Three-Dimensional Models of Conventional and Vertical Junction Laser-Photovoltaic Energy Converters

John H. Heinbockel and Gilbert H. Walker

LIBRARY COPY

JULY 1988

Three-Dimensional Models of Conventional and Vertical Junction Laser-Photovoltaic Energy Converters

John H. Heinbockel
Old Dominion University
Norfolk, Virginia
Gilbert H. Walker
Langley Research Center
Hampton, Virginia

N/S^

National Aeronautics and Space Administration

Scientific and Technical Information Division

Symbols

a, b	x and y half-width dimensions, cm
$B()$	boundary operator
D_{n}, D_{p}	diffusion coefficients of electrons and holes, $\mathrm{cm}^{2}-\mathrm{s}^{-1}$
$G_{1}, G_{2}, g_{1}, g_{2}$	Green's functions
g	generation rate, photons/ $\mathrm{cm}^{3}-\mathrm{s}$
H	depth of planar cell, cm
H()	partial differential operator
h^{\prime}	depth parameter, $H-z_{j}-w$, cm
$I_{s c}, I_{d}$	currents, A
J_{n}, J_{p}, J_{0}	current density of electrons and holes, $\mathrm{A}-\mathrm{cm}^{-2}$
$J_{p d}, J_{n d}$	dark current density, A- cm^{-2}
$J_{s c}$	short circuit current density, $\mathrm{A}-\mathrm{cm}^{-2}$
$L()$	linear differential operator
L_{n}, L_{p}	diffusion lengths of electrons and holes, $\mathrm{cm}^{2}-\mathrm{s}^{-1}$
$n_{p}, p_{n}, n_{p_{0}}, p_{n_{0}}$	densities of electrons and holes, cm^{-3}
R	reflection coefficient, dimensionless
R_{n}, R_{p}	regions n and p
R_{s}	series resistance, ohms
$R_{s h}$	shunt resistance, ohms
S, S_{I}, S_{n}, S_{p}	surface recombination velocities, $\mathrm{cm}^{\text {- }}{ }^{-1}$
$U_{m}, V_{m}, U_{m}^{*}, V_{m}^{*}$	eigenfunctions
x, y, z	coordinates
z_{j}	junction depth, cm
α	absorption coefficient, cm^{-1}
η_{i}, η_{i}^{*}	eigenvalues
ϕ_{0}	rate of incident photons, $\mathrm{cm}^{-2}-\mathrm{s}^{-1}$
ω	width of depletion region, cm

Summary

In order to achieve a better understanding and comparison of conventional and vertical junction laser-photovoltaic energy converters, we have constructed three-dimensional analytical models of their operation. These models simulate the conversion of laser power into electrical power and are constructed for both planar conventional and vertical junction photoconverters. The models are a set of linear partial differential equations and take into account many photoconverter design parameters. From the models, we extract the spectral response and current-voltage relations from solutions to the partial differential operators in terms of Green's functions. The model is applied to Si photoconverters; however, the model may be used with other semiconductors. The conversion efficiency of the Si vertical junction photoconverter is 47 percent, whereas the efficiency for the conventional Si planar device is only 17 percent. A parametric study of the vertical junction Si converter is then done in order to describe the optimum converter for use with a $1.06-\mu \mathrm{m}$ Nd laser. The optimum Si vertical junction converter for a single junction is 1 mm deep by 1 cm wide by 0.035 mm thick. The junction is located $2 \mu \mathrm{~m}$ from one edge. The doping density for both acceptors and donors is $1 \times 10^{18} \mathrm{~cm}^{-3}$. A reflectivity of 5 percent is assumed. The efficiency for this optimized vertical junction converter is 44 percent at $1 \mathrm{~kW}-\mathrm{cm}^{-2}$.

Introduction

Photovoltaic converters have many applications for satellite and space station power needs. In this paper, we are concerned with the application of photovoltaics for the conversion of laser power to electrical power in a space-based laser power system (ref. 1). We envision laser radiation on the order of $1.0 \mathrm{~kW}-\mathrm{cm}^{-2}$ (ref. 1) at a specific wavelength that depends upon the type of laser considered. Semiconductors for use as laser power converters must be chosen such that their bandgap energy is less than the energy of the laser photons (ref. 2). In this study, we develop three-dimensional analytical models to compare planar conventional photoconverters with vertical junction photoconverters in order to achieve a comparison of how these energy converters operate. The photoconverter considered is Si which has a bandgap energy of 1.11 eV . For this type of photoconverter, we consider a Nd laser which emits $1.06 \mu \mathrm{~m}$ radiation which is near the Si bandgap. The models for the conversion of laser power to electrical power are based upon a set of linear partial differential equations with appropriate boundary conditions. Solutions of these equations are obtained in terms of Green's functions (ref. 3) for the regions n and p . From these solutions, various output quantities are calculated. In particular, we calculate the efficiencies of the converters, the spectral response, current voltage relationships, and contour plots of the current density at the junction edge. Temperature gradients are neglected. The method used is very general and will handle a wide variety of source terms.

