https://ntrs.nasa.gov/search.jsp?R=19880015245 2020-03-20T07:11:58+00:00Z

CLASS II DESIGN UPDATE FOR THE FAMILY OF COMMUTER AIRPLANES

PREPARED FOR:

PREPARED BY:

NASA GRANT NGT-8001

THOMAS R. CREIGHTON LOUIS J. HENDRICH

UNIVERSITY OF KANSAS AE 790 DESIGN TEAM MAY 1947

TEAM LEADER:

TEAM MEMBERS:

THOMAS R. CREIGHTON

RAPHAEL HADDAD LOUIS HENDRICH DOUG HENSLEY LOUISE MORGAN MARK RUSSELL GERALD SWIFT

FACULTY ADVISOR:

DR. JAN ROSKAM

(NASA-CE-182681)	CLASS 2 DESIGN	UPDATE FOR	N88-24629
THE FAMILY OF COM	BUTER AIBPLANES	(Kansas	
(Univ.) 284 p		CSCI 01C	
· -			Unclas
,		G3/05	0147415

CLASS II DESIGN UPDATE FOR THE FAMILY OF COMMUTER AIRPLANES

PREPARED FOR:

PREPARED BY:

THOMAS R. CREIGHTON LOUIS J. HENDRICH

NASA GRANT NGT-8001

UNIVERSITY OF KANSAS AE 790 DESIGN TEAM MAY 1987

TEAM LEADER:

TEAM MEMBERS:

THOMAS R. CREIGHTON

RAPHAEL HADDAD LOUIS HENDRICH DOUG HENSLEY LOUISE MORGAN MARK RUSSELL GERALD SWIFT

FACULTY ADVISOR:

DR. JAN ROSKAM

Table of Contents

List	of Symbols	iii
1.0	Introduction	1
2.0	Class II Configuration Descriptions 2.1 Review of Common Design Features 2.1.1 Common Structural Component Features 2.1.2 Common Flight System Designs 2.1.2.1 Interior Layouts 2.1.2.2 Landing Gear System 2.1.2.3 Fuel System 2.1.2.4 Flight Control System 2.1.2.5 Hydraulic System 2.1.2.6 Pressurization System 2.1.2.7 De-icing System 2.2 Presentation of Class II Threeviews	- 5 6 21 21 21 22 22 22 22 22 23 23
3.0	Mass Properties 3.1 Weight and Balance 3.2 Inertias 3.3 Take-off Weight Sensitivities	38 38 38 39
4.0	<pre>Stability and Control Considerations 4.1 Commonality Considerations 4.2 Wing Maximum Lift 4.3 Wing Lift Curves 4.4 Trim Diagrams 4.5 Open Loop Handling Qualities 4.6 Take-off Rotation 4.7 Engine-out Requirements 4.8 Roll Performance 4.8.1 Lateral Acceleration of the Twinbody Configurations</pre>	48 49 50 50 70 71 71 72 73
5.0	Stick Forces and Gradients 5.1 Hinge Moments 5.2 Longitudinal Stick Forces 5.3 Rudder Pedal Forces 5.4 Aileron Wheel Forces 5.5 Stick Force Commonality	74 74 75 76 77 77
6.0	Class II Drag Prediction	79
7.0	Verification of Mission Performance 7.1 Field Length Verification 7.2 Verification of FAR 25 Climb Requirements 7.3 Verification of Range Requirements 7.4 Rate of Climb Requirements	91 91 93 93 95
8. 0	Cómmonality Analysis of the Commuter Family 8.1 Summary of Weight Penalties and Cost Savings Due to Commonality	97 99

PRECEDENT FREE RECORD NOT THEFED

÷

1.00

i

9.0 Comparison With Existing Airplanes	103
9.1 Take-off Weight Comparison	103
9.2 Center of Gravity Excursion Comparison	103
9.3 Wetted Area Comparison	103
9.4 Wing Loading Comparison	104
9.5 Acquisition Cost Comparison	104
9.6 Baggage Volume Comparison	106
10.0 Conclusions and Recommendations	110
10.1 Conclusions	110
10.2 Recommendations	111
11.0 References	112
Appendix A - Fuselage and Cockpit Layouts	A-1
Appendix B - Airplane Component Weight, Center of	
Gravity and Inertia Breakdowns	B-1
Appendix C - Stability and Control Calculations	C-1
Appendix D - Calculation of Roll Performance	D-1
Appendix E - Aramid Aluminum Data	E-1
Appendix F - Calculation of Stick Forces and Stick	
Force Gradients	F-1
Appendix G - Component Drag Calculations	G-1
Appendix H - Mission Performance Verification	H-1
Appendix I - Airport Dimensions	I-1

.

.

ii

,

r

ORIGINAL PAGE IS OF POOR QUALITY

List of Symbols

Symbol	Definition	Dimension
A	Aspect ratio	
р b	Wing span Aileron span	TT ft
b_ ·	Flap span	ft
b,	Tire width	ft
t C	Wing chord	ft
c	Wing mean geometric chord	ft
°f -	Flap chord	ft
° _f	Equivalent skin friction	
•	coefficient Enomifia fuel concumption	16-/16-/64
້ງ	Specific fuel compamption	105/105/05
D _	Drag coefficient	
CD	Zero lift drag coefficient	مته دری افا دری خبا
c,	Section lift coefficient	~~~~
°1,	Section lift curve slope	1/rad
e, [–]	Section lift curve slope	1/rad
[*] α _f	with flaps down	
CL	Lift Coefficient	
C _m	Pitching moment coefficient	
D	Drag	lbs
D	Propeller diameter	ft
Dt	Tire diameter	ft
d _f , D _f	fuselage diameter	ft
•	Oswald's efficiency factor	4 + + + + + + + + + + + + + + + + + +
E	Endurance	hours
T	Equivalent parasite area Endouri Qin Population	ft2
r ma D	Acceleration of gravity	ft/sec2
₽ h	Altitude	ft
i.	Wing incidence angle	degrees .
K_	Sweep angle correction factor	~~~~
K _f	Correction factor for split	
L	Lift	lbs
L/D	Lift-to-drag ratio	
1 ₄	Fuselage length	ft
1 _{fc}	Fuselage cone length	ft
1 m	Dist. c.g. to main gear	ft

iii.

ORIGINAL PAGE IS OF POOR QUALITY

1	Dist. c.g. to nose gear	ft
M	Mach number	
n	Load factor	
mm	Nautical mile (6,076 ft)	nm
n	Number of propeller blades	
n	Number of struts	
N	Number of engines	
P	Power, horse-power	hp
P _{b1}	Blade power loading	hp/ft2
q	Dynamic pressure	psf
R	Range	ma
Rn	Reynold's number	
RC	Rate of climb	fpm or fps
5	Distance	ft
S	Wing area	ft2
SHP	Shaft horsepower	hp
Swet	Wetted area	ft2
Swf	Flapped wing area	ft2
t	Time	sec, min, hr
t/c	Thickness ratio	
Т	Thrust	lbs
V	True airspeed	mph, fps, kts
V.	Volume coefficient	
W	Weight	lbs
Xac	Distance from l.e. c to	
	aerodynamic center	
×, y, z	Distance from reference to a component c. B.	ft, in
х., х _ь , х	Distance from c.g. to a.c. of	ft, in
• 2	a surface	
Уt	Engine-out moment arm	ft
Greek Symbols		•
α	angle of attack	deg, rad
B	sideslip angle	deg, rad
6	control surface deflection	deg, rad
λ	taper ratio	
A	sweep angle	deg, rad
π	3.142	
Г	dihedral angle	deg, rad
P	air density	slugs/ft
-	-	-

σair density ratioθfuselage cone angledeg, radΦlateral ground clearance angleθlongitudinal ground clearancedeg, radangleθlift-off angledeg, rad

iv.

• •

£	Downwash angle		-
^E t	twist angle	deg,	rad
η	spanwise station, fraction of the span	••• • • •• • •	-
Ψ	lateral tip-over angle	deg,	rad
۲	flight path angle	deg,	rad
λ	bypass ratio		-

Subscripts

A	aileron
A	approach
abs	absolute
cat	catapult
cl	climb
cr	cruise
crew	crew
crit	critical
c/2	semi-chord
c/4	quarterchord
des	design
dry	without fluids or afterburner
•	elevator
E	empty
f	flaps
ff	fuel fraction
F	mission fuel
FL	field length
guess	guessed
h	altitude
h	horizontal tail
1 e	leading e dg e
L	landing
LG	landing, ground
LO	lift-off
max	maximum
ME	manufacturer's empty
OE	operating empty
PA	power approach
PL	payload
RC	rate of climb
r	root
res	reserve
reqd	required
5	stall
то	take-off
TOG	take-off, ground
t	tip
te	trailing edge
tent	tentative
tfo	trapped fuel and oil
used	used
•	wing

wet	wetted		
wb	wing-body		
wod	wind over	the	deck

Acronyms

AED	All engines operating
APU	Auxiliary power unit
B.L.	Buttock line
c. g.	Center of gravity
F. S.	Fuselage station, Front spar
OEI	One engine inoperative
OWE	Operating weight empty
PAX	Passengers
p.d.	Preliminary design
R. S.	Rear Spar
\$15	Sea level standard
TBP	Turboprop
W.L.	Waterline

vi[.]

1. INTRODUCTION

This report is the final report of seven design reports completed on the family of commuter airplanes. This design effort is completed in fulfillment of NASA/USRA grant NGT-8001.

Reference 1 contains the class I baseline designs for the commuter family. Reference 2 contains a study of take-off weight penalties imposed on the commuter family due to implementing commonality objectives. Reference 3 contains component structural designs that are common to the commuter family. Reference 4 details the acquisition and operating economics of the commuter family. The savings due to production commonality and handling qualities commonality are determined. Reference 5 details the selection of an advanced turboprop propulsion system for the family of commuter airplanes. Reference 6 contains a proposed design for a SSSA controller design to achieve similar handling for all airplanes.

The purpose of this report is to present the final class II commuter airplane designs.

Chapter 2 presents the class II threeviews and includes a review of the extent commonality is integrated into the family.

Chapter 3 details the mass properties of the family of commuter airplanes.

Chapter 4 details the stability and open loop handling characteristics of the family.

Chapter 5 presents the stick forces and gradients for the airplanes.

Chapter 6 presents class II drag polars for the family.

Chapter 7 discusses the mission performance and determines if all mission requirements are met.

Chapter 8 summarizes weight penalties and cost savings due to implementation of commonality.

Chapter 9 compares the commuter family to existing airplanes.

Chapter 10 concludes this report with a discussion of commonality objectives and the extent of implementation of these objectives.

The family concept is introduced in order to achieve structural, systems, and handling qualities commonality throughout the passenger range. Implementing commonality can substantially reduce manufacturing and production costs. By achieving common system designs maintenance costs can be reduced by allowing airlines to keep a smaller inventory of spare parts. Therefore, the higher degree of commonality that can be achieved will result in lower direct operating costs and lower life cycle cost.

The design of commonality into a family concept must occur at the very early stages of the design process. Otherwise achieving a high degree of commonality throughout a wide range of passenger capability will be impossible.

Attempting to implement many of these commonality requirements has caused configuration design problems. The twin body concept is introduced in an effort to retain commonality throughout the passenger range.

The proposed commuters range from 25 to 100 passengers. Figure 1.1 displays the family concept. All the airplanes in the family will incorporate the following common characteristics:

- 1) Advanced technology turboprop engines
- 2) NLF surfaces
- 3) Common cockpit instrumentation
- 4) Common structural and systems designs(to at high a degree as possible)
- 5) Jet-like ride and cabin environment
- 6) Identical handling qualities allowing for cross rating of pilots

7) Low acquisition cost and low life-cycle cost The following configuration decisions were incorporated into the family of commuter airplanes:

- 1) Low Wing
- 2) 2 Aft-Fuselage Mounted Engines
- 3) T-Tail Empennage
- 4) Tricycyle Landing Gear
- 5) Twin Body Configurations

The following advanced technologies were integrated into the family of commuter airplanes:

- 1) NLF Surfaces
- 2) Advanced Technology Turboprops
- 3) SSSA Technology

2. Configuration Descriptions

The purpose of this chapter is to present the class II configuration designs for the family of commuter airplanes. The common design features that are incorporated into the family are listed in Table 2.1. The mission specifications for which the commuter family has been designed are given in Table 2.2

Feature	Implementation
Fuselage cross section	Completed
Common landing gear Tires, struts, shocks and brakes (Both nose and main gear)	Completed
Common NLF airfoil	Completed
Common wing (S=592 ft ² , A=12)	Completed [*]
Common empennage $(S_{H}^{=120} \text{ ft}^2, S_{V}^{=170} \text{ ft}^2)$	Completed ^{**}
Common powerplants	Completed ***
Common tailcone/engine arrangement	Completed
Common cockpit instrumentation	Completed
Common flight systems Flight control Fuel Pressurization De-icing and bug removal	Completed SSSA in wing behind cabin TKS

Table 2.1 - Common Features Desired in the Advanced Technology Commuter Family

"The twinbody airplanes require a wing centerpiece of 590 ft" ""The twinbody airplanes require a horizontal tail bar of 290 ft" ""Two powerplants were selected. A 5500 shp engine, and a 11000 shp engine for the 75 and 100 passenger models.

	25 pax	36 pax	50 pax	75 pax	<u>100 раж</u>
Crew	2	3	3	4	4
Range (n.m.)	1100	1100	1100	1500	1500
Altitude	A11	Cruise at	30,000 ft.	•	
Cruise Speed	A11	Cruise at	Mach 0.70		
Climb	A11	Climb-out	at 3,000	fpm	
TOFL, LFL	A11	Field Len	igths are 3,	,500 ft	
Powerplants (shp)	5500	5500	5500	11000	11000
Pressurization	A11	Pressuriz	ed 5,000 f	t at 30,0	00 ft
Certification	A11	FAR 25			,

Table 2.2 - Mission Specification for the Commuter Family

2.1 Review of Common Design Features

This section is intended to review the commonality objectives of Reference 1. and summarize how these commonality goals were achieved.

2.1.1 Common Structural Component Features

The following components are common to every airplane in the family:

1) Fuselage Cross Section (see Figure 2.1)

2) Flight Deck Layout (see Figure 2.2)

3) Powerplants (see Figures 2.3 and 2.4)

4) Powerplane integration (see Figures 2.5 and 2.6)

5) Airfoil Cross Section (see Figure 2.7)

6) Wing Layouts (see Figures 2.8 and 2.9)

7) Main Gear Installation (see Figure 2.10)

8) Tailcone Arrangements (see Figure 2.11 and 2.12)

The twin body airplanes required some additional structure. This is pointed out in Table 2.1. The example production and manufacturing breakdowns contained in Figures 2.13 and 2.14, show this necessary structure more clearly.

Chapters 2 and 5 of Reference 1. define the commonality objectives and discuss the reasons for arriving at the common component designs in Figures 2.1 to 2.14.

A more detailed discussion of structural designs and structural commonality is contained in Reference 3.

Detailed information about the powerplants can be found in Reference 5.

The weight penalties imposed by commonality are the subject of Reference 2. These weight penalties are summarized in Chapter 8.

SCALE: 1:20

FIGURE 2.1 FUSELAGE CROSS SECTION

Ţ

FIGURE 2.2 FLIGHT DECK LAYOUT

TOP

Figure 2.3 5500 SHP PD436-11 Derivative Outline Drawing

G.SWIFT 2-6-87

TOP

LEFT SIDE

Figure 2.4 11000 SHP PD436-11 Derivative Outline Drawing

G.SWIFT 2-6-87

L

-

Figure 2.5 5500 SHP Powerplant Integration

H

a 5 2 6 11000 SHP Powerplant Integration 0 ≱ Figure 2.6 AF S

ì

Layout Twin-body Wing Figure 2.9

Geometry of the Empennage

	<u>H-Tail</u>
Area, ft ²	120
Span, ft	26.6
Aspect Ratio	5.88
Taper Ratio	0.50
M G C., ft	4.68
T P Sweep ded	20.0
Thickness Ratio	0.11
Root Chord, ft	6.02
Coor Boy Length:	
spar box songen	27
root, m	13
Tip, in There are a Patio	.35
Elevator choru Mario	42.0
Elevator Area, It	
Rudder Chord Railo	
Rudder Area, It	

PRECEDING PAGE BLANK NOT FILMED

(8

Page intentionally left blank

Page intentionally left blank

PRECEDING PAGE BLANK NOT FILMED

2.1.2 Common Flight System Designs

The purpose of this section is to present the systems that are common to every airplane in the commuter family. After the Class II configurations are presented, an analysis of the extent in which commonality was integrated will be detailed. This is accomplished in Chapter 8.

Commonality of airplanes in the family is an effort to substantially lower acquistion and operating costs for the airplanes. In turn, the airlines will have a wide range of passenger capacity airplanes to operate. A high degree of structural and systems commonality will also result in a smaller spare parts inventory for the airline.

2.1.2.1 Interior Layouts

All airplanes in the family have a 4-abreast seating arrangement. The fuselage cross section is presented in Figure 2.1. The rationale for arriving at this decision is given in Appendix A.

A preliminary flight deck layout is shown in Figure 2.2. Appendix A describes the flight deck layout and provides a list of cockpit instruments. In the interest of instrument commonality, it was decided that all members of the family have two engines. Therefore, there are two throttles in each cockpit.

2.1.2.2 Landing Gear System

All landing gear, nose and main, have the same 18" x 9" tire. The main gear wheel base (15ft on the single body models, 63.2ft on the twin-body models) and retraction scheme is the same. This allows for similar strut sizing for the airplanes. Figure 2.10 provides the dimensions of each gear strut.

2.1.2.3 Fuel System

All airplanes in the commuter family carry fuel in the wing. Since a common wing torque box arrangement is proposed, the integral fuel tanks will be the same on all airplanes. Similar vents, pumps and access panels will be incorporated into all members of the family.

2.1.2.4 Flight Control System

A reversible flight control system is designed for the family of commuter airplanes. Due to the aft pressure loading of the NLF airfoil, the aileron control system will be designed using push rods, instead of cables. This will prevent aileron up-float.

A separate surface stability augmentation system is proposed to achieve identical handling qualities throughout the passenger range. This system will make use of electro-hydrostatic actuation. Figure 2.15 shows a proposed SSSA system that could be incorporated into the commuters. Reference 6 contains a detailed SSSA control system design for the family of commuter airplanes.

2.1.2.5 Hydraulic System

A common operating pressure hydraulic system will be implemented for the landing gear actuation. Further study is neccessry to determine the operating capabilities of this system.

2.1.2.6 Pressurization System

All passenger cabins in the family are pressurized to a 5000 ft. atmosphere at 30,000 ft. All airplanes will utilize the same pressurization system.

2.1.2.7 De-Icing System

The T.K.S. de-icing system, which will also double as a bugcleaner, will be implemented into the commuter family. The T.K.S. system is a liquid ice protection system that distributes a solution onto the leading edge of the wing through a porous wing skin. Cleaning the leading edge is required to preserve the laminar flow over the wing. Reference 7 detailes the capabilities of the T.K.S. system.

2.2 Presentation of Class II Threeviews

The commuter family threeviews are presented in Figures 2.16 to 2.20. Geometries of these configurations are given in Tables 2.3 to 2.8.

The twinbody concept is introduced in an effort to retain as much commonality throughout the passenger range as possible. Conventionally configured 75 and 100 passenger models are shown in Figures 2.21 and 2.22. The purpose of these figures is to show the impracticability of these concepts in terms of retaining commonality. The wing, tail surfaces, engines and take-off weight are all larger than the corresponding twin body concepts. Implementing many of the common structural designs was not possible with these configurations.

