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I. Project Summary

A thorough study of the combined position/force control using sensory feedback for a
one-dimensional manipulator model, which may count for the spacecraft docking problem
or be extended to the multi-joint robot manipulator problem, has been performed. The
additional degree of freedom introduced by the compliant force sensor is included in the
system dynamics in the design of precise position control. State-feedback based on pole
placement method and with integral control is used to design the position controller. A
simple constant gain force controller is used as an example to illustrate the dependence
of the stability and steady-state accuracy of the overall position/force control upon the

design of the inner position controller. Supportive simulation results are also provided.



II. Objective

The project has the following objective:

Since automatic control of multidegree-of-freedom robotic manipulators involves high
order non-linear equations, we propose a pilot project involving the control of a one-
dimensional system. This simple system can be readily implemented for testing and de-
velopment of concepts for a computer control system that provides precise positioning of

an object using force sensor information in a closed-loop.



III. Work by the Investigators

1. Introduction

A major problem in space application of robotics and the docking of spacecraft is
the development of technology for automated precise positioning of mating components
with smooth motion and soft contact {1,2]. A promising approach to this problem involves
the use of information from force/torque sensors for closed-loop automatic control and a
significant amount of work [3] has been devoted to the similar problem in robot manipula-
tors performing environment-interacting tasks such as deburring and assembly operations.
The basic idea is to use the force feedback, which is generated by the contact between
the robot and the environment, to modify the motion commands. It has been recognized
that, from the stability analysis of force control, the force feedback gain is upper-bounded
by the combined stiffness of the environment and the end effector of the robot [4,5]. To
‘improve the performance c‘;f robot manipulators in the very stiff environment, mechanically
compliant wrist sensors may be used; however, the positoning capabilities of the robot are
then degraded [6]. Thus for the cases when the use of passive compliant mechanisms is
inevitable, the architecture of position control should be modified to have the position of
the end effector as the controlled and feedback variable, which may be obtained by utilizing
the force sensor as also a relative displacement Sensor.

Another important issue of force control is the collision or impact problem (3] which
arises from the transition between the unconstrained and constrained motion of the robot
manipulator. This problem may seem to be avoided by making the desired approaching
velocity (to the environment) of the er.ld effector nearly zero, then motion and force control
can be handled separately. However, it may be neither feasible because of the imprecise
environment nor applausable due to its inefficiency in maneuvering. One approach is to
restructure the controller from path control to force control when the end effector contacts

the environment. This would require the controller to identify the moment of contact, but
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the short transition period of the impact (e.g. the impulse width of about 0.1 ms of the
impact force has been reported in [7]) and the inevitable successive bouncing when the
environment is extremely stiff may render this approach ineffective. An alternative is the
automatic switching, e.g. a pure velocity damping achieved by force derivative feedback

may be introduced to smooth the control during impact transition [8].

A more general control architecture incorporating the strategy of automatic switch-
ing is the so-called combined force position control [9] and it is shown in Fig. 1 where
G represents the position control system including the position controller and the robot
manipulator, E the stiffness of the environment, S the compliance (1/stiflness) of the ma-
nipulator, and H the force controller; 24 is the desired position of the robot manipulator,
e the input command for the position controller, y the position of the manipulator, zg the
location of the environment before contact, f. the contact force between the manipulator

and the environment, and f; the desired contact force.

Note that in the mode of unconstrained motion (y < zg), no contact force exists
(fe = 0) and with zero desired force (fs = 0), it is a pure .position control system; by
making z4 = zg and with nonzero desired force (f; # 0), it performs as a force control
systerh for surface tracing. That the switching between the unconstrained and constrained
motion for this control architecture is automatic is in the sense that the activeness of the
force feedback depends on whether the manipulator is in contact with the environment
and that the monitoring of the moment of contact is not required.

Since the strategy of automatic switching is utilized, the position controller must
remain the same for both unconstrained and constrained motion. Therefore, the design
of the position controller in G must take into account not only the dynamic and accuracy
requirement of position control but also that of force control because the position controller
and also G become part of the open-loop system of the complete position/force control loop.
Thus a proper design of position controller would ease the design of the force controller H

and enhance the overall system performance. This concept is studied in this report for a

4



one-dimensional manipulator problem.

