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I. Project Summary

A thorough study of the combined position/force control using sensory feedback for a

one-dimensional manipulator model, which may count for the spacecraft docking problem

or be extended to the multi-joint robot manipulator problem, has been performed. The

additional degree of freedom introduced by the compliant force sensor is included in the

system dynamics in the design of precise position control. State-feedback based on pole

placement method and with integral control is used to design the position controller. A

simple constant gain force controller is used as an example to illustrate the dependence

of the stability and steady-state accuracy of the overall position/force control upon the

design of the inner position controller. Supportive simulation results are also provided.



II. Objective

The project has the following objective:

Since automatic control of multidegree-of-freedom robotic manipulators involves high

order non-linear equations, we propose a pilot project involving the control of a one-

dimensional system. This simple system can be readily implemented for testing and de-

velopment of concepts for a computer control system that provides precise positioning of

an object using force sensor information in a closed-loop.



III. Work by the Investigators

1. Introduction

A major problem in space application of robotics and the docking of spacecraft is

the development of technology for automated precise positioning of mating components

with smooth motion and soft contact [1,2]. A promising approach to this problem involves

the use of information from force/torque sensors for closed-loop automatic control and a

significant amount of work [3] has been devoted to the similar problem in robot manipula-

tors performing environment-interacting tasks such as deburring and assembly operations.

The basic idea is to use the force feedback, which is generated by the contact between

the robot and the environment, to modify the motion commands. It has been recognized

that, from the stability analysis of force control, the force feedback gain is upper-bounded

by the combined stiffness of the environment and the end effector of the robot [4,5]. To

'improve the performance of robot manipulators in the very stiff environment, mechanically

compliant wrist sensors may be used; however, the positoning capabilities of the robot are

then degraded [6]. Thus for the cases when the use of passive compliant mechanisms is

inevitable, the architecture of position control should be modified to have the position of

the end effector as the controlled and feedback variable, which may be obtained by utilizing

the force sensor as also a relative displacement sensor.

Another important issue of force control is the collision or impact problem [3] which

arises from the transition between the unconstrained and constrained motion of the robot

manipulator. This problem may seem to be avoided by making the desired approaching

velocity (to the environment) of the end effector nearly zero, then motion and force control

can be handled separately. However, it may be neither feasible because of the imprecise

environment nor applausable due to its inefficiency in maneuvering. One approach is to

restructure the controller from path control to force control when the end effector contacts

the environment. This would require the controller to identify the moment of contact, but



the short transition period of the impact (e.g. the impulse width of about 0.1 ms of the

impact force has been reported in [7]) and the inevitable successive bouncing when the

environment is extremely stiff may render this approach ineffective. An alternative is the

automatic switching, e.g. a pure velocity damping achieved by force derivative feedback

may be introduced to smooth the control during impact transition [8].

A more general control architecture incorporating the strategy of automatic switch-

ing is the so-called combined force position control [9] and it is shown in Fig. 1 where

G represents the position control system including the position controller and the robot

manipulator, E the stiffness of the environment, 5 the compliance (I/stiffness) of the ma-

nipulator, and H the force controller; x^ is the desired position of the robot manipulator,

e the input command for the position controller, y the position of the manipulator, XE the

location of the environment before contact, fc the contact force between the manipulator

and the environment, and /<f the desired contact force.

Note that in the mode of unconstrained motion (y < XE], no contact force exists

(/c = 0) and with zero desired force (fd = 0), it is a pure position control system; by

making xj, = XE and with nonzero desired force (fa ^ 0), it performs as a force control

system for surface tracing. That the switching between the unconstrained and constrained

motion for this control architecture is automatic is in the sense that the activeness of the

force feedback depends on whether the manipulator is in contact with the environment

and that the monitoring of the moment of contact is not required.

Since the strategy of automatic switching is utilized, the position controller must

remain the same for both unconstrained and constrained motion. Therefore, the design

of the position controller in G must take into account not only the dynamic and accuracy

requirement of position control but also that of force control because the position controller

and also G become part of the open-loop system of the complete position/force control loop.

Thus a proper design of position controller would ease the design of the force controller H

and enhance the overall system performance. This concept is studied in this report for a



one-dimensional manipulator problem.