Model

General

The geometry for the three-dimensional models of an n/p photoconverter is illustrated in figure 1 . We denote the region n by

$$
R_{n}=\left\{x, y, z \quad|\quad| x\left|\leq a,|y| \leq b, 0 \leq z \leq z_{j}\right\}\right.
$$

and denote the region p by

$$
R_{p}=\left\{x, y, z \quad|\quad| x\left|\leq a,|y| \leq b, z_{j}+\omega \leq z \leq H\right\}\right.
$$

The junction doping is assumed to be linear and abrupt at the junction edge. For the planar conventional photoconverter, we let

$$
\begin{equation*}
g(z)=\phi_{0}(1-R) \alpha \exp (-\alpha z) \tag{1}
\end{equation*}
$$

denote the generation rate of the hole-electron pairs at a depth z when light is incident perpendicular to the surface $z=0$. We let $g(a-x)$ denote the generation rate for the vertical junction photoconverters when light is incident upon the face $x=a$. In equation (1), ϕ_{0} in $\mathrm{cm}^{-2}-\mathrm{s}^{-1}$ is the rate of incident photons per second per unit area, R is the fraction reflected from the surface, and α is the absorption coefficient in cm^{-1} at the wavelength considered.

Conventional Photoconverter

We consider first the model for a conventional planar photoconverter with light incident upon the face $z=0$. For the region R_{n}, the diffusion of the excess carriers $p=p_{n}-p_{n_{0}}$ in the n -material is governed by the equation

$$
H\left(p ; L_{p}\right)=-g(z) / D_{p} \quad\left(x, y, z \in R_{n}\right)
$$

where

$$
\begin{equation*}
H\left(u ; L_{p}\right)=\nabla^{2} u-\frac{u}{L_{p} 2} \tag{2}
\end{equation*}
$$

which is subject to the following boundary conditions:

$$
\left.\begin{array}{rlr}
B\left(p ; x ; D_{p}\right) & =S_{0} p & (x=a) \\
B\left(p ; x ; D_{p}\right) & =-S_{0} p & (x=-a) \\
B\left(p ; y ; D_{p}\right) & =S_{0} p & (y=b) \\
B\left(p ; y ; D_{p}\right) & =-S_{0} p & (y=-b) \tag{3}\\
B\left(p ; z ; D_{p}\right) & =-S_{p} p & (z=0) \\
p & =0 & \left(z=z_{j}\right)
\end{array}\right\}
$$

with

$$
B(u ; x ; c)=-c \frac{\partial u}{\partial x}
$$

a boundary operator, and where c is a dummy parameter within the operator. The parameters in equations (2) and (3) are S_{0}, the surface recombination velocity at the sides; S_{p}, the surface recombination velocity at the surface $z=0 ; D_{p}$, the diffusion coefficient of holes; and L_{p}, the diffusion length of holes in an average lifetime.

For the region R_{p}, the diffusion of the excess minority carriers $n=n_{p}-n_{p_{0}}$ in the p -material is governed by the equation

$$
\begin{equation*}
H\left(n ; L_{n}\right)=\frac{-g(z)}{D_{n}} \quad\left(x, y, z, \in R_{p}\right) \tag{4}
\end{equation*}
$$

which is subject to the following boundary conditions:

$$
\left.\begin{array}{rlr}
B\left(n ; x ; D_{n}\right) & =S_{1} n & (x=a) \tag{5}\\
B\left(n ; x ; D_{n}\right) & =-S_{1} n & (x=-a) \\
B\left(n ; y ; D_{n}\right) & =S_{1} n & (y=b) \\
B\left(n ; y ; D_{n}\right) & =-S_{1} n & (y=-b) \\
B\left(n ; z ; D_{n}\right) & =S_{n} n & (z=H) \\
n & =0 & \left(z=z_{j}+\omega\right)
\end{array}\right\}
$$

with parameters S_{1}, the surface recombination velocity at the sides; S_{n}, the surface recombination velocity at the surface $z=H ; D_{n}$, the diffusion coefficient of electrons; and L_{n}, the diffusion length of electrons.

Associated with the boundary value problem using equations (2) and (3) is a Green's function $G_{1}\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)$ which can be obtained by the method of separation of variables.