2. The One-dimensional Manipulator Model

Shown in Fig. 2 is the model for a one-dimensional manipulator. A more complex
robot model including both the rigid body and the first vibratory modes of the arm [10]
may be used if a more detailed analysis is needed. Since what under study here is the
dependence of force control upon the deisgn of the inner position controller, similar results
would be expected. In Fig. 2, m, and ¢, represent the inertia and damping of the robot
including the actuator (e.g. a linear motor) and the arm; m,, ¢, and k, represent the
combined mass, damping and stiffness of the force sensor and the end effector (or the
interfacing element in the spacecraft docking problem), respectively; z, and z, measure
the position of the actuator and the end effector, respectively; kg is the stiffness of the
barrier and zg the actual initial distance between the end effector and the barrier; and
is the input force (or torque) of the actuator. The state-variable model can be written as

follows:

& = Az + Bu + s(z,)Dkgzg (1)

Y=, = CT:c (2)

where

() = 1 if z,(t) > zg (constrained motion)
$\Ts) =10 otherwise (unconstrained motion)

2(t) = [or(t) 3+ (1) 24(t) E6(1)]"

0 1 0 0
k. _ecte L7 £q
A - my my mye me
0 0 0 1
k, € ks+a(z,)kp €
m, m, m, m,
0 0 0
1/m, 10 _ 0
B = 0 C = 1 D= 0
0 0 1/m,



Denote A, = A|,()=0 and A; = Al,()=1, then for the mode of unconstrained motion

¢ = A,z + Bu (3)

y=CTz (4)
and for the mode of constrained motion

t = Acz + Bu + Dkgzpg (5)

y=CTz (6)

3. Position Control in Unconstrained Motion

For the part of position control, the conventional design is to control the position vari-
able z, of the actuator since it is the measured variable and usually z, = z, when a stiff
force sensor is used. However, for the cases when a compliant force sensor or passive com-
pliant mechanism is needed, the compliance would introduce additional degrees of freedom
to the system and the inaccuracy in positioning. Therefore, under such circumstances,

the position variable of the end effector z,, which may be estimated using the information

----- -from the force-sensor -or- measured- using- proximity sensors-[1,- 11}, should-be .used as the. _. . . __.

controlled variable instead. For the consideration of robustness and steady-state accuracy,
state feedback design based on pole placement method and with integral control [12] is
adopted here for the position control in the mode of unconstrained motion and is described
briefly below.

For the implementation of integral control, an extended state vector z is introduced
z=1]...... = [21 22 23 24 z5]T

and the corresponding state-variable model becomes
z=A,.2+ B,u (7)
Y=, = C;TZ (8) )
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where

00 1 0:0

The control law is in the form of

u= /ksz:dt —kz (9)
where z; is the input command to the position controller and

k= (ky ko k3 kg k)T
Substituting (9) into (7) we obtain the closed-loop transfer function as

Y(s)/X3(s) = Gp(s) (10)

= ksCT[sI — (Ay, — B,k)] "B, /s

and the control structure is shown in Fig. 3. Note that the s in the denominator will be
cancelled out by a zero of CT[s] ~ (A,. — B.k)|"'B, at s = 0.

The control gain vector k_is obtained by first choosing the desired closed-loop poles
and then equating the desired closedA-loop polynomial to the characteristic polynomial
det{s] — (A, — 'sz)]. Note that because of the integral control, the DC gain equals one,

ie. Gp(0) =1.

4. The Complete System in Constrained Motion

For the mode of constrained motion, the contact between the end effector and the
barrier produces a contact force f., which is assumed to be proportional to the displacement
z, —zg,i.e f.=kp(z, —zg). The system dynamics is described by (5) and (6), and the

corresponding extended state-variable model is
z=A.,z+ B,u+ D,kgzg (11)
y=z,=CT: (12)-
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where

..................

With the same position controller in the loop, we obtain

Y(s) = ksCT[sI — (A, — B,k))"*B,X(s)/s
+ CT(sI - (Ac, — B,k)) ' D kg Xg(s)
= Go(8)X;(s) + G(s)XEe(s)
where
Go(s) = ksCT[sI — (A, — B.k)|"'B./s

Ge(s) = CT{sI — (A, — B,k)] "D, kg

(13)

(14)

(15)

Note again that the s in the denominator of G,(s) will be cancelled out by a zero of

CT|sI - (Acz — B;k)]7*B, at s = 0. Thus the poles of Go(s) and Gg(s) are the same -

the eigenvalues of A., — B, k. The block diagram of the combined position/force control

is shown in Fig. 4a. Also note that equation (11) can be rewritten as

2= Ay,z2+ B,u— D, kg(z, — zg)
By combining equations (16) and (12) Y(s) can be expressed as

Y(s) = ksCT[sI — (Ay, ~ B,k)] " B, X(s)/s

+ CT{sI — (Ay; — B,k)) ' D, kg|Xg(s) - Y (s))

= Gy(8)X:(s) + Cln(s)[X5(s) - ¥ (s)]

where

G'y(s) = CT{sI — (A,, — B,k)) ' D,kp

The block diagram for this structure, which is similar to Fig. 1, is shown in Fig. 4b.

8
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For the part of force control, it is to design a compenéator H(s) for the system having
the open-loop transfer function kgG,(s). Though theoretically it is possible to design a
dynamic compensator H(s) such that the closed-loop system achieves the desired dynamics
for any given kg G,(s), in practice the feasibiiity of a realizable compensator H(s) depends
on kgGy(s) which in turn is a function of the gain k of the position controller. In other
words, the choice of k determines not only the system dynamics of position control in the
mode of unconstrained motion but also the easiness of the design of the force controller
H(s). This can be illustrated by considering the case of a constant gain force controller
H(s) = ky.

