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ABSTRACT

We derive the source functions and the energy fluxes for wave generation in magnetic flux tubes embed-

ded in an otherwise magnetic field-free, turbulent, and compressible fluid. Specific results for the gen-

eration of longitudinal tube waves are presented.
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1. INTRODUCTION

Wave generation by turbulent motions in the outer convection zones of stars has long been thought

to be central to the heating of stellar chromospheres and coronae (e.g., Biermann 1946 and

Schwarzschild 1948). The early suggestions were followed by number of detailed studies in which the

generation of acoustic waves (Lighthill 1952, Proudman 1952, Stein 1967, Renzini et al. 1977 and Bonn

1980, 1984) as well as MHD waves (Kulsrud 1955, Osterbrock 1961, Parker 1964, Kuperus 1965, Stein

1981, Ulmschneider and Stein 1982, Musielak and Rosner 1987a, b) was considered. These latter calcu-

lations are all based on the assumption of a uniform and weak background magnetic field, an assumption

which is contradicted by solar and stellar observational evidence for inhomogeneous and locally strong

magnetic fields (cf., Harvey 1977, Stenflo 1978, Robinson et al. 1980); thus, at least the solar magnetic

field has instead a "flux tube" structure, and flux tube waves carrying the wave energy away from the

convection zone may well be responsible for heating at least some portion of the outer atmospheric

layers (cf., Spruit and Roberts 1983). In addition, it has been shown that the acoustic and MHD energy

fluxes generated in stellar convection zones ~ based on calculations which assume homogeneous mag-

netic fields — are insufficient to explain the UV and soft X-ray fluxes observed by the IUE and Einstein

Observatories (Linsky 1981, Vaiana et al. 1981, Ulmschneider and Bonn 1981, Rosner et al. 1985,

Musielak and Rosner 1987b).

In this paper, we derive the source function and energy flux for flux tube waves. We consider

magnetic flux tubes embedded in a magnetic field-free, turbulent and compressible medium, and assume

that the tubes are thin and oriented vertically; the latter assumption allows us to separate the generation

of compressional tube waves from incompressional waves. In the present paper (Paper I), we concen-

trate on the generation of longitudinal tube waves, discuss the wave propagator and the relevant critical

frequencies, and finally discuss the dependence of energy fluxes on the parameters which enter into the

calculations. The generation of transverse tube waves and the application of the results to late-type stars

will be treated in following papers.

The plan of our paper is as follows: The MHD equations and the basic formulation are presented

in Section 2; the inhomogeneous wave equation and its solutions are given in Section 3; the energy

fluxes for longitudinal tube waves are described in Section 4; and the model parameter dependence of

energy fluxes and their discussion are to be found in Section 5. A summary of our new results and our

conclusions are given in Section 6. Two appendices contain mathematical details, which amplify discus-

sions in the main text
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2. MHD EQUATIONS AND THE BASIC FORMULATION

In this section, we discuss the basic equations of motion, and develop the formalism for calculating

the generation rate for magnetic tube waves. In order to simplify the problem to the essentials, we shall

assume that the fluid is locally isothermal, that the gas pressure is a scalar, and that displacement

currents and electrostatic forces may be neglected; furthermore, it is straightforward to show that (as

long as shock formation does not occur) dissipation by molecular viscosity and Ohmic diffusion is negli-

gible for the problem at hand. In the following, we present the linearized magnetohydrodynamic (MHD)

wave equations, the basic assumptions for flux tubes, and finally the set of equations used to calculate

the rate of tube wave generation.

(a) The Linearized MHD Equations

Our assumptions lead to the ideal MHD equations, which may be written in the following linear-

ized form:

4p + V.<p . t f ) - N l f (2.1)

and

3-ff - Vx(?x£) = #4, (2.4)dt v •/ 4.

where p0,p0'Bo refer to the unperturbed atmosphere, p, p, ff,ff are the perturbations of density, pres-

sure, velocity and magnetic field, respectively, and V, (a [•yRr/u,]I/2) is the sound velocity; the magnetic

field is assumed to be potential, and the equation of motion is simplified by the assumption that the

background atmosphere is in static equilibrium.

All terms linear in the perturbations in equations (2.1) - (2.4) are written on the LHS; these terms

define the wave propagation operators for MHD waves. However, terms quadratic in the perturbations

are collected on the RHS, and are treated as known quantities described by a given flow (Lignthill 1952,

Stein 1967). The latter terms determine the source function responsible for the MHD wave generation
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(Musielak and Rosner I987a), and are defined as follows:

JV, = - V -(pi?) , (2.5)

N2 = - X - V p + V , 2 f f - V p , (2.6)

<2-7)

(2.8)

(b) The Thin Flux Tube Approximation

In order to calculate the energy fluxes for flux tube waves, we assume that a vertically-oriented

magnetic flux tube is embedded in a stratified and non-magnetized medium, and that all unperturbed and

perturbed quantities depend on z and t alone; the z-axis is identified with the vertical direction (i.e.,