This enables us to represent the solution to the boundary value problem of equations (2) and (3) in the form:

$$
\begin{equation*}
p=p_{n}-p_{n_{0}}=\int_{0}^{z_{j}} \int_{-b}^{b} \int_{-a}^{a} \frac{-g\left(z_{0}\right)}{D_{p}} G_{1}\left(x, y, z ; x_{0}, y_{0}, z_{0}\right) d x_{0} d y_{0} d z_{0} \tag{6}
\end{equation*}
$$

Similarly, there is a Green's function $G_{2}\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)$ associated with the boundary value problem using equations (4) and (5) which enables us to represent the solution to equations (4) and (5) in the form:

$$
\begin{equation*}
n=n_{p}-n_{p_{0}}=\int_{z_{j}+\omega}^{H} \int_{-b}^{b} \int_{-a}^{a} \frac{-g\left(z_{0}\right)}{D_{n}} G_{2}\left(x, y, z ; x_{0}, y_{0}, z_{0}\right) d x_{0} d y_{0} d z_{0} \tag{7}
\end{equation*}
$$

The functions G_{1} and G_{2} can be expressed as a double Fourier series in terms of the eigenfunctions associated with the Sturm-Liouville problem (ref. 4):

$$
\begin{equation*}
\frac{d^{2} u}{d r^{2}}+\lambda^{2} u=0 \tag{8}
\end{equation*}
$$

with the following boundary conditions:

$$
\begin{array}{rr}
B(u ; r ; D)=S_{3} u & (r=h) \\
B(u ; r ; D)=S_{3} u & (r=-h)
\end{array}
$$

The eigenfunctions for this problem are given by

$$
\begin{equation*}
u_{n}=u\left(r ; D, S_{3}, h, \lambda_{n}\right)=\cos \lambda_{n} r \tag{9}
\end{equation*}
$$

where the eigenvalues λ_{n} satisfy the equation

$$
\zeta_{n} \tan \zeta_{n}=\frac{S_{3} h}{D} \quad\left(\zeta_{n}=\lambda_{n} h\right)
$$

Note that for large values of n, ζ_{n+1} approaches $n \pi$. Also the eigenfunctions are orthogonal over the interval ($-h, h$) with norm squared given by

$$
\begin{equation*}
\left\|u_{n}\right\|^{2}=h+\frac{S_{3} h^{2}}{D} \frac{\cos ^{2} \varsigma_{n}}{\varsigma_{n}^{2}} \quad\left(\varsigma_{n}=\lambda_{n} h\right) \tag{10}
\end{equation*}
$$

We can then define the eigenfunction associates with the regions R_{n} and R_{p} as

$$
\begin{align*}
& U_{m}(x)=u\left(x ; D_{p}, S_{0}, a, \lambda_{m}\right)=\cos \lambda_{m} x \\
& V_{m}(y)=u\left(y ; D_{p}, S_{0}, b, \eta_{m}\right)=\cos \eta_{m} y \tag{11}\\
& U_{m}^{*}(x)=U\left(x ; D_{n}, S_{1}, a, \lambda_{m}^{*}\right)=\cos \lambda_{m}^{*} x \\
& V_{m}^{*}(y)=U\left(y ; D_{n}, S_{1}, b, \eta_{m}^{*}\right)=\cos \eta_{m}^{*} y
\end{align*}
$$

The Green's functions G_{1} and G_{2} can be represented in the form of a double Fourier series symmetric in x and y given by

$$
\begin{equation*}
G_{1}=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{\psi_{1 i j}}{\Delta_{1}} \frac{U_{j}\left(x_{0}\right) U_{j}(x) V_{i}\left(y_{0}\right) V_{i}(y)}{\left\|U_{j}\right\|^{2}\left\|V_{i}\right\|^{2}} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
G_{2}=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{\psi_{2 i j}}{\Delta_{2}} \frac{U_{j}^{*}\left(x_{0}\right) U_{j}^{*}(x) V_{i}^{*}\left(y_{0}\right) V_{i}^{*}(y)}{\left\|U_{j}^{*}\right\|^{2}\left\|V_{i}^{*}\right\|^{2}} \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
\psi_{1 i j} & =\left\{\begin{array}{lr}
Y_{1}\left(z_{0}\right) Y_{2}(z) & \left(0<z_{0}<z\right) \\
Y_{1}(z) Y_{2}\left(z_{0}\right) & \left(z<z_{0}<z_{j}\right)
\end{array}\right. \\
\psi_{2 i j} & =\left\{\begin{array}{lr}
Y_{3}\left(z_{0}\right) Y_{4}(z) & \left(z_{j}+\omega<z_{0}<z\right) \\
Y_{3}(z) Y_{4}\left(z_{0}\right) & \left(z<z_{0}<H\right)
\end{array}\right. \tag{14}\\
\Delta_{1} & =\frac{-Y_{1}\left(z_{j}\right)}{\gamma_{i j} \sinh \left(z_{j} / \gamma_{i j}\right)} \\
\Delta_{2} & =\frac{Y_{4}\left(z_{j}+\omega\right)}{\sigma_{i j}}
\end{align*}
$$