The wheel track of the twin fuselage models is 63.2 ft. From Airport Engineering by Ashford and Wright, the data of Appendix I is compiled. Conclusions drawn from this data on taxiway dimensions are:

1) The twinbody configuration can operate out of any commercial airline airport.

2) The twinbody configurations will not be able to operate on general aviation airports. General aviation airports have taxiway widths between 40 and 60 ft.

	WING	HORIZONTAL TAIL	VERTICAL TAIL
S ft ² b ft	592 84.3	120 26.6	170 15.4
A A	7.45 12 15°	4.68 5.88 25°	12 1.40 45°
LE λ t/c	.4 .13	.5.11	. 33 . 11
Airfoil	NLF	NLF (inv)	NLF (sym)
Γ i ^ε t	3° 0° -3°	0° 0°	0°
		elevator chord ratio .35	rudder chord ratio .35
Aileron: cho spa	ord ratio .30 an ratio .85 to	. 92	
Spoiler: cho spi	ord ratio .10 an ratio .50 to	. 85	
Flap: cho spa	ord ratio .30 an ratio .11 to	1.0	
	FUSELAGE	CABIN INTERIOR	OVERALL
Length ft Height in Width in	71.4 96 96	28.7 76 91	72.6 320 852

TABLE 2.3 TABLE OF GEDMETRY FOR THE 25 PASSENGER COMMUTER

•

		-	
	WING	HORIZONTAL TAIL	VERTICAL TAIL
s ft ²	592	. 120	170
b ft	84.3	26.6	15.4
ē ft	7.45	4.68	12
A	12	5.88	1.40
Å	15°	25°	45°
λ	. 4	. 5	. 33
t/c	.13	11	. 11
Airfoil	NLF	NLF (inv)	NLF (sym)
Г	3°	00	00
i	0°	00	0°
٤t	-3°	00	00
		elevator chord	rudder chord
		ratio .35	ratio .35
Aileron: chord a	atio 30		
span ra	atio .85 to	.92	
.			
Spoiler: chord 1	atio .10		,
span ra	atio .50 to	.85	
Flap: chord a	ratio .30		
span ri	atio .11 to	1.0	
	FUSELAGE	CABIN INTERIOR	OVERALL
Length ft	79.4	36.7	80.6
Height in	96	76	320
Width in	96	91	852

TABLE 2.4 TABLE OF GEOMETRY FOR THE 36 PASSENGER COMMUTER

			1	
		WING	HORIZONTAL TA	IL VERTICAL TAIL
S	ft ²	592	120	170
ъ	ft	84.3	26.6	15.4
	ft	7.45	4.68	12.0
Ā		12	5.88	1.40
		15°	25°	45°
λ		. 4	.7	. 3
t/c		.13	.11	.11
Airfoil		ŅLF	NLF (inv) NLF (sym)
Г		30	0°	00
i		00	00	0°
ε _t		-30	0°	00
			elevator ch	ord rudder chord
			ratio .35	ratio.35
Aileron	: chor	d ratio .30		
	span	ratio .85	to .92	
Spoiler	: chore	d ratio .10		
	span	ratio .50	to .85	
Flap:	chor	d ratio .15		
·	span	ratio .11	to 1.0	
		FUSELAGE	CABIN INTERIC	R <u>OVERALL</u>
Length	ft	96.9	54.2	98.2
Height	in	96	76	320

Width in

TABLE 2.5 TABLE OF GEOMETRY FOR THE 50 PASSENGER COMMUTER

Figure 2.19 75 Passenger Class II Threeview

INDLE C.D	THBLE OF BEUMETRY	FUR THE 75 PASSEN	SER COMPOTER
	WING	HORIZONTAL TAIL	VERTICAL TAIL
S ft ⁱ b ft	2 1182 132.5	410 74.77	340 1 5. 4
ē ft	8, 97	5.63	12
<u>م</u>	14.85	13.6	1.40
 A,	11.5°	40	45°
	. 4	.5	. 33
t/c	. 13	. 1 1	.11
Airfoil	NLF	NLF (inv)	NLF (sym)
Г	30	00	00
i	0°	00	00
ε_	-30	00	00
τ			
		elevator chord	rudder chord
		ratio .35	ratio .35
Oilenana	-band matia 30		
Hileroni	span ratio -91 to	98	
Spoiler: (chord ratio .10		
•	span ratio .50 to	. 90	
Else	should ustic 20		
гтећ: (ratio .11 to	1.0	
	FUSELAGE	CABIN INTERIOR	OVERALL
Length f	t 79.4	36.7	80.6
Height i	n 96	76	320
Width in	96	91	852

 $\boldsymbol{\tau}$

Figure 2.20 100 Passenger Class II Threeview

E

FT FT

m m m

0

ď

ر

TABLE 2.	/ TABLE UF GEUMETRY	FUR THE 100 PASSEN	GER CUMMUTER
	WING	HORIZONTAL TAIL	VERTICAL TAIL
S fi	2 1182	410	340
b fi	132.5	74.77	15.4
	t 8.97	5.63	12
A	14.85	13.6	1.40
Å,	11.5°	40	45°
ι <u>ε</u> λ	. 4	. 5	. 33
t/c	. 13	. 11	. 11
Airfoil	NLF	NLF (inv)	NLF (sym)
Г	30	0°	00
	0.0	0.0	00
Ξ.	-3°	00	0°
t			
		elevator chord	rudder chord
		ratio .35	ratio .35
Aileron:	chord ratio .30 span ratio .91 to	. 98	
Spoiler:	chord ratio 10		
	span ratio .50 to	.90	
Flap:	chord ratio .30		
	span ratio .11 to	1.0	
	FUSELAGE	CABIN INTERIOR	OVERALL
Length	ft 96.9	54.2	98.2
Height	in 96	76	320
Width in	96	91	852

i)r .

{}

3.0 MASS PROPERTIES OF THE COMMUTER FAMILY

The purpose of this chapter is to present the weights and balance of the airplanes. The airplane inertias and take-off weight sensitivities are also presented.

3.1 Weight and Balance

The class II weight breakdowns taken from Reference 2 are used and the center of gravity excursion ranges are computed. Appendix B contains the weight and balance spreadsheets for all the airplanes. Figures 3.1 to 3.5 contain the excursion diagrams for the commuter family.

3.2 Airplane Inertias

Airplane inertias were calculated. Appendix B summarizes the inertias for the commuter family.

		w _{то}			WOE	
Model	IXX	Iyy	Izz	<u> </u>	Iyy	Izz_
25	103778	131896	188392	66528	121578	169310
36	125220	237382	339291	69710	207940	255999
50	141865	465510	580046	73363	408670	457113
75	1355496	505928	1779110	761328	441252	1125135
100	1646875	769820	2326135	888448	653359	1455491
* Inert	ias in slu	g-ft ²				

Table 3	3.1 -	Airpl	lane_]	inert	<u>i as</u>

Figures 3.6 thru 3.8 compare the inertias of the commuter family to some existing airplanes. As seen from the figures, the inertias compare favorably with existing airplanes.

The rolling moment of inertia of the twin body configurations is larger than existing airplanes as is expected.

3.3 Take-off Weight Sensitivities

Using methods in Reference 8. the take-off weight sensitivities are calculated. Results are summarized in Table 3.2. These sensitivities compare with existing transports and regionals.

	19016 210	- Take -	JII WELLIN	JENSIUL	vicies dam	ing, y	
Sensitivit	У		Airplane	2			
	25	36	50	75	100	(units)	
am ^{to} lam ^{br}	5.09	4.45	3.92	4.36	3.94	(16/16)	
^{am} to ^{vam} e	1.63	1.62	1.61	1.58	1.57	(16/16)	
aw _{to} /ar	8.54	8.54	8.16	14.24	15.20	(1b/nm)	
am ^{to} lac ^b	33755	33765	32288	76759	81963	(16/16/hp/hr)	
am ^{to} /ar/d	-738	-689	-599	-1342	-1433	(16)	
^{ow} to ^{/ on} p	-12011	-12014	-11489	-27312	-29164	(16)	

Table 3.2 - Take-off Weight Sensitivities Summary

4

en,

~

2

7

ς,

~

٥

0

1

÷-i

Rolling Moment of Inertia Comparison 3.6 Figure

3

į

1 min

۳.

~

i -

ŧ į

ł

.

-

Ì

ЪС.

: ... ÷

;

1

÷

33

117

.

: 1

....

MEICHI'M -- FRO

4

いまし

-

്റ

.

ł

ţ 1 :

- - - - -

36 PAX

÷ • • •

• •

MEIGHT, W~LBS

PITCHING MOMENT OF INERTIA, I, ~ SLUGFT²

Pitching Moment of Inertia Comparison Figure 3.7

Figure 3.8 Yawing Moment of Inertia Comparison

MEIGHT , W - LBS

IAWING MUMENI UT INCKIIA, 122 " DLUGT

.47

4. STABILITY AND CONTROL ANALYSIS

The purpose of this chapter is to address the stability and control considerations made during the design of the family of commuter airplanes. The following topics are included in this chapter:

- 1) Commonality Considerations
- 2) Wing Maximum Lift
- 3) Wing Lift Curves
- 4) Trim Diagrams
- 5) Handling Qualities
- 6) Take-off Rotation
- 7) Engine-out Requirements

The necessary engineering calculations are presented in Appendix C. Most of the design calculations were done using a spreadsheet program on a personal computer. Since a change in tail size, or the movement of any of the components changed the stability and control calculations for the entire family, these programs proved to be invaluable.

4.1 Commonality Considerations

Obtaining as high a degree of commonality as possible was a major theme throughout the design process. Commonality took the form of common tail areas, wing sections, and wing placement. These affected the outcome of the weight and balance as well as the stability and control calculations. Common features, from a stability and control viewpoint, are discussed below.

1) Common Wing - The 25, 36, and 50 passenger airplanes have a common wing. The 75 and 100 passenger twin-bodies use the same outboard section, and have a common center wing section between them. This resulted in oversized wings for the smaller airplanes. As a result, the flap deflections required to meet the field requriements could be lowered (see Table 4.1). Note that the flap deflections on the 36 - 75 and 50 - 100 airplanes are identical, to retain commonality between these pairs of airplanes.

2) Wing placement between the 36 - 75 and 50 - 100 airplanes should ideally be common. This idea was feasible on the 36 - 75pair, but not feasible on the 50 - 100 pair. Common wing

placement on the 50 - 100 pair resulted in an unacceptable static margin, and gear placement problems.

3) Common Horizontal Tails - The 25, 36 and 50 passenger airplanes use a common horizontal tail. The 75 and 100 passenger airplanes use the same tail for their outboard sections, and a common tailbar to join the airplanes. The large tail sizes were required because of the large pitching moment generated by the advanced turboprops at minimum control speed.

4) Common Vertical Tail and Tailcone - The vertical tail is common to all airplanes in the family. The large vertical tail is required by the 25, 36, and 50 passenger airplanes to trim in an engine out flight condition. The used of the advanced turboprops required that the engines be mounted away from the fuselage, which creates a very large yawing moment if one engine fails.

5) The location of the engines was also subject to a trade study. Three requirements had to be balanced against each other:

- a) Propeller clearance requirements
- b) Engine-out conditions (horizontal placement)
- c) Pitch trim with full power on approach (vertical placement)

Condition (a) limited the height of the engines from the bottom of the fuselage, condition (b) sized the vertical tail, and condition (c) sized the horizontal tail.

4.2 Wing Maximum Lift

Using a method in Reference 9, Figures 4.1 and 4.2 were generated. These figures show that the low speed wing C_{μ} is The cruise C_i of the wing is 1.25. During initial 1.5. May performance sizng of the baseline configurations, a clean C max of 1.4 was assumed for all the airplanes. The wing design incorporated into the commuter family will generate the required clean C_i The flap deflections used on each airplane are max listed in Table 4.1. These flap settings were selected to obtain the needed increment in C_{L} to meet the field length \max requirements.

	<u> 18010 4.1 - Fla</u>	p Deflections to	or the Lommuter	Family
25	Passenger:	δ _f = 0°	△C _L = 0	△C _M = 0
36	Passenger:	δ _f = 20°	△C _L = .82	△C _M =349
50	Passenger:	6 _f = 30°	۵C = .94	△C _M =387
75	Passenger:	¢f = 20°	۵C = .94	△C _M =250
100) Passneger:	é _f = 30°	△C _L = 1.08	△C _M =280

4.3 Wing Lift Curves

The wing lift curves are shown in Figures 4.3 and 4.4, with the corresponding equations listed in Table 4.2. Note that the three single body airplanes use a common wing, as do the two twinbody airplanes. However, the flap deflections are different, as discussed in subsection 4.1.

Table 4.2 - Lift Curve Equation for the Commuter Family 25 pax Cruise: $C_1 = 0.17 + 0.097\alpha + 0.007\delta_E$ Approach: $C_i = 0.17 + 0.099\alpha + 0.008\delta_F$ (no flaps) 36 pax Cruise: $C_{i} = 0.17 + 0.097\alpha + 0.007\delta_{F}$ Approach: $C_1 = 0.17 + 0.099\alpha + 0.008\delta_{r} + .83$ (flaps 20°) 50 pax Cruise: $C_1 = 0.17 + 0.097\alpha + 0.007\delta_{E}$ Approach: $C_1 = 0.17 + 0.099\alpha + 0.008\delta_F + .94$ (flaps 30°) 75 pax Cruise: $C_1 = 0.17 + 0.114\alpha + 0.016\delta_{r}$ Approach: $C_{L} = 0.17 + 0.115\alpha + 0.016\delta_{F} + .94$ (flaps 20°) 100 pax Cruise: $C_1 = 0.17 + 0.114\alpha + 0.016\delta_{r}$

Approach: $C_1 = 0.17 + 0.115\alpha + 0.016\delta_E + 1.08$ (flaps 30°) 4.4 Trim Diagrams

The trim diagrams for the family of commuter airplanes are presented in Figures 4.5 through 4.18. Several design features are incorporated into the family.

1) In the approach flight condition (V_{MC}) the flaps and powerplants (at full power) create a large negative pitching moment. To attain reasonable trimmed elevator deflections, an inverted airfoil on the horizontal tail is used. This feature also reduces the cruise trimmed elevator deflections. The increment in C due to the inverted airfoil section is listed in O Table 4.3, and the trimmed elevator deflections required in cruise and approach are listed in Table 4.4

2) To obtain reasonable static margins and longitudinal control power, a horizontal tail bar is used on the twin-body airplanes. The tail bar has a full span elevator, and utilizes a symmetrical airfoil. The use of an inverted airfoil for this section was investigated, but the resulting pitching moment was unacceptable in cruise.

The pitching moment equations for the commuter family are listed in Table 4.5. The following flight conditions are represented in the pitch-trim diagrams (Figures 4.5 to 4.18).

Inverte	d Airfoil Section (<u>on the Horizo</u>	<u>ntal Tail</u>
-	¢C.	<u>۵</u> ۲	M
Airplane	[_] L _o	fwd C.G.	° aft C.G.
25 passenger	-0.034	0.138	0.133
36 passenger	-0.034	0.154	0.150
50 passenger	-0.034	0.190	0.187
75 passenger	-0.017	0.064	0.061
100 passenger	-0.017	0.074	0.071

<u>Table 4.3 - I</u>	<u>ncrements</u>	<u>in Lift</u>	and Pi	<u>tching</u>	Moment	<u>Due to the</u>
Invert	ed Airfoil	Section	on th	e Horiz	ontal T	ail

Table 4.4 - Trimmed Elevator Deflections for the Commuter Family

	Elevator Deflection (deg)				
Airplane	. Cru	ise ⁷	Appr	oach	
	fwd C.G.	aft C.G.	fwd C.G.	aft C.G.	
25 passenger	-2.770	~3. 56°	5.75°	1.97°	
36 passenger	-2.70°	~3.66°	17.73°	13.43°	
50 passenger	-3.940	-4.710	14.92°	11.490	
75 passenger	-0.84°	-1.05°	13.65°	9. 78°	
100 passenger	0.22°	-0.93°	15,58°	10.84°	
* Cruise Thrust	** Fu	11 Power, Fla	aps Down		

Table 4.5 - Pitching Moment Equations for the Commuter Family 25 Dax: Cruise, fwd: $C_{\rm M} = .124 - .224C_{\rm I} - .028\delta_{\rm E} - .003(T)$ Cruise, aft: $C_{\rm M} = .119 - .089C_{\rm I} - .028\delta_{\rm E} - .003(T)$ $C_{M} = .134 - .231C_{L} - .029\delta_{E} - .112(T)$ Approach, fwd: $C_{M} = .129 - .096C_{L} - .029\delta_{E} - .112(T)$ Approach, aft: 36 pax: Cruise, fwd: $C_{M} = .148 - .253C_{L} - .031\delta_{E} - .004(T)$ Cruise, aft: $C_{M} = .144 - .119C_{i} - .031\delta_{F} - .004(T)$ Approach, fwd: $C_{M} = .159 - .260C_{I} - .032\delta_{F} - .349(f) - .117(T)$ $C_{M} = .155 - .126C_{L} - .032\delta_{E} - .349(f) - .117(T)$ Approach, aft: 50 pax: * Cruise, fwd: $C_{\rm M} = .207 - .134C_{\rm I} - .039\delta_{\rm F} - .008(T)$ Cruise, aft: $C_{M} = .204 - .061C_{L} - .039\delta_{E} - .008(T)$ $C_{\rm M} = .218 - .143C_{\rm I} - .041\delta_{\rm F} - .387(f) - .239(T)$ Approach, fwd: $C_{\rm M} = .215 - .070C_{\rm i} - .041\delta_{\rm F} - .387(f) - .239(T)$ Approach, aft: 75 pax: Cruise, fwd: $C_{M} = .087 - .114C_{L} - .056\delta_{E} - .008(T)$ Cruise, aft: $C_{M} = .087 - .114C_{I} - .056\delta_{F} - .008(T)$ $C_{M} = .096 - .211C_{L} - .056\delta_{E} - .250(f) - .361(T)$ Approach, fwd: $C_{M} = .096 - .044C_{I} - .056\delta_{F} - .250(f) - .361(T)$ Approach, aft: 100 pax: Cruise, fwd: $C_{M} = .107 - .332C_{I} - .064\delta_{F} - .010(T)$ Cruise, aft: $C_{M} = .107 - .189C_{I} - .064\delta_{F} - .010(T)$ Approach, fwd: $C_{M} = .116 - .323C_{I} - .064\delta_{F} - .280(f) - .379(T)$ Approach, aft: $C_{M} = .116 - .180C_{L} - .064\delta_{E} - .280(f) - .379(T)$

.

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

4.5 Handling Qualities

To estimate the handling qualities, the following stability parameters were calculated:

Short Period Frequency Short Period Damping Ratio Dutch Roll Frequency Dutch Roll Damping

These parameters were calculated for cruise and approach at forward and aft C.G. locations. The open loop characteristics are listed in Table 4.6. A further discussion of the handling qualities of the commuter family is contained in Reference 6. None of the airplanes are below class 2 handling qualities. With the exceptions listed below, all meet class 1 handling qualities.

- 1) 50 passenger, level 2 short period frequency at aft C.G.
- 2) Twin-bodies (75 and 100), level 2 for dutch roll requirement $(\omega_{N_{D}} \times \zeta_{D})$ at forward C.G.