First, consider the steady-state performance of the overall position/force system. Note
that because of the structure of integral control incorporated in the position controller,
Go(0) = 1 and Gg(0) = O for constant zg and any finite kg if Go(s) is stable. Thus
the steady-state system diagram can be shown as in Fig. 5 if the complete closed-loop is

stable. By applying the principle of superposition we obtain

y=(zd+kffd+kEkf:l:E)/(l+kEkf) (19)

In the case of pure force control, assume that the end effector-is initially in touch
with the barrier without any contact force. With a nonzero desired contact force f; and

zq = zgp, the steady-state contact force is

fe= kE(y - 3E)
= kgksfa/(1+ kgky) (20)
and the force error is
er = fa — fo = fa/(1 + kgky) (21)

Another case is when we want to position the end effector, which is initially away
from the barrier, to be barely onto the barrier, i.e. we want to have y = zg and f. = 0. It

may be argued that this task can be accomplished without any force feedback by choosing
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zq = z; = zg and designing an overdamped position control system, i.e. making the end
effector approach the barrier without any overshoot. This is not the case in real situations,
however. The initial actual distance between the end effector and the barrier is zg, but we
may mistake it as :c; = zg + 6 because of insufficient knowledge or imprecise measurement.

With such desired position ¢4 and fy = 0, the steady-state position is

y=(ze+68+kpkszg)/(1+ keky)

=zg +6/(1 + kgky) (22)
and the position error and the force error are

y=Yy—zg =6/(1+kgky) (23)

fe=kgey, = kgbd/(1 + kpky) (24)

If kg — oo, then y = zg anf f. = §/k; = u (force generated by the actuator).

Next, consider the problem of stability. In the mode of constrained motion and without
force feedback, the system dynamics is characterized by the system function Go(s). Though
Gp(s ) Go(s )|,cE =oand a well behaved Gp(s) can be obtained in the de51gn of the position
controller, however, w1th nonzero kE the poles of Go(s) would move away from the pole
locations of Gp(s) and with large kg, they may approach the origin and even cross the
imaginary axis in the s-plane. This would make the stabilization of the overall closed-
loop system more difficult and even impossible for a constant gain force controller, not to
mention the increase of the force feedback gain needed to reduce the position and force
errors.

Therefore, a compromise must be made in designing the position controller. Not only
the pole locations of Gp(s) but also those of G,(s) for a certain range of kg (depending on
the environment encountered) need to be considered such that the overall position/force
loop could have both acceptable system dyr;amics (appropriate closed-loop pole locations)

and accuracy (high force feedback gain). For instance, real poles of G p(s) resulting in fast
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response may be preferred under the sole consideration of position control, but in some
cases other choices of poles for Gp(s) might be more justified if the performance of the

overall system is concerned.

5. Examples and Simulations

In the following examples and simulations, it is assumed that m, = 20 Kg, m, = 2 Kg,
¢, = 500 N — sec/m, ¢, =5 N — sec/m, and k, = 3000 N/m. To see how the desired
poles chosen for the position control in unconstrained motion, Gp(s) in Fig. 3, affect the
system performance in constrained motion, let’s choose two sets of poles of Gp(s) and
find the corresponding maximum kskgp which guarantees the stability of the combined

position /force control loop in Fig. 4.

Pole set #1: Choose 5 poles for G,(s) as s = -5, —9, —14, —18 and —20; then the

corresponding five gains k; for 1 = 1,2,...,5 are —356.1,765,1827.1, —1002.5 and 3024.

kg (N/m) poles of G,(s) maxkskg

1,000 —41.4,-10.4 £ §30.9, —1.9 + j1.25 16

10,000 —53.8,—-4.92 + 377.2,—2.04,-0.346 185

100,000 -~ - - —60.1; —1-87 £+ j226:5,—2:15, ~0.0343- - 2041 - -~~~ - -

The root-loci in terms of k¢kg for the combined position/force control loop are shown

in Fig. 6.

Pole set #2: Choose 5 poles for G,(s) as s = -2, —4, —20, —25 and —30; then the

corresponding five gains, k; for1=1,2,...,5 are 12276,1065, 10881, -1211.3 and 1600.

kg (N/m) poles of G,(s) maxkskg
1,000 _46.2,—11.8 + j28.2,—10.9, —0.255 79
10,000 —58.7,—5.45 + 376.5,—-11.3,-0.0307 1981
100,000 —65.7,—1.98 &+ 7226.4,—-11.4,-0.00313 27540

Similarly, shown in Fig. 7 are the corresponding root-loci for the combined posi-

tion/force control loop.
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From the above tables and figures we can see how the stiffness of the barrier, kg, affects
the root locus of the open-loop system, G,(s), of the combined position/force control.
Obviously, a more stiff barrier results in an open-loop system with more oscillation. It has
been shown that the maximum kskg (guaranteeing the closed-loop system stability of the
combined position/force control) increases as the stiffness of the barrier, kg, increases.