with

$$
\begin{align*}
& Y_{1}(z)=\cosh \left(\frac{z}{\gamma_{i j}}\right)+\frac{S_{p} \gamma_{i j}}{D_{p}} \sinh \left(\frac{z}{\gamma_{i j}}\right) \\
& Y_{2}(z)=\sinh \frac{\left[\left(z_{j}-z\right) / \gamma_{i j}\right]}{\sinh \left(z / \gamma_{i j}\right)} \\
& Y_{3}(z)=\sinh \left[\frac{z-\left(z_{j}+\omega\right)}{\sigma_{i j}}\right] \tag{15}\\
& Y_{4}(z)=\cosh \left(\frac{H-z}{\sigma_{i j}}\right)+\frac{S_{n} \sigma_{i j}}{D_{n}} \sinh \left(\frac{H-z}{\sigma_{i j}}\right)
\end{align*}
$$

having the parameters $\gamma_{i j}$ and $\sigma_{i j}$ defined by

$$
\begin{aligned}
\gamma_{i j}^{2} & =\frac{L_{p}^{2}}{1+L_{p}^{2}\left(\lambda_{i}^{2}+\eta_{j}^{2}\right)} \\
\sigma_{i j}^{2} & =\frac{L_{n}^{2}}{1+L_{n}^{2}\left(\lambda_{i}^{* 2}+\eta_{j}^{* 2}\right)}
\end{aligned}
$$

From equations (6) and (7), we can obtain the current densities as follows:

$$
\begin{align*}
& J_{p}=-q D_{p} \frac{\partial\left(p_{n}-p_{n_{0}}\right)}{\partial z} \quad\left(z=z_{j}\right) \\
& J_{n}=q D_{n} \frac{\partial\left(n_{p}-n_{p_{0}}\right)}{\partial z} \quad\left(z=z_{j}+\omega\right) \tag{16}
\end{align*}
$$

This gives the total short circuit current $J_{s c}=J_{p}+J_{n}$.

By an analysis of Green's second formula, we can calculate the dark currents associated with the regions R_{n} and R_{p}. In the region R_{n}, we obtain a modification of the boundary value problem using equations (2) and (3). The modification being that in equation (2), we let $g=0$, and in equation (3), we require that

$$
p_{n}-p_{n_{0}}=p_{n_{0}}\left[\exp \left(\frac{q V_{j}}{K T}\right)-1\right] \quad\left(z=z_{j}\right)
$$

where V_{j} is the junction voltage. This boundary value problem has the solution

$$
\begin{equation*}
p_{n}-p_{n_{0}}=\left.\int_{-b}^{b} \int_{-a}^{a} p_{n_{0}}\left[\exp \left(\frac{q V_{j}}{K T}\right)-1\right] \frac{\partial G_{1}}{\partial z_{0}}\right|_{z_{0}=z_{j}} d x_{0} d y_{0} \tag{17}
\end{equation*}
$$

from which we can obtain the dark current opposing the photocurrent as

$$
\begin{equation*}
J_{p d}=-q D_{p} \operatorname{grad}\left(p_{n}-p_{n_{0}}\right) \cdot \hat{k} \quad\left(z=z_{j}\right) \tag{18}
\end{equation*}
$$

Similarly, in the region R_{p}, we obtain for the model of the dark current a modification of the boundary value problem with equations (4) and (5). The modification being that in equation (4), $g=0$, and in equations (5), we require that

$$
n_{p}-n_{p_{0}}=\left[\exp \left(\frac{q V_{j}}{K T}\right)-1\right] \quad\left(z=z_{j}+\omega\right)
$$

This boundary value problem has the solution

$$
\begin{equation*}
n_{p}-n_{p_{0}}=\left.\int_{-b}^{b} \int_{-a}^{a} n_{p_{0}}\left[\exp \left(\frac{q V_{j}}{K T}\right)-1\right] \frac{\partial G_{2}}{\partial z_{0}}\right|_{z_{0}=z_{j}+\omega} d x_{0} d y_{0} \tag{19}
\end{equation*}
$$

which, in turn, produces the dark current

$$
\begin{equation*}
J_{n d}=-q D_{n} \operatorname{grad}\left(n_{p}-n_{p_{0}}\right) \cdot(-\hat{k}) \quad\left(z=z_{j}+\omega\right) \tag{20}
\end{equation*}
$$

The total dark current is then a summation of the results in equations (18) and (20) and we obtain

$$
\begin{equation*}
J_{d}=J_{p d}+J_{n d}=J_{0}\left[\exp \left(\frac{q V_{j}}{K T}\right)-1\right] \tag{21}
\end{equation*}
$$

We use the recombination current density $J_{\text {rec }}$ from reference 4 and calculate the total current by integration with respect to x and y over a plane represented by $z=$ Constant.

The current-voltage relation is obtained from the equation relating the current and voltage for the equivalent circuit diagram of figure 2 and we find

$$
I\left(1+\frac{R_{s}}{R_{s h}}\right)=I_{s c}-\frac{V}{R_{s h}}-I_{d}
$$

where R_{s} is the series resistance and $R_{s h}$ is the shunt resistance.