2. The One-dimensional Manipulator Model

Shown in Fig. 2 is the model for a one-dimensional manipulator. A more complex

robot model including both the rigid body and the first vibratory modes of the arm [10]

may be used if a more detailed analysis is needed. Since what under study here is the

dependence of force control upon the deisgn of the inner position controller, similar results

would be expected. In Fig. 2, mr and cr represent the inertia and damping of the robot

including the actuator (e.g. a linear motor) and the arm; ma, ct and k, represent the

combined mass, damping and stiffness of the force sensor and the end effector (or the

interfacing element in the spacecraft docking problem), respectively; xr and x, measure

the position of the actuator and the end effector, respectively; kg is the stiffness of the

barrier and x& the actual initial distance between the end effector and the barrier; and u

is the input force (or torque) of the actuator. The state-variable model can be written as

follows:

where

«(*.) =

i = Ax + Bu + s(xs

y = x, = CTx

I if x,(t) > XE (constrained motion)
0 otherwise (unconstrained motion)

(1)

(2)

A =

B =

x(0- 3- (i\ r (i\ T (i\ r (i\\*"T\ 1 *'T\*' 1 '*' 8 \ ** J 0\ J\

i ° l
k, CT+C,

TTlf TTlr

0 0
_fc f Cjl k
Trig Tn,t

• o -
l/mr

0
. 0 .

C =

•o-
0
1

.0.

0
k.
mr

0
, + t(x,)kB

m,

D =

o •
c.
mr

1
Cj

m.

• o •
0

0
. l /m,_



Denote Au = -A|,(.)=0 and Ac = .A|a(.)=1, then for the mode of unconstrained motion

x = Aux + Bu (3)

V = CTx (4)

and for the mode of constrained motion

x = Acx + Bu + DkExE (5)

y = CTx (6)

3. Position Control in Unconstrained Motion

For the part of position control, the conventional design is to control the position vari-

able xr of the actuator since it is the measured variable and usually xr = x, when a stiff

force sensor is used. However, for the cases when a compliant force sensor or passive com-

pliant mechanism is needed, the compliance would introduce additional degrees of freedom

to the system and the inaccuracy in positioning. Therefore, under such circumstances,

the position variable of the end effector x,, which may be estimated using the information

-from the force-sensor or measured using proximity sensors [-1, 11], should be used as the_

controlled variable instead. For the consideration of robustness and steady-state accuracy,

state feedback design based on pole placement method and with integral control [12] is

adopted here for the position control in the mode of unconstrained motion and is described

briefly below.

For the implementation of integral control, an extended state vector z is introduced

z = z3 z4 z5]
T

J x,dt

and the corresponding state-variable model becomes

z = Auzz + Bzu (7)

y = X, = C?Z (8)
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where

•"•uz —

Au : 0

. 0 0 1 0 : 0 .

B2 =
' B'

0
cz =

' C'

0

The control law is in the form of

u = I ksx*sdt — kz

where x* is the input command to the position controller and

fc = [fcj fc2 k3 fc4 k5]
T

Substituting (9) into (7) we obtain the closed-loop transfer function as

Y(s)/X;(s) = Gp(s]

= k5Cj[s! - (Auz - Bzk)}~ lBz/3

(9)

(10)

and the control structure is shown in Fig. 3. Note that the s in the denominator will be

cancelled out by a zero of C^[sl — (Auz — Bzk)]~1Bz at s = 0.

The control gain vector, fc. is obtained by first choosing the desired closed-loop poles

and then equating the desired closed-loop polynomial to the characteristic polynomial

det[s/ — (Auz — Bzk)]. Note that because of the integral control, the DC gain equals one,

i.e. GP(0) = 1.

4. The Complete System in Constrained Motion

For the mode of constrained motion, the contact between the end effector and the

barrier produces a contact force /c, which is assumed to be proportional to the displacement

x, — XE, i.e. fc = kg(xa — XE)- The system dynamics is described by (5) and (6), and the

corresponding extended state-variable model is

z = Aczz + Bzu

T*
y = x, = Cz z

7

(U)

(12)



where

Ac

. 0 0 1

: 0

0 : 0.

D
D'

0

With the same position controller in the loop, we obtain

Y(a) = fcsCjV - (Acz - Bzk}]-*BzX:(s)l

+ C?[sl - (Acz - Bzk)}-*DzkEXE(s}

where

G0(s) = - (Aes -

GE(*) = C2[57 - (Acz - Bz

(13)

(14)

(15)

Note again that the s in the denominator of G0(s) will be cancelled out by a zero of

C^[sl — (Acz — Bzk)]~lBz at s = 0. Thus the poles of G0(s) and GE(s) are the same -

the eigenvalues of Acz — Bzk. The block diagram of the combined position/force control

is shown in Fig. 4a. Also note that equation (11) can be rewritten as

z = Auzz -f Bzu — DzkE(xa - XE)

By combining equations (16) and (12) Y(s) can be expressed as

Y(s) = k5C?[sI - (Auz - Bzk)}-lBzX:(s)ls

+ Cj[sl - (Auz - Bzk)}-lDzkE[XE(s) - Y(s)}

(16)

where

The block diagram for this structure, which is similar to Fig. 1, is shown in Fig. 4b.