			Level Satisfied							
Airplane	Flight Condition C.G. Location	ω n sp	۲ sp	ω _n D	۲D	^พ ก _ฏ โฏ				
	fwd C.G Cruise	1	1	1	1	1				
25 pax	aft C.G Cruise	1	1	1	1	1				
	fwd C.G Approach	1	1	1	1	1				
	aft C.G Approach	1	1	1	1	1				
	fwd C.G Cruise	1	1	. 1	1	1				
36 pax	aft C.G Cruise	· 1	1	1	1	1				
	fwd C.G Approach	1	1	1	1	1				
	aft C.G Approach	1	1	1	1	1				
	fwd C.G Cruise	· · · · ī	Ĩ	1	1	1				
50 pax	aft C.G Cruise	2	1	1	1	1				
	fwd C.G Approach	1	1	1	1	1				
	aft C.G Approach	2	1	.1	1	1				
	fwd C.G Cruise	1	,1	1	1	2				
75 pax	aft C.G Cruise	1	1	1	1	1				
	fwd C.G Approach	1	1	1	1	2				
	aft C.G Approach	1	1	1	1	1				
	fwd C.G Cruise	1	1	1	1.	2				
100 рах	aft C.G Cruise	1	1	1	1	1				
	fwd C.G Approach	1	1	1	1	2				
	aft C.G Approach	1	1	1	1	1				

Table 4.6 - Handling Qualities for the Commuter Family

4.6 Take-off Rotation Requirements

Using the method of Reference 10, the elevator deflection required for take-off have been calculated. The results of this analysis are listed in Table 4.6. All airplanes in the commuter family were able to staisfy take-off rotation requirements.

Table 4.6 - Take-off Rotation Requirements

25 passenger:	δ _E = 16.4 deg
36 passenger:	δ _E = 14.7 deg
50 passenger:	δ _E = 6.2 deg
75 passenger:	δ _E = 3.2 deg
100 passenger:	δ _E = 2.1 deg

4.7 Engine-out Requirements

The engine-out requirements have been checked using a one dimensional model, outlined in Reference 10. The FAR's allow 5° of bank into the operating engine, which eases the required rudder deflections. The engine-out calculations assumed full thrust from the operating engine at $V_{\rm MC}$. The available thrust and required rudder deflections are listd in Table 4.7

Table 4.7 - Engine-out Requirements

Airplane	Total T-O	Thrust	Required δ_R
25 passenger	13, 325	lbs	23.1 deg
36 passenger	15, 481	lbs	22.9 deg
50 passenger	18,929	lbs .	20 . 5 deg
-75 -passenger		1.bs	28.1 deg
100 passenger	37,891	lbs	22.4 deg

4.8 Roll Performance

The roll performance of the commuter family was checked using the rolling approximation method of Reference 10.

All members of the family meet level 1 handling qualities requirements. Table 4.8 verifies this. Due to the large increase in Ixx the twinbody configurations have a larger roll time constant. Therefore these configurations have slower roll characteristics.

A roll damper could be designed for the twinbody configurations that could yield similar roll response with the single body configurations.

A seperate surface aileron could be used to achieve this. Seperate surface stability augmentation to achieve common dynamic handling is the subject of Reference 6.

Appendix D contains the engineering calculations for this chapter. A spreadsheet was used to extend the analysis quickly for all 5 airplanes.

			and the second		
Model	25 pax	36 pax	50 pax	75 pax	100 рах
C ₁ p	715	715	715	792	792
с _л е	. 553	. 553	. 553	.608	. 608
T _{R_{CR}}	. 22	.27	. 30	. 53	.65
TR.Vmc	. 34	. 41	. 47	.84	1.02
TR _{REQ}	1.4	1.4	1.4	1.4	1.4
● [★] CR	107°	104°	102°	56°	52°
⁶ А _{СR}	5°	5°	5° .	5°	5°
Φ [#] ∨m⊂	56°	53°	52°	35°	31°
⁶ A _{Vmc}	10°	10°	10°	10°	10°

Table 4.8 - Summary of Roll Performance

 Φ_{CR}^{π} = Roll angle in 1.9 seconds, must be at least 45° Φ_{Vmc}^{π} = Roll angle in 1.8 seconds, must be at least 30°

72

4.8.1 Lateral Acceleration of the Twinbody Configurations

The lateral acceleration of the twinbody models is of concern for reasons of comfort to the passengers and how this motion will affect the pilot.

Lateral acceleration was calculated by:

 $\hat{P} = L_{\delta}$ and

a, = P 1

۵_۵е

where 1 = Distance from airplane centerline to fuselage centerline.

The following table summarizes the accelerations for the twinbody models.

Table 4.9 - Lateral Accerations For the Twinbody Models

	75	рах	100 pax				
	Fwd C.G.	Aft C.G.	Fwd C.G.	Aft C.G.			
P _{CR} (rad/sec ²)	.037	.004	. 058	.009			
P _{Vmc} (rad/sec ²)	.080	.027	.096	.040			
1 (ft)	24.08	24.08	24.08	24.08			
a (ft/sec ²)	. 900	. 099	1.395	.212			
a (ft/sec ²) ^y Vmc	1.936	.641	2.322	. 953			
(^a y) g)CR	. 028	.003	.043	.007			
	.060	. 020	.072	.030			

The accelerations at the aft loading conditions (highest Ixx) appear acceptable in terms of good handling qualities when compared with data in Reference 11.

At forward C.G. locations the accelerations are large. The rolling mode of the twinbody configuration will need to be augmented to be similiar to the single bodies.

Common roll mode time constants across the family should be the objective of roll control commonality. This could easily be implemented using digital compensation.

5.0 Stick Forces and Gradients

The purpose of this chapter is to present the stick forces and stick gradients that affect the pilot.

It will be desirable to augment the stick forces and gradients so that these parameters are similiar for each airplane in the family.

Commonality will be attempted by using a programmable control loader. This system can saugment stick forces in the range of 5 to 65 lbs/in. Therefore, all pilot stick forces required must lie in the range of 5 to 65 lbs/in. Commonalizing stick force gradients presents some design problems. This will be discussed in detail in section 5.5. Stick force and gradient calculations are contained in Appendix F. These calculations were completed using a spreadsheet.

5.1 Control Surface Hinge Moments

The control surface hinge moments were calculated using Reference 12. The hinge moments for the commuter family are contained in Tables 5.1 to 5.3.

Mode 1	25 pax	36 pax	50 pax	75 pax	100 Dax
 c _f /c	. 35	. 35	. 35	. 35	. 35
s _F	42 ft ²	42 ft ²	42 ft ²	143 ft ²	143 ft²
- -	1.64 ft	1.64 ft	1.64 ft	1.64 ft	1.64 ft
c, h_	323	323	323	241	241
c _n	177	177	177	422	422
°E					

Table 5.1 - Elevator Hinge Moments

Table 5.2 - Rudder Hinge Moments

Model	25 pax	<u>36 pax</u>	50 pax	75 pax	100 pax
c _f /c	. 35	. 35	. 35	. 35	. 35
S _R	60 ft²	60 ft²	60 ft ²	119 ft ²	119 ft ²
° _f	4.20 ft	4.20 ft	4.20 ft	4.20 ft	4.20 ft
c, h _e	043	043	043	086	086
с _ь	167	167	167	334	334

Model	25 pax	<u>36 pax</u>	50 pax	75 pax	100 pax
c _f /c	. 30	. 30	. 30	. 30	. 30
SA	12 ft ²				
° _f	2.00 ft				
c,	042	042	042	036	036
с ₋	073	073	073	094	094

Table 5.3 - Aileron Hinge Moments

5.2 Longitudinal Stick Forces and Stick Gradients

Using methods in Reference 10, the stick force, F_5 , stick force per G gradient, and the stick force per knot were calculated. Table 5.4 through 5.6 present the results. Flight conditions analyzed:

- a) V = 207.5 fps, sealevel, fwd and aft C.G.
- b) M = 0.7, 30,000 ft, fwd and aft C.G.

It is desired to have longitudinal stick forces less than 60 lbs. The force per knot -.167 lbs/kt or less. The force per G should be between 23 and 80 lbs/G. If the forces and gradients are in these ranges then the FAR 25 specifications will be satisfied.

T,	а	b	1	е	. 5	5.	4	-	Lor	noi	t	ud	i	nal	- 51	t	ick	F٢	٥r	C	e	⊆
		_	_																			

Model	V fwd C.G.	V aft C.G.	CR fwd C.G.	CR aft C.G.
25 pax	44	3	176	169
36 pax	1	-38	16	-1
50 pax	-48	-48	-72	-49
75 pax	-170	-570	-570	-2675
100 рах	-126	-201	-567	-573
Stick fo	orces in lbs			

	19016 0.0		TER TOTLE DEL	
Model	V fwd C.G.	V aft C.G.	CR fwd C.G.	CR aft C.G.
25 pa×	65	13	69 ·	-6
36 pax	47	-1	45	-27
50 pax	18	3	-11	-32
75 pax	152	818	28	426
100 pax	203	65	173	-20
Gradient	in lbs/6			

Table 5.5 - Longitudinal Stick Force 87 G

Table 5.6 - Longitudinal Stick Force per Knot Gradient

Model	V fwd C.G.	V aft C.G.	CR fwd C.G.	CR aft C.G.
25 pax	.08	. 18	. 23	. 43
36 рах	06	. 02	02	. 14
50 pax	07	03	06	.01
75 pax	-1.09	-5.25	-1.42	-7.81
100 pax	-1.07	85	-1.76	-1.38
Gradient	in lbs/kt			

5.3 Rudder Pedal Forces and Gradients

Tables 5.7 and 5.8 contain rudder pedal forces and rudder pedal force per degree of sideslip. The rudder pedal force should be less than 150 lbs, and the sideslip gradient should be 5 lbs/deg. at Vmc.

<u>Table 5.7 -</u>	Rudder Pedal	Forces
Model V	mc	Cruise
25 pax	177	166
36 pax	308	910
50 pax	383	1238
75 pax	319	538
100 pax	479	1248
Pedal forces	in lbs.	

Model	V _{mc}	Cruise
25 pax	35	55
36 pax	62	303
50 pax	76	413
75 pax	64	179
100 pax	96	416
Pedal gra	dients i	n lbs/deg of sideslip

Table 5.8 - Rudder Pedal Gradient

5.4 Aileron Wheel Forces

Table 5.9 presents aileron wheel forces required to meet the FAR specifications for roll performance. These forces were acceptable and similiar on all airplanes and were not augmented. The FAR's suggest 5 lbs of force needs to be sustained by the pilot.

Table 5.9 Aileron Wheel Forces

Mode1	Vmc	Cruise
25 pax	-4.0	-6.0
36 pax	-4.0	-6.0
50 pax	-4.0	-6.0
75 pax	-4.6	-6.8
100 pax	-4.6	-6.8
Wheel for	ces in lbs.	

5.5 Stick Force Commonality

It is obvious that the data in Table 5.4 to 5.8 does not meet FAR 25 requirements.

- a) Stick and pedal forces are too large.
- b) Gradients do not meet FAR requriements, especially at aft C.G.

From the calculations in Appendix F it is determined that all the airplanes in the family have an unstable stick free static margin. This causes the stick force speed gradient to be positive. A trim tab design was attempted to correct this deficiency. Using the tab remedied the stick force speed gradient but caused the stick force per G gradient to not met FAR requirements.

It was concluded that a trim tab design was not the answer to attaining stick force commonality.

5.5.1 Conclusions

1) As currently balanced, the commuter family will not meet FAR 25 requirements

5.5.2 Recommendations

1) The designers feel that an iteration through the weight and balance, and stability and control calculations may allow for a stable stick force static margin. This could allow for the stick force gradients to meet FAR requirements.

2) The sensitivity of the stick forces due to the control surface hinge moments is dramatic. The hinge moments should be calculated accurately. The horizontal tail uses an inverted NLF airfoil. The C_h of this surface needs to be investigated.

3) The designers feel confident that a proposal for stick force commonality will be possible if the previous recommendations are followed.

6. CLASS II DRAG PREDICTION

The purpose of this chapter is to determine the class II drag polars for the family of commuter airplanes. The class II method consists of the drag breakdown procedure outlined in Reference 13. In this analysis, the drag polars are computed seperately for the different airplanes (25, 36, 50, 75 and 100 passenger airplanes).

The total airplane drag coefficient is broken down into the following components:

 $C_D = C_D + C_D$ wing fus emp np flaps gear cw Laminar flow conditions are accounted for in the determination of the wing and empennage drag. Laminar flow is assumed to extend over 50% of the chord of the wing, horizontal tail and vertical tail. Also, 12.5 ft of laminar flow was considered over the nose cone of the fuselage.

The drag due to the windshield (C) was accounted for in \mathbb{C}^W the fuselage drag determination.

The pylons were considered as lifting surfaces because of their relatively large areas, and a lift coefficient due to pylons (C_L) was accounted for.

In the case of the nacelle, an interference drag element (C_D) was determined, it has been accounted for in the C_D nint calculations.

For the landing gear drag estimation, only low speed conditions were applied (approach at M=0.19).

Appendix G contains the engineering calculations for this chapter. Table 6.1 contains the drag polars for the family of commuter airplanes. Table 6.2 summarizes the NLF assumptions used in the drag analysis. Figures 6.1 to 6.10 present the drag polars for the family of commuter airplanes. By comparing the class II and class I drag polars, note that the difference doesn't exceed 5%. This reinforces the fact that the class I drag polar estimation is fairly reliable.

Table 6.1 - Drag Polar Equations

.

Ę

(

Airplane	ane L/D Cruise Max		Low Speed (0° flaps) (gear down)	Low Speed (30° flaps) (pear down)		
25	24.4	.0129 + .0309 C ² L	.1242 + .0308 CL	.1613 + .0303 CL		
36	22.4	.0160 + .0309 C ²	.1319 + .0308 CL	.1690 + .0308 CL		
50	22.6	.0156 + .0309 CL	.1658 + .0308 CL	.2029 + .0308 CL		
75	26.6	.0139 + .0253 C ²	.1564 + .0240 CL	.2224 + .0240 CL		
100	26.2	.0145 + .0253 C ²	.1857 + .0240 CL	.2517 + .0204 C <mark>2</mark>		

Table 6.2 - Natural Laminar Flow Assumptions

Wing	50% chord, on all airplanes				
Fuselage	12.5 ft from the nose, for all airplanes				
Horizontal Tail	50% chord, on all airplanes				
Vertical Tail	50% chord, on all airplanes				

80

•

ORIGINAL PAGE IS OF POOR QUALITY $\frac{20}{16}$ 1.2 1 .4 ______ **5**70 DATE REVISED CALC Figure 6.6 25 Passenger CHECK Approach Drag Polar . APPD PAGE 84 APPD UNIVERSITY OF KANSAS

7.0 VERIFICATION OF MISSION PERFORMANCE

The purpose of this section is to verify the mission performance obojectives for the family of commuter airplanes. These objectives must be verified with the current configurations, which include all design changes made for the purpose of commonality.

The mission profile for the airplane family is given in Figure 7.1. Note that the following common performance characteristics have now been designed into all of the configurations.

> Common take-off and landing field lengths (under 3500ft) Common approach and take-off speeds ($V_A \approx V_{TO}$) Common climb gradients (meet FAR 25)

Common cruise and service ceilings

The above objectives are discussed in the following subsections, including descriptions of how the numerical values were obtained.

7.1 Field Length Verification

7.1.1 Take-off Distance

The take-off distances were calculated using one of the methods in Chapter 10 of Reference 14. The calculations were done on a spreadsheet program, using the equations listed in Appendix H. A printout of the spreadsheed calculations is also given in Appendix H.

The take-off distance calculations were done in such a way that the take-off stall speed was input. Iterations were then made until every airplane achieved a take-off field length of just less than 3500 feet. Two assumptions were made:

1) A runway inclination angle of zero degrees.

2) A ground friction coefficient of 0.025.

The final values for take-off field length (LFL) are given in Table 7.1.

C-2

91

7.1.2 Landing Distance

The landing distances were also calculated using a method in Chapter 10 of Reference 14. The equations used are given in Appendix H. The spreadsheet calculations are also shown.

A common value for approach velocity was input, then iterations were made until the landing distance for every airplane was just under 3500 feet. Two assumptions were made:

1) A braking coefficient of 0.51.

2) An approach descent angle of 3° (common glideslope angle) The final values for landing field length (LFL) are given in Table 7.1.

Model	Required	TOFL	LFL
25	3500 ft	3325 ft	3365 ft
36	3500 ft	3414 ft	3467 ft
50	3500 ft	3403 ft	3468 ft
75	3500 ft	3484 ft	3337 ft
100	3500 ft	3465 ft	3370 ft

T	a	ь1	e	- 7	. 1	-	F	ie	1d	L	en	01	th:	s
_					_			_				_	_	

7.2 Verification of FAR 25 Climb Gradients

The climb gradients for each segment as specified in FAR 25 are calculated using the following equations (from Ref. 1): R.C. = $(T_{AV}/W - C_D/C_L) \times (2W/pC_LS)^{-5}$ Climb Gradient = R.C. / U.

The required climb gradients and the flight conditions for which they apply, as specified by FAR 25, are listed in Table 7.2. The actual climb gradients are calculated on a spreadsheet program. A printout of the spreadsheet calculations is given in Appendix H. The results of the calculations are given in Table 7.3.

7.3 Verification of Range Requirements

It is desired that the 25, 36 and 50 passenger models travel 1100 n.m. with full payload. The 75 and 100 passenger models

Table 7.2

Climb Requirements

#	FAR Req.	Flap Set	Gear Set	V XVs	Thrust Set	Wt.	Climb Grad.	*
1	25.111 OEI initial	TO	up	1.2	TO	TO	1.2	
2	25.121 OEI transition	TO	down	1.15	TO	TO	0	
3	25.121 OEI 2nd segment	TO	up	1.2	TO	TO	2.4	
4	25.121 OEI en route	clean	up	1.25	MC	TO	1.2	
5	25.119 AEO landing	landing	down	1.3	TO	L	3.2	
6	25.121 OEI landing	approach	down	1.1 <v <1.5</v 	TO	L.	2.1	

Table 7.3

1

Actual Climb Gradients for the Commuter Family

Climb Reqmt. #	25	36	50	75	100
1	10.79	11.10	10.04	13.77	12.93
2	5.86	6.99	6.52	4.76	4.96
3	10.79	11.10	10.04	13.77	12.93
4	9.92	11.20	13.24	11.02	12.83
5	26.70	26.65	23.71	23.30	22.01
6	5.20	5.24	3.24	3.78	2.76

94

1500 n.m. with full payload. Figure 7.2 presents payload-range diagrams for the commuter family. From this figure it can be seen that the range requirements were met. A cruise sfc of .36 (lb/hp/hr), and a propeller efficiency of .86 were used in the range calculations.

7.4 Rate-of-Climb Requirements

The commuter family is to have a 3000 fpm climb rate at sea level. Also, 100 fpm climb rate at 30,000 ft (cruise). Table 7.4 contains the results of the rate of climb calculations. Notice the 100 passenger model does not meet the requirements of 3000 fpm at sea level.

			<u></u>
Model	Sea Level	10,000 ft	30,000 ft
25	3138	4693	984
36	3053	4128	573
50	3064	4433	1224
75	3753	5763	2150
100	2534	4684	1568

Table 7.4 Rate-of-Climb Results

Rate of Climb in fpm

¥.

8.0 Commonality Analysis of the Commuter Family

Now that the Class II designs for the commuter family have been presented, the extent of commonality that was implemented needs to be discussed. Table 8.1 shows the status of the commonality objectives.

The following items are common to all members of the commuter family:

- 1. Common fuselage cross section.
- 2. Common flight deck layout.
- 3. Common cockpit instrumentation.
- 4. Common landing gear system design.
- 5. Common tailcone-empennage-engine integration.
- 6. Common wing design.
- 7. Common powerplants.
- 8. Common airfoil.
- 9. Common flight control system.
- 10. Common fuel system.
- 11. Common pressurization system.
- 12. Common de-icing system.
- 13. Common dynamic handling qualities.
 - (only with SSSA system)

The twin-body concept is extremely conducive to commonality implementation with the smaller commuters. This allows for more commonality throughout the passenger range.