3» = - gi ) which, in our approach, is just the tube axis. We then obtain

p = p(z,0 + 0(e). (2.9)

p = p(zj) + 0(e), (2.10)

If = «,(*,/) i + 0(e), (2.11)

& = B,(zj)z + 0(e), (2.12)

where e is defined as the ratio of the tube radius R, to the tube length L,; for e < 1, the tube can be

treated in the thin flux tube approximation, an approximation which allows us to consider all unper-

turbed and perturbed quantities to zeroth-order (see, for example, Roberts and Webb 1978). In this

approach, the magnetic field within the flux tube is essentially axial, and is described by /T0 = B0(r)f;

note that the solenoidal condition does not restrict B0(z), but does however allow one to calculate the

horizontal components of the magnetic field once the vertical component is known.
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We further assume that the cross-section of the tube is always circular, and that the thin flux tube

is in temperature equilibrium with the surroundings, so that both density gradients inside [p<,(z)] and out-

side [p«(z)] the tube are described by the same density scale height; hence, the vertical density variation

is given by

(2.13)

where //p ( 3 V//yg) is the density scale height, and is identical to the pressure scale height for an isoth-
ermal atmosphere. The vertical magnetic field variation is given by

B0(z) = B^exp [--£- 1.
I H» J

(2.14)

where the magnetic scale height Hb can be defined as

and where VA
2 (s B?l4xp0) is the square of the Alfven velocity.

In addition, if the total (gas plus magnetic) pressure is constant across the tube, then we must have

(see Roberts and Webb 1978)

and

/».(*)
A,(0) p.(0) ' ^ '

which allows us to easily calculate the structure of the tube when the boundary values for the pressure

and magnetic field are given. Finally, we assume that the tube is untwisted, so that we ignore processes

— such as the generation and propagation of torsional tube waves — as well as instabilities such as the

kink instability. Such transverse wave motions wfll be considered in a subsequent paper.
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(c) The Flux Tube Equations

Combining the continuity and induction equations, and using equations (2.9) - (2.12) and (2.13) -

(2.15), the set of MHD equations (2.1) - (2.4) can be re-written as

^-p, - 4-*i + W2u, = »,. (2.18)

where /»i contains the nonlinear terms, and is given by nt = -(l/p0)/Vi -

= "2. , (2.19)

where

— u, -(- W l P l + Plg = n3; (2.20)

where n3 = 7/3,; #3x and N4z are the z-components of #3 and #4 (equations 2.7 and 2.8), respectively. In

addition, PI = p/pa, pi =p/p0, and Bt =Bt/B0 are the new dimensionless perturbations; the operators Wlt

W2 and W, are defined by

The set of equations presented above (plus the horizontal pressure balance equation; see next sub-

section) fully describes vertical motions inside the flux tube: The non-linear terms nlt n2 and n3 can be

treated as the source of these motions, and can in principle be determined once the driving turbulent

flow is specified. Such an approach has been followed by Stein (1968) for the purely acoustic case, and

by Musielak and Rosner (1987a) for the case of homogeneous magnetic fields. As discussed below, we

assume in our present (strong magnetic flux tube field) case that these internal sources are suppressed by

the internal magnetic field, so that the wave motions inside the tube are driven from the outside alone.

If there are no turbulent motions within the tube, the equations describe the propagation of longitudinal

waves along the tube (see Roberts and Webb 1978 for comparison), and can be easily solved since all

coefficients in these equations are constant To close this set of equations, we need a relationship

between the total pressure (gas and magnetic) inside the tube and the external pressure.
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(d) The Horizontal Pressure Balance

The relation between the variable fluid pressure applied to the undisturbed tube boundary by the

external turbulence (or any other pressure variations) and the internal fluid pressure can be written as

(Parker 1979)

(2-22)

where p, and B, are the gas pressure and the magnetic field inside the tube, respectively. The pressure

Pt outside the tube is defined by

(2.23)

where pt is the gas pressure of the external fluid in the absence of any turbulence; pturt>(z^) is the pres-

sure of the external turbulence and pu(zj) is the disturbance of the external pressure due to the back-

reaction of the moving tube. The last term disappears if the tube is at rest with respect to its surround-

ings; this term will be neglected in our calculations. Linearizing equation (2.22) and using equation

(2.16), one finds

Pi + V^B l + i vt*t = ~T A** • (2-24)2 p.

where the variable fluid pressure p^ caused by the external turbulence can be defined as

a p. «.2- (2-25)

and where u, is the turbulent velocity.

Using the equipartition energy to calculate B ,2, and with the help of equation (223), one obtains

Pi + VfB, = «4, (2.26)

where

- — ( 2 + 2)"4 ~ 2p0 "* ** *



- 8 -

and where ua and u9 are the x- and y-components of the turbulent velocity, respectively.