(17)

(18)



For the part of force control, it is to design a compensator H(s) for the system having

the open-loop transfer function kEG0(s). Though theoretically it is possible to design a

dynamic compensator H(s) such that the closed-loop system achieves the desired dynamics

for any given kE G0(s)> in practice the feasibility of a realizable compensator H(s) depends

on kEG0(s) which in turn is a function of the gain k of the position controller. In other

words, the choice of fc determines not only the system dynamics of position control in the

mode of unconstrained motion but also the easiness of the design of the force controller

H(s). This can be illustrated by considering the case of a constant gain force controller

H(s) = kf.

First, consider the steady-state performance of the overall position/force system. Note

that because of the structure of integral control incorporated in the position controller,

G0(0) = 1 and GE(Q) = 0 for constant XE and any finite kE if G0(a) is stable. Thus

the steady-state system diagram can be shown as in Fig. 5 if the complete closed-loop is

stable. By applying the principle of superposition we obtain

y = (Xd + k ffd + kEk fxE)/(l + kEk f) (19)

In the case of pure force control, assume that the end effector is initially in touch

with the barrier without any contact force. With a nonzero desired contact force fa and

Xd = %Ei the steady-state contact force is

fc = kE(y -

(20)

and the force error is

(21)

Another case is when we want to position the end effector, which is initially away

from the barrier, to be barely onto the barrier, i.e. we want to have y = XE and fc = 0. It

may be argued that this task can be accomplished without any force feedback by choosing

9



Xd = x*B = BE and designing an overdamped position control system, i.e. making the end

effector approach the barrier without any overshoot. This is not the case in real situations,

however. The initial actual distance between the end effector and the barrier is ZE, but we

may mistake it as xj = XE + f> because of insufficient knowledge or imprecise measurement.

With such desired position zj and /^ = 0, the steady-state position is

(22)

and the position error and the force error are

ey = V - XE = S/(l + kEk f) (23)

fc = kEey = kE6/(l + kEk f) (24)

If kE — > oo, then y = XE anf fc = 8/kf = u (force generated by the actuator).

Next, consider the problem of stability. In the mode of constrained motion and without

force feedback, the system dynamics is characterized by the system function G0(s). Though

Gp(s) = G0(s)\kB=o and a well-behaved Gp(s) can be obtained in the design of the position

controller, however, with nonzero kE the poles of G0(s) would move away from the pole

locations of Gp(s) and with large fc^, they may approach the origin and even cross the

imaginary axis in the s-plane. This would make the stabilization of the overall closed-

loop system more difficult and even impossible for a constant gain force controller, not to

mention the increase of the force feedback gain needed to reduce the position and force

errors.

Therefore, a compromise must be made in designing the position controller. Not only

the pole locations of Gp(s) but also those of G0(s) for a certain range of kE (depending on

the environment encountered) need to be considered such that the overall position/force

loop could have both acceptable system dynamics (appropriate closed-loop pole locations)

and accuracy (high force feedback gain). For instance, real poles of Gp(s) resulting in fast

10



response may be preferred under the sole consideration of position control, but in some

cases other choices of poles for Gp(s) might be more justified if the performance of the

overall system is concerned.

5. Examples and Simulations

In the following examples and simulations, it is assumed that mr = 20 Kg, m, = 2 Kg,

cr = 500 N — sec/m, c, = 5 N — sec/m, and k, = 3000 N/m. To see how the desired

poles chosen for the position control in unconstrained motion, Gp(s) in Fig. 3, affect the

system performance in constrained motion, let's choose two sets of poles of Gp(s) and

find the corresponding maximum kfk& which guarantees the stability of the combined

position/force control loop in Fig. 4.

Pole set #1: Choose 5 poles for Gp(s) as s = -5, -9, -14, -18 and -20; then the

corresponding five gains fcj for t = 1,2, . . . ,5 are -356.1, 765,1827.1, -1002.5 and 3024.

fee; N/m} poles of G n s )

1,000 -41.4, -10.4 ±j30.9, -1.9 ij'1.25 16

10,000 -53.8, -4.92 ±J77.2, -2.04, -0.346 185

100,000 -60-.-l-,-l-87±j22675r— 2:15-, -0-.-034-3- - 2041-- ----- -------- -

The root-loci in terms of k/ks for the combined position/force control loop are shown

in Fig, 6.

PoJe set #2: Choose 5 poles for Gp(s) as s = -2, -4, -20, -25 and -30; then the

corresponding five gains, fcj for i = 1,2, . . . ,5 are 12276, 1065, -10881, -1211.3 and 1600.

kf. N/m) poles of Gn(s) max

1,000 -46.2, -11.8 ±J28.2, -10.9, -0.255 79

10,000 -58. 7, -5.45 ±j76.5, -11.3, -0.0307 1981

100,000 -65.7, -1.98 ±j226.4, -11.4, -0.00313 27540

Similarly, shown in Fig. 7 are the corresponding root-loci for the combined posi-

tion/force control loop.