One important finding from the comparison of these two tables is that the pole set
#2, which has a slower response for position control in unconstrained motion, would have
a much higher maximum kkg for the stability of the combined position /force control than
the pole set #1, and thus would have a much better opportunity to reduce the steady-state
error.

Some simulations corresponding to the combined position/force control and the pure
force control will be shown and discussed. In the following simulations, sampling period

= 10 msec was used, i.e. the control input u was updated every 10 msec.

(a) Simulations of the combined position/ fofce control:

Let f4 =0,z = 0.2 m, 4 = 0.202 m with a position deviation of 2 mm. The plots of the
 control input u, the position of the end effector z,, and the contact force f; corresponding
to each set of poles of Gp(s) chosen before are shown in Fig. 8-12.

By comparing Fig. 8 and Fig. 9 (kg = 100,000N/m and k; = 0.02) it can be seen
that though the response of position control in unconstrained motion is faster in the case
of pole set #1, it experiences a harder impact and a longer time to settle down after
the bouncing stops (i.e. .the contact force never returns to zero). This observation can
be confirmed by checking the closed-loop poles of combined position/force control. With
ks = 0.02, they are s = —62.1, —1.94 + j226.4 and —0.021 £ j11.9 in the case of pole set
#1, and s = —66.7,—2.02 £ 7226.4 and —5.13 + 76.63 for pole set #2.

It is interesting to note from Fig. 10 that with ky reduced to 0.002 for thev pole set #1

and kg = 100,000 N/m, while the transient oscillation of low frequency has been improved

a bit, the contact force f. does increase by 10 times. (From equation (24), if kgky is large-
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enough, then f. ~ 6/k;.)

Also note that the bouncing does happen in these simulations because of high stiffness
of the barrier. The problem of impact and bouncing may be alleviated by adopting a softer
barrier and this can be clearly seen from the simulation plots shown in Fig. 11 and 12 for

the pole set #1, ks = 0.02, kg = 10,000N/m and 1,000N /m, respectively.

(b) Simulations of pure force control:

In these simulations it was assumed that the end effector was initially at rest on the barrier,
i.e. ¢q = zgp = 0. Let the desired contact force f3 = 100 N, then the steady-state force
error will be equal to fg/(1 + ktkg) ~ 0.05 N. The plots of the simulation results are
shown in Fig. 13 and 14 for both cases with kg = 100800N/m and k; = 0.02. Again, in
the case of pole set #1 (Fig. 13), it experiences a larger oscillation and a longer settling
time because of its closed-loop dominant poles (s = —0.021 £ j11.9) being very close to
the imaginary axis.

Shown in Fig. 15 are the simulation plots for the case of pole set #1 with the force
feedback gain reduced to ky = 0.002. Even with the sacrifice of steady-state error (=
fa/(1 + kgkg) ~ 0.5 N), the transient response is still inferior to the case of pole set
#2 with ky = 0.02. Th>ié can be conﬁrrﬁed by checking thé new closéti—loop poles s =
—60.3,—1.87 &+ j226.5 and —0.98 + j3.71 with the dominant poles being closer to the
imaginary axis and having a smaller damping ratio than the case of pole set #2 with

ky = 0.02.
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IV. Discussion

To eliminate completely the steady-state force and position errors, integral action
may also be included in the force controller H(s). In the case of pure position control,

fa = 0, if the end effector stays in contact with the barrier all the time after the
first impact, then the integral control H(s) would work well; however, if the end effector
bounces off, then the integral control may produce an undesired equilibrium condition that
the end effector is not in touch with the barrier, i.e. ¥y = £, < zg. This is because the
input command to the position controller will be over-adjusted such that z; < zg while
there is no force feedback in the steady-state. A similar situation could happen as well
when the given desired position is shorter than the actual distance, i.e. z4 = 2 — 4,
because of imprecise environment. A remedy is to assign a residual force f,., for f; even
in the position control, which would assure the end effector be in contact with the barrier.
However, the positioning accuracy may be somewhat sacrificed because. the residual force

fres would adjust the desired position trajectory z4(t) in the free space.

In practical applications, the force feedback is obtained by using the measurement of

the wrlst force sensor rather than placing a force sensor at the tlp (contact surface) at the
end effector. It is due to the coneluderatlon of the dynarmc range of the sensed force but
it also introduces errors since the wrist force measurement includes the contact force and

also the inertia force of the end effector. This inertia force is usually small enough to be
neglected; if not, a more detailed analysis may be needed.