The set of tube equations (2.18) through (221), together with equation (226), fully describe the
generation (due to the turbulent motions outside and possibly inside of the tube) and the propagation of
longitudinal tube waves; this set of equations can be written as a single inhomogeneous wave equation,
and can be solved by Fourier-transforming this equation. This problem will be addressed in the next

section.
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3. THE INHOMOGENEOUS WAVE EQUATION

In this section, we derive and solve the inhomogeneous wave equation for longitudinal tube waves.

We also calculate the source function, and discuss the cutoff frequencies for longitudinal tube waves.

(a) The Wave Propagator

We eliminate the density, magnetic field and velocity perturbations from equations (2.18) - (2.21)

and (2.26), and obtain the inhomogeneous wave equation for the pressure perturbations in the form

where the characteristic velocity for longitudinal tube waves (Defouw 1976) is given by

V?v2

V2 =

and

we also define the three critical frequencies co*. to*, and w«,

:nr . °>* 3 TJT • ffl« s v~ ̂  (Y ~ 1)W = T~ ^ ' (3'4)
2 HO 2 HI, Vx V, VA

where (Ot, is the Brunt-Vaisala frequency. Note that for intense magnetic flux tubes (V, < VA), (oet

becomes the magnetic Brunt-Vaisala frequency, however, for V t ->V A , the characteristic tube velocity

Vt ~ VA and Wa = 00 ,̂.

In equation (3.1), all the non-linear terms are collected on the RHS, where they become the source

function for the longitudinal wave generation. We postpone the calculations of these source terms to the

next subsection, and provide here only the definition of the source function
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+ (V?W 2 + Wt) L - , ||. I „ ,_-£ .„ , ] . (3.5)
L L J A }

To eliminate the first-order space derivative from the inhomogeneous wave equation (equation 3.1),
we make the following transformation

»
Pi - P2 - ' (3'6)

and obtain the inhomogeneous wave equation in the form

where

f p. V"5'(z-° = ir 5>(z>/) (3-8)

and

Q,2 = ( a* - a)*, )2 + p, to,2, ; (3.9)

with help of equation (2.15), one obtains instead

Q,2 = { co* + p. co* . (3.10)

Finally, after some algebraic manipulations, equation (3.10) can be written in the form given for

the first time by Defouw (1976)

»2 = ZL f-L _ ± v? i- \

The LHS of equation (3.7) is the propagation operator for the tube waves; this relation allows for

cross-sectional variations. In this case, the gas pressure is the principal restoring force. The waves
which result are longitudinal tube waves, which may be viewed as acoustic waves propagating along the

tube, but modified by the tube geometry. As a result of this modification, the characteristic phase velo-
city equation (3.2) and the critical frequency for the vertical propagation (equations 3.10 and 3.11) are
different from those for acoustic waves. By studying the dispersion relation (which is global in the
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approach considered here), it can be shown that Q, is the cutoff frequency for longitudinal tube waves,
so that the waves cannot propagate if their wave frequency is either lower than or equal to this cutoff.
As shown by equation (3.10), the cutoff frequency for longitudinal waves is not as simple as for acous-
tic waves, and depends on both density and magnetic field scale heights, as well as on the Brunt-Vaisala
frequency modified by the tube geometry, note, however, that the value of the critical frequency £2, is
always comparable to the acoustic cutoff frequency (see equation 3.11). The tube cutoff frequency
reaches a maximum when the tube structure is entirely dominated by the magnetic pressure (e.g., when
the gas pressure inside the tube is negligible); in this limit, however, the longitudinal tube waves cannot
propagate (this point will be further discussed in section Sb).

(b) The Source Function

To calculate the source function defined by equation (3.5), we make one additional assumption,
namely that there are no turbulent motions inside the thin flux tube; this Ansatz simplifies our calcula-
tions substantially since nt = n2 = n 3 s O . Under this assumption, it is only the external turbulence
which is responsible for the wave generation; this can be justified if we recall that strong magnetic fields
(such as those characterizing the thin flux tube we are considering) will tend to suppress turbulent
motions within the tube. Equation (3.8) can then be written in the following form

2

where Ma s u£ and Mv a u%. •••

We now expand the source function S,(z,r) in multipoles (Unno 1964), and obtain

where p, = VtlVA and p, • V.IVA.

The source function does not depend on the second derivative of Ma or Mn (no quadrupole emis-
sion!), but does depend, however, on the first derivative with respect to z (dipole emission) and the
monopole source term (o>£), as well as on the time-dependent term. This latter term becomes negligible
for stationary or quasi-stationary turbulence. It is interesting that the source function does not depend on
the cutoff frequency for longitudinal tube waves, and instead depends on both tube critical frequencies
CD* and (0^. The latter fact has important consequences for wave generation (see section 5c), and distin-
guishes tube wave generation from acoustic wave generation (Stein 1967); for purely acoustic waves,
both the emission source and the propagation operator depend on the same critical frequencies (the
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acoustic cutoff and the Brunt- Vaisala frequency).