The wing areas of the 75 and 100 passenger conventional configurations were too large to implement a common torque box carry-through structure. See section 2.2. Also, the lateral gear spacing was too large to accommodate similar gear struts with the smaller members of the family. The 100 passenger conventional model would require 8 tires per bogey on the main gear, while the twin-body 100 passenger only needed 4 wheels per bogey. Empennage sizes were too large to retain common surfaces on all family members. The conventional 75 and 100 passenger models required 2500 more SHP and the take-off weights were much

Туре	Airplane	25 Pax	36 Pax	50 Pax	75 Pax	100 Pax				
Structur	Structural Commonality:									
Tail	cone Arrangement	Уев	Yes	Yes	Yes	Уев				
Wing	Design	Yes	Yes	Үев	Yes	Yes				
Fuse Se	lage Cross ction	Yes	Үе в	Yes	Үев	Yes				
Land	ing Gear	Yes	Yes	Yes	Yes	Yes				
Systems	Commonality:									
Cock	pit Instrum.	Yes	Yes	Yeв	Yes	Үев				
Dyna Qual	mic Handling ities	Уев	Уев	Yes	Үев	Yes				
Stic and	k Forces Gradients	No	No	No	No	No				
Fuel	System	Уев	Yes	Yes	Yes	Yes				
De-I	cing	Yes	Yes	Yes	Yes	Yев				
Pres	surization	Yes	Yes	Yes	Үев	Үев .				
Flig	ht Controls	Yes	Yes	Yes	Yeв	Yes				
Engine Commonality:										
2 En	gines	Yes	Yes	Yes	Уев	Үев				
5500	shp	Yes	Yes	Ÿев	No	No 🦸				
11,0	00 shp	No	No	No	Yes	Yeв				

.

.

Table 8.1 -- Status of Commonality in the Commuter Family.

greater. From reasons discussed in Reference 5, two different SHP turbo-prop engines will be used to span the passenger models. Table 8.1 shows which engines are integrated into the airplanes of the family. The design of common dynamic handling of the family and the implementation of a SSSA system are contained in Reference 6.

8.1 Weight Penalties and Cost Savings Due to Commonality

This section summarizes the take-off weight penalties and cost savings that arise due to the design of commonality. Table 8.2 summarizes the weight penalties associated with commonality. Table 8.3 details the cost of the family. Figure 8.1 compares baseline designs with the common family designs. A savings of \$1.3 million per airplane is realized due to commonality. However, there is a 12% weight penalty for the 25 passenger model.

Figure 8.1---Cost Comparison for NASA Family of Commuters.

.100
Table 8.2a

Weight Penalty	Imposed	By Commona	ality Over	r Class I	I Baseline
Model:	25	36	50	75	100
∆ w _w	1312	924	0	1281	0
∆ W _{FUS}	176	92	0	184	0
∆ W _{EMP}	134	108	0	66	0
[∆] ₩ _{L.G.}	803	405	0	1065	355
△ W _{PWR}	624	476	0	1051	0
A W _{TO}	3049	2005	0	3647	355
% Diff. over Class II baseline	12.0	5.9	0	5.4	0.4

Table 8.2b

Summary of	Class II We	ights Imp	lementing	Commonal	ity
WTO	28506	35954	43141	71419	85044
W _E	19099	22182	25153	43671	49426
W _{PL}	5125	7380	10250	15375	20500
WCR	410	615	615	. 820	820
W _{tfo}	105	157	210	313	420
W _F	3767	5620	6913	11240	13878
۵ W _{TO}	3049	2005	0	3647	355
% Change Above Baseline W _{TO}	12.0	5.9	0	5.4	0.4

Componen	t Tooling	Man Lab	Mat & Eq	Q/C	Total
		(1540	70/ 1		OAE AO
Nose Gea	r 11037	61542	3761	0008	84540
Main Gea	r 36026	198400	15603	25793	275822
Ver. Tai	1 14376	87277	12114	11346	125113
Hor. Tai	1 8558	46579	2627	6055	63819
Fus. Sec	s 74420	359756	-6649	46770	474297
Wing	40742	203108	4587	26405	274842
Totals	185159	956662	32243	124369	1298433

Table 8.3a -- Average Savings Per Category Due to Common Production Parts and Processes.

Table 8.3b -- Comparison of Acquisition Costs.

Airplane Size	Initial Prod- (incl• DT&E)	Production Baselines	Commonality Implemented	
			بي جو جو جو ي جو جو يو يو يو يو يو يو يو يو يو ي	
25 Pax	8667362	7363869	6065436	
36 Pax	9490391	7948048	6649615	
50 Pax	10428089	8611920	7313487	
75 Pax	15682836	13069259	11770826	
100 Pax	17121109	14079259	12780826	

9.0 Comparison of Commuter Family to Existing Airplanes

The purpose of this chapter is to compare data from the commuter family with existing regional turbo-propeller driven airplanes. The larger members of the commuter family will be compared with smaller jet transports. Take-off weights, center of gravity excursion range, wetted areas, wing loadings, cabin and baggage volumes, and cost of the airplanes will be compared. These comparisons will attempt to prove the validity of the class II designs.

9.1 Comparison of Take-off Weights

Figure 9.1 shows the commuter family take-off weights compared with existing airplanes. The commuter family was sized assuming an 8% structural weight savings due to the use of advanced structural materials. Aramid aluminum will be utilized to achieve this structural weight savings. Appendix E contains data for this composite material.

9.2 Center of Gravity Excursion

Table 9.1 contains the excursion range of the center of gravity for the commuter family. These data are compared with common excursion ranges for regional turbo-propeller and jet transport airplanes taken from Reference 15.

From Table 9.1 it can be seen that all the class II designs have C.G. excursion ranges comparable with contemporary airplanes.

9.3 Comparison of Airplane Wetted Areas

Wetted areas of the commuter family are compared to regional turbo-propeller and jet transports wetted areas. Figure 9.2 compares the wetted areas of the commuter airplanes with existing airplanes. It can be seen that these airplanes compare favorably with existing regional turbo-propeller and jet transport airplanes.

9.4 Comparison of Airplane Wing Loadings

Wing loadings of the commuter family are compared to existing commuters and jet transports. Table 9.2 lists wing loadings of some existing airplanes. Table 9.3 lists wing loadings for the commuter family. The comparison shows that the commuter family wing loadings are higher than typical commuters but less than jet transports.

9.5 Comparison of Acquisition Costs

Figure 9.3 compares the commuter family to other commuters on an acquisition cost basis. Existing prices were taken from Interavia, May 1986.

Table 9.1 CENTER OF GRAVITY EXCURSION RANGE COMPARISON

AIRF	PLANE MODEL	RANGE OF	C.G. TRAVEL	COMMON EXCU	RSION RANGES
25	passenger	12"	. 130	12"-20"	.1427 c
36	passenger	12"	. 130	12"-20"	.1427 c
50	passenger	· 6"	. 092	12"-20"	.1427 c
75	passenger	18"	. 170	12"-20"	.1427 č
100	passenger	15"	. 140	12"-20"	.1427 c

Table 9.2 WING LOADINGS OF EXISTING AIRPLANES

Airplane	Pax	(W/S) TO PSf
Beech 1900	19	50
DHC-6-300	20	30
BAe 31	18	54
METRO III	19	47
CASA C-212-200	28	38
DHC-8	37	52
EMB-120	30	52
Shorts 330	30	51
Fokker F27-200	• 52	· 60
DHC-7	50	67
Fokker F-28	85	86
BAe 146-200	100	108

Table 9.3 WING LOADINGS FOR THE COMMUTER FAMILY

Airplane Model	(W/S) _{TO} psf
25 Passenger	50 .
36 Passenger	60
50 Passenger	70
75 Passenger	60
100 Passenger	72

9.6 Comparison of Cabin Volume With Existing Airplanes

Passenger and baggage volume are compared with existing airplanes in Table 9.4.

Tab	le 9.4 COMPARIS	SON OF CABIN AND 1	BAGGAGE
	VOLUMES	WITH EXISTING AI	RPLANES
Airplane Type	Number of Passengers	Overhead Baggage Volume (cuft)	Overhead Volume per Seat (cuft)
NASA			
50, 100	50	56	1.1
36, 75	36	41	· 1.1
25	25	29	1.2
<u>British</u>			
BOD Super 748	46	41	0.85
BAe ATP	48	100	1.6
BAe 146-100	64	56	0.68
de Havilland			
DASH 7	50	59	. 1.2
DASH 8	37	32	0. 86
Fokker			
F-27	52	40	0.77
50	50	79	1.6
F-28	65	107	1.6
Shorts			
330	30	40	1.3
360	. 36	52	1.4
ATR Consortiu	m	-	
ATR 42-200	46	53	1.2
Embraer			
EMB-120	30	32	1.1

Copied from: Roskam, Airplane Design Part I

ORIGINAL FAGE IS OF POOR QUALITY

Figure 9.3 ---Cost Comparison for Existing Commuters and the Proposed Family of Commuters.

10.0 Conclusions and Recommendations

10.1 Conclusions

1) The commonality approach toward designing a family of airplanes must begin at the beginning of the preliminary design process.

2) A fmaily of commuter airplanes have been designed. These airplanes range from 25 to 100 passengers.

3) TakeOoff weights range from 28,506 lbs to 85,044 lbs.

4) The design of a commuter family of airplanes with commonality is feasible if the twinbody concept is used.

5) The following commonality objectives have been integrated into the commuter family:

Common fuselage cross section

Common landing gear system

Common wing design

Common empennage/tailcone/engine arrangement

Common powerplants (2)

Common cockpit instrumentation

Common NLF airfoil

Common flight control system

Common fuel system

Common pressurization system

Common de-icing system

Common dynamic handling qualities

6) Large take-off weight penalties have occured (12% on the 25 passenger airplane).

7) Cost savings of about \$1.3 million per airplane have occured due to commonality.

8) Performance objectives met, except the 100 passenger model does not have a 3000 fpm rate of climb at sea level.

9) Stick forces and gradients will require rebalancing of the configurations to meet FAR requirements.

10.2 Recommendations

1) The airplanes should be taken through the following design iterations:

- a) Redesign gearbox to reduce engine nacelle diameter.
- b) Reiterate the class II weight estimation.
- c) Set static margin stick fixed such that the airplanes will be pitch-trimmable and not have an unstable stick fixed margin.
- d) Stick force commonality throughout the family may then be possible.

2) Better methods for hinge-moment derivatives should be found. As a small change in hinge moments can cause large differences in the cockpit stick forces and gradients.

3) A family approach to the design of commuters and transports should be considered as an economically attractive opportunity for U.S. airplane manufacturers.

11.0 REFERENCES

1) University of Kansas AE 790 Design Team; <u>Class I Designs of</u> <u>a Family of Commuter Airplanes</u>; University of Kansas, 1986.

2) Morgan, L.K., University of Kansas AE 790 Design Team; <u>A</u> <u>Cost Analysis for the Implementation of Commonality in the Family</u> <u>of Commuter Airplanes</u>; University of Kansas, April 1987.

3) University of Kansas AE 790 Design Team; <u>A Class II Weight</u> <u>Assessment for the implementation of Commonality and Preliminary</u> <u>Structural Dsigns for the Family of Commuter Airplanes</u>; University of Kansas, 1987.

4) Russell, M., and Haddad, R., University of Kansas AE 790 Design Team; <u>Presentation of Structural Component Designs for</u> <u>the Family of Commuter Airplanes</u>; University of Kansas, 1987.

5) Swift, G., University of Kansas AE 790 Design Team; <u>Advanced</u> <u>Propfan Analysis for the Family of Commuter Airplanes</u>; University of Kansas, May 1987.

6) Hensley, D., University of Kansas AE 790 Design Team; <u>Flight</u> <u>Control Design and Handling Guality Comonality by Seperate</u> <u>Surface Stability Augmentation for the Family of Commuter</u> <u>Airplanes</u>; University of Kansas, May 1987.

7) Kohlman, D.L., Schweikhard, W.G., Albright, A., Evanich, P., "Icing Tunnel Tests of a Glycol-Exuding Porous Leading Edge Ice Protection System on a General Aviation Airfoil"; KU-FRL-464-1 University of Kansas Center for Research, Inc., Lawrence, KS., May 1981.

8) Roskam, J., <u>Airplane Design: Part I. Preliminary Sizing of</u> <u>Airplanes</u>, Roskam Aviation and Engineering Corporation, Ottawa, KS, 1985.

9) Abbott, I.H. and Von Doenhoff, A.E., <u>Theory of Wing Sections</u>, Dover Publications, Inc., N.Y., 1959.

10) Roskam, J., <u>Airplane Flight Dynamics and Automatic Flight</u> <u>Controls, Parts I and II</u>, Roskam Aviation and Engineering Corporation, Ottawa, KS, 1979.

11) Grantham, et al, "Ground Based and In-flight Simulator Studies of Flight Characteristics of a Twin-fuselage Transport Airplane During Approach and Landing"; NASA TM-2451, Sept. 1985.

12) Hoak, D.E.; Ellison, D.E. et al; USAF Stability and Control Datcom; Flight Control Division; Air Force Flight Dynamics Laboratory, Wright Patterson Air Force Base, Dhio. 13) Roskam, J., <u>Airplane Design: Part VI, Preliminary Calculation</u> of <u>Aerodynamic</u>, <u>Thrust</u> and <u>Power Characteristics</u>, Roskam Aviation and Engineering Corporation, Ottawa, KS, 1987.

14) Lan, C.E.; Roskam, J.; <u>Airplane Aerodynamics and Performance</u>, Roskam Aviation and Engineering Corporation, Ottawa, KS, 1980.

15) Roskam, J., <u>Airplane Design: Part II, Preliminary</u> <u>Configuration Design and Integration of the Propulsion System</u>, Roskam Aviation and Engineering Corporation, Ottawa, KS, 1985.

16) Roskam, J., <u>Methods for Estimating Stability and Control</u> <u>Derivatives of Conventional Subsonic Airplanes</u>, Roskam Aviation and Engineering Corporation, Ottawa, KS, 1971.

E.

APPENDIX A

1

COCKPIT AND FUSELAGE ARRANGEMENTS

Α.

TABLE OF CONTENTS

A.1	FUSELAGE CROSS SECTION	A.3
	A.1.1 Determination of Overhead Baggage Volume	A.5
A.2	COCKPIT LAYOUT	A.10
A.3	CABIN LAYOUTS	A.11

÷

)

A.1 FUSELAGE CROSS SECTION

From Figure A.1 it is seen that many commuter airplanes in the 20 to 65 passenger range have 4-abreast seating. This range of passenger capacity spans over half of the required passenger capacity of the family. For this reason 4-abreast seating was selected.

Figure 2.1 shows the selected fuselage cross section to be used in all of the airplanes in the NASA commuter family. The overhead storage volume calculated in this section is compared with that of other commuter airplanes in tables A.1 and 4.4.

5. A

A.1.1 DETERMINATION OF OVERHEAD BAGGAGE VOLUME

50 SHEFTS 109 SHEFTS 200 SHEFTS

22-141 22-147 22-147

6

A.(

SO SHEETS 100 SHEETS 200 SHEETS

$$\frac{\pi e_{P}}{\pi e_{P}} \frac{e_{D}e_{P}/EON}{e_{D}} \frac{\Delta e_{P}}{\nabla e_{D}} \frac{\Delta e_{P}}{\partial e_{D}} \frac{\Delta e_{P}}{\partial e_{P}} \frac{\Delta e_{P}}{\partial e_{P}}$$

VALUES FOR OTHER FOR CONPARISON.

Airplane Type	Number of Passengers	Overhead Baggage Volume (cuft)	Overhead Volume per Seat (cuft)		
NASA					
50	50	56	1.1		
36	36	41	1.1		
25	25	29	1.2		
British					
Aerospace		•			
BAe Super 748	46	41	0.85		
BAe ATP	48	100	1.6		
BAe 146-100	64	56	0.68		
<u>de Havilland</u>			. ,		
DASH 7	50	59	1.2		
DASH 8	37	-32	0.86		
Fokker					
F-27	52	40	0.77		
50	50	79	1.6		
F-28	65	107	. 1.6		
Shorts					
330	30	40	1.3		
360	36	52	1.4		

46

30

ATR Consortium ATR 42-200

Embraer EMB-120

1

53

32

1.2

1.1

TABLE A.1 COMPARISON OF CABIN AND BAGGAGE VOLUMES

ORIGINAL PAGE IS OF POOR QUALITY

A. 2 COCKPIT LAYOUT

This section contains the flight deck layout for the

family of transports.

Figure 2.2 contains the common flight deck layout for the family of commuter transports. Figure 2.2 also shows the laminar flow nose shape used to enclose the flight deck.

The cockpit is designed using figure 2.21 of Reference (3). The cockpit includes a third seat to accomodate an observer, possibly FAA. The fuselage nose is designed similar to the Fiaggio F-180 business airplane.

Jane's all the World Aircraft (year's '83, '84) gives information on the avionics for these airplanes, Boeing: 737-200, 747, 757, 767; MD-80; DHC-8 Dash 8; BAe: 146-200, 748; Fokker: 100, 50; Airbus: A310, A300. Learjet advertising information on the model 55 provides a list of avionics for this 10 passenger airplane. Business and Commercial Aviation, April 1985, contains a section detailing circa 1985 avionics components and information for these systems.

From the above resources the following list of avionics has been chosen for the common flight deck of the family of commuter transports being developed. This list is not meant to be a final listing. The components are:

> Dual Navigation Dual Communications Dual Airspeed Indicators Dual RDMI Dual Instrument Switching Panel Dual EHSI Dual EIACS

Dual Altimeter Dual Vertical Velocity Indicators Dual VOR

Dual ILS

Dual Artificial Horizons Dual Directional Gyros Dual RMI Dual Airdata Computer Systems Flight Recorder

Flight Voice Recorder Flight Managment Computer System Auto Pilot Colour Weather Radar Dual EADI

Dual DME

ORIGINAL PAGE IS DE POOR QUALITY

A.3 CABIN LAYOUTS

The cabin layouts presented in this section were 'laid out' using the methods presented in References (2) and (3). The seat pitch chosen was 32 inches which is consistent with those of other commuter airplanes as shown in Reference (8).

Figure A.2 presents the cabin layout for the 25-passenger commuter.

Figure A.3 presents the cabin layout for the 36-passenger commuter along with an alternate cockpit layout having 3 passenger seats to be used as the second cockpit on a twin body 75-passenger commuter.

Figure A.4 presents the cabin layout for the 50-passenger commuter.

.

A.12

ORIGINAL PAGE IS OF POOR QUALITY

SCALEL USD MCHES

<u>Appendix B</u>

Airplane component weight, center of gravity and inertia breakdowns.