For multi-joint robot manipulators, more work and transformation of coordinate are
needed, especially for the additional degrees of freedom introduced by the compliant force
sensor, and a systematic robust design similar to [9) may be pursued. For simplicity of
analysis, all the states are assumed to be available (i.e. no state estimation errors have
been considered) and the dynamics of the actuator has not been included in this report.
Taking these factors into consideration, a robustness study may also be required especially

in the case that the environment is extremely stiff and the problem of impact and bouncing
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is very critical.
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Fig. 6c - Root locus kf*kE= 0-2100 for case 1, kE=100,000
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Fig. 7a - Root locus kf*kE= 0-80 for case 2, KE=1,000
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Abstract

A preliminary study of the combined position /force
control using sensory Ieedback for & one-dimensional
manipulator model, which may count for the spacecraft
docking problem or to be extended to the multi-joint
robot manipulator problem, has been performed. The
additional degrees of freedom introduced by the com-
liant force sensor is included in the system dynamics
in the design of precise position control. State-feedback
based on pole placement method and with integral con-
trol is used to design the position controller. A simple
constant gain force controller is used as an example to
illustrate the dependence of the stability and steady-
state accuracy of the overell position/force control upon
the design of the inner position controller. Supportive

simulation results are also provided.

1. Introduction

A major problem in space application of robotics
and the docking of spacecraft is the developinent of tech-
nolougy for automated precise positioning of mating com-
ponents with smooth motion and soft contact {1,2]. A
promising approach to this problem involves the use of
information from force/torque sensors for closed-loop
automatic control and a significant amount of work {3]
has been devoted to the similar problesm in robot manip-
ulators performing environment-interacting tasks such
er Jeburring and sesembly operaticns, The basic idea is
to use the force feedback, which is generated by the con-
tact between the robot and the environment, to modify
the motion commands. It has been recognized that,
from the stability anelysis of force control, the force
feedback gain is uppcrv%ounded by the coinbined stifl-
ness of the environment and the end effector of the robot
[4,5]. To improve the performance of robot manipual-
tors in the very stiff enviroument, mechanically compli-
ant wrist sensors may be used; however, the positoning
capabilities of the robot are then degraded [6]. Thus for
the cases when the use of pessive compliant mmechanisms
is inevitable, the architecture of position control should
be modified to have the position of the end ellector as
the controlled and feedback variable, which may be ob-
tained by utilizing the force sensor as also a relative
displacement sensor.

Another important issue of {force control is the colli-
sion or impact problem {3] which arises from the transi-
tion between the unconstrained and constrained motion
of the robot manipulator. This problem nay seem to be
avoided by making the desired approaching velocity (to
the environment) of the end eflector alinost zero, then
motion and force control can be handled separately. Ho-
ever, it may be neither feasible because of the imprecise
environment nor applausable due to its inefficiency in
maneuvering. One approach is to restructure the con-
troller form path control to force control when the end
eflector contacts the environment. This would require
the controller to identify the moment of contact, but
the short transition period of the impact (e.g. the im-
pulse width of about 0.1 ms of the impact force has been
reporied in [7]), and the inevitable successive bouncing

when the environment is extremely stifl may render this
approach ineffective. An alternative is the automatic
switchiug, e.g. 8 pure velocity damping achieved by
force derivative feedback may be introduced to smooth
the control during impact transition {8).

A more genera! control architecture incorporating
the strategy of automatic switching is the so-called com-
bined force position control [9] ansn is shown in Fig. 1
where G represents the position control system includ-
ing the position controller and the robot manipulator,
E the stifiness of the environment, § the compliance
(1/stiflness) of the manipulator, and H the force con-
troller; z4 is the desired position of the robot manipu-
lator, e the input command for the position controller,
y the position of the manipulator, zg the location of
the environment before contact, f. the contact force be-
tween the manipulator and the environment, and fg the
desired contact force. .

Note that in the mode of unconstrained mntion
{y < zEg), no contact force exists (f. = 0) and with
gero desired force (fq = 0), it is & pure position control
evstem; by making z4 = zg and with nonzero desired
force (fa # 0), it performs as & force control system
for surface tracing. That the switching between the un-
constrained and constrained motion {or this control ar-
chiteclure is automatic in the sense that the activeness .
of the fores feedback depends: on whether the manipu-
lator is in contact with the environment and that the
monitoring of the moment of contact is not required.

Since the strategy of automatic switching is uti-

lized, the position controller must remain the same for
both vunconstrained and constrained motion. Therefore,
the design of the position controller in G must take into
account not only the dynainic and accuracy requirement
of position control but also that of force control because
the position controller and also G become part of the
open-loop system of the complete position /force control
loop. Thus, a proper design of position controller would
ease the design of the force controller H and enhance the
overall system performance. This concept is studied in
this paper for a one-dimensional nuanipulator problem.