(c) The Solution

Having obtained the source function, we Fourier-transform equations (3.7) and (3.12) in one
dimension, using

/), S, (z,r)] = J J dk'drt fojCfcW). St(ft'jafy] exp[ i(co'/ - i'z) ] . (3.14)

where

(p2(*,a>). S,(*,co)] = j JJ dz'dt' b2(zV 0. S,(z V01 exp[ -»(OM' - faO ] , (3.15)

and obtain the solution for the pressure perturbations emitted by the turbulent motions,

(3-16>

where S,(Jk,oo) is the Fourier transform of the source function given by equation (3.15). To calculate the
explicit form of the source function 5,(/fe,oa), we integrate equation (3.15) by parts, and obtain

-ya
£•

0

(3.17)

The solution of the inhomogeneous wave equation given above will be used to calculate the energy
fluxes emitted as a result of the interaction between the turbulent motions and the flux tube. Note that
for S,(k,(ai) = 0, the solution given by equation (3.16) leads to a dispersion relation which describes the
propagation of longitudinal tube waves, and the critical frequency Q( becomes the cutoff frequency.
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4. ENERGY FLUXES FOR LONGITUDINAL TUBE WAVES

In this section, we derive the final expression for the energy fluxes emitted as longitudinal tube

waves. We begin with the definition of energy flux for the flux tube geometry and then present and dis-

cuss the final results.

(a) The Mean Energy Flux

The energy flux can be calculated by using the energy conservation principle, which gives

(4.1)

where A, is the cross-sectional area of the tube and W is the specific enthalpy; note that the mean energy

flux defined above is multiplied by the cross-section of the tube, and therefore has dimension [ergs s~1].

It should also be noted that within the thin flux tube approximation, the magnetic terms in equation (4.1)

cancel one another, and that the energy flux does not depend on the magnetic energy; this reflects the

fact that the gas pressure is the principal restoring force.

Expanding in a perturbation series, and considering second-order quantities only, one obtains

= - r - A 0 <p«x> + -p.<Aut> + A0<put>, (42)
*• Po *

where A is the perturbation of the tube cross-section. The first term in equation (4.2) can be neglected

as there is no net flow through the boundary of the tube. One may estimate both remaining terms in

equation (4.2) using the solutions given by Herbold et al. (1985),

= ^ tf • (4-3)

Finally, by combining equations (4.2) and (4.3), one obtains

<F(zj)> = Ag (1 + 5)<put>, (4.4)

where 5 = 5P//2Y-
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Using the relation between the pressure perturbations p and p2 (equation 3.6) and replacing u, by
u,*, the energy flux can be expressed in terms of p2 and written in the form

<F(zj) > = (p, B0)
II2A0 (1 + 6) <p2U;> . (4.5)

where the velocity perturbation a," is calculated from equations (2.18) - (2.21) and (2.26), and is given

by

-
where

*-Vi- (4'7)

Now, we replace «,* in equation (4.5) by (4.6) and obtain

5></»2 •!•
-r- + X

(4.8)

where *„ (a A aB0) is the magnetic flux.

To evaluate the mean energy flux given by the above equation, we express p&j) and p2(zj) in

terms of its Fourier transform (see equation 3.14), and obtain

<F(z,/)> = <&„(! + 5) f f f [dk'dk'dvfdvf a" ^"'X, x
fi) ^0^

t'-coO P2(*".w") exp[i(o>' - a") t - /(*' -*")«]• (4-9)

We take the time average of the mean energy flux by performing the integration over time T0, and then

obtain

L,(z,0» a < ̂ -<F(Z^)> >r = -V1- (1 + 5) -^7 P^ ̂ ^*> • (4'10>
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wherc

(4.11)

CO - C0£ V,

and where o^ refers to a temporal average over a time scale r0. Note that L,(k,a>j) does not have the

standard energy flux dimension, but rather has dimensions [ergs s~l Hz~1].

(b) The Longitudinal Wave Luminosity

To obtain explicit forms for the energy fluxes emitted in the form of longitudinal waves, we must

evaluate the asymptotic Fourier transform at large z (Appendix A), and calculate the product of the indi-

vidual source functions and their conjugates. We transform the coordinates in equation (3.17) to average

positions and times of the interacting turbulent eddies and then evaluate the turbulence velocity correla-

tions by assuming that the fourth-order correlations can be reduced to second-order correlations (cf.,