ORIGINAL PAGE IS OF POOR QUALITY

item	25 pax		Non. Arm			Homen	t	1-xx	1-xx
		Xi	Yì	2 i	Wi#Xi	W1+Y1	Wi+Zi	(Hee)	(Hto)
Wing	2, 899	595	176	170	1,724,905	510,224	492,830	2, 846, 809	2,836,708
Engine Mount Bar	267	599	76	205	159, 933	20, 292	54,735	48.784	49,228
Vertical Tail	340	860	`0	343	292, 400	0	116,620	231,862	239, 328
Horizontal Tail	200	941	Û	431	188,200	Ú Ú	86,200	346, 564	353, 564
Fuselage	2, 158	478	0	195	1,031,524	0	420, 810	1	416
Accustic Treatment	1,585	646	0	195	1,023,910	0	. 309,075	1	306
Main Gear	1,438	615	90	130	884, 37 0	129, 420	186,940	550,134	536,665
Nose Gear	331	226	, 0	130	74,806	• •	43,030	43, 299	40, 199
Structural Weight	9,218	584		186	5, 380, 048	659, 936	1,710,240		
Powerplant Weight	5, 434	671	130	215	3,646,214	706, 420	1,168,310	2,922,715	2, 939, 743
Engine Controls	34	175	0	210	5,950	0	7, 140	242	323
Engine Starting Sys.	27	671	130	210	18, 117	3, 510	5,670	14, 374	14, 439
Fuel System	464	589	176	170	273,296	81,664	78 , 8 80	455,647	454,030
Flight Controls	429	561	0	185	240,669	0	79, 365	1,300	752
Hydraulics/Pneumatic	189	358	0	160	67,662	0	30,240	7,145	6,208
Electrical System	735	560	0	185	411,600	0	135, 975	2,228	1,288
Avionics	445	153	0	190	68,085	0	84, 550	329	87
A/C - Pressurization	535	645	0 -	160	345,075	0	96, 300	3,679	2,602
Oxygen System	66	290	0	220	19,140	0	14.520	1.295	1.550
Furnishings	1.358	461	0	200	626, 038	0	271.600	1,109	2.368
APU	60	831	ŏ	215	49,860	0	12,900	755	943
Paint	105	491	Ō	200	51, 555	0	21,000	86	183
Fixed Equipment Wt.	4, 447	490		188	2, 177, 047	65, 174	838, 14 0		
Empty Weight	19,099	587		195	11, 203, 309	1,451,530	3, 716, 690		
Trapped Fuel / Oil	105	589	176	170	61,845	18, 480	17,850	103, 110	102,744
Stewardesses	0	302	0	200	0	0	0	0	.0
Pilots ,	410	180	0	214	73, 800	0	87, 740	4,661	5, 885
Operating Wt. Empty	19,614	578		195	11, 338, 954	1, 470, 010	3, 822, 280	9, 580, 067	
Fuel	3, 767	589	176	170	2, 218, 763	662,992	640, 390		3, 686, 057
Passengers	5,125	531	0	200	2,721,375	0	1,025,000		8,938
Take-off Weight	28,506	571		193	16, 279, 092	2, 133, 002	5, 487, 670		14, 943, 977
OWE + Pax	24,739	568		196	14,060,329)	4, 847, 280		
OWE + Fuel	23, 381	580		191	13,557,717		4,462,670		
Excursion									
Empty Wt.	19,099	587		195	11,203,309	ł	3, 716, 690		Component Inertias:
ONE	19,614	578		195	11, 338, 954		3,822,280		
+ Fuel	23, 381	580		191	13,557,717		4, 462, 670		
+ Pasengers	28,506	571		193	16, 279, 092		5, 487, 670		
- Fuel	24,739	568		196	14,060,329		4,847,280	e	
- Passengers	19,614	578		195	11, 338, 954	· .	3, 822, 280		
Travel		12		•				Le Ci, c	- 222
Sear		615							
Aft C.G.		587							
Euri C G	560	0 149		12					

Aft C.S.	580 0.278	
X-ac-h bar	4.150	
1-v	20.678	
X-ac-mb bar	0.257	

· · · ·

25 Passenger Airplane

Summary of Inertias: (slug-ft^2)

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

І-уу	І-уу	I-22	I-zz
(Hoe)	(Hto)	(Hoe)	(Hto)
B1, 472	97,224	2, 816, 775	2, 842, 627
4, 474	7,766	51,556	54,404
1,071,609	1, 121, 475	839,747	882, 147
1, 165, 212	1,204,212	818, 628	850, 648
672, 140	581,477	672,139	581,061
227,091	276, 851	227,090	276, 545
248, 949	260, 870	422,865	448, 255
1, 318, 761	1,265,245	1,275,462	1,225,046
1 525 050		1 744 774	4 540 687
1, 20, 603	1,771,808	4,311,770	4, 340, 667
171,958	166, 103	171,716	165, 780
7,434	8,636	21, 424	22, 561
10,635	11,940	448, 435	451,356
5,202	2, 106	3,901	1, 354
291,733	272,910	284, 588	266, 702
9,716	4,091	7, 488	2,803
2, 499, 797	2,417,581	2, 499, 468	2,417,494
78,090	93, 472	74,411	90, 870
171,566	163, 614	170, 271	162,064
579, 933	513, 791	578, 824	511,423
120, 024	126, 934	119,269	125, 991
24, 847	21, 109	24, 761	20, 926

2, 407 0 2, 024, 303	2,702 0 1,954,837	101, 478 0 2, 019, 642	102, 139 0 1, 948, 952
17, 507, 196		24, 380, 695	
	96, 93 7 264, 771		3,664,351 255,833
	18, 993, 010	~ .	27, 128, 487

ertias:	I-xx	I-yy	I-22
Fuselage	584,679	4, 143, 333	4, 143, 333
Wing	1,202,585	76, 147	1,276,659
Vertical Tail	30, 269	42, 825	12, 809
Horizontal Tail	37, 787	1,585	39, 335
Engine Mount	3, 486	10, 059	13, 346
Engines	103, 545	614, 851	614,851
Furnishings	28, 156	271,642	288, 528
Fuel	1,562,655	98, 947	1,658,909
Passengers	106,260	1,025,159	1,068,883

,			
r Airplan	e	•	
nertias:		N-oe	H-to
27	1-xx	66, 5 28	103, 778
	І-уу	121, 578	131,896
	I-22	169, 310	188, 392
Weight Us C.G. Loca	ed tion	19,614 578	28,506 571

.

.

. . .

•

. 28, 506 571

> • • •

ORIGINAL PAGE IS OF POOR QUALITY

Item	36 pax		Hos. Ars			Noment		I-XX	I-xx
		Xi	Yi	Zi	Wi+Xi	Wi#Yi	W1+Zi	(Hoe)	(lito)
Wing	2,899	633	176	170	1,835,067	510,224	492,830	2,845,053	2,833,824
Engine Mount Bar	267	695	76	205	185, 565	20, 292	54,735	48,851	49, 382
Vertical Tail	340	956	. 0	343	325,040	0	116,620	233, 100	241,632
Horizontal Tail	200	1,037	0	431	207, 400	0	86,200	347,744	355,710
Fuselage	3,575	539	0	195	1,926,925	0	697, 125	. 30	1, 147
Accustical Treatment	1.585	742	0	195	1.176.070	0	309.075	13	509
Main Gear	1.438	653	90	130	939, 014	129, 420	186.940	547.852	532, 651
Nose Gear	331	226	0	130	74,806	0	43.030	42.774	39,275
			•						
Structural Weight	10,635	627		187	6, 669, 887	659, 936	1,986,555		
Powerplant Weight	5, 434	767	130	215	4, 167, 878	706, 420	1, 168, 310	2, 925, 425	2, 945, 321
Engine Controls	37	175	0	210	6, 475	0	7,770	277	381
Engine Starting Sys.	27	767	130	210	20,709	3, 510	5,670	14, 384	14, 461
Fuel System	464	627	176	170	290, 928		78,880	455, 366	453, 568
Flight Controls	729	630	0	185	459,270	0	134,865	2,036	1,044
Hydraulics/Pneumatic	283	404	. 0	160	114, 332	0	45,280	10,457	8, 887
Electrical System	846	630	0	185	532, 980	0	156, 510	2, 363	1.211
Avionics	555	153	Ō	190	84, 915	Ó	105.450	346	55
A/C - Pressurization	878	741	ŏ	180	650, 598	0	158.040	5.722	3, 791
Oxygen System	82	290	ŏ	220	23, 780	ů.	16.040	1,660	2.029
Furnishinns	1.995	509	0	200	1.015.455	Ő	399.000	1,899	A. 183
ΔDIJ	.,	927	Ň	215	55 620	•	12 900	785	1,005
Daist	157	A77	Ň	200	74 899	<u>`</u>	21 600	149	220
P0100	401		v	200	14000	v	31,400	145	
Fixed Equipment Wt.	6, 113	545		189	3, 329, 951	3, 510	1, 153, 805		
Empty Weight	22, 182	639		194	14, 167, 716	1, 369, 866	4, 308, 670		
Trapped Fuel / Oil	157	627	176	170	98.439	27.632	26.690	154.078	153, 470
Stewardesses	205	302	0	200	61.910		41,000	194	430
Pilots	410	180	0	214	73,800	0	87,740	4,855	6,288
Anoration Mt. Funty	22.954	627		194	14.401.855	1. 397 498	A 454 100	10.038.212	
obei serind wer cabe)	64 JJ4			174	14,101,000	*****		10,000,010	
Fuel	5,620	627	176	170	3, 523, 740	989, 120	955, 400		5, 493, 651
Passengers	7,380	584	0	200	4, 309, 920	0	1,476,000		15, 473
Take-off Weight	35, 954	618	-	192	22, 235, 525	2, 386, 618	6, 895, 500		18,031,680
DNE + Pax	30, 334	617		196	18, 711, 785		5, 940, 100		
QME + Fuel	28, 574	627		190	17, 925, 605		5, 419, 500		
Excursion	-								
Empty Wt.	22, 182	639		- 194	14, 167, 716		4, 308, 670		Component Inertias:
ONE	22,954	627		194	14,401,865		4, 464, 100		
+ Fuel	28, 574	52 7		190	17, 925, 605		5, 419, 500		
+ Pasengers	35, 954	618		192	22,235.525		6, 895, 500		
- Fuel	30. 334	617		196	18, 711, 785		5, 940, 100		
- Passengers	22,954	627		194	14,401,865		4, 454, 100		
Travel		- 11							
6ear		653					··.		
Aft C. 6.		639							
Fud C. S.	617	0.267		11					
· · · · · · · · · · · · · · · · · · ·									

Aft C.G.	627	0.385
X-ac-h bar		4.754
1-v		24.715
X-ac-mb bar	•	0, 906

.

•

.

.

.

•

36 Passenger Airpla

Summary of Inertias: (slug-ft^s)

.

.

•

.

.

ORIGINAL PAGE IS OF POOR QUALITY

І-уу	1-уу	1-22	1-22
(Noe)	(Wto)	(Noe)	(Hto)
56,800	61,861	2, 793, 858	2,810,147
38, 815	50,086	65, 630	96, 570
1, 374, 002	1, 445, 742	1,140,902	1,204,110
1, 390, 533	1,444,722	1,042,789	1,089,012
868, 791	702, 425	868, 761	701,278
646, 739	752,571	646,725	752,063
215, 065	223 , 9 97	391,264	415, 397
1,700,555	1,623,722	1,657,781	1,584,447
7 751 471	7 818 770	6 144 669	6 581 671
91991 ¹ 411	91010100V	01111100	0,001,001
235, 666	226, 520	235, 389	226, 138
16, 551	18, 798	30, 531	32, 702
8,645	7,901	446, 726	447, 779
2, 187	4,070	150	3, 026
449, 530	413, 376	439,073	404, 490
2, 538	4,723	175	3, 512
3, 882, 915	3, 737, 048	3, 882, 569	3, 736, 993
357, 745	413,675	352, 023	409, 884
291,833	276, 964	290, 174	274,935
871,468	746, 893	869, 579	742,710
168, 150.	178,553	167, 365	177,548
110, 562	97,954	110,414	97,625
2,925 674,947	2,673 638,461	151, 155 674, 753	151, 511 638, 031
2, 555, 883	2, 455, 952	2,551,028	2, 449, 664
29, 943, 311		36, 863, 836	
	95,700		. 5, 423, 527
	287,600		272, 127
	34, 183, 041		48, 857, 935
erties:	1-xx	I-yy	I-zz
Fuselage	968, 5 95	8, 842, 041	8, 842, 041
Wing	1,202,585	76, 147	1,276,659
Vertical Tail	30, 269	42, 825	12, 809
Horizontal Tail	37, 787	1,585	39, 335
Engine Mount	3, 466	10, 059	. 13,346
Engines	103 , 5 45	614, 851	614,851
Furnishings	41, 364	1,008,787	1,033,592
Fue)	2, 331, 330	147,619	2, 474, 931
Dacconsour	153.014	3, 706, 811	3.823.514

i T

•

r Airplane

nertias:	W-oe	W-to
1-xx	69, 710	125, 220
1-у у	207, 940	237, 382
] - 22	255, 999	339, 291
Weight Used	22,954	35, 954
C.G. Locations	627	618

·
Iton	50 pax-		Non. Arm			Konen	ŧ	1-xx	[-xx
1.0010		Xi	Yi	Zi	Wi+Xi	Wi+Yi	Wi+Zi	(Noe)	(Wto)
Wind	2.899	732	176	170	2, 122, 068	510.224	492.830	2.844.074	2. 833. 620
Engine Mount Bar	267	905	76	205	241.635	20.292	54,735	48, 891	49, 393
Vertical Tail	340	1.166	0	343	396, 440	• 0	116.620	233, 801	241.798
Horizontal Tail	200	1.247	Ō	431	249.400	Ó	86.200	348.400	355,864
Fuselage	5.278	628	Ō	195	3. 314. 584	0	1.029.210	90	1.749
Accustic Treatment	1.585	952	å	195	1,508,920	0	309.075	27	525
Main Gear	1.438	752	90	130	1.081.376	129, 420	186.940	546.568	522, 363
Nose Gear	331	226	0	130	74,806	0	43, 030	42, 476	39,209
									·
Structural Weight	12, 338	729		168	8,989,229	659, 936	2,318,640		
Powerplant Weight	5, 434	977	130	215	5, 309, 018	706, 420	1, 168, 310	2,926,980	2, 945, 729
Engine Controls	37	175	0	210	6, 475	0	7,770	285	384
Engine Starting Sys.	27	977	130	210	26, 379	3, 510	5,670	14, 390	14,462
Fuel System	464	726	176	170	336, 864		78, 880	455, 209	453, 536
Flight Controls	873	700	0	185	611,100	0	161,505	2, 32 5	1,231
Hydraulics/Pneumatic	379	615	0	160	233, 085	0	60, 640	13, 824	11,863
Electrical System	944	700	0	185	660, 800	0	174,640	2,514	1,331
Avionics	658	153	0	190	100, 674	0	125, 020	371	62
A/C - Pressurization	1,092	· 951	0	180	1,038,492	0	196, 560	6, 899	4, 574
Oxygen System	102	290	· 0	220	29, 580	0	22,440	2, 101	2, 533
Furnishings	2, 535	614	0	200	1, 556, 490	. 0	5 07, 000	2, 598	5, 383
apu	60	1,137	0	215	68,220		12,900	802	1,'009
Paint	210	563	0	200	122, 430	0	42,000	215	446 .
Fixed Equipment Wt.	7, 381	649	•	189	4, 790, 589	3, 510	1, 395, 025		
. Empty Weight	25, 153	75 9		194	19, 088, 836	1, 369, 866	4, 881, 975		•
Trapped Fuel / Oil	210	726	176	170	152,460	36, 960	35, 700	206, 021	205, 264
Stewardesses	205	302	0	200	61,910		41,000	210	435
Pilots	410	180	0	214	73, 800	. 0	87,740	4, 967	6, 317
Operating Wt. Empty	25, 978	746		194	19, 377, 006	1, 405, 825	5, 046, 415	10, 564, 272	
Fue!	6.913	726	176	170	5. 018. 838	1.215.688	1, 175, 210		6. 757. 094
Passengers	10,250	732	0	200	7, 503, 000	0	2,050,000		21,764
. Take-off Weight	43, 141	739		192	31, 898, 844	2,623,514	8,271,625		20, 428, 490
NUE + Day	36, 228	742	١	196	26, 880, 005		7,096,415		
(ME + Fue)	32, 891	742		189	24. 395. 844		6.221.625	•	
Excursion							-,,		
Fmoty Mt.	25, 153	759		194	19.088.836		4.881.975		Component Inerties:
OME	25. 97A	746		194	19.377.006		5.046.415		
+ Fuel	30, A91	742		149	24.395.844		6.221.625		
+ Pasensers	43.141	739		192	31.894.844		8.271.625		
- Fuel	36,228	742		196	26, 880, 005		7.096.415		
- Passengers	25, 978	746		194	19, 377, 006		5,046,415		
Travel		4							
Aft		759							
 Gear		752						•	
End C.S.	739	0.530		1 6					

•

.

ç

•

•

Aft C.G.	746	0.603		
X-ac-h bar		6. 040	•	50 Passenger Airplan
L-v		32.342		•
X-ac-mb bar		-2. 148		Summary of Inertias:
				(stug-st. 5)

t singer

. . . .

.

1-уу	І-уу	1-22	1-zz
(Noe)	(Wto)	(lice)	(Wto)
70, 429	47, 511	2,808,466	2,796,002
211,018	229,012	257, 993	275, 484
2,098,797	2, 164, 877	1,864,996	1,923,079
1,909,292	1,957,460	1,560,891	1,601,595
2,280,414	2,037,876	2,280,323	2,036,127
2,092,586	2, 226, 980	2,092,559	2,226,455
186,206	177,424	363, 688	. 369, 111
2, 823, 239	2, 750, 960	2, 780, 761	2,711,752
9, 092, 786	9, 625, 405	11,874,428	12, 388, 297
375, 101	366, 724	374.816	366, 340
45,026	47,652	59,001	61,554
14, 197	9,406	452, 434	449, 316
59, 492	43, 371	57, 167	42, 141
215, 669	194, 185	201,845	162, 321
64, 331	46, 899	61, 816	45, 568
7, 189, 638	7,032,762	7, 189, 267	7,032,700
1,434,630	1,524,213	1, 427, 731	1,519,539
661,025	642,826	658, 924	640,293
1, 373, 374	1,244,551	1, 370, 776	1,239,169
286, 049	295, 804	285, 247	294, 794
173, 420	160, 121	173, 205	159,675

6, 426	4,257	204, 766	203, 354
1,255,720	1,219,493	1,255,510	1,219,058
4, 085, 897	3, 994, 157	4, 080, 930	3, 987, 840
58, 848, 47 5		65,824,307	
	140, 133		6,694,227
	39, 252		17, 488
	67, 033, 444		83, 526, 675

I-yy I-zz 18, 172, 923 18, 172, 923 ertias: І-ях 1, 429, 998 Fuselage 1, 202, 585 30, 269 37, 787 Wing 75, 147 1, 276, 659 12,809 39,335 Vertical Tail 42,825 1,585 10,059 Horizontal Tail 3, 486 103, 545 52, 560 2, 867, 702 212, 519 13, 346 Engine Mount Engines 614,851 614,851 1,925,323 1,956,843 181,582 3,044,342 614,851 1,956,843 Furnishings Fuel Passengers 7,784,838 7,912,286

0

and the second

r Airplane

nertias: 2)		V-oe	H-to
2,	l-xx	73, 363	141,865
	і−у у	408,670	465, 510
	I-22	457, 113	580, 046
Weight Used		25,978	43, 141
C. 6. Locat	ions	746	739

•

a ann an Star Saidhean Stàr Saidhean Stàr

• • • • •

.

•

·

. .

. . .

