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ABSTRACT

The U.S. Space Station planned for the 90's will comprise a large

number of interacting control systems, a situation which will be too

complex for humans to deal with without the aid of knowledge based

systems. However, current knowledge based systems have two undesirable

aspects. Brittleness: problem-solving performance degrades precipi-

tously when the system is operating outside its intended domain, and

adaptation: the ability of the knowledge base to deal with a changing
environment.

Learning systems try to alleviate these problems, by organising

their own knowledge base. These systems can be divided into two cate-

gories: the more traditional rule-based systems on one hand,: and

neural nets and genetic algorithms on the other. The latter two

systems do not operate in the domain, but are "sandwiched' between a
pre- and post processing phase.

Systems based on genetic algorithms are characterized by on-the-

fly improvement through a continuous contention of the available
rules, while maintaining performance levels as new rules are "tried
out." The most salient feature is the employment of techniques from

microbiology to conquer the combinatorial explosion involved in in-
duction of the new rules.

INTRODUCTION

Classifier systems are a domain independent way of manipulating

knowledge about, say, the characteristics of a real-time control

process. The classifier system is embedded into a pre- and post

translation phase that relates the knowledge of the classifier system
to the environment (the domain). Since it is usually not possible to

incorporate all the required knowledge into the system a priori, we

want the system to be able to learn.

Genetic Algorithms are used for learning as one way to control the

combinatorial explosion associated with generation of plausible new
rules. The Genetic Algorithm approach tends to work best when it can

be applied to a domain independent knowledge representation.

As important as the generation of new rules is, the evaluation of
existing rules is even more influential. Whithout it, the system will

not be able to attain better performance.
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CLASSIFIER SYSTEMS

As stated, a classifier system is 'sandwiched' between a separate

pre- and post processing phase. The preprocessing phase will pick up
the relevant information from the environment and encode this into the

internal representation used by the classifier system, called a

message. Likewise, the postprocessing phase converts back from the

internal representation to a meaningful output signal, such as an

actuator, a horn signal or whatever.

We will not discus the pre- and postprocessing phases in greater

detail here, although for applications of classifier systems in real-

world situations these are of course tantamount to good performance.

A classifier system comprises two parts, a message buffer and a
rule base. Communication with the world outside takes place

exclusively by placement or removal of messages into or from the

message buffer. Also acting on the message buffer is the rule base

itself. In each classification step, all messages are matched to all

rules, and the matching pairs (rule,message) are allowed to write a

new message into the buffer.

MESSAGE REPRESENTATION

A message is internally represented as a string of K symbols from

{0,i} i.e. a binary representation. Each symbol denotes some aspect

or attribute of the environment. As will be seen, this representation

is very suited for genetic algorithms.

Rules in the rule base consist of two parts: a condition part and

an action part. The condition part is represented as a number of

strings of length K, over the alphabet {0,i,#}. The new symbol # is

used here to match ANY symbol in the corresponding position in the

message. For instance, condition 0101#01# will match messages

01010010, 01010011, 01011010 and 01011011. Each condition can be

either asserted or negated.
The rule is said to MATCH if ALL the conditions match some message

in the buffer (i.e. a match does NOT mean that one message satisfies

all conditions, but rather that there is a satisfying message in the

buffer for each condition). The message matching the first condition

is arbitrarily called the matching message.

The action part is also represented as a string over {0,i,#}. In

this case, however, the symbol # is used to denote the corresponding

symbol of the message matching this rule. In other words, should a

rule with action part 0101#01# match a message ii011000, then the

message placed into the buffer by this rule will be 01011010.
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BASIC EXECUTION CYCLE OF A CLASSIFIER SYSTEM

A classifier system goes through the following steps for each

classification cycle. For legibility, this is here presented in
(pseudo-) pascal style:

repeat

input_messages_&_place_them_into_buffer;

for r := 1 to no of rules do begin

condition := first_condition of rule_r;

message[condition] := 0;
repeat

message[condition] := message[condition]+l;

if message[condition] < no of messages then begin

if match(condition,message[condition]) then begin

if condition=last_condition_of_rule_r then

record_match(r,condition,message[condition])

else begin

condition := condition+l;

message[condition] := 0;

end;

end ;
end else

condition := condition-l;
until condition<0;

end;

for each_recorded_match do place_action_message_in_new_buffer;

update_strength_of_matching_rules;

replace_current_message_buffer_by_new_buffer;

remove_messages_from_buffer_&_output_them;

until hell_freezes_over;

It should be noted that not all messages are recognized by the

output interface as messages to be removed; only those marked as such

will be output. Also note that there may be several different
assignments of messages to one rule; these are all recorded.
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RULE COMPETITION

Since the number of pairs (rule,message) can be extraordinarily

large (with N rules, an average of C conditions per rule, and M
messages there can be as much as N*C*M pairs), the number of messages

that are eventually placed in the buffer are reduced by letting the

matching rules enter a competition. Each matching pair produces a
number called the BID, which determines the probability that the pair

is allowed to place its message into the buffer. The bid is
calculated as follows:

bid=factor*support(messages)*strength(rule)*specificity(rule)

where:

factor = attenuation factor;

support = sum of the bids of all messages satisfying a

condition of the rule;

strength = the current "successfulness" of the rule;

specificity = l-(number of #'s in condition)/(length of condition).

The bid computed above is an exact quantity; were we to use this

quatity directly, only the strongest few rules would ever be selected

in the competition and new, potentially better rules, would never have

the opportunity to demonstrate their worth. Therefore, the bid used in

the competition is some stochastic function of the value computed

above (at the moment, normally distributed around the computed bid).

RULE ACCREDITATION

In order to allow new (low-strength) rules to acquire more

strength in those situations where they are applicable, some mechanism

must be devised that "gives credit to whom credit is due." That is,

the well working new rules must be rewarded for providing good

answers, whereas those that do not do well must sink into oblivion.

Such a mechanism has been devised by Holland. It is called the

"bucket brigade." The bucket brigade algorithm works by applying the

following adjustments to a rule's strength at each classification

cycle:

strength(r,t+l) = strength(r,t) - bid(r,t)

strength(i,t+l) = strength(i,t) + bid(r,t)/card({R}) for i in {R}

where {R} is the set of rules responsible for the match of rule r.
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In words, each rule which wins the bidding contest gets its

strength reduced by the amount Of its bid; each of the rules that put
a message into the buffer that eventually matched one of the rule's

conditions are rewarded for this by having their strength increased;
they share the bid among each other.

Eventually, the rule placing a message into the buffer that is

consumed by the output interface gets a reward directly by the
environment.

In this way, benign "mutations" are able to gain strength. Chains

of non-productive rules are eventually broken down because they will
receive no credit from the environment.

RESEARCH GOALS

Our interest in classifier systems falls into two categories. On

the one hand, we are concerned with the use of classifier systems for

real-time adaptive control applications, and the implications of on-

the-fly learning for robustness. On the other hand, we envisage some

improvements to the mechanism of the classifier system itself, e.g.

the guiding of the 'mutation' process by meta-rules, other kinds of

genetic operators etc. Also, we want to study the effects of

'teaching' to the speed of adaptation.
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