfi resu exan volu Repu Volu 7. Køy Hea Aer Tur Rote Tur Uns Airt	eveland, Ohio 44135. stract combined experimental and a experimental portion of the pone model configured in bot -conductivity airfoils with m uired for various combination nber and relative circumferent gram include distributions of face pressures and circumferent puts included airfoil heat tran- mination of solutions of the umes. All four have a common port Title: The Effects of Scale Rotating ume Titles: Volume I: Volume II: Volume III: Volume IV: Words (Suggested by Author at transfer- rodynamics rbines tor/stator rbulence steady flow foils	nalytical program v study was conduct h single-stage and ininiature thermocou ons of low or high in thial position of the ential distributions isfer predictions pro- unsteady boundary ion report title and Inlet Turbulence an Turbine Model. UTRC-R86-95644 (NASA CR-17940 UTRC-R86-95644 (NASA CR-17940 UTRC-R86-95644 (NASA CR-17940 UTRC-R86-95644 (NASA CR-17940 (NASA CR-17940 (NASA CR-17940 (NASA CR-17940 (NASA CR-17940 (NASA CR-17940)	rhal Fluid Mechanics Division, N was conducted to examine the effects of ted in a large-scale (approximately 5× stage-and-a-half arrangements. Heat trai ples welded to a thin, electrically heate inlet turbulence intensity, flow coefficie e first and second stators. Aerodynamic truating velocities at the turbine inlet an of the downstream steady state pressure oduced using existing two-dimensional in layer equations. The results of this pro- the following volume subtitles: and Rotor/Stator Interactions on the Aero 80-1 Final Report 80-2 Heat Transfer Data Tabulation 57) 80-3 Heat Transfer Data Tabulation 58) 80-4 Aerodynamic Data Tabulation 59) Date for general release STAR Category Security Clease (and this access)	ASA Lewis Research inlet turbulence on airfo engine), ambient tempera isfer measurements were d surface skin. Heat tran nt, first-stator/rotor axial measurements obtained a d, for each airfoil row, i is and fluctuating velocit oundary layer computati gram are reported in fou odynamics and Heat Tran 15% Axial Spacing 65% Axial Spacing 65% Axial Spacing 85% Axial Spacing 85% Axial Spacing	bil heat transfer. ature, rotating obtained using sfer data were ispacing, Reynolds as part of the midspan airfoil tes. Analytical on schemes and an ar separate msfer of a Large-

- -

ASA FORM 1525 OCT 85

4

ł