Item	75 pax		Nos. Are		•	Howent		l-xx	1-**
		. Xi	Yi	Zi	Wi=Xi	Wi+Yi	Wi+Zi	(Woe)	(Wto)
Wing	4,349	628	465	170	2,731,172	2,022,285	739.330	19, 649, 535	19, 583, 533
Engine Mount Bar	488	689	189	215	336, 232		104.920	541,858	543, 821
Vertical Tail	680	956	289	343	650,080	196, 520	233, 240	2, 122, 238	2, 176, 793
Horizontal Tail	1,027	1,024	0	431	1,051,648	0	442,637	1,516,549	1,652,749
Fuselage	7,150	539	289	195	3,853,850	2,066,350	1, 394, 250	18, 633, 046	18, 576, 679
Accustic Treatment	3, 170	742	289	195	2, 352, 140	916, 130	618, 150	8,261,085	8, 236, 094
Main Gear	2,876	660	289	130	1,898,160	831, 164	373, 880	8,082,109	7, 948, 141
Nose Gear	662	226	289	130	149,612	191, 318	86, 060	1,860,346	1,829,509
Structural Weight	20, 402	638		196	13,022,894	6, 223, 767	3, 992, 467		
Powerplant Weight	12, 196	. 774	120	265	9, 439, 704	1, 463, 520	3, 231, 940	6, 482, 303	6, 894, 418
Engine Controls	44	175	289	210	7,700	12, 716	9, 240	114,233	114,279
Engine Starting Sys.	91	774	135	210	70, 434	12, 265	19, 110	51, 573	51,668
Fuel' System	666	616	465	170	410,256		113, 220	4, 514, 174	4, 499, 011
Flight Controls	1,458	630	289	185	918, 540	421, 362	269, 730 /	3, 820, 451	3, 800, 276
Hydraulics/Pneumatic	546	404	289	160	220, 584	157, 794	87, 360	1,465,094	1, 449, 413
Electrical System	1,103	630	289	185	694,890	318, 767	204,055	2, 890, 231	2,874,969
Avionics	843	153	289	190	128, 979	243,627	160, 170	2,202,255	2, 193, 099
A/C - Pressurization	1,755	741	289	180	1,300,455	507, 195	315, 900	4, 615, 344	4, 585, 836
Oxygen System	164	290	289	220	47, 560	47, 396	36, 08 0	425, 978	427, 126
Furnishings	3, 969	509	289	200	2,020,221	1, 147, 041	793, 800	10, 324, 137	10, 304, 661
APU	120	927	289	215	111,240		25,800	311,524	312,007
Paint	314	477	289	200	149, 778	. 90, 746	62,800	816,775	815, 234
Fixed Equipment Wt.	11,073	549		189	6,08 0,637	2, 958, 929	2,097,265		
Empty Weight	43, 671	654		213	28, 543, 235	10, 646, 216	9, 321, 672		
Tranned Fuel / Dil	313	616	465	170	192, 808	145, 545	53, 210	2, 121, 526	2.114.400
Stewarde6585	410	302	289	200	123, 820		82.000	1,066,489	1.064.477
Pilots	410	180	289	214	73,800	118,490	87, 740	1,064,338	1,065,743
Operating Wt. Empty	44, 804	646		213	28, 933, 663	10, 910, 251	9, 544, 622	109, 631, 193	
Fuel	11,240	616	465	170	6. 923. 840	5, 226, 600	1, 910, 800		37.964.627
Passengers	15, 375	584	289	200	8, 979, 000	4, 443, 375	3,075,000		39, 917, 906
Take-off Weight	71,419	628		203	44, 836, 503	20, 580, 226	14, 530, 422		195, 191, 465
GME + Pax	60, 179	630		210	37. 912. 663		12, 619, 622		
CHE + Foel	56.044	640		204	35, 857, 503		11, 455, 422		Component Inert
Excursion		,					,,		
Empty Mt.	43, 671	654		213	28. 543. 235		9. 321. 672		
OME	44.804	646		213	28, 933, 663		9.544.622		
+ fuel	56.044	640		204	35, 857, 503	•	11.455.422		
+ Pasenders	71.419	628		203	44, 836, 503		14.530.422		
- Fuel	60, 179	630		210	37, 912, 663		12, 619, 622		
- Passengers	44,804	646		213	28, 933, 663		9,544,622		
Travel		18							
6ear		660							
Aft C.G.		654							
	628	0.602							

....

ORIGINAL PAGE IS OF POOR QUALITY

Aft C.G.	646 0.	. 769
X-ac-h bar	4 .	283
1-v	23.	185
X-ac-b bar	0.	. 994

. . .

75 Passenger T

Summary of Iner

;

,

12.5

. .

a kan suur ja siin ar Saaraa a

.

. .

. .

•

. .

-

І-уу	І-уу	1-22	1-22	
(Noe)	(Wto)	(Woe)	(Hto)	
195, 333	100,840	19, 511, 191	19, 482, 700	3
28, 387	58, 840	570, 128	598,617	3
2, 390, 940	2, 688, 207	3, 799, 148	4,041,860	
6,082,670	6, 663, 524	4, 566, 121	5,010,775	
2,606,241	1,768,063	21,094,793	20, 312, 983	
944, 163	1,292,100	9, 141, 185	9,514,113	
634, 322	574, 996	7, 483, 922	7,558,564	
3, 767 , 64 0	3, 432, 728	5, 344, 287	5,040,211	
7, 255, 438	9, 538, 712	11, 690, 174	13, 561, 332	
303, 115	280, 441	417, 323	394, 603	
46, 523	60, 580	98,044	112,006	
56, 690	26.046	4.494.207	4, 478, 725	
46, 894	15.651	3, 796, 134	3, 785, 066	
1.039.787	881.984	2.409.433	2.267.312	
35. 476	11.840	2.871.835	2.863.462	
6. 376. 488	5.911.309	8, 550, 948	8.094.924	
554,051	729.044	5,050,372	5.254.872	
645.470	583.024	1,070,952	1,007,359	
2. 328. 971	1.742.370	12,611,215	12.044.089	
294, 972	334, 395	606.467	645, 408	
279,681	222,038	1,093,142	1,037,039	
25, 643	12,241	2, 112, 142	2, 104, 866	
1, 508, 242	1, 352, 746	2, 570, 404	2,416,921	
2, 764, 700	2, 556, 692	3, 829, 014	3, 619, 600	
63, 540, 242		162, 019, 371		
	219.783		37.793.448	
	922, 262		40, 828, 771	
	72, 853, 682		256, 191, 887	
ertias;	J-xx	1-ýy	1-22	
Fuselage	1,937,190	17,684,081	17,684,081	
Outbd. Wing	1, 202, 585	76, 147	1,275,659	
Center Wing	1,255,690	64, 319	1,318,342	
Vertical Tail	60, 538	65, 650	25,619	
Horizotal Tail	1,610,478	13, 217	1,623,311	
Engine Nount	16,671	20, 630	36, 816	
Engines	512, 558	2,750,829	2,750,829	
Furnishings	82, 292	2,006,954	2,056,305	
Outbd. Fuel	2, 331, 330	147,619	2, 474, 931	
Center Fuel	4,865,882	249, 293	5, 109, 710	
Passengers	318, 779	7,774,483	7,965,655	

16 Pax Wing Wt. 16 Pax Fuel Wt. 2**, 899** 5, 620

.

r Twin-body Airplane

nertias:	ii-oe	¥-to
I-11	761, 328	1, 355, 496
І-уу	441,252	505, 928
1-22	1, 125, 135	1,779,110
Weight Used C.G. Location	44, 804 646	71, 419 628

.

									· · · •	
	iten '	100 pax		Nose, Anna	•		Homent		1-xx '	l-xx
			Xi	Yi	Zi	Wi+Xi	Wi+Yi	Wi+Zi	(Noe)	(Wto)
	Wing	4, 349	752	465	170	3,270,448	2,022,285	739, 330	19,631,691	19,571,863
	Engine Mount Bar	488	899	189	215	438, 712		104, 920	542.084	544.581
	Vertical Tail	680	1,166	289	343	792, 880	196, 520	233, 240	2, 135, 355	2, 188, 547
	Horizontal Tail	1,027	1,234	0	431	1,267,318	0	442, 637	1, 549, 654	1,681,862
	Fuselage	10,556	628	289	195	6,629,168	3, 050, 684	2,058,420	27, 482, 994	27, 416, 172
	Accustic Treatment	3,170	952	289	195	3,017,840	916, 130	618, 150	8,253,229	8,233,163
	Main Gear	2,876	784	289	130	2,254,784	831, 164	373, 880	8,047,485	7,922,294
	Nose Gear	662	226	289	130	149,612	191,318	86,060	1,852,377	1,823,560
	Structural Weight	23, 808	749			17,820,762	7,208,101	4,656,637		
	Powerplant Weight	12, 196	984	135	265	12,000,864	1,645,460	3,231,940	8,027,571	8, 438, 948
	Engine Controls	44	175	289	210	7,700	12,716	9,240	114,221	114,320
	Engine Starting Sys.	91	984	135	210	89, 544	12, 285	19, 110	51, 548	51,753
	Fuel System	666	740	465	170	492, 840		113,220	4,510,075	4, 496, 330
	Flight Controls	1,746	700	583	185	1,222,200	504, 594	323, 010	4, 568, 213	4, 547, 168
	Hydraulics/Pneumatic	726	615	289	160	446, 490	209, 814	116, 160	1, 942, 556	1,923,418
	Electrical System	1,253	700	289	185	877,100	362,117	231,805	3, 278, 334	3, 263, 231
et e ta	Avionics	1,015	153	289	190	155, 448	293, 624	193, 040	2,650,935	2,641,596
	A/C - Pressurization	2, 183	95 1	289	180	2,076,033	630, 8 87	392, 940	5, 730, 684	5,698,125
	Oxygen System	204	290	289	220	59, 160	56, 956	44,880	530, 119	531,747
	Furnishings	4,952	614	289	200	3,040,528	1, 431, 128	990,400	12, 872, 480	12, 855, 303
	APU	120	1,137	289	215	136,440		25, 800	311,580	312, 194
	Paint	421	583	289	200	245, 443	121, 669	84,200	1, 094, 369	1,092,908
	Fixed Equipment Wt.	13, 422	659		190	8, 848, 926	3, 637, 790	2, 543, 805		
	Empty Weight	49, 426	782		211	38, 670, 552	12, 492, 351	10, 432, 382		
	Trapped Fuel / Dil	420	740	465	170	310,800	195, 300	71,400	2, 844, 191	2, 835, 523
	Stewardesses	410	302	289	200	123, 820		82,00 0	1,065,775	1,064,353
	Pilots	410	180	289	214	73,800	118,490	87,740	1,064,467	1,066,330
	Operating Wt. Empty	50, 566	773		211	39, 178, 972	12, 806, 141	10, 673, 522	127, 936, 580	
	Fuel	13.878	740	465	170	10, 269, 720	6, 453, 270	2,359,260		46.671.365
·	Passengers	20, 500	732	289	200	15,006,000	5, 924, 500	4,100,000		53, 217, 631
	Take-off Weight	85,044	758		201	64, 454, 692	25, 183, 911	17, 132, 782		237, 149, 960
	DHE + Pax	71, 166	761		208	54, 184, 972		14,773,522		
	DWE + Fuel	64, 544	766.		202	49, 448, 692		13, 032, 782		Component Inert
	Excursion	•				• •		• •		•
	Empty Wt.	49, 426	782		211	38, 670, 552		10, 432, 382		•
	ONE	50,666	773		211	39, 178, 972		10,673,522		
	+ Fuel	64, 544	766		202	49, 448, 692		13,032,782		
	+ Pasengers	85,044	758		201	64, 454, 692		17, 132, 782		
	~ Fuel	71, 166	761		208	54, 184, 972		14, 773, 522		
	~ Passengers	50, 666	773		211	39, 178, 972		10,673,522		
	Travel .		1Ś							
	6ear		784							
	Aft C.G.		782							
	Fwd C. 6.	758	0.659		15.381					

.

.

tan a tan Ang ang ang

		•	
			,
Aft C.S.	773 0.802		
X-ac-h bar	4.942		100 Passenger
1-v	30.06 0		
X-ac-b bar	1.794		Summary of Iner

•

.

.

.

n Alexandra (m. 1997) Alexandra (m. 1997)

· · · · · · . .

· .

• • • •

• •

·

1-уу	1-уу	1-22	1-22	
(Noe)	(Wto)	(Noe)	(Hto)	
189, 795	9 2, 301	19, 523, 496	19, 485, 831	50
240,018	304, 763	781, 532	843,781	50
3, 629, 785	3, 943, 410	5,024,875	5,285,209	
8, 325, 144	8,917,304	6, 775, 490	7,235,442	
7,005,224	5, 549, 738	34, 327, 208	32, 938, 544	
3, 171, 226	3, 716, 156	11, 376, 104	11, 941, 101	
591,905	517, 341	7, 476, 128	7, 526, 755	¢
6,2%,581	5, 926, 229	7,881,197	7, 539, 662	
17, 950, 776	20, 909, 025	23, 740, 082	26, 286, 954	
489, 504	464, 757	603, 724	578,878	
100,000	144,738	177,136	196,139	
57,155	27,116	4, 498, 771	4,482,477	
327,153	196, 614	4, 823, 878	4,714,384	
623, 223	499, 554	2, 449, 936	2, 345, 406	
234, 778	141,098	3,461,809	3, 383, 232	
12, 163, 122	11,558,700	14,787,088	14, 192, 005	
2,206,811	2,561,246	7,809,896	8, 196, 890	
1,481,439	1,390,302	2,010,453	1,917,689	
3, 922, 266	3, 187, 357	16, 759, 738	16,042,006	
493, 485	536, 713	804,925	847, 538	
475, 250	400, 293	1, 566, 643	1, 493, 146	

36,044	17, 100	2,837,063	2, 826, 787
2,831,770	2, 648, 616	3, 894, 646	3,712,914
4, 485, 501	4,257,807	5, 549, 685	5, 320, 128
94, 083, 758		209, 590, 674	
	281, 458		46, 527, 568
	428, 707		53, 643, 630
. 1	110,854,136		334, 963, 372
ertias:	Ixx	І-уу	1- zz
Fuselage	2,859,997	9, 403, 601	9,403,601
Outbd. Wing	1,202,585	76, 147	1,276,659
Center Wing	1,255,690	64, 319	1,318,342
Vertical Tail	60, 538	85,650	25,619
Horizontal Tail	1,610,478	13, 217	1,623,311
Engine Mount	16,671	20,630	36, 815
Engines	512, 558	2,750,829	2,750,829
Furnishings	102,673	3, 761, 026	3, 822, 599
Outbd. Fuel	2,867,702	181, 582	3,044,342
Center Fuel	6,031,642	308, 954	6, 332, 586
Passengers	425,039	15, 569, 677	15, 824, 573

Pax Wing Wt. 2, Pax Fuel Wt. 6,

2, 899 6, 913

er Twin-body Airplane

...

nertias:	W-ce	H- to
I-**	888, 448	1,646,875
1 -y y	653, 359	769, 820
I-22	1, 455, 491	2, 326, 135
Weight Used	50,666	85, 044
C.G. Location	773	758

. . .

•

<u>Appendix C</u>

Stability and Control Calculation

Purpose:

se: a) Calculation of airplane lift curve

- b) Calculation of airplane pitching moment curve
- C) Short period frequency and damping
- d) Dutch roll frequency and damping
- e) One-engine out sizing
- f) Take-off rotation requirement

ORIGINAL PAGE IS OF POOR QUALITY

						5-1	3.07
25 Passenger Airplane: C	alculations f	or Cruise a	nd M.C. at Fwd and	Aft C.6.			
			Note: All Result	s in RADIANS	·	- V. C	
Cruise Mach Number	0.700						
Section Lift Curve Slope	6.000		Forward C.G.	0.145	5		
Wing-Body ac shift	-0.090		Aft C.6.	0.280)		
X-bar C.G.	0.280						
Min Control Dynamic Pres.	51.170		Cruise A.C.	0.369)		
Cruise Dynamic Pressure	215.600		#in Cntrl A.C.	0 . 376	,		
Minimum Control Speed fps	207.500						
Cruise Speed fps	696.290		Static Margin	-0.089)	-0.224	
1/rad to 1/deg conversion	0.017						
Moments of Inertia:	Fud C. G.		Aft C.6.				
I-xx	67,265		102, 964				
1-уу	130, 433		122, 535				
1-22	177,066		180,634				
Weights	24,739		23, 381	•			
Fuselage:							· .
Fuselage Height	8.050						
Fuselage Width	8.050						
Fuselage Length	71.330						
C-n-8-body	-0.171						
Wing:			H	ing Lift Curv	25:		
Wing Area 'soft	592.000	•	K:1	.0544	C-L-e	(cruise)	4.7089
Wing Span ft	84.300	•	k:0	. 6820	C-L-8	(app)	4.7794
Wing MGC ft	7.450		8:0	.7141			
Aspect Ratio	12.000						
Leading Edge Sweep rad	0.262						
Semichord Sweep rad	0.194						
C-L⊸	0.170						
C-m-o-wing (cruise)	-0.054		•				
C-m-o-wing (approach)	-0.045			•			
Horizontal Tail:			H	iorizontal Tai	I Lift	Curves:	3.0305
Iotal H. I. Hrea soft	120.000	•	K11	.0630	U-L-8	(cruise)	3-8355
H.I. Area (each) sqft	120.000		K10	. 5520	1-1-8	(app)	3.9610
H.I. Span ft	26.569		8:0	.71			
H.I. Koot Chord	6.022						
HLI. HEU TE	4.684						
H.I. HSPECT MATIO	2.883						
H.I. LE Sweep rad	0.436	•					
H. L. C/2 Sweep rad	0.314						
H. I. Taper Natio	0.500		•				
H.I. I-ac-h Dar	4.150						
1 - downwash	U. /45						
H.I. q-Dar corr. (eta-h)	1.000	•		•			
Elevator effectiveness re	0.540						
Vertical Tail:			v	ertical Tail	Lift Cu	rves:	
Total V.T. Area sqft	170.000		K:1	. 0366	C-L-#	(cruise)	2.0802
V.T. Area (each) soft	170.000		k20	. 68	C-1-0	(app)	2.2314
V.T. Span ft	15.400		£:0	. 71			
V.T. HGC ft	12.000						
V.T. Aspect Ratio	1.40						
V.T. Effective Asn. Ratio	1,960						

•				
V.T. LE Sweep rad	0.785			
V.T. c/2 Sweep rad	0.58 7	•		
V.T. Taper Ratio	0.330			
V.T. Moment Arm 1-v	20.678			
Approach Alpha s (rad)	0.1745			
Approach V.T. 1-v	22.17			
1+(do/dG)	1.477			
Engine Mounting Bar:	-		í	Engine Bar Lift
Bar Area soft	112.000	*	Ka:	1.0202
Bar Span ft	-11.000		_ k:	. 68
Bar MGC ft	10.200		S 1(0.71
Bar Aspect Ratio	1.080	•		
Bar LE Sweep rad	0.435			
Bar c/2 Sweep rad	0.281			
Bar Japer Natio	0.880			
A-bar ac-n	0.23/			
1 ~ COWNWASH	1.000			
Der Q-Der Corr. (ers-n)	1.000			
Total Take-off Thrust lbs	13,325			
Total Cruise Thrust (1bs)	1,698			
Z-T (vertical mom. arm)	1.920			
Y-T (horizontal mom. arm)	10.500			
Non-dim. Derivatives:	Cruise-fwd	Cruise-aft	Min Cntrl-fwd	Min Cntrl-aft
C-L-s Airplane	5. 579	5. 579	5.670	5. 670
C-u-s Airplane	-1.251	-0. 498	-1.308	-0.543
C-L-s-dot	1.583	1.530	1.634	1.578
C -m-e -dot	-6.342	-5.921	-6.542	-6. 109
C -= q	-27.472	-25.644	-28. 341	-26.456
С -у-8	-1.168	-1.168	-1.232	-1.232
ር- ከ በ	0.045	0.045	0.078	0.078
С -у-т	0.433	0.433	0.498	0.498
С -л г	-0. 106	-0, 106	-0.131	-0. 131
Dimensional Derivatives:	Cruise-fwd	Cruise-aft	Min Cntrl-fwd	Min Cntrl-aft
2-8:	-926.009	-979. 793	-223. 337	-236. 306
Z-s-dot :	-1.405	-1.437	-1.155	-1.161
H-e:	-9, 121	-3.864	-2.264	-1.000
H-s-dot :	-0.247	-0.246	-0.203	-0.202
₩-q:	-1.071	-1.065	-0.880	-0.875

Lift Curve	5:	
C-L-#	(cruise)	1.5317
C-L-0	(app)	1.5395

میں بار ہوئے ^{الع}مر ال^عام ملامی اس الیار الم ملاقی

•••

•					
	Y—9:	-193. 847	-205, 106	-48. 535	-51.354
	Y -r :	4, 349	4.601	3, 983	4.215
	N-8 :	2.760	2.705	1. 123	1. 101
	N-r:	-0. 391	-0.383	-0.384	-0.376
	Short Period:				
	Frequency	3.247	2.316	1.792	1.413
	Damping Ratio	0.408	0.567	0.603	0.784
	N-e	28.785	30.457	6.832	7.229
	Dutch Roll:				
	Frequency	1,689	1.673	1.092	1.083
	Damping Ratio	0, 198	0.202	0.283	0.288
	Omega + Zeta	0. 334	0. 339	0.309	0.312
Verify Clas	s I Handling Qu	alities:			
	Short Period:				
8	elow max freq.	yes	yes -	yes	yes
A	bove min freq.	yes	yes	yes	yes
•	Damping	yes	yes	yes	yes
	Dutch Roll:				
	Frequency	yes	y #5	yes	76 22
	Damping Ratio	yes	yes	yes	yes
	Umega + Zeta	yes ,	yes	yes	yes
Engine-Out	Calculations:				
C-y-6-r		-0.324			
6-1-6-1		0.085			
Required 6	i-r (rad)	0.402	·		
Required 6	i-r (deg)	23.051			
1464 and Di	tohing House F			·	
LITE AND P1	ventill Hom ent f	1015; 1015;			
Airplane X-	ac (cruise)	0.369			
Airplane X-	ac (approach)	0.376			
Airplane C-	L-e (cruise)	5.579			
Airplane C-	L-s (approach)	5.670			
Airplane C-	H-e (cruise)				
	Forward C. G.	-1.251			
	Aft C.6.	-0.498			
Airplane C-	H-s (approach)				
		-1 300			
	Forward C. S.	-1.300			
	Aft C.S.	-0.543			
C-L-i-#	Aft C.G.	-0.543 0.778			

•.•.