Vertical Junction Photoconverter

For the vertical junction photoconverter, we assume that light is incident upon the face $x=a$. In the boundary value problems using equations (2), (3), (4), and (5), the generation term $g(z)$ is replaced by $g(a-x)$. Also in equations (6) and (7), the form of the double Fourier series representing the Green's function must be changed because in the vertical junction case
we no longer have symmetry in the x-direction. We consider the following Sturm-Liouville problems (SLP) in the regions R_{n} and R_{p}. In the region R_{n}, we consider

$$
\begin{equation*}
L(W)=W^{\prime \prime}+\eta^{2} W=0 \quad\left(0<z<z_{j}\right) \tag{22}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{array}{rlr}
W & =0 & \left(z=z_{j}\right) \\
B\left(W ; z, D_{p}\right) & =-S_{p} W & (z=0)
\end{array}
$$

In the region R_{p} we consider the SLP

$$
\begin{equation*}
L\left(W^{*}\right)=W^{* \prime \prime}+\eta^{2} W^{*}=0 \quad\left(z_{j}+\omega<z<h\right) \tag{23}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{array}{rlr}
W^{*} & =0 \quad\left(z=z_{j}+\omega\right) \\
B\left(W^{*} ; z, D_{n}\right) & =S_{n} W^{*} \quad(z=H)
\end{array}
$$

The eigenvalues of the SLP in equation (22) satisfy

$$
\begin{equation*}
\frac{-D_{p}\left(\eta_{i} z_{j}\right)}{S_{p} z_{j}}=\tan \eta_{i} z_{j} \quad(i=1,2,3, \ldots) \tag{24}
\end{equation*}
$$

and the eigenvalues of the SLP in equation (23) satisfy

$$
\begin{equation*}
\frac{-D_{n}\left(\eta_{i}^{*} h^{\prime}\right)}{S_{n} h^{\prime}}=\tan n_{i}^{*} h^{\prime} \quad(i=1,2,3, \ldots) \tag{25}
\end{equation*}
$$

with $h^{\prime}=H-z_{j}-\omega$. The corresponding eigenfunctions for the regions R_{n} and R_{p} are,
respectively respectively,

$$
\begin{equation*}
W_{i}(z)=\sin \eta_{i}\left(z_{j}-z\right) \quad(i=1,2,3, \ldots) \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{i}^{*}(z)=\sin \eta_{i}^{*}\left(z-z_{j}-\omega\right) \quad(i=1,2,3, \ldots) \tag{27}
\end{equation*}
$$

which have the square norms

$$
\begin{align*}
\left\|W_{i}\right\|^{2} & =\frac{1}{2} z_{j}-\frac{1}{4} \frac{\sin 2 \eta_{i} z_{j}}{\eta_{i}} \quad(i=1,2,3, \ldots) \tag{28}\\
\left\|W_{i}^{*}\right\|^{2} & =\frac{1}{2} h^{\prime}-\frac{1}{4} \frac{\sin 2 \eta_{i}^{*} h^{\prime}}{\eta_{i}^{*}} \quad(i=1,2,3, \ldots) \tag{29}
\end{align*}
$$

For the vertical junction case, the Green's functions for the regions R_{n} and R_{p} are represented as the double Fourier series

$$
\begin{align*}
& g_{1}\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{V_{i}(y) W_{j}(z) V_{i}\left(y_{0}\right) W_{j}\left(z_{0}\right) \psi_{3 i j}}{\left\|V_{i}\right\|^{2}\left\|W_{j}\right\|^{2} \rho_{i j}} \tag{30}\\
& g_{2}\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{V_{i}^{*}(y) W_{j}^{*}(z) V_{i}^{*}\left(y_{0}\right) W_{j}^{*}\left(z_{0}\right) \psi_{4 i j}}{\left\|V_{i}^{*}\right\|^{2}\left\|W_{j}^{*}\right\|^{2} \rho_{i j}^{*}} \tag{31}
\end{align*}
$$

where V_{i}^{*} and V_{i} have been previously defined in equation (11). The remaining terms in equations (30) and (31) are determined from the relations:

$$
\begin{aligned}
& \psi_{3 i j}=\left\{\begin{array}{lr}
-Y_{1}(x) Y_{2}\left(x_{0}\right) & \left(-a \leq x_{0}<x\right) \\
-Y_{1}\left(x_{0}\right) Y_{2}(x) & \left(x<x_{0} \leq a\right)
\end{array}\right\} \\
& \psi_{4 i j}=\left\{\begin{array}{lr}
-Y_{3}(x) Y_{4}\left(x_{0}\right) & \left(-a \leq x_{0}<x\right) \\
-Y_{3}\left(x_{0}\right) Y_{4}(x) & \left(x<x_{0} \leq a\right)
\end{array}\right\} \\
& Y_{1}(x)=F_{1}\left(x ; \Gamma_{i j}, S_{0}, D_{p}\right) \\
& Y_{2}(x)=Y_{1}(-x) \\
& Y_{3}(x)=F_{1}\left(x ; \varepsilon_{i j}, S_{1}, D_{n}\right) \\
& Y_{4}(x)=Y_{3}(-x) \\
& F_{1}(x ; A, B, C)=\cosh \left(\frac{a-x}{A}\right)+\frac{A B}{C} \sinh \left(\frac{a-x}{A}\right) \\
& \Gamma_{i j}^{2}=\frac{L_{p}^{2}}{1+L_{p}^{2}\left(\mu_{i}^{2}+\eta_{j}^{2}\right)} \\
& \varepsilon_{i j}^{2}=\frac{L_{n}^{2}}{1+L_{n}^{2}\left(\mu_{i}^{* 2}+\eta_{j}^{* 2}\right)} \\
& \rho_{i j}=F_{2}\left(\Gamma_{i j}, S_{0}, D_{p}\right) \\
& \rho_{i j}^{*}=F_{2}\left(\varepsilon_{i j}, S_{1}, D_{n}\right) \\
& F_{2}(A, B, C)=\left(\frac{1}{A}+\frac{B^{2} A}{C^{2}}\right) \sinh \left(\frac{2 a}{A}\right)+\frac{2 B}{C} \cosh \left(\frac{2 a}{A}\right)
\end{aligned}
$$