2. The One-dimensional Manipulator Model

Shown in Fig. 2 is the model for a one-dimensional
manipulator. A more complex robot model including
both the rigid body and the first vibratory modes of
the arm lO?may be used if a more detailed analysis is
needed. Since what under study here is the dependence
of force contro] upon the deisgn of the inner position
controller, similar results would be expected. I[n Fig.
2, m, and ¢, represent the inertia and damping of the
robot including the actuator (e.g., a linear motor) and
the arm; m,, ¢, and k, represent the combined mass,
damping and stiflness of the force sensor and the end ef-
fector (or the interfacing element in the spacecraft dock-
ing problem), respectively; z, and z, measure the posi-
tion of the actuator and the end eflector, respectively;
kg is the stiffnees of the barrier and zg the actual initial
distance between the end effector and the barrier; and
u is the input force (or torque) of the actuator.
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The state-variable model can be written as follows:

2 = Az + Bu + s(z,)Dkgz, (1)
y=2,= CTZ (2)

where

_f1 ifz,(t) 2 zg (constrained motion)
5(z.) = 0 otherwise (unconsirained motion)

z(t) = [z-(1) 2.(1) z,(1) io(‘)]T

0 1 0 0
_k et X, £a
A = m, m, m, My
0 0 0 1
A, . kpfn!z.[k: €2
m, m, m, m,
0 0 ]
1/m, _ |0 _ 0
B = 0 C = ] D= 0
0 0 1/m,

Denote 4, = Al,(~)=° and A, = Al,(_)=1, then for
the mode of unconstrained motion

z = Ayz + Bu 3)
y=CTz (4)

and for the mode of constrained motion

2= Ac.z + Bu + Dkgzp (5)
y=CTz (6)

3. Position Control in Unconstrained Motion

For the part of position control, the conventional
design ie to control the position varisble z, of the ac-
tuator since it is the measured variable and usually
z, = z, when a stifl force sensor is used. However, for
the cases when a compliant force sensor or passive com-
pliant mechanism is needed, the compliance would in-
troduce additional degrees of freedosn tn the system and
the inaccuracy in positioning. Therefore, under such
circumstances, the position variable of the end eflector
z,, which may be estimated usmg the information from
the force sensor or measured using proximity sensors [1,
- 11], should be used as the controlled variable instead.
For the consideration of robustness and steady-state ac-
curacy, state feedback design besed on _pole placement
method and with integral control {12] is adopted here
for the position control in the mode of unconstrained
motion and is described briefly below.

For the implementation of integral control, an ex-
tended state vecior z is introduced

z
= [fz,dt] =21 23 23 24 25]7
and the corresponding state-variable model becomes

= Ay 2+ Bu (1)
y=2,=C]: (8)

R :

The control law is in the form of
u= /k;z:dt — kz (9)

where z; is the input command to the position con-
troller and T
= [ks k3 ky kg ks]

Substituting (9) into (7) we obtain the closed-loop trans-
fer function as

Y(s)/X}(s) = Gp(s) (10)
= ksCTa] — (Ay, - B,k)| "' B, /s

and the control structure is shown in Fig. 3. Note that
the s in the denominator will be cancelled out by a zero
at s = 0 of CT[s] — (A,, — B,k)]"'B,.

The control gain k is obtained by first choosing the
desired closed-loap poles end then equating the desired
closed-loop polynomial to the characteristic polynomial
det{s] — (A,, — B,k)]. Note that because of the integral
control, the DC gain equals one, i.e., Gp(0) = 1.

4. The Complete System in Constrained Motion
For the mode of constrained inotion, the cuntact

between the end eflector and the barrier produces a

contect force fc, which is assumed to be proportional

to the displacement =, ~ zg, ie, fo = kp(z, - zg)

The system dynamics is described by (5) and (6), an

the corresponding extended state-veriable model is

i=Aq,z+ B+ Dkgrg (11)
y=2z,=CT:z (12)

where

D)
ot
With the same position controller in the loop, we obtain

Y(s) = ksCT[a] — (Acx — B.k)) "B, X (5)/s
+ CT[a] — (Acs — B.k)) ' D kg Xg(a)
= Go(8)X;(s) + Gr(s)X g(a) 13)

Note again that the s in the denominator in the first
part of (13) will be cancelled out by a zero at 4 = 0 of
C;rsal —~(Acs— B,k)]7}B,. Thus the poles of G,(2) and
GEg(s) are the same - the eigenvalues of A., — B,k. The
block diagram of the combined position/force control is
ehown in Fig. 4.

For the part of force control, it is to design a com-
pensator H(s) for the given open-loop transfer function

kgG,(a) = kgksCT[o] - (A, — B,k)]'B,/s (14)

Though theoretically it is possible to design a dy-
namic compensator H(s) such that the closed-lvop sys-
tem achieves the desired dynamics for any given kg
G.(s), in practice the feasibility of a realizable com-
pensator H(a)} depends on kgG,(s) which in turn is a
function of the gain k of the position controller. This
is to say that, the choice of k determines not only the
system dynamics of position control in the mode of un-
constrained motion but also the essiness of the design
of the force controller H{s). This can be illustrated by
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;{ozxn)idering the case of a constant gain force controller
s) =ky.