11



From the above tables and figures we can see how the stiffness of the barrier, &#, affects

the root locus of the open-loop system, G0(s), of the combined position/force control.

Obviously, a more stiff barrier results in an open-loop system with more oscillation. It has

been shown that the maximum fc/fcg (guaranteeing the closed-loop system stability of the

combined position/force control) increases as the stiffness of the barrier, AE, increases.

One important finding from the comparison of these two tables is that the pole set

#2, which has a slower response for position control in unconstrained motion, would have

a much higher maximum kjks for the stability of the combined position/force control than

the pole set #1, and thus would have a much better opportunity to reduce the steady-state

error.

Some simulations corresponding to the combined position/force control and the pure

force control will be shown and discussed. In the following simulations, sampling period

= 10 msec was used, i.e. the control input u was updated every 10 msec.

(a) Simulations of the combined position/force control:

Let /<£ = 0, XE = 0.2 m, x^ = 0.202 m with a position deviation of 2 mm. The plots of the

control input ii, the position of the end effector x,, and the contact force fc corresponding

to each set of poles of Gp(s) chosen before are shown in Fig. 8-12.

By comparing Fig. 8 and Fig. 9 (kE = WQ,QQQN/m and kf = 0.02) it can be seen

that though the response of position control in unconstrained motion is faster in the case

of pole set #1, it experiences a harder impact and a longer time to settle down after

the bouncing stops (i.e. the contact force never returns to zero). This observation can

be confirmed by checking the closed-loop poles of combined position/force control. With

kf = 0.02, they are s = -62.1, -1.94 ± ;226.4 and -0.021 ± j'11.9 in the case of pole set

#1, and s = -66.7, -2.02 ± j'226.4 and -5.13 ± j'6.63 for pole set #2.

It is interesting to note from Fig. 10 that with kf reduced to 0.002 for the pole set #1

and ks = 100,0007V/m, while the transient oscillation of low frequency has been improved

a bit, the contact force fc does increase by 10 times. (From equation (24), if kskf is large-

12



enough, then /c ~ 6/kf.)

Also note that the bouncing does happen in these simulations because of high stiffness

of the barrier. The problem of impact and bouncing may be alleviated by adopting a softer

barrier and this can be clearly seen from the simulation plots shown in Fig. 11 and 12 for

the pole set #1, kf = 0.02, kE - 10,0007V/m and l,0007V/m, respectively.

(6) Simulations of pure force control:

In these simulations it was assumed that the end effector was initially at rest on the barrier,

i.e. xj, = XE = 0. Let the desired contact force fj, — 100 TV, then the steady-state force

error will be equal to /d/(l + k/kg) ~ 0.05 TV. The plots of the simulation results are

shown in Fig. 13 and 14 for both cases with kg = 100jJ007V/m and kf = 0.02. Again, in

the case of pole set #1 (Fig. 13), it experiences a larger oscillation and a longer settling

time because of its closed-loop dominant poles (s = —0.021 ±.7'11.9) being very close to

the imaginary axis.

Shown in Fig. 15 are the simulation plots for the case of pole set #1 with the force

feedback gain reduced to kf = 0.002. Even with the sacrifice of steady-state error ( =

/<f/(l + kjke) ~ 0.5 JV), the transient response is still inferior to the case of pole set

#2 with kf = 0.02. This can be confirmed by checking the new closed-loop poles s =

-60.3,-1.87 ± J226.5 and -0.98 ± J3.71 with the dominant poles being closer to the

imaginary axis and having a smaller damping ratio than the case of pole set #2 with

kf = 0.02.

13



IV. Discussion

To eliminate completely the steady-state force and position errors, integral action

may also be included in the force controller H(s). In the case of pure position control,

i.e. fd = 0, if the end effector stays in contact with the barrier all the time after the

first impact, then the integral control H(s) would work well; however, if the end effector

bounces off, then the integral control may produce an undesired equilibrium condition that

the end effector is not in touch with the barrier, i.e. y = xt < XE- This is because the

input command to the position controller will be over-adjusted such that x* < XE while

there is no force feedback in the steady-state. A similar situation could happen as well

when the given desired position is shorter than the actual distance, i.e. xj — XE — ^>

because of imprecise environment. A remedy is to assign a residual force fret for /^ even

in the position control, which would assure the end effector be in contact with the barrier.

However, the positioning accuracy may be somewhat sacrificed because the residual force

frea would adjust the desired position trajectory Xd(t) in the free space.

In practical applications, the force feedback is obtained by using the measurement of

the wrist force sensor rather than placing a force sensor at the tip (contact surface) at the

end effector. It is due to the consideration of the dynamic range of the sensed force, but

it also introduces errors since the wrist force measurement includes the contact force and

also the inertia force of the end effector. This inertia force is usually small enough to be

neglected; if not, a more detailed analysis may be needed.