In equations (2) and (3), we replace $g(z)$ by $g(a-x)$, then in the region R_{n} the density of excess minority carriers can be represented in the form

$$
p_{n}-p_{n_{0}}=\int_{0}^{z_{j}} \int_{-b}^{b} \int_{-a}^{a} \frac{g\left(a-x_{0}\right)}{D_{p}} g_{1}\left(x, y, z ; x_{0}, y_{0}, z_{0}\right) d x_{0} d y_{0} d z_{0}
$$

Similarly in equations (4) and (5), we replace $g(z)$ by $g(a-x)$ and find that the solution for the excess minority carriers in the region R_{p} can be represented in the form

$$
n_{p}-n_{p_{0}}=\int_{z_{j}+\omega}^{h} \int_{-b}^{b} \int_{-a}^{a}-\frac{g\left(a-x_{0}\right)}{D_{n}} g_{2}\left(x, y, z ; y_{0}, z_{0}\right) d x_{0} d y_{0} d z_{0}
$$

With the photocurrent relations of equation (18), we can produce the photocurrent responses at the junction edges z_{j} and $z_{j}+\omega$ from which we can calculate the total short circuit current.

Computer programs simulating both the conventional and vertical junction photoconverter responses have been developed. As a check on the results obtained from these three-dimensional models, we constructed one-dimensional models of both the conventional and vertical junction photoconverters, and the results from that study can be found in reference 5.

Results and Discussion

Comparison of Conventional and Vertical Junction Converters

Figure 3 gives the efficiencies of a conventional converter and a vertical junction converter for Nd laser radiation. These efficiencies were calculated by using the nominal parameters shown in table I. The efficiency of the vertical junction converter at an input power of $1 \mathrm{~kW}-\mathrm{cm}^{-2}$ is 47 percent, whereas under the same conditions, the efficiency of the conventional converter is only 17 percent. Because of the higher efficiency of the vertical junction converter, a detailed parametric study has been done for this converter.

Parametric Study of Vertical Junction Converters

Since the efficiency of the vertical junction converter is significantly higher than the efficiency of the conventional converter, a parametric study of the vertical junction converter has been done. Baseline parameters shown in table II were assigned individually to determine the optimum, achievable value for each parameter. The best set of these values was then assigned to describe the optimum vertical junction converter for use with a $1.06-\mu \mathrm{m}$ Nd laser.

Application of Model to Si Vertical Junction Converter Nd Laser System

It has been shown previously that Si vertical junction converters are appropriate for use with a Nd laser to form a space power system (refs. 2 and 5). We have applied our threedimensional model for vertical junction converters to such a system. The effects of various design parameters are shown, and the optimum single junction converter is described.

The set of converter baseline parameters chosen is shown in table II. These parameters were varied individually in order to determine their optimum values and then assembled to describe the optimum single junction converter. Each parameter is discussed separately.

Carrier Concentration

Figure 4 shows the effect of carrier concentration on converter efficiency for our baseline conditions. The peak baseline efficiency of 47.5 percent occurs at an acceptor concentration of 1×10^{18} carriers- cm^{-3}. The peak baseline efficiency of 51.2 percent occurs at a donor concentration of 1×10^{18} carriers- cm^{-3}. We chose for our optimum carrier concentrations both donor and acceptor concentrations of 1×10^{18} carriers- cm^{-3}.

Converter depth. Figure 5 shows the effect of converter depth on converter efficiency. The efficiency increases from 20.5 percent at a depth of $5 \mu \mathrm{~m}$ to 47.8 percent at a depth of $35 \mu \mathrm{~m}$. We have taken $35 \mu \mathrm{~m}$ as the optimum converter depth.

Converter thickness. Figure 6 shows the effect of converter thickness on converter efficiency. The efficiency increases to a maximum baseline efficiency of 45.5 percent at a converter thickness of $1000 \mu \mathrm{~m}$. This thickness of $1000 \mu \mathrm{~m}$ is used as the thickness of our optimum converter.