Firut{ consider the steady-state performance of the
overall position/force system. Nnte that because of the
structure of integral control incorporated in the position
controller, G,(O? = 1 and Gg(0) = 0 for constant zg
and any finite kg if G,(s) is stable. Thus the steady-
state systemn diagram can be shown as in Fig. 5 if the
complete closed-loop is stable. By applying the princi-
ple of superposition we obtain

y=1(za+kyfa+kekszg)/(1 + kgky)  (15)

In the case of pure force control, assume that the
end effector is initially in touch with the barrier without
any contact force. With a nonzero desired contact force
_f¢ and letting z4 = z, the steady-state contact force
is

Je=ke(y - zg)
| = kok/fu/(1+ kiky) (16)
and the {orce error is
ey =Jfa—Sfe=fa/(1 + keky) an

Another case is when we want to position the end
effector, which is initially away from the barrier, to be
barely onto the barrier, i.e., we want to hnve y = zg
and f, = 0. It may be argued that this task can be
accomplished without any force feedback by choosing
24 = z, = zg and designing an overdamped position
control system i.e., making the end eflector appraach
the barrier without any overshoot. This is not the case
in real situations, however. The initial actual distance
between the end effectur and the barrier is zg, but we
may misteke it as 4 = zg + § because of insufficient
knowledge or imprecise measurement. With such de-
sired position z4 &nd fg = 0, the steady-state position
is

y=(zg +6+kpkszg)/(1 + kgky)
=zp +6&/(1 + keky) (18)

and the position error and the force error are

e, =y - 25 =6/(1+keky) (19)
fo = kpe, = kgb/(1 + kgky) (20)

If kg — oo, then y = zg anf f, = §/k; = u (force
generated by the actuator).

Next, consider the problem of stability. In the
mode of constrained motion and without force feed-
back, the system dynamics is characierized by the sys-
tem function G,(s). Though Gp(s} = Go(s)lk,=0 and a
well-behaved G p(s) can be obtained in the design of the
position controller, however, with nonzero kg, the poles
of G,(s) would move away from the pole lacations of
G p(s) and with large kg, they may approach the origin
and even cross the imaginary axis in the s-plane. This
would make the stabilization of the overall closed-loop
system more difficult and even impossible for a constant

ain force controller, not to mention the increase of the
orce feedback gain needed to reduce the position and
force errors.

Therefore, a compromise must be made in design-
ing the position controlier. Not unly the pole locations

of G p(s) but also those of Go(#) for a certain range of kg
ﬁepen ing on the environment encountered), need to
considered such that the overall position/furce loop
could have both acceptable system dynamics (appropn-
ate closed-loup pole locations) and accuracy (high force
feedback gain). For instance, real poles of Gp(s) re-
sulting in fast response may be preferred Lased on the
sole consideration of position control, but in some cases
other choices of poles for G p(s) might be more justified
if the performance of the overall system is concerned.

5. Examples and Simulations

In the following examples and simulations, let m, =
20 Kg,m, =2 Kg, ¢, =500 N - sec/m,c, =5 N —
sec/m, and k, = 3000 N/m. To see how the desired
poles chosen for the position control in unconstrained
motion, Gp(s) in Fig. 3, affect the system performance
in constrained motion, let’s choose two sets of poles
of Gp(s) and find the corresponding maximum k;kg
which guarantees the stability of the combined posi-
tion/force control Joop in Fig. 4.

Pole set #1: Choose 5 poles for G,(a) as s = -5, -9,
~14, —18 and —20; then, the corresponding five gains k;
for i = 1,2,...,5 are —356.1,765,1827.1, —1002.5 and
3024.

kg (N/m) poles of Go(s)} max k;hg
1,000 ~41.4,-10.4 £+ 5308, -1.9 2 51.25 18

10, 000 —53.8, 4.9 £ §77.2, —2.04, —0.346 185

100, 000 —60.1,-1.87 £ 5226.5, - 2.15, - 0.0343 2041

Pole set #2: Choose 5 poles for G,(s) as s = -2, —4,
—~20, —25 and —30; then the corresponding five gains,
k; for i = 1,2,...,5 are 12276,1065, ~10881, —1211.3
and 1600.

kr (N/m)  poles of Go(a) ) maxk kg
1,000 -46.2,-11.8 £ ;28.2, -10.9, -0.25% 1%

10, 000 —58.T, -5.45 + ;76.5, - 11.3, —0.0307 1981

100, 000 —85.7,-1.98 + §226.4, —11.4, —-0.00313 27540

From the above table, we can see how the stiflness
of the barrier; kg, affects the root locus of the open-loop
system, G,(a), of the combined pasition/force control.
Obviously, a more stifl barrier results in an open-loop
system with more oscillation. It has been shown that
the maximum k kg (guaranteeing the closed-loop sys-
tem stability of the combined position /force control) in-
creases as the stiflness of the garrier, kg, increases.