Batchelor 1953). We calculate the one-dimensional convolutions (Appendix B) over the turbulence

spectrum by assuming the spectrum to be a separable product of a frequency-independent energy spec-

trum and a frequency factor (see section 5a and Appendix B). Finally, after some algebra, we obtain the

wave luminosity spectrum [ergs s~l Hz~l],

IS,<*,co)l2 sin2(fa - 0 , (4.13)

where 4 is an arbitrary phase (henceforth assumed to be zero). The sin2(fcr - $) term appears as a result

of squeezing the tube at regular intervals of z + nn/k along the tube; at these points, the efficiency of

longitudinal wave generation is highest In addition, IS,(*,co)l2 is the product of the individual source

function and its conjugate, and is given (from 3.17) by

to2)2 +• B,4«ift2V,2 . (4.14)

and where the convolution integral /c(fc,<o) is defined (Appendix B) by

Je(k,<o) = ± J dk'EAk1) E£q) g(kjc',ti) , (4.15)
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wherc k' is the wave number of a turbulent eddy, and q = k - k'. As is customary, Ei(q,) and
denote the one-dimensional turbulence energy spectra evaluated at the two distinct wave numbers q, and
q. Following Heinze (1975), we note mat the one-dimensional (1-D) energy spectrum £26?) is con-
nected to the three-dimensional (3-D) energy spectrum E(kr) by the relation

where k' is the wave number of all turbulent motions which contribute to the 1-D energy spectrum. In

addition, the function g(kji',a>) is expressed by the frequency factor. Explicit forms for both the energy
spectrum E(kf) and the frequency factor are given in subsection 5a below.

The imaginary term in equation (4.13) can be neglected, as it vanishes upon integration over o>. In
addition, we spatially average L,(zj) over height Z, « Uki by performing a spatial integration of equa-
tion (4.13), and obtain the height-dependent contribution to the monochromatic wave luminosity
[ergs s~l Hz~l] for a given flux tube.

n ~ ''c (Pico2 + <P2)2 16fiX]... . . 2 . . . .,,_.(1 + 5) I ^-5 + —— I /e(fc.a») Sm\kz) , (4.17)

where p2 = (^/(co2 - Q,2), and a factor of 1/2 was included to take into account the fact that only the out-

going flux is considered.

Separating the dimensional factors by using the turbulent velocity u, and the turbulent length scale
/,, and performing the integration over z and o>, we obtain the total luminosity [ergs s~l] due to longi-

tudenal flux tube waves

a -

= 4n N, If dz p.A0£roo, (1 + 5) Af,3 | d® p^pc (cu + a,) /c(Jk,BJ) sin2^) , (4.18)

where N, is the number of flux tubes on the stellar surface, which can be related to the magnetic flux

tube surface filling factor, E, ( = p,u,2/2) is the kinetic energy of turbulent motions; eo, (=«,//,) is the
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characteristic turbulent frequency; M, ( - u,/Vt) is a coupling Mach number, and the convolution integral
/(.(F.w), F, and 5> are dimensionless. Note further that H is the thickness of the turbulent region in the
convection zone, and that in the derivation of equation (4.5a), we have used the dispersion relation to
calculate the wave number. In addition, a* and Oj are the coefficients of monopole and dipole emis-
sion, respectively, and are defined by

and

Od H B52 p,4 , (4.20)

where 3?e, is the dimensionless critical frequency (equation 3.4).

Note that both emission coefficients are calculated by including the term 1/cofc (which comes from
the evaluation of the asymptotic Fourier transform, see Appendix A) in the source function (equation
4.14), and by separating all terms that show dependence on 25C

2, and on ffi2; the former and latter terms,
respectively, are the coefficients of monopole and dipole emissions with respect to the wave frequency
ft. Note that because of this procedure, the coefficients of monopole and dipole emission, given by
equations (4.19) and (4.20), are redefined in comparison to equation (3.13), and that now only the time-
dependent term (which derives from non-stationary turbulence) accounts for the coefficient of dipole
emission; the latter emission can be neglected if stationary or quasi-stationary turbulence is assumed.
Both emission coefficients are dimensionless, and depend on the turbulent energy spectrum, the physical
conditions in the region where the waves are generated, and on the critical frequencies for longitudinal

waves.

The total wave luminosity for longitudinal tube waves (equation 4.18) shows a dependence on the
third power of the Mach number (dipole type of emission with respect to Mach number); this distin-
guishes our results from those obtained by Stein (1968), who considered the generation of acoustic

waves in a non-magnetic stratified medium, and found dependence of the acoustic wave luminosity on
the fifth power of the Mach number (quadrupole type of emission). The results presented here are also
different from those given by Musielak and Rosner (1987a), who obtained monopole type of emission

for the generation of compressible MHD slow waves in a stratified medium with an embedded uniform

magnetic field.