•

C-L-8~e	(cruise)	0.420						
C-L-6~e	(approach)) 0.434				L.		
C-M-i-h	(cruise)		, bar	values				
	Forward C. 6.	3.117	-2.9	42				
	Aft C.6	3.012	-2.9	42				
C-H-i-h	(approach)) .		•				
	Forward C.S.	3.216	-3.0	30				
	Aft C.6.	-3.107	-3.0	30				
C-#-6-e	(cruise)							
	Forward C.G.	. ~1.683	-1.5	89				
	Aft C.6	-1.626	-1.5	189				
C-H-ó-e	(approach))						
	Forward C. G.	1.736	-1.6	36				
	Aft C.G.	1.678	-1.6	36				
∆f C -m -ac	(cruise)	-0.038				· ,		
	(approach)) -0.038						
C-s-ac-wb	(cruise)	-0.092				•		
	(approach)	-0,083						
C -s o (a-ht) (cruise)							
	Forward C. G.	0, 052	-0.0	14				
	Aft C. 6.	-0.029	-0.0	14				
C-s-o (a-ht) (approach))						
	Forward C. 6.	-0.043	-0.0	04				
	Aft C.G.	0.020	-0.0	04				
C-y-6-r	(cruise)	-0.302		i				
	(approach)) -0.324				•		
C -n-6-r	(cruise)	0.074						
	(approach)	0.085						
Lift Curve	Equations:	Condition	C-1-0	•	i-h	6-e	é-flaps	
		Cruise .	0. 170	0.097	0. 014	0.007	0.027	
		Min Control	0. 170	0.099	0. 014	0.008	0.072	
Pitching Mo	ment Eqns: ·	Condition	C-8-0	64	i∺h	óe	C -s −å-f	Thr
		Cruise-fwd	-0. 014	-0.224	-0.051	-0.028	·	-0.0
		Cruise-aft	-0.014	-0.089	-0.051	-0.028		-0.0
		Min Cntrl-fw	-0.004	-0.231	-0.053	-0.029	-0. 390	-0.1
		Nin Cntrl-af	-0.004	-0.096	-0.053	-0.029	-0.390	-0. 1

.

- .
- .

.:	. ÷		 •			
						,
	-					
	Take-off Rotation Calculat	ions:				
	Take-off Thrust T	13, 325				
	Thrust Noment Arm z-t	1.92				
	Drag at T-O D	2,000.00				
	Drag Howent Arm z-d	2.00				
	Lift at T-O	5,000				
•	Take-off Weight W-to	24, 739				
	X-mg	5.00				
	X-cg	1.33				
•	2 -e g	7.75				•
	X-ac-wb	1.19				
	X-ac-h	30.92				
	Wheel-ground friction μ	0.02				
	q-bar T.D.R.	50.00				
	C-1-o-h	0.17				
	C-m-ac-wb	-0.08				
	H.T. incidence for rotat.	0.15 rad				
		8.88 deg				
	Elevator Deflection	16.44 deg			/	

. .

25 Passenger Airplane: Calculations for Cruise and M.C. at Fwd and Aft C.G. Note: All Results in RADIANS

Cruise Mach Number	0.700	
Section Lift Curve Slope	6,000	fud - H-to C.G.
Winn-Body ar shift	-0.090	aft - M-oe C. S.
I-bar C.G.	0.257	
Nin Control Dynamic Pres.	51, 170	Cruise A.C.
Cruise Dynamic Pressure	215,600	Min Cotrl A.C.
Minimum Control Speed for	207.500	
Cruise Speed fps	696,290	Static Margin
1/rad to 1/deg conversion	0.017	-
Moments of Inertia:	Fwd C.G.	Aft C.G.
I-xx	103, 778	66, 528
І-уу	131,896	121, 578
I-zz	188, 392	169, 310
Weights	28,506	19, 514
Fuselage:	•	
Fuselage Height	8.050	
Fuselage Width	8.050	
Fuselage Length	71.330	
C-n-9-body	-0.171	
Wing:		
Wing Area sqft	592.000	K:
Wing Span ft	84.300	k:
Hing MBC ft	7.450	£:
Aspect Ratio	12.000	
Leading Edge Sweep rad	0.262	
Semichord Sweep rad	0.194	
C-1-0	0.170	
C-s-o-wing (cruise)	-0.054	
C-m-o-wing (approach)	-0.045	
Horizontal Tail:		
Total H.T. Area sqft	120.000	K3
H.T. Area (each) soft	120.000	k:
H.T. Span ft	26.569	8:
H.T. Root Chord	6.022	
HLT. MGC ft	4.684	
H.T. Aspect Ratio	5.883	
H.T. LE Sweep rad	0. 436	
H.T. c/2 Sweep rad	0.314	
H.T. Taper Ratio	0.500	
H.T. X-ac-h bar	4.150	
1 - downwash	0.746	
H.T. q-bar corr. (eta-h)	1.000	
Elevator effectiveness re	0.540	•
Vertical Tail:		
Total V.T. Area sqft	170.000	K:
V.T. Area (each) soft	170.000	k:
V.T. Span ft	15.400	. B:
V.T. NGC ft	12.000	•
V.T. Aspect Ratio	1.40	
V.T. Effective Asp. Ratio	1.960	

Wing Lift	Curves:		
K:1.0544	€-L-e	(cruise)	4.7089
k:0.6820.	C-L-e	(app)	4.7794
8:0.7141			

-0.190

0.179

0.257

0.369

0.376

-0.112

Horizontal	Tail Lift	Curves:	
K11.0630	C-1s	(cruise)	3. 8395
k:0. 5820	C-L-e	(app)	3.9610
8:0.71		•	

Vertical Tai	il Lift Cu	rves:	
K:1.0366	C-L-8	(cruise)	2.0802
k:0.68	C-L-s	(app)	2.2314
8:0.71			

 W_{ol}

V.T. LE Sweep rad	0.785						•
V.T. c/2 Sweep rad	0.687						
V.T. Taper Ratio	0.330						
V.T. Homent Arm 1-v	20.678						
Approach Alpha s (rad)	0.1745						
Approach V.T. 1-v	22.17						
1+(de/dB)	1.477						
Engine Mounting Bar:			E	ingine Bar Lift	Curve	5:	
Bar Area sqft	112.000		K21	. 0202	C-L-8	(cruise)	1
Bar Span ft	11,000		k:C	. 68	C-L	(app)	1
Bar NGC ft	10.200		ê:C).71			
Bar Aspect Ratio	1.080						
Bar LE Sweep rad	0.436						
Bar c/2 Sweep rad	0.281						
Bar Taper Ratio	0.880	•					
X-bar ac-h	0.257						
1 - downwash	1.000					· ·	
Bar q-bar corr. (eta-h)	1.000						
Total Take-off Thrust 1bs	13, 325						
Total Druise Thrust (1bs)	1,698						
I-T (vertical mom. arm)	1.920						
Y-T (horizontal mom, arm)	10,500			•			
Non-dim. Derivatives:	Cruise-fwd	Cruise-aft	Min Cntrl-fwd	Min Ontrl-aft	;		
C-L-s Airplane	5. 579	5. 579	5.670	5.670		,	
C-m-s Airplane	-1.061	-0.626	-1.116	-0.673			
C-1-s-dot	1.570	1.539	1.620	1. 588			
C-a-s-dot	-6.234	-5.992	-6.432	-6. 182			
C-=-q	-27.003	-25. 949	-27.858	-26. 771			
С-у-8	-1.168	-1.168	-1.232	-1.232			
C -π-β	0.045	0.045	• 0.078	0. 078			
C- -	0.433	0. 433	0.498	0. 498			
C -n-r	-0.106	-0.106	-0. 131	-0. 131			
Dimensional Derivatives:	Cruise-fwd	Cruise-aft	Nin Ontri-fwd	Min Cntrl-oft	;		
2-8:	-803. 639	-1, 167 . 96 9 ′	-193. 823	-281.693			
2-e-dot :	-1.210	-1.724	-0 . 994	-1.415			
H-e:	-7.652	-4.898	-1.909	-1.250			
N-e-dat:	-0.240	-0.251	-0.198	-0.206			

:

•.•

,

.

	,						
						· .	
							,
			,				
	Υ—₽:	-168, 231	-244. 496	-42.121	-61.217		
, , 	Y-m	5. 776	5.485	3. 457	5.024		
		WQ 7 1 1					
	N-8:	2.594	2.886	1.056	1.175		
	•	4 7/7	A (A)		a a.		
	(****)	-0.367	-0.408	-0.350	-0.401		
	Short Period:						
	Frequency	2.976	2.592	1.646	1.569		
	Damping Ratio	0,409	0.581	. 0.604	0.783		
	N~6	21, 961	<i>3</i> 0 . <i>3</i> 0	3, 363	8.617		
	Dutch Roll:						
	Frequency	1.634	1.734	1.054	1.125		
	Damping Ratio	0.186	0.219	0.267	0.309	· .	
	unega = 2013	0.309	0.380	V. 28C	0.340		
,	Verify Class I Handling Qu	aliti es :					
	Short Period:						
•	Below max freq.	yes	yes ves	yes	yes		
	Dansins	785 785	yes yes	yes Ves	yes		
		-	-	•	•		,
	Dutch Roll:						•
	Banoing Ratio	985 V85	yes V95	yes VP5	yes Ves		
	Qmega + Zeta	yes	yes	yes	yes		
		-	•				
	Engine-Out Calculations:						
	C-y-6-r	-0.324		·			
	C-n-b-r	0.085					
	Required 6-r (rad)	0.402					
	requires orr (deg)	23.001	-				
	Lift and Pitching Moment C	alculations:					
	Aimlano Y-ac (muiso)	0.369					
	Airplane X-ac (approach)	0.376					•
	Airplane C-L-e (cruise)	5.579					
	withing curue (approace)	3.6/9					
	Airplane C-M-a (cruise)			•			
	Forward C.S.	-1.061					,
	Aft C.B.	-0.626	•	•			
	Airplane C-H-s (approach)						
	Forward C.S.	-1.116				-	
	Aft C.G.	-0.673					
	C-L-J-H (cruice)	0. 77B					
	C-L-i-H (approach)	0.803					
				•			
							x
	•						
						•	-
							-
	,						`

•	ℂーႱーႱーႲ	(cruise)	0.420					•	
	C-L-&-e	(approach	. 0. 434						
	•								
	C-H-i-h	(cruise)	2 404	bar -	values				
		Forward C.6	-3.091	-2.9	42				
		_ HTT C.6	3.030	-2.3	42				
	C-H-i-h	(approach)						
		Forward C. 6	-3, 188	-3.0	30				
		Aft C.6	3. 126	-3.0	30 -				
	C-#-6-0	(cruise)							,
		Forward C. 6	-1.669	-1.5	89				
		Aft C.B	-1.636	-1.5	89				
	[-#=£	(anninach	`						
	0102	Forward C.6	-1.722	-1.6	36				
		Aft C.6	-1.688	-1.6	ر 36				
							. ,		
	of C-m-ac	(cruise)	-0. 038						
		(approach) -0.038						
	C-m-ac-wb	(cruise)	-0.092						
		(approach) -0.083						
•	C-m-n (a-ht) (cruise)							
		Forward C. 6	-0.047	-0.0	14				
		Aft C.G	0.033	-0.0	14				
•	C (a) (anoroanh							
		Forward C. 6	, 	-0.0	04				
		Aft C.6	0.024	-0.0	04				
	• •								
	C-y-d-r	(cruise)	-0.302				•		
		Capprozen	/ -0.324		•				
	C-m-6-r	(cruise)	0.074						
		(approach) 0.085			•			
	Lift Curve	Equations:	Condition	C-1-0		i-h	é-e	á-flaps	
			Dura i an	A 170	A 407		A 447	A 407	
			LTUISE	0.170	0.09/	0.014	0.007	0.027	
			Nin Control	0.170	0.099	0.014	0.008	· 0 . 072	
	Pitching Mo	ent Eqns:	Condition	C-a-o	C-L	í-h	á-e	C-∎-å-f	Thrust
			Cruise-fud	-0.014	-0, 190	-0.051	-0,028		-0,003
			Druise-aft	-0.014	-0.112	-0.051	-0.028		-0.00 3
			Min Ontri-fw	-0,004	~0.197	-0.053	-0.029	-0.390	-0. 113
			Min Cntrl-af	-0.004	-0.119	-0.053	-0.029	-0.390	-0.113
		4C-=-o H. T.	Forward C.G.	0.137					
			Aft C.G.	0.134					

:

.:

.

Take-off Rotation Calculations: Take-off Thrust T 13, 325 Thrust Noment Arm z-t i.92 Drag at T-O D 2,000.00 Drag Noment Arm 2-d 2.00 Lift at T-D 5,000 Take-off Weight W-to 28,506 X-ng 5.00 X-cg 1.33 Z-mg 7.75 X-ac-wb 1, 19 X-ac-h 30,92 0.02 Wheel-ground friction p q-bar T.D.R. C-1-o-h 50,00 0.17 C-m-ac-wb -0,08 H.T. incidence for rotat. 0.18 rad 10.21 deg Elevator Deflection 18,90 deg

an ann an an Arailte. An Anns an Arailte

.

•

.

•

· · ·

.

.

. .

ORIGINAL PAGE IS OF POOR QUALITY

36 Passenger Airplane: Calculations for Cruise and M.C. at Fwd and Aft C.G.

		Note: All Results 1	IN KHUIHNS	c 1	0/1
Cruise Mach Number	0.700			+	- 7977
Section Lift Curve Slope	6.000	Forward C. G.	0.267		
Wing-Body ac shift	-0.090	Aft C.6.	0.385		
X-bar C.G.	0.385				
Min Control Dynamic Pres.	51.170	NC A.C.	0.454		
Cruise Dynamic Pressure	215.600	Cruise A.C.	0.454		
Minimum Control Speed	207.500			٠	
Cruise Speed fps	696.290	Static Margin	-0.069	-0.187	
1/rad to 1/deg conversion	0.017				
Moments of Inertia:	Forward	Aft			
I-xx	70, 773	124,022			
І-уу	235, 569	209, 114			
1-22	284, 424	310, 361			
Weights	30, 334	28, 574		. ,	
Fuselage:					
Fuselage Height	8.050				
Fuselage Width	8.050				
Fuselage Length	79.000				
C-n-B-body	-0.138				
Ni		Lin	lift Cumper		
Wing:	502 000	W-1 0		(eruisa)	A 704G
Wing Area Surt	A 200	6.0 <i>L</i> i	20 F	(enn)	4.7794
Wing Span re	7 450	4.6.7	160 0-1-1 141		4.11.24
Wing Mou It	12 000	810.73	174		
Hopert Hatto	0.969				
Conjunction Concept rad	0.200				
Sentenore Sweep Fau	0.170				
	-0.054				
C-mowing (crusse)	_0.045				
Carowing tapproach	, - V. VI J				
Horizontal Tail:		Hor	zontal Tail Lif	Curves:	
Total H.T. Area sqft	120.000	K:1.0	530 C-L-I	(cruise)	3.8395
H.T. Area (each) sqft	120.000	k:0.6	320 C-L-1	ı (app)	3.9610
H.T. Span ft	26.569	8:0.7	L	•	
H.T. Root Chord	6.022	-			
H.T. NGC ft	4.684				
H.T. Aspect Ratio	5.883				
H: TLE Sweep -rad	0.436	· · · -	*		-
H.T. c/2 Sweep rad	0.314				·
H.T. Taper Ratio	0.500				
X-bar ac-h	4. 676				
1 - downwash	0.746				
H.T. q-bar corr. (eta-h)	1.000				
Elevator effectiveness re	0.540	• •			
Vertical Tail:		Ver	tical Tail Lift (Curves:	
Total V.T. Area soft	170.000	K:1.0	366 C-L-1	: (cruise)	2.0802
V.T. Area (each) soft	170.000	k:0.6	3 C-L-1	app)	2.2314
V.T. Span ft	15.400	8:0.7			
V.T. WEC ft	12,000				
V.T. Aspect Ratio	1.40				
V.T. Effective Asp. Ratio	1.960				

5-18-57

V.I. LE Sweep rad	0.785					
V.T. c/2 Sweep rad	0.687					
V.T. Taper Ratio	0.330					
V.T. Moment Arm 1-v	24.506					
Approach Alpha e (rad)	0.1745					
Approach 1-v	25.94				•	
1+(dø/dß)	1.477					
Engine Mounting Bar:			E	ingine Bar Lift	Curve	5:
Bar Area sqft	112.000		K:1	. 0505	C-1-e	(cruis
Bar Span ft	11.000		k:C	- 68	C-L-8	(app)
Bar MGC ft	10.200		8:0	- 71	•	
Bar Aspect Ratio	1.080					
Bar LE Sweep rad	0.436					
Bar c/2 Sweep rad	0.281					
Bar Taper Ratio	0.860					
X-Der ac-h	0.828					
I - downwash	1.000					•
Bar q~bar corr. (eta-h)	1.000					
Total Take-off Thrust 1bs	15, 481					
Total Cruise Thrust (1bs)	1,967					
Z-T (vertical mom. arm)	1.920					
Y-T (horizontal som. arm)	10.500					
Non-dim. Derivatives:	Cruise-fwd	Cruise-aft	Min Cntrl-fwd	Min Cotrl-aft		
C-L-s Airplane	5. 579	5. 579	5.670	5.670		
C-m-s Airplane	-1.041	-0.383	-1.098	-0. 429		
C-L-e-dot	1.743	1.696	1.798	1.750		
C -s-a-dot	-7.68 6	-7.280	-7.929	-7.510		
C-=-q	-33. 485	-31.651	-34. 539	-32.650		
C -y-8	-1.168	-1.168	-1.232	-1.232		
С -л. 6	0.118	0. 118	0. 153	0. 153		
С -у-т	0.513	0.513	0.582	0.582		
C -n-r	-0.149	-0. 149	-0. 179	-0. 179		
Dimensional Derivatives:	Cruise-fud	Cruise-aft	Nin Cntrl-fwd	Hin Cntrl-aft		
2-62	-755.210	-801.727	-182. 143	-193. 362		
Z-e-dot:	-1.262	-1.304	-1.037	-1.072		
	-4.203	-1.741	-1.052	-0.463		
H-s:						
H-e: H-e-dot:	-0. 166	-0.177	-0.136	-0.146		

ι.