Oneimportant finding from the comparison of these
two tables is that the pole set #2, which has a slower
response for position tontrol in unconstrained motion,
would have 2 much higher maximum kjkg for the stabil-
ity of the combined position/force control than :he pole
set #1, and thus would have a much better opportunity
to reduce the steady-state error.

Some simulations correspunding to the combined

sition/force control and the pure force control will

e shown and discussed. In the following simulations,

kg = 100,000 N/m and k; = 0.02 were chosen and

sampling period = 10 maec wes used, i.e., the control
input u was updated every 10 msec.

Simulations of the combined position/force control:
Let f4 =0, zg = 0.2 m, 24 = 0.202 m with & position
deviation of 2 mm. Since k kg = 2000, the sieady-state
error will be equal to (zg—zg)/(1+ kskg) ~ 0.001 mm.
The plots of the control input u, the position of the end
effector, z,, and the contact force /, correspunding to
each set of poles of GpSa) chosen before (set #1: dashed
line; set #2: solid line} are shown in Fig. 6.
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It can be seen that though the response of position
control in unconstrained motion is faster in the case
of pole set #1, it experiences a harder impact and a
longer time to settle down after bouncing stops (i.e., the
contact force never returns to gero). This observation
can be confirmed by checking the closed-loop poles of
combined position/force control. With ks = 0.02, they
are s = —62.1,—1.94+ 5226.4 and —0.021 3+ ;11.91n the
case of pole set #1, and s = —66.7,-2.02 + 226.4 and
—5.13 £ j6.63 for pole set #2. Also note that bouncing
does happen in both cases because of high stifiness of
the barrier.

Simulations of pure force control:

In these simulations it was assumed that the end effector
was initially at rest onto the barrier,i.e., 24 = zg = 0.
Let the desired contact force f4 = 1060 N, then the
eteady-state force error will be equal to equal to f;/(1 +
kjkg) ~ 0.05 N. The plots of the simulation results are
shown in Fig. 7 for both cases (pole set #1: dashed
line; pole set #2: solid line). Again, in the case of pole
set #1, it experiences a larger oscillation and a longer
settling time because of its closed-loop dominant po?es
(2 = —0.021 + 711.9) being very close to the imaginary
axis.

Other simulations (not shown here) have also been
done for the case of pole set #1 with the force feedback
gain reduced to k; = 0.002. Even with the sacrifice
of steady-state error (= fq/(1 + kpkg) ~ 0.5 N}, the
transient response is still inferior to the case of pole set
#2 with ky = 0.02. This can be confirmed by checkin
the new closed-loop poles s = —-60.3, —1.87+226.5 ans
~0.88 + 53.71 with the dominant poles being closer to
the imaginary axis and having a smaller damping ratio
than the case of pole set #2 with k; = 0.02.

8. Discussion

To eliminate completely the steady-state force and
pusition ervurs, integral action may also be included in
the force controller H(s). In the case of pure positinn
control, i.e., fg = 0, if the end eflector stays in contact
with the barrier all the time after the first impact, then
the integral control H{s) would work well; however, if
the end eflector bounces off, then the integral control
may produce an undesired equilibrium condition that
the end effector is not in touch with the barrier, i.e.,
y = z, < zg. This is because the input command to
the position controller will be over-adjusted such that
z; < zp while there is no force feedback in the steady-
state. A similar situation could happen as well when
the given desired position is shorter than the ectual dis-
tance, i.e., z4 = zg — &, because of imprecise environ-
ment. A remedy is to assign a residual force f.., for fq
even in the position control, which would assure the end
eflector be in contact with the barrier. However, the po-
sitioning accuracy may be somewhat sacrificed because
the residual force f.,, would adjust the desired position
trajectory z4(t) even in the free space.

In practical applications, the force feedback is ob-
tained by using the measurement of the wrist force sen-
sor rather than placing a force sensor at the tip (contact
surface) at the end effector. it is due to the considera-
tion of the dynamic range of the sensed force, but it also
introduces errors since the wrist force measurement in-
cludes the contact force and also the inertia force of the
end eflector. Usually, this inertia force is small enough
to be neglected; if not, a more detailed analysis may be
needed.

For multi-joint robot manipulators, more work and
transformation of coordinate are needed, especially for
the additional degrees of freedom intoduced by the com-

pliant force sensor, and a systematic robust design simi-
lar to [8] mey be pursued. For simplicity of analysis, all
the states are assumed to be available (i.e., no'state es-
timation errors have been considered) and the dynamics
of the actuator has not been included in this paper. Tak-
ing these factors into consideration, a robustness study
may also be required especially in the case that the en-
vironment is extremely stiffl and the problem of impact
and bouncing is very critical.

7. Conclusion

The combined position/force control using sensory
feedback for one dimensional manipulator has been stud-
jed. It is concluded that a tradeoffl must be made be-
tween the position control in unconstrained motion and
the force control in constrained motion, and the pas-
sive compliant mechanisms like force sensors and mat-
ing components should be used whenever possible if the
problem of impact and bouncing is to be avoided.
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