To calculate the energy fluxes given by equations (4.18) - (4.20), we have to specify the number of
flux tubes on the stellar surface, as well as the values of the magnetic field strength, pressure and den-

sity at the level in the atmosphere where the integrations are to take place. In addition, we must deter-
mine the wave frequency domain for longitudinal waves, and must describe the turbulence; in the latter
case, we must know the shape of the turbulence energy spectrum, the frequency factor, and the
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characteristic length scale of the turbulent motions. In the next section, we will show how these param-

eters are restricted by the observational data or by theoretical studies.
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5. MODEL PARAMETER DEPENDENCE OF ENERGY FLUXES

In this section, we present preliminary energy fluxes and energy spectra for longitudinal waves,
and discuss the dependence of our results on die free parameters. We begin with a description of the
turbulence, discuss the dependence of the energy fluxes on the magnetic field and, finally, present the
energy spectra for longitudinal tube waves and show how the results depend on the chosen magnetic
field strength, the turbulent energy spectrum and the frequency factor.

(a) The Turbulence Energy Spectra and Turbulent Length Scale

Turbulent motions are characterized by the turbulent velocity and by the turbulent length scale;
both these parameters are necessary to calculate the turbulent energy spectra, but have a simple form
only for the very special case of isotropic, homogeneous and incompressible turbulence. In this simple
case, dimensional analysis shows that the frequency-independent energy spectrum E(k) has the Kolmo-
gorov form

2 r , -j-w
*<*> = T- rr • (***'> (s-1)

*l ««

in the inertia! range; alternatively, at smaller scales, where viscous effects begin to play a role, the spec-
trum takes on the exponential form

(5.2)

where the normalization condition for £(*) is given by

(5.3)

and where the maxima of the Kolmogorov and exponential spectra occur near k, = 2n//(.

For the frequency factor, either the Gaussian form

A (i,o» = -r£-- exp [-(a/kutf ] , (5.4)
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or the exponential form

A (*,eo) = -7— exp -{(alkuk) , (5.5)

can be assumed (see Stein 1967), with

R -jl/2
E(*0 dk' . (5.6)

In addition, A(jfc,o>) is normalized so that

f A(*,a>) d(a = 1. (5.7)

The shape of the turbulence energy spectrum for stratified atmospheres is not known, and neither
observational data nor theoretical considerations can help us to deduce its general properties. The

energy spectra presented above certainly do not apply to the stratified turbulent atmosphere, especially to
the largest turbulent eddies, whose size is comparable to the atmospheric scale height Nevertheless, we
shall adopt the above forms for the spectra since they span the range of likely behaviors of the actual
spectra.

As an aside, we note that Stein (1967, 1968) and Bonn (1980) similarly adopted various ad hoc
forms for the energy spectra, using the two functional forms just discussed and the so-called Spiegel tur-
bulent spectrum, and three different functional forms for the frequency factors; in all these cases, strati-
fied and magnetic field-free atmospheres were considered, and a turbulence correlation length scale equal
to the pressure scale height was assumed. In addition, these authors assumed that the turbulent velocity
of the largest eddies is the same as the velocity of convection motions given by the convection zone

model In our approach, the turbulent medium which surrounds a tube is stratified and magnetic field-

free, so that in order to describe the turbulence, we have to make the same assumptions as those just
mentioned. The difference is, however, that the largest turbulent eddies (with sizes comparable to the
density or pressure scale height) do not contribute to the generation of longitudinal tube waves; in the

interaction between the tube and turbulence, only eddies with sizes comparable to the tube diameter are

important, and these eddies dominate longitudinal wave generatioa We will include this effect in future
energy flux calculations by computing the diameter of tube d, for a given height (using the magnetic

flux conservation law) and then, by setting /, = d,, estimate the turbulent velocity of the eddies with size
d,. Unfortunately, neither the variations of the tube diameter with height in the deep photospheric
layers, nor even the diameter of an individual "elementary" flux tube can be estimated with any confi-

dence from the observational data because of current limitations on spatial resolution (cf., Solanki and



-21 -

Stenflo 1985).

(b) The Magnetic Field Strength

In the approach presented in this paper, the magnetic field strength is a free parameter, but its max-
imum value is in fact fairly constrained by observational data, as well as by the horizontal pressure bal-
ance of the flux tube (see section 2d). From the observational point of view, the magnetic field strength
within flux tubes can be estimated for the Sun by analysing the statistical properties of the Stokes / and
V line profiles (Solanki and Stenflo 1985); this method gives the field strengths in typical network
regions ranging from 1,400 G to 1,700 G. From a more theoretical perspective, horizontal pressure bal-
ance (based on the thin flux tube approximation) restricts the magnetic field pressure within the tube to
be less than or equal to the gas pressure outside the tube (equality only obtains in the unlikely case that
the flux tube is purely "magnetic", i.e., that there is no gas inside the tube). For typical published

models of the solar photosphere (for example, Vemazza et al. 1983), the maximum field strength
obtained from horizontal pressure balance also does not exceed 1,700 G.