For multi-joint robot manipulators, more work and transformation of coordinate are

needed, especially for the additional degrees of freedom introduced by the compliant force

sensor, and a systematic robust design similar to [9] may be pursued. For simplicity of

analysis, all the states are assumed to be available (i.e. no state estimation errors have

been considered) and the dynamics of the actuator has not been included in this report.

Taking these factors into consideration, a robustness study may also be required especially

in the case that the environment is extremely stiff and the problem of impact and bouncing

14



is very critical.
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Fig. 3 The position control in unconstrained motion
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Fig. 6a Root locus kf*kE= 0-16 for case 1, kE=l,000
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Fig. 6b - Root locus kf*kE= 0-190 for case 1, kE=l0.000
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Fig, 6c - Root locus kf*kE= 0-2100 for case 1, kE=100,000
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Fig. 7a - Root locus kf*kE= 0-80 for case 2, kE=1,000
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Fig. 7b - Root locus kf*kE= 0-2000 for case 2, kE=10,000
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Abstract
A preliminary study of the combined position/force

control using seniory feedback for a one-dimeniiiotial
manipulator model, which may count for the spacecraft
docking problem or to be extended to the multi-joint
robot manipulator problem, has been performed. The
additional degrees of freedom introduced by the com-
pliant force sensor is included in the system dynamics
in the design of precise position control. State-feedback
based on pole placement method and with integral con-
trol is used to design the position controller. A simple
constant gain force controller is used as an example to
illustrate the dependence of the stability and steady-
state accuracy of the overall position/force control upon
the design of the inner position controller. Supportive
simulation results are also provided.

1. Introduction
A major problem in space application of robotics

and the docking of spacecraft is the development of tech-
nology for automated precise positioning of mating com-
ponents with smooth motion and soft contact [l,2j. A
promising approach to this problem involves the use of
information from force/torque sensors for closed-loop
automatic control and a significant amovmt of work J3]
ba« been devoted to the similar problem in robot manip-
ulators performing environment-interacting tasks such
e: debt i r r i sg and assembly operations. The bs^ic idea is
to use the force feedback, which is generated by the con-
tact between the robot and the environment, to modify
the motion commands. It has been recognized that,
from the liability analysis of force control, the force
feedback gain is upper-bounded by the combined stiff-
ness of the environment and the end effector of the robot
[4,5]. To improve the performance of robot manipual-
tori in the very stiff environment, mechanically compli-
ant wrist sensors may be used; however, the positoning
capabilities of the robot are then degraded [6j. Thus for
the cases when the use of passive compliant mechanisms
is inevitable, the architecture of position control should
be modified to have the position of the end effector as
the controlled and feedback variable, which may be ob-
tained by utilizing the force sensor as also a relative
displacement sensor.

Another important issue offeree control is the colli-
sion or impact problem [3] which arises from the transi-
tion between the unconstrained and constrained motion
of the robot manipulator. This problem may seem to be
avoided by making the desired approaching velocity (to
the environment) of the end effector almost zero, then
motion and force control can be handled separately. Ho-
ever, it may be neither feasible because of the imprecise
environment nor applausable due to its inefficiency in
maneuvering. One approach is to restructure the con-
troller form path control to force control when the end
effector contacts the environment. This would require
the controller to identify the moment of contact, but
the. short transition period of the impact (e.g. the im-
pulse width of about 0.1 mi of the impact force has been
reported in [7]), and the inevitable successive bouncing

when the environment is extremely stiff may render this
approach ineffective. An alternative is the automatic
twitching, e.g. a pure velocity damping achieved by
force derivative feedback may be introduced to smooth
the control during impact transition [8j.

A more general control architecture incorporating
the strategy of automatic switching is the so-called com-
bined force position control [9] and it is shown in Fig. 1
where G represents the position control system includ-
ing the position controller and the robot manipulator,
E the stiffness of the environment, S the compliance
(I/stiffness) of the manipulator, and H the force con-
troller; ia is the desired position of the robot manipu-
lator, e the input command for the position controller,
y the position of the manipulator, IE the location of
the environment before contact, /e the contact force be-
tween the manipulator and the environment, and ft the
desired contact force.

Note that in the mode of unconstrained motion
(y < *E), no contact force exists (/e = 0) and wilh
zero desired force (fd = 0), it is a pure position control
system; by making it — XE *nd with nonzero desired
force (fd / 0), it performs as a force control system
for surface tracing. That the switching between the un-
constrained and constrained motion for this control ar-
chitecture is automatic in the sense that the activeness
of the force feejbick •.•?ep->id; on whether the m&.nipu-
l&tor is in contact with the environment and that the
monitoring of the moment of contact is not required.

Since the strategy of automatic switching is uti-

lized, the position controller must remain the same for
both unconstrained and constrained motion. Therefore,
the design of the position controller in G mus< take into
account not only the dynamic and accuracy requirement
of position control but also that of force control because
the position controller and also G become part of the
open-loop system of the complete position/force control
loop. Thus, a proper design of position controller would
ease the design of the force controller H and enhance the
overall system performance. This concept is studied in
this paper for a one-dimensional manipulator problem.