Junction position. Figure 7 shows the effect of junction position on converter efficiency. As the depth of the n -layer (junction position) decreases, the converter efficiency increases. From a fabrication consideration, we have chosen $2 \mu \mathrm{~m}$ as a practical, achievable junction position for our optimum converter. The peak baseline efficiency is 51.2 percent.

Series resistance. Figure 8 shows the effect of series resistance on the converter efficiency. The efficiency decreases from 45.5 percent at $0.1 \mathrm{~m} \Omega$ to 7.7 percent at a series resistance of 1 ohm . For our optimum converter, we have chosen a series resistance of $1 \mathrm{~m} \Omega$ corresponding to $20 \mu \mathrm{~m}$ of silicon thickness. The baseline efficiency with this series resistance is 45.4 percent.

Temperature. Figure 9 shows the converter efficiency as a function of temperature. Note that the efficiency decreases with increasing temperature. The efficiency at our operating temperature of 300 K is 45.4 percent. Operation of Si above 500 K may not be practical.

Surface recombination velocity. Figure 10 shows the effect of n-surface recombination velocity and p-surface recombination velocity on converter efficiency. As the n-surface recombination velocity increases from $0.01 \mathrm{~m}-\mathrm{sec}^{-1}$ to $100 \mathrm{~m}-\mathrm{sec}^{-1}$, the efficiency decreases from 49.4 percent to 31.1 percent. As the p-surface recombination velocity increases from $0.01 \mathrm{~m}-\mathrm{sec}^{-1}$ to $100 \mathrm{~m}-\mathrm{sec}^{-1}$, the efficiency decreases from 47.6 percent to 38.7 percent. According to reference 6, a surface recombination velocity of $1 \mathrm{~m}-\mathrm{sec}^{-1}$ is achievable in Si ; therefore, we have chosen $1 \mathrm{~m}-\mathrm{sec}^{-1}$ as the recombination velocity of our optimum, achievable converter. The baseline efficiency at this surface recombination velocity is 45.5 percent.

Optimum converter. From this parametric study, a set of optimum parameters has been determined. These are shown in table III. The efficiency of the optimum converter is 43.9 percent at $1 \mathrm{~kW}-\mathrm{cm}^{-2}$. Specific results from this computer study were presented in graphical form to illustrate the importance of the parameter changes. Major factors to consider in the design of an efficient vertical junction, high-intensity photoconverter are the surface recombination velocity and the series resistance. Figure 11 shows the converter efficiency as a function of input power for the optimized vertical junction converter. The efficiency varies from 33 percent at $1 \mathrm{~kW}-\mathrm{cm}^{-2}$ to 44 percent at $1 \mathrm{~kW}-\mathrm{cm}^{-2}$.

Concluding Remarks

We have presented a three-dimensional model for the analysis of a conventional and a vertical junction photoconverter for the conversion of laser power into electrical power. The model requires the representation of Green's functions in the form of a double Fourier series. A set of nominal values was assigned to the parameters in the model, and then a comparison of the conventional and vertical junction photoconverter was undertaken. The calculated efficiency of the vertical junction converter is 47 percent, whereas the calculated efficiency of the conventional converter is 17 percent. A parametric study of the higher efficiency vertical junction converter has been done. The efficiency at $1 \mathrm{~kW}-\mathrm{cm}^{-2}$ for our optimized converter is 44 percent.

NASA Langley Research Center
Hampton, Virginia 23665-5225
May 3, 1988

References

1. DeYoung, R. J.; Tepper, W. D.; Conway, E. J.; and Humes, D. H.: Preliminary Comparison of Laser and Solar Space Power Systems. 18th Intersociety Energy Conversion Engineering Conference, Volume 9Electrical Power Systems, American Inst. of Chemical Engineers, c.1983, pp. 983-989.
2. Walker, Gilbert H.: Photovoltaic Conversion of Laser to Electrical Power. 18th Intersociety Energy Conversion Engineering Conference, Volume 3-Electrical Power Systems, American Inst. of Chemical Engineers, c.1983, pp. 1194-1199.
3. Stakgold, Ivar: Green's Functions and Boundary Value Problems. John Wiley \& Sons, Inc., c.1979.
4. Halder, N. C.; and Williams, T. R.: Grain Boundary Effects in Polycrystalline Silicon Cells. I: Solution of the Three-Dimensional Diffusion Equation by the Green's Function Method. Sol. Cells, vol. 8, no. 3, Apr. 1983, pp. 201-223.
5. Walker, G. H.; and Heinbockel, J. H.: Parametric Study of Laser Photovoltaic Energy Converters. Sol. Cells, vol. 22, no. 1, Sept. 1987, pp. 55-67.
6. Hovel, Harold J.: Semiconductors and Semimetals. Volume 11-Solar Cells. Academic Press, Inc., 1975.