In our approach, the horizontal balance for pressure and magnetic field perturbations (equation
2.26) restrict p\ and B \ to be quantities of the same order as the turbulent pressure outside the tube; note
that the turbulent pressure is a small fraction of the gas pressure outside the tube. If the gas pressure
inside the tube becomes comparable to the turbulent pressure outside the tube, then perturbed and unper-
turbed quantities become comparable and the inhomogeneous tube wave equation (3.1) is no longer
valid. In order to insure the validity of the perturbation scheme, we therefore consider only the cases

when the unperturbed gas pressure inside the tube is at least twice as large as the turbulent pressure
defined by equation (2.25); our method of calculation does not allow us to estimate the energy fluxes
generated in the form of longitudinal waves for magnetic field strength values close to the maximum

value.

(c) The Wave Luminosity Spectra

The wave luminosity spectra presented in this paper are preliminary, and are obtained for log g =
4.5, for one fixed tube diameter / ,=< / ,= OJ//P, for one fixed Mach number M = t^lV, = 0.1 and for
magnetic field strengths varying from 1,000 G to 1,550 G; the latter variations of the magnetic field lead
to variations of the tube Mach number from 0.15 to 0.08, respectively. These assumptions significantly

simplify the problem, and allow us to show dependence of the wave luminosity spectra on the chosen

magnetic field, the turbulent energy spectrum and the frequency factor. Note, however, that we do not
need to specify the number of flux tubes on the stellar surface (or the filling factor) as we do not calcu-

late the total wave luminosity.

The contribution of monopole and dipole emission to the total wave luminosity spectrum is shown

in Figure 1. The results presented in this figure are obtained for the exponential energy spectrum and
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the exponential frequency factor, and for values of the magnetic field strength of B0 = 1,500 G and

1,100 G. In the both cases, monopole emission show a maximum at the same wave frequency

(co £ 5Qt) as dipole emission; however, the efficiency of wave generation by dipole emission always

exceed that of monopole emission; the latter conclusion is valid for both turbulent energy spectra and

both frequency factors considered here. However, when the magnetic field strength decreases, the effi-

ciency of monopole emission increases, and becomes comparable to that of dipole emission for Ba <

1,200 G; this occurs mainly because P, increases when the field strength decreases.

The dependence of the frequency-integrated energy flux on the magnetic field strength is given in

Figure 2, which shows the results obtained for the exponential turbulent energy spectrum and the

exponential frequency factor. The results strongly depend on the magnetic field strength: the energy flux

decreases when the magnetic field strength increases. The latter effect leads to a decrease of the gas

pressure inside the tube, and thus to a decrease of the wave energy flux (as there is not enough gas pres-

sure to support the waves); this effect also places a limit on the longitudinal wave generation rate. The

maximum of the wave luminosity spectrum occurs well above the cutoff frequency (5 £ir).

Figure 3 shows the dependence of the wave luminosity energy spectra on the form of the chosen

turbulent energy spectrum and the frequency factor. As discussed above, we considered Kolmogorov

and exponential energy spectra (equations 5.1 and 5.2) and Gaussian and exponential frequency factors

(equations 5.4 and 5.5). The results show that the efficiency of wave generation is higher for the

exponential energy spectrum, and also that in this case the maximum of the spectrum occurs at higher

frequencies.
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6. DISCUSSION AND CONCLUSIONS

We have derived the source function and the energy fluxes for the generation of longitudinal tube
waves in a thin, vertical magnetic flux tube embedded in an otherwise magnetic field-free stellar convec-
tion zone; and we have shown that dipole emission dominates in the generation of longitudinal tube
waves in such flux tubes; earlier qualitative results given by Stein (1981) and Ulmschneider and Stein
(1982) suggested dominance of monopole emission. Our results distinguish tube wave generation from
acoustic and MHD wave generation in a stratified medium since in these latter cases, quadmpole and
monopole type of emissions are expected to be dominant (Stein 1968, Musielak and Rosner 1987a).
The efficiency of longitudinal wave generation decreases significantly when the magnetic field strength
increases, mainly the decreasing gas pressure inside the tube cannot support large energy fluxes for such
waves. Note also that since the gas pressure within the tube decreases with increasing magnetic field
strength, our approximations for the generation rate of longitudinal tube waves become unreliable when

the gas pressure inside the tube is comparable to the turbulent pressure outside the tube.

When acoustic waves are generated in a stratified medium, monopole and dipole emissions also
appear, and show a narrow maximum in the energy flux for wave frequencies very close to the acoustic
cutoff frequency (Stein 1967, Rgure 5); this energy flux cannot be carried away efficiently by acoustic
waves from the generation region because these waves are almost evanescent. The situation is different
for the generation of longitudinal waves; the maximum of the energy flux generated by dipole emission
occurs at to = 5Q,, and is somewhat broadened for higher frequency waves (mainly because the source
function does not depend on the tube cutoff frequency, but instead depends on the Brunt-Vaisala fre-

quency modified by the tube geometry). The latter frequency is significantly lower than the tube cutoff

frequency, which is comparable to the acoustic cutoff. Even if the acoustic cutoff frequency co* (as
well as the tube cutoff frequency Q,) increases in stellar photospheres (for example, co^ = 0.024 at the
bottom of the convection zone and co^ = 0.034 at the temperature minimum; see Vemazza et al. 1976,
Model O, we may conclude that the maximum of the longitudinal wave energy flux reaches the tem-
perature minimum region as well as the chromosphere. To estimate however the amount of longitudinal
wave energy flux that is available for the heating of the lower and upper chromosphere, further calcula-

tions of longitudinal wave propagation, which take radiative damping into account, are necessary.