2. The One-dimensional Manipulator Model
Shown in Fig. 2 is the model for a one-dimensional

manipulator. A more complex robot model including
both the rigid body and the first vibratory modes of
the arm jlOj may be used if a more detailed analysis is
needed. Since what under study here is the dependence
of force control upon the deisgn of the inner position
controller, similar results would be expected. In Fig.
2, ntr and cr represent the inertia and damping of the
robot including the actuator (e.g., a linear motor) and
the arm; m,, c, and k, represent the combined mass,
damping and stiffness of the force sensor and the end ef-
fector (or the interfacing element in the spacecraft dock-
ing problem), respectively; zr and zt measure the posi-
tion of the actuator and the end effector, respectively;
kg is the stiffness of the barrier and IE the actual initial
distance between the end effector and the barrier; and
u is the input force (or torque) of the actuator.
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The state-variable model can be written a* follows:

x = Ax + flu +

y = x. = Crz

(1)

(2)

where

. . _ f 1 if x,(t) > XE (constrained motion)
' *' ~~ \ 0 otherwise (unconstrained motion)

1
e,+c.

0
l/mr

0
0

Denote Av =
the mode of unconstrained motion

x = Avx + Bu

and for the mode of constrained motion

x = Aex + Bu + DkExE

o o •
k. e.
rnr

0
*. + •(*.)**

o-
0
1
0.

m.

-

mr

1
Ca

m, "

• o •
0
0

.1/m..

nd Ac = A\, ( . ) = i > then

(3)

(4)

(5)

y = CTx (6)

3. Position Control in Unconstrained Motion
For the part of position control, the conventional

design if to control the position variable xr of the ac-
tuator since it is the measured variable and usually
xr = x, when a stiff force sensor is used. However, for
the cases when a compliant force sensor or passive com-
pliant mechanism is needed, the compliance would in-
troduce additional degrees of freedom to the system and
the inaccuracy in positioning. Therefore, under such
circumstances, the position variable of the end effector
x,, which may be estimated using the information from
the force sensor or measured using proximity sensors (1,
11], should be used as the controlled variable instead.
For the consideration of robustness and steady-state ac-
curacy, state feedback design based on pole placement
method and with integral control J12J is adopted here
for the position control in the mode of unconstrained
motion and is described briefly below.

For the implementation of integral control, an ex-
tended state vector z is introduced

x
Jx.dt

and the corresponding state-variable model becomes

* = AM* + BZU

y = x. = Cz
(7)

where

A -*" ~ 0 0

The control law it in the form of

u = / ktx°.dt - kz

where x* is the input command to the position con-
troller and

k = [fc, i, i, *4 is]
7"

Substituting (9) into (7) we obtain the closed-loop trans-
fer function as

= Gf(a) (10)

and the control structure is shown in Fig. 3. Note that
the i in the denominator will be cancelled out by a rero

The control gain k is obtained by first choosing the
desired closed-loop poles and then equating the desired
closed-loop polynomial to the characteristic polynomial
det[«7 - (A*, - B,k)\. Note that because of the integral
control, the DC gain equals one, i.e., Gp(0) = 1.

4. The Complete System in Constrained Motion
For the mode of constrained motion, the contact

between the end effector and the barrier produces a
contact force /e, which is assumed to be proportional
to the displacement x, — XE, i.e., fc = fcj^z, - XE)-
The system dynamics is described by (5) and (6), and
the corresponding extended state-variable model is

(11)
(12)

where

Ac, = hL*
0 0 1

With the same position controller in the loop, we obtain

Y(») = fcsC/V - (Ae, - B tk)\- lBMX -»/j

GE(,)XB(*) O3)

Note again that the « in the denominator in the first
part of (13) will be cancelled out by a zero at a = 0 of
C?\»I-(Ael-Btk)}-lB,. Thus the poles of Ge(t) and
GE(S) are the same - the eigenvalues of Ac, — Btk. The
block diagram of the combined position/force control is
shown in Fig. 4.