Table I. Nominal Values Used in Initial Calculations

Parameter	Conventional	Vertical junction
Dimensions (see fig. 1):		
Thickness, $a, \mathrm{~mm}$	5	5
Width, b, mm	5	5
Junction depth, $z_{j}, \mu \mathrm{~m}$	5	20
Mobility for-		
Region $\mathrm{n}, \mathrm{cm}^{2}-\mathrm{V}^{-1}-\mathrm{s}^{-1}$	711.3	711.3
Region $\mathrm{p}, \mathrm{cm}^{2}-\mathrm{V}^{-1}-\mathrm{s}^{-1}$	89.7	89.7
Laser wavelength, $\mu \mathrm{m}$	1.06	1.06
Surface recombination velocity on-		
Surface $\mathrm{n}, \mathrm{cm}-\mathrm{s}^{-1}$	1.0	1.0
Surface p, cm-s ${ }^{-1}$	1.0	1.0
Series resistance, Ω	0	0
Shunt resistance, Ω	1.0×10^{6}	1.0×10^{6}
Doping density for-		
Na (acceptor), cm^{-3}	1.25×10^{17}	1.25×10^{17}
Nd (donor), cm^{-3}	5.0×10^{19}	5.0×10^{19}
Lifetime for-		
Region n, s	10.0×10^{-4}	10.0×10^{-4}
Region p, s . . .	5.0×10^{-5}	5.0×10^{-5}
Laser power, $\mathrm{kW}-\mathrm{cm}^{-2}$	1.0	5.0×10
Temperature, K . . .	293	293

Laser wavelength, $\mu \mathrm{m}$ 1.06
Dimensions (see fig. 1):
Thickness, a, mm 0.65
Width, $b, \mathrm{~mm}$ 5
Depth, H, mm 0.02
Junction position, $\mu \mathrm{m}$ 10
Surface recombination velocity on-
Surface $n, \mathrm{~cm}_{-\mathrm{s}^{-1}}$
Surface $n, \mathrm{~cm}_{-\mathrm{s}^{-1}}$ 1.0×10^{3} 1.0×10^{3}
Surface $\mathrm{p}, \mathrm{cm}-\mathrm{s}^{-1}$ 1.0×10^{3}
Series resistance, Ω 0 0
Shunt resistance, Ω 1.0×10^{6}
Doping density for-Na (acceptor), $\mathrm{cm}^{-3}$$1.25 \times 10^{17}$
Nd (donor), cm^{-3} 5.0×10^{19}
Mobility for-
Region $\mathrm{n}, \mathrm{cm}^{2}-\mathrm{V}^{-1}-\mathrm{s}^{-1}$ 711.3
Region $\mathrm{p}, \mathrm{cm}^{2}-\mathrm{V}^{-1}-\mathrm{s}^{-1}$ 89.7
Lifetime for-
Region n, s 1.0×10^{-3}
Region p, s 5×10^{-5}
Temperature, K 300
Table III. Parameters for Optimum Converter
Laser power, $\mathrm{kW}-\mathrm{cm}^{-2}$ 1
Laser wavelength, $\mu \mathrm{m}$ 1.06
Dimensions (see fig. 1):Thickness, $a, \mathrm{~mm}$1000
Width, $b, \mathrm{~mm}$ 5
Depth, $H, \mathrm{~mm}$ 35
Junction position, $\mu \mathrm{m}$ 20
Surface recombination velocity on-
Surface $n, m-s^{-1}$ 1
Surface $\mathrm{p}, \mathrm{m}-\mathrm{s}^{-1}$ 1
Series resistance, Ω 0.001
Shunt resistance, Ω 1×10^{6}
Doping density for-
Acceptors, cm^{-3} 1×10^{18}
Donors, cm^{-3} 1×10^{18}
Temperature, K 300

(a) Conventional converter.

(b) Vertical converter.

Figure 1. Geometry for three-dimensional model.

Figure 2. Equivalent circuit diagram.

Figure 3. Efficiency versus input power for conventional and vertical junction converters.

Figure 4. Efficiency versus acceptor and donor concentration for vertical junction converter under baseline conditions.

Baseline parameters

Figure 5. Efficiency versus converter depth for vertical junction converter under baseline conditions.

Figure 6. Efficiency versus converter thickness under baseline conditions.

Figure 7. Efficiency versus junction position for vertical junction converter under baseline conditions.

Figure 8. Efficiency versus series resistance for vertical junction converter under baseline conditions.

Figure 9. Efficiency versus temperature for a vertical junction converter under baseline conditions.

Figure 10. Efficiency versus n-surface recombination velocity and p-surface recombination velocity under baseline conditions.

Figure 11. Efficiency versus input power density for optimized vertical junction converter.

National Aeronautics and
Space Administration

BULK RATE POSTAGE \& FEES PAID

NASA
Permit No. G-27

Washington, D.C.
20546-0001

Official Business
Olficial Business
Penalty tor Private Use, $\mathbf{5 3 0 0}$