The energy fluxes generated as longitudinal tube waves strongly depend on the strength of the
magnetic field and the number of flux tubes on the stellar surface; any variations of these parameters

among late-type stars with the same spectral type will lead to different levels of chromospheric activity
observed for the same spectral type. Finally, we note that work corresponding to that discussed here

remains to be carried out for transverse tube waves; this will be the aim of a succeeding paper.
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APPENDK A: The Asymptotic Fourier Transform

Let us consider a one-dimensional inhomogeneous partial differential equation with constant coeffi-

cients, given in the form

where P is a polynomial and /(z,0 is a function which vanishes outside a restricted region. To solve

this equation, we Fourier-transform i*(z,r) and f(zj), substitute these into equation (Al), and obtain

where t/(Jk,co) and F(jfe,w) are the Fourier transforms of u(r^) and f(zj), respectively. The solution for

u(zj) can be written as

= J dco J dk exp[-i(aw - jb)] /* ̂ 'm> ; (A3)
* * ** i —Jt'r' •-*!? \

9 *• J

for the special case of a monochromatic source with frequency o>0 ,

F(*,co) = F(k) 5((o - coj , (A4)

we have the result

Dropping the subscript o , and since the integration over k can be performed with the help of the residue

theorem, we find

(A6)
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wherc G(*,o>) = P (-co* -k2); see also Lighthill (1960).

Using equation (A6), we may evaluate the asymptotic Fourier transform of Ia(z,ui) given by equa-

tion (4.11), and obtain

= 4JC2——:— \S t(ki,tci)\2sin\kiz-Q) , (A7)

where <j> is an arbitrary phase.
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APPENDIX B: The Convolution Integral

In order to calculate the explicit form of the source function, it is necessary to evaluate a fourth-

order velocity correlatioa As this cannot as yet be done from first principles, we follow customary pro-

cedures (in the present context, see for example Stein 1967) and replace the fourth-order correlation by a

sum of products of second-order correlations:

+ «/"/> = 8<a,u,><it,V> , (Bl)

where we have used the fact that there is no difference between the x and y directions. We thus have to

evaluate the convolution integral

=
+- 4-

—j [ dr \ di
(2«r 4. .i.

x <itt(xy^,t)ux(x^^ +rj + T)> exp[/(oxt - kr)] =

= J dk'I dco'O^Ofc - t',u - fi>0 ̂ (Jfe'.O)'), (B2)

where *»(/t,o)) is the Fourier transform of the velocity correlations.

We assume that <!>„(* ,co) may be factored into the frequency-independent one-dimensional energy

spectrum E2(k) and the frequency factor A(*,a>)

(B3)

where k and uk are the wave number and the velocity perturbation of the k* eddy, and where the factor

1/4 comes from the different normalization of ^(/fc.co) as compared to the energy spectrum E2(k) and

the frequency factor 5. Note that E£k) is normalized so that

[E2(k)dk = H,*. (B4)
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and is connected to the three-dimensional energy spectrum (see Heinze 1975).

Using equation (B3), we may evaluate the convolution integral (B2) and obtain

= -£ J dk'Etf - 40 £2(iO g(kjc',<i>) , (B5)

where

-coOStf.to'). (B6)

Because there is no difference between the x and y-directions, we have

./=„(*,(•» = -W*,o>) = Jy^(k, to) = /^(Jk.0)) = /c(i,(B) . (B7)
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FIGURE CAFHONS

Figure 1: We display the efficiency of monopole and dipole emission for two different values of the
magnetic field strength, B0 = 1,500 G (solid lines) and 1,100 G (dashed lines). We assume an
exponential turbulent energy spectrum and an exponential frequency factor.

Figure 2: The frequency-integrated wave energy flux for longitudinal tube waves is plotted for different
values of the magnetic field strength. We assume an exponential turbulent energy spectrum and
an exponential frequency factor.

Figure 3: The wave luminosity spectra obtained for a Kolmogorov energy spectrum and an exponential
frequency factor (KE) are compared to those obtained for an exponential turbulent energy spec-
trum and an exponential frequency factor (EE), and an exponential energy spectrum and a Gaus-

sian frequency factor (EG). The magnetic field strength is assumed to be B0 = 1,500 G.
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