For the part of force control, it is to design a com-
pensator H(a) for the given open-loop transfer function

ksG.(») = kEkiC^I-(Act - B.k)]-lB./* (14)

Though theoretically it is possible to design a dy-
namic compensator U(i) such that the closed-loop sys-
tem achieves the desired dynamics for any given ks
Ge(«), in practice the feasibility of a realizable com-
pensator H(») depends on kEG0(s} which in turn is a
function of the gain k of the position controller. This
is to say that, the choice of k determines not only the
system dynamics of position control in the mode of un-
constrained motion but also the easiness of the design
of the force controller B(t), This can be illustrated by
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considering the case of a constant gain force controller
#(«) f */•

Pint, consider the steady-state performance of the
overall position/force system. Note that because of the
structure of integral control incorporated in the position
controller, C0(0) = 1 and Gs(0) = 0 for constant IB
and any finite kg if G0(») is stable. Thus the steady-
state system diagram can be shown as in Fig. 5 if the
complete closed-loop is stable. By applying the princi-
ple of superposition we obtain

(15)

In the case of pure force control, assume that the
end effector is initially in touch with the barrier without
any contact force. With a nonzero desired contact force
ft and letting ij = ZE, the steady-state contact force
is

and the force error is

t, = Jt - /. = /•./(! + ***/)

(16)

(17)

Another case is when we want to position the end
effector, which is initially away from the barrier, to be
barely onto the barrier, i.e., we want to hiivr y = XE
and fc = 0. It may be argued that this task can be
accomplished without any force feedback by choosing
*t — xl — XE and designing an overdamped position
control system i.e., making the end effector approach
the barrier without any overshoot. This is not the case
in real situations, however. The init ial actual distance
between the end effector and the barrier is XE, but we
may mistake it as xj = XE + ^ because of insuff icient
knowledge or imprecise measurement. Wi th such de-
sired position z,j and {4 = 0, the steady-state position
is

y = (XE + 6 -t- kEkjzE) / ( l + k E kj )

and the position error and the force error are

ev = kE£/(l + k E k f )

(18)

(19)
(20)

If kg —• oo, then y — ZE anf fc = 6/kj = u (force
generated by the actuator).

Next, consider the problem of stability. In the
mode of constrained motion and without force feed-
back, the system dynamics is characterized by the sys-
tem function G0(s). Though Gp(s) = G0(^)U«=o and a
well-behaved G p(t) can be obtained in the design of the
position controller, however, with nonzero kE, the poles
of G0(») would move away from the pole locations of
Gp(») and with large kE, they may approach the origin
and even cross the imaginary axis in the a-plane. This
would make the stabilization of the overall closed-loop
system more difficult and even impossible for a constant
gain force controller, not to mention the increase of the
force feedback gain needed to reduce the position and
force errors.

Therefore, a compromise must be made in design-
ing the petition controller. Not only the pole locations

of GP(I) but alto those of <?.(*) lor a certain range of kg
(depending on the environment encountered), need to
be considered such that the overall position/force loop
could have both acceptable system dynamics (appropri-
ate closed-loop pole locations) and accuracy (high force
feedback gain). For instance, real poles of Gp(s) re-
sulting in fact response may be preferred based on the
sole consideration of position control, but in some cases
other choices of poles for Gp(») might be more justified
if the performance of the overall system is concerned.

5. Examples and Simulations
In the following examples and simulations, let mr =

20 Kg, ro. = 2 A>, eT = 500 tf - tec/m, e. = 5 N -
«ec/m, and k. = 3000 JV/m. To see how the desired
poles chosen for the position control in unconstrained
motion, Gp(s) in Fig. 3, affect the system performance
in constrained motion, let's choose two sets of poles
of Gp(f) and find the corresponding maximum kjk&
which guarantees the stability of the combined posi-
tion/force control loop in Fig. 4.

PoJe set #1: Choose 5 poles for Gf(s) as a = -5, -9,
— 14, —18 and —20-, then, the corresponding five gains fc<
for t = 1,2,....5 are -356.1,765,1827.1,-1002.5 and
3024.
kf (N/m) pole»ofG.(<) n
1.000 -41.4. -10.4 ±j30.», -1.9 ±>1.25 16
10,000 -53.8, -4.e2±>T7.2.-2.04. -0.146 185
100,000 -00.1, -1.87±/228.S, -2.15, -O.OJ43 2041

PoJe set #2: Choose 5 poles for G,(t) as s = -2, -4,
—20, -25 and —30; then the corresponding five gains,
*< for i = 1,2,. ...5 are 12276,1065,-10881,-1211.3
and 1600.
*E Wm) polo of G.(.) mix k, k,
1,000 -46.2,-U.8±j28.2,-10.8,-0.255 79
10,000 -58.7, -5.45 ±>T6.5,-11.3, -0.0307 1981
100,000 -85.7,-1.98±;226.4,-11.4,-0.00313 27540

From the above table, we can see how the stiffness
of the barrier, t^, affects the root locus of the open-loop
system, Ge(»), of the combined position/force control.
Obviously, a more stiff barrier results in an open-loop
system with more oscillation. It has been shown that
the maximum k/kf- (guaranteeing the closed-loop sys-
tem stability of the combined position/force control) in-
creases as the stiffness of the barrier, ATE, increases.

One important finding from the comparison of these
two tables is that the pole set #2, which has a slower
response for position control in unconstrained motion,
would have a much higher maximum kjkE for the stabil-
ity of the combined position/force control than ;he pole
set #1, and thus would have a much better opportunity
to reduce the steady-state error.

Some simulations corresponding to the combined
position/force control and the pure force control will
be shown and discussed. In the following simulations,
ks = 100,000 ff/m and kf = 0.02 were chosen and
sampling period = 10 niter was used, i.e., the control
input u was updated every 10 msec.

Simulations of the combined position/force control:
Let fd = 0, XE •=• 0.2 m, zd = 0.202 m with a position
deviation of 2 mm. Since kfkB = 2000, the steady-state
error will be equal to (ZJ-*E)/(I + */*E) ~ 0.001 mm.
The plots of the control input u, the position of the end
effector, z,, and the contact force fc corresponding to
each set of poles of Gp(») chosen before (set #1: dashed
line; set #2: solid line) are shown in Fig. 6.
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It can be seen that though the response of position
control in unconstrained motion IE faster in the case
of pole act #1, it experiences a harder impact and a
longer time to settle down after bouncing slops (i.e., the
contact force never returns to zero). This observation
can be confirmed by checking the closed-loop poles of
combined position/force control. With kj = 0.02, they
are * = -62.1,-1.94 ±j226.4 and -0.021 ±jl 1.9 in the
cue of pole set #1, and » = -66.7,-2.02 ± j226.4 and
-5.13 ± J6.63 for pole set #2. Also note that bouncing
does happen in both cues because of high stiffness of
the barrier.

Simulations of pure force control:
In these simulations it was assumed that the end effector
was initially at rest onto the barrier, i.e., ij = XE = 0.
Let the desired contact force }A = 100 N, then the
steady-state force error will be equal to equal to /i/(] +
kjks) ~ 0.05 N. The plots of the simulation results are
shown in Fig. 7 for both cases (pole set #1: dashed
line; pole set #2: solid line). Again, in the case of pole
set #1, it experiences a larger oscillation and a longer
settling time because of its closed-loop dominant poles
(j = -0.021 ± j'11.9) being very close to the imaginary
axil.

Other simulations (not shown here) have also been
done for the case of pole set #1 with the force feedback
gain reduced to kj = 0.002. Even with the sacrifice
of steady-state error (= fd / ( l + k,kE) ~ 0.5 N), the
transient response is still inferior to the case of pole set
#2 with kf = 0.02. This can be confirmed by checking
the new closed-loop poles s = -60.3,-1.87± j'226.5 and
— 0.98 ± j'3.71 with the dominant poles being closer to
the imaginary axis and having a smaller damping ratio
than the case of pole set #2 with kf = 0.02.
8. Discussion

To eliminate completely the steady-state force and
position errors, integral action may also be included in
the force controller H(a). In the case of pure position
control, i.e., ft = 0, if the end effector stays in contact
with the barrier all the lime after the. first impact, then
the integral control H(a) would work well; however, if
the end effector bounces off, then the integral control
may produce an undesired equilibrium condition that
the end effector is not in touch with the barrier, i.e.,
y = x, < ijj. This is because the input command to
the position controller will be over-adjusted such that
x* < XE while there is no force feedback in the steady-
state. A similar situation could happen as well when
the given desired position is shorter than the actual dis-
tance, i.e., xj — XE — 6, because of imprecise environ-
ment. A remedy is to assign a residual force /ret for ft
even in the position control, which would assure the end
effector be in contact with the barrier. However, the po-
sitioning accuracy may be somewhat sacrificed because
the residual force fri, would adjust the desired position
trajectory xj( t) even in the free space.

In practical applications, the force feedback is ob-
tained by using the measurement of the wrist force sen-
sor rather than placing a force sensor at the tip (contact
surface) at the end effector, it is due to the considera-
tion of the dynamic range of the sensed force, but it also
introduces errors since the wrist force measurement in-
cludes the contact force and also the inertia force of the
end effector. Usually, this inertia force is small enough
to be neglected; if not, a more detailed analysis may be
needed.

For multi-joint robot manipulators, more work and
transformation of coordinate are needed, especially for
the additional degrees of freedom inloduced by the com-

pliant force sensor, and a systematic robust design simi-
lar to [9] may be pursued. For simplicity of analysis, all
the stales are assumed to be available (i.e., no state es-
timation errors have been considered) and the dynamics
of the actuator has not been included in this paper. Tak-
ing these factors into consideration, a robustness study
may also be required especially in the case that the en-
vironment is extremely stiff and the problem of impact
and bouncing is very critical.
7. Conclusion

The combined position/force control using sensory
feedback for one dimensional manipulator has been stud-
ied. It is concluded that a tradeoff must be made be-
tween the position control in unconstrained motion and
the force control in constrained motion, and the pas-
sive compliant mechanisms like force sensors and mat-
ing components should be used whenever possible if the
problem of impact and bouncing is to be avoided.
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