- d 1.

•

1.5317 1.5395

						· · · .		
							,	
	•							
					10.001			
	Y—₽:	-158.093	-16/.831	-39. 383	-42.021			
	Y-r:	4.203	4.462	3.801	4.035			
	· • • • • • • • • • • • • • • • • • • •	4.482	4.107	1.376	1.261			
	blass a	-0. 341	-0.313	-0.327	-0.300			
•		VI VI I						
	Short Period:							
	Frequency	2. 233	1.621	1.254	1.026			
	Damping Ratio	0.442	0.647	0.641	0.833			
	H-s	23. 476	24.922	5.572	5.915			
	Dutch Bolls							
	Englished	2 129	2 070	1.189	1,139			
	Danning Batio	0 174	0 175	0 218	0.220			-
		0.134	0,130	0.250	0.251	. ,		
and the second second	unega + zera	V. 204	0.217	0.235	V. E.J.			
	Verify Class I Handling Qu	alities:						
	Short Period:							
	Below max freq.	yes	yes	yes	yes			
	Above min freq.	yes	yes	yes	yes			
	Damping	yes	yes	· yes	yes			
	Dutch Roll:		· ,					
	Frequency	VE5	VES	VES	YES			
	Damping Ratio	VPS	ves	VES	VES			
	Om ega + Zeta	yes	yes	yes	yes			
	Engine-Out Calculations:				,			
	Courses	-0 724				•		
	C-y-V-y Complem							
		0 300 0 100						
	Required (. (tad)	v. 333				,		
•	Reguired 6-r (deg)	22.868						
	Lift and Pitching Moment C	alculations						
	une - stanting freeling							
	Oinsing Van (muine)	A 454						

	Lift and Pi	tching Moment Ca	lculations:
	Airplane X-	ac (cruise)	0.454
an an an Angelan Angelan	Airplane X-	ac (approach)	0.461
	Airplane C-	i-e (cruise)	5.579
	Airplane C-	L-s (approach)	5.670
	Airplane C-	H-a (cruise)	
	,	Forward C.S.	-1.041
		Aft C.G.	-0.383
	Airplane C-	H-s (approach)	
		Forward C.G.	-1.098
		Aft C.6.	-0. 429
	C-L-i-H	(cruise)	0.778
	C-L-i-H	(approach)	0.803

`									
								,	
	•								
	C-L-6-e	(cruise) (annroach)	0.420						
		toppi ouc							
	C-H-i-h	(cruise) Forward C.G.	-3. 431	bar -3.2	values 286				
		Aft C.6	-3. 340	-3.8	286				
	C -H -i-h	(approach	}						
		Forward C.G.	-3.540	-3.3	85				
		HTT L.D.		-3.3	60				
	C -#- á- <u>e</u>	(cruise) Fermand C. S	_1 053	_1 7	175				
		Aft C.6	-1.803	-1.7	75				
	C-H-A	(annroach).						
	• • • • •	Forward C. 6	-1.912	-1.8	28		· .		.:
		Aft C.6	-1.860	-1.8	128				
	of C -u- ac	(cruise)	-0.044		`				
		(approach	-0.043						
	C-m-ac-wb	(cruise)	-0.098						
		чаррговст	~0,000						
•	C-s-o (a-h	t) (cruise) Forward C. S.	-0.037	-0.0	06				
		Aft C.B.	-0.017	-0.0	006				
	C-s-o (a-h	t) (approach)						
		Forward C.G.	-0.028	0.00	5				
		HTT L.D.	0.008	0.00	5		• .		
	C -y- 6-r	(cruise)	-0.302						
		Tepproscii	/ -V.327						
	C-n-6-r	(cruise) (approach	0.088						
			.					<i>. .</i>	
	Litt Curve	Equations:	Condition	U-1-0		מדנ	9 - 6	6-71 8 05	
			Cruise	0.170	0.097	0.014	0.007	0.027	
			Approach	0. 170	0.099	0.014	0.008	0.027	
	Pitching M	logent Egns:	Condition	C-m-0	C-L	i-h	6-e	C−æ−ð−f	Thrust:
			Cruise-fud	-0.006	-0. 187	-0.057	-0. 031		-0.004
			Dentes att	-0.000	-0.069	-0.057	-0.071		-0.004
			CLAT26-512	-0.000	-7,007	-v• vj/	-4.431		~~, ~~
<i>i</i> .			Approach-fwd	0.005	-0.194	-0.059	-0.032	-0.39 0	-0.132
			Approach-aft	0.005	-0.076	-0.059	-0.032	` 0. 39 0	-0.132
		4C-s-0 H.T.	Forward C. 6.	0.152					
			Aft C.G.	0.146					
			,				•	•	

· · · · ·

Take-off Rotation Calculations: Take-off Thrust T 15,481.40 Thrust Moment Arm z-t 1.92 Drag at T-O D 2,000.00 Drag Moment Arm z-d 2.00 Lift at T-O 5,000.00 Take-off Weight 30,334.00 X-mg 5.00 X-rg 1.99 Z-mg 7.70 X-ac-wb 1.19 X-ac-h 34.84
Take-off Rotation Calculations: Take-off Thrust T 15,481.40 Thrust Moment Arm z-t 1.92 Drag at T-O D 2,000.00 Drag Moment Arm z-d 2.00 Lift at T-O 5,000.00 Take-off Weight 30,334.00 X-mg 5.00 X-rg 1.99 Z-mg 7.70 X-ac-wb 1.19 X-ac-h 34.84
Take-off Rotation Calculations: Take-off Thrust T 15,481.40 Thrust Moment Arm z-t 1.92 Drag at T-O 2,000.00 Drag Moment Arm z-d 2.00 Lift at T-O 5,000.00 Take-off Weight 30,334.00 X-mg 5.00 X-reg 1.99 Z-mg 7.70 X-ac-wb 1.19 X-ac-h 34.84
Take-off Thrust T 15,481.40 Thrust Moment Arm z-t 1.92 Drag at T-O 2,000.00 Drag Moment Arm z-d 2.00 Lift at T-O 5,000.00 Take-off Weight 30,334.00 X-mg 5.00 X-cg 1.99 Z-mg 7.70 X-ac-wb 1.19 X-ac-h 34.84
Thrust Noment Arms z-t 1.92 Drag at T-O D Drag Moment Arms z-d 2.00 Lift at T-O 5,000.00 Take-off Weight 30,334.00 X-mg 5.00 X-rg 1.99 Z-mg 7.70 X-ac-wb 1.19 X-ac-h 34.84
Drag at T-0 D 2,000.00 Drag Moment Arm z-d 2.00 Lift at T-0 5,000.00 Take-off Weight 30,334.00 X-mg 5.00 X-rg 1.99 Z-mg 7.70 X-ac-wb 1.19 X-ac-h 34.84
Drag Moment Arm z-d 2.00 Lift at T-D 5,000.00 Take-off Weight 30,334.00 X-mg 5.00 X-cg 1.99 Z-mg 7.70 X-ac-wb 1.19 X-ac-h 34.64
Lift at T-0 5,000.00 Take-off Weight 30,334.00 X-mg 5.00 X-cg 1.99 Z-mg 7.70 X-ac-wb 1.19 X-ac-h 34.84
Take-off Weight 30,334.00 X-mg 5.00 X-cg 1.99 Z-mg 7.70 X-ac-wb 1.19 X-ac-h 34.84
X-mp 5.00 X-cg 1.99 Z-mp 7.70 X-ac-wb 1.19 X-ac-h 34.84
X-cg 1.99 Z-mg 7.70 X-ac-wb 1.19 X-ac-h 34.84
Z-mg 7.70 X-ac-wb 1.19 X-ac-h 34.84
X-ac-wb 1.19 X-ac-h 34.84
X-ac-h 34.64
liberi-mound fristian 0.02
C-1-m-h 0.17
<u>C</u>
H.T. incidence for notat. 0.14 rad
a start start start in the start start in the start start in the start
Flavator Doflaction 14.71 dan

. • •

. .

ORIGINAL PAGE IS OF POOR QUALITY

36 Passenger Airplane:	Calculations for	Cruise and M.C. at Fwd and Aft C.G. Note: All Results in RADI	ANS Who -	WOI
Cruise Mach Number	0.700			
Section Lift Curve Slope	6.000	Fwd - W-to C.6. 0	. 280	
Wing-Body ac shift	-0.090	Aft - W -to C.G. 0	. 385	
X-bar C.G.	0.385			
Min Control Dynamic Pres.	51.170	MC A.C. 0	. 454	
Cruise Dynamic Pressure	215.600	Cruise A.C. 0). 454	
Minimum Control Speed	207.500			
Cruise Speed fos	696, 290	Static Margin -0	. 069 -0. 174	
1/rad to 1/den conversion	0.017			
Moments of Inertia:	Forward	Aft		
1-xx	125,220	69, 710		
1-уу	237, 382	207, 940		
1-22	339, 291	255, 999		
Weights	35, 954	22,954		
		•	•	
ruselage: Fuselane Heinht	A 050			
Fusetage neight	8.030			
ruselage wiotn	8,030			
	79.000			
C-n-9-body	-0.138			
Winc:		Wing Lift	Curves:	
Wing Area soft	592.000	K:1.0544	C-L-e (cruise)	4.7089
Wins Span ft	84.300	k:0.6820	C-L-s (app)	4.7794
Wing HSC ft	7.450	B:0.7141		
Aspert Ratio	12,000			
Leading Edge Succo rad	0.262			
Somichard Super rad	0.194			
	0.170			
(muise)	-0.054			
C-mowing (charge)	-0.045			
Caro writig i approach	~ v , v +J			
Horizontal Tail:	•	Horizontal	Tail Lift Curves:	
Total H.T. Area sqft	120.000	K:1.0630	C-L-= (cruise)	3.8395
H.T. Area (each) sqft	120.000	k:0.6820	C-L-s (app)	3.9610
H.T. Span ft	26.569	8:0.71		
H.T. Root Chord	6.022			
H.T. MGC ft	4.684			
H.T. Aspect Ratio	5.883	•		
H.T. LE Sweep rad	0.436			
H.T. C/2 Sweep rad	0.314			
N.T. Taper Ratio	0.500			
I-har art	A 575			
i - downach	0 746			
I - uummasii ki T a-ban asan (ata-b)	1.000			
Flaustan affantismana m	1.000			
Clevelor effectiveness te	0.340			
Vertical Tail:		Vertical T	ail Lift Curves:	
Total V.T. Area sqft	170.000	K±1. 0366	C-L-s (cruise)	2.0802
V.T. Area (each) soft	170.000	k:0, 68	C-L-s (app)	2.2314
V.T. Span ft	15.400	8:0.71		
V.T. MGC ft	12,000			
V.T. Aspect Ratio	1.40			
V.T. Effective Asn. Ratio	1.960			
· · · · · · · · · · · · · · · · · · ·				

•••

ORIGINAL PAGE IS OF POOR QUALITY

V.T. LE Sweep rad	0.785				
V.T. c/2 Sweep rad	0.687				
V.T. Taper Ratio	0.330				
V.T. Noment Arm 1-v	24.506				
Approach Alpha e (rad)	0.1745				
Approach 1-v	25. 94				
1+(do/dB)	1.477				
Engine Mounting Bar:			f	noine Bar Lif	: Curves;
Bar Area soft	112.000		Kal	.0202	C-L-4 (
Bar Span ft	11.000		k2(. 68	C-L (
Bar MGC ft	10.200		£:(. 71	
Bar Aspect Ratio	1.080				`
Bar LE Sweep rad	0.436				
Bar c/2 Sweep rad	0.281				
Bar Taper Ratio	0.880				
I-bar ac-h	0.828				
1 - downash	1,000				
Bar o-bar corr. (sta-h)	1,000				
ren el nes ensis ses≊33/	4+ VVV				
Total Take-off Thrust lbs	15, 481				
Total Cruise Thrust (1bs)	1,967				
2-T (vertical mom. arm)	1.920				•
Y-T (horizontal sos. ars)	10.500				
Non-dim. Derivatives:	Crui se-fud	Cruise-aft	Min Cntrl-fwd	Min Cntrl-af	;
C-L-e Airplane	5. 579	· 5. 579	5.670	5.670	
C-m-e Airplane	-0.969	-0. 383	-1.024	-0.429	
C-1_=-dot	1.738	1.696	1.793	1.750	·
C -s-s -dot	-7.640	-7.280	-7.882	-7.510	
£- ∎ -9	-33, 279	-31.651	-34. 328	-32.650	
С -у-8	-1.168	-1. 168	-1.232	-1.232	
C- n-8	0.118	0. 118	0. 153	0. 153	
C-y-r	0.513	0.513	0.582	0.582	
- C-n - r	-0, 149	-0. 149	-0. 179	-0.179	
Dimensional Derivatives:	Druise-fud	Cruise-aft	Nin Cntrl-fud	Nin Ontrl-afi	;
•	-677 469		-167 679	-940 704	
£ ~6 3	-D31. 10C	-200.012	-139 DIE	-240./04	
2-a-dot :	-1.062	-1.624	-0.872	-1.334	
H-e:	-3.881	-1.751	-0. 974	-0.466	
H-s-dot :	-0.164	-0.178	-0.135	-0. 146	
H-q:	-0.713	-0.774	-0.586	-0.636	

•

CUPVE	57	
C-L-4	(cruise)	1.5317
C-L-e	(app)	1.5395

Υ - ₽:	-133. 381	-208. 922	-33. 396	-52.309
Y-r:	3.546	5.555	3.207	5.023
N_ ₿:	3.757	4.98 0	1,153	1.528
· N-r :	-0.286	-0. 379	-0.274	-0.363
Short Period:				•
Frequency	2.129	1.691	1.186	1.097
Damping Ratio	0.421	0.705	0.616	0.885
N-s	19.805	31.023	4.701	7.363
Dutch Roll:				
Frequency	1.948	2.248	1.086	1.258
Damping Ratio	0.123	0.151	0.200	0,245
Omega + Zeta	0.239	0.340	0.217	0.308
Verify Class I Handling Qu	alities:			
Short Period:	,			
Below max freq.	yes	yes	yes	yes
Above min freq.	yes	yes	yes	yes
- Damping	yes	yes	yes	yes
Dutch Roll:				
Frequency	yes	yes	yes	yes
Damping Ratio	· yes	yes	yes	yes
Omega + Zeta	y e s	yes	yes	yes
Engine-Out Calculations:				
C- y- 6- r	-0.324			
C-n-6-+	0.100			
Required 6-r (rad)	0.399			
Required 6-r (deg)	22.888			
Lift and Pitching Moment C	alculations:			
Airplane X-ac (cruise)	0. 454			
Airplane X-ac (approach)	0.461			
			-	
Airplane C-L-s (cruise)	5, 579			
Airplane C-L-s (cruise) Airplane C-L-s (approach)	5, 579 5, 670			
Airplane C-L-s (cruise) Airplane C-L-s (approach) Airplane C-H-s (cruise)	5: 579 5. 670			
Airplane C-L-s (cruise) Airplane C-L-s (approach) Airplane C-H-s (cruise) Forward C.S.	5: 579 5. 670 0. 969			

Airplane C-	H-s (approach)	
	Forward C. S.	-1.024
	Aft C.S.	-0. 429
C-1-j-#	(cruise)	0, 778
C-L-i-H	(approach)	0.8 03

.

•

· · .			· .		··· · 1				
				•				,	
	£-1-9-6	(cruise)	0. 420						
	C-L-6-e	(approach) 0. 434						
	C-H-i-h	(cruise)		bar	values				
1 · · ·		Forward C.6 Aft C.8	i3.421 i3.340	-3.2	86 86				
	-								
	C-#-1-h	lapproach Eomard C. 6	1) L -3.530	-3.3	85				
· ·		Aft C.6	3.445	-3.3	85				
	C-#-6-8	(cruise)							
	• • •	Forward C.6	-1.847	-1.7	75				
		Aft C.6	i1.803	-1.7	75				
	£ -# -6-e	(approach							
		Forward C.6	-1.906	-1.8 -1.8	28 28				
· · · · ·				•••			. ,		
	∆f C-e -ac	(cruise)	-0.044						
		approces							
•	C-w-ac-wb	(cruise) (population	-0.098						
		чаррговся		•					
	C-s-o (a-hi	t) (cruise) Forward C F	-0.075	-0.0	0 6				
		Aft C.6	60.017	-0.0	06				
	C-m-n (a-hi) (20000200							
		Forward C. 6	0.026	0.00	5				
		Aft C.E	ù -0.008	0.00	5				
	C -y-6-r	(cruise)	-0.302						
		(approach) -0.324						
	C-n-6-r	(cruise)	0.088	•					
		(approact)							
	Lift Curve	Equations:	Condition	C-1-0	ſ	i-h	á-e	é-flaps	
			Cruise	0.170	0.097	0. 014	0.007	0.027	
	. ·· .		Approach	0.170	0.099	0. 014	0.008	0.027	
	Pitching M	ment Eqns:	Condition	C- ₩ -0	C-L	i-h	6− ₽	C-æ-å-f	Thrust
			Druise-fud	-0.006	-0.174	-0, 057	-0.031		-0.004
· .			Druiza-aft	-0.006	-0.069	-0.057	-0.031		-0-004
	-		Oneneesh-furt	0.005	-0 181	-0.059	-0.072	- 0.79 0 '	-0 138
			nggar George and	0.005	0.101	-0,033		-0.350	-0.132
			Hpproach-aft	0.005	-0.076 ,	-0.059	-0.032	-0.390	-0.132
		4C-#-0 H.T.	Forward C.G.	0.151					
			HTT LoD.	V. 148					
								-	

Take-off Rotation Calculations: Take-off Thrust T 15, 481. 40 Thrust Moment Arm z-t 1.92 Drag at T-O D 2,000.00 Drag Noment Arm z-d 2.00 Lift at T-O 5,000.00 Take-off Weight 35, 954.00 X-ng 5.00 2.09 X-cg 7.70 2-mg X-ac-wb 1.19 X-ac-h 34.84 Wheel-ground friction 0.02 50.00 q-bar T.C.R. Ć-1-o-h 0.17 C-m-ac-wb -0.09 H.T. incidence for rotat. 0.16 rad 9.10 deg Elevator Deflection 16.84 deg

.

. . . .

• • •

.

• • • • •

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OE POOR QUALITY

1 · . . •

50 Passenger Airplane Calculations for Cruise and M.C. at Fwd and Aft C.G.

• • • · · ·

5-5-57

Cruise Mach Number	0.700				
Section Lift Curve Slope	6.000	Forward C.S.	0.530		•
Wing-Body ac shift	-0.090	Aft C.6.	0.603		
X-bar C.G.	0.603				r
Min Cntrl Dynamic Pres.	51.170	approach a.c.	0.673		
Cruise Dynamic Pressure	215.600	cruise a.c.	0.664		
Min Chtrl Speed fps	207.500				
Cruise Speed fps	696.290	static margin	-0.061	-0,134	
1/rad to 1/deg conversion	0.017				
Noments of Inertia:	Forward	Aft			
I-xx	141,865	73, 363			
І-уу	465, 510	408, 670			
1-22	580,046	457, 113			
Weights	43, 141	25, 978			
Fuselage:					
Fuselage Height	8.050				
Fuselage Width	8.050		•		
Fuselage Length	96. 330				
C-n-9-body	-0.141				
Winn:		Wina I	ift Curves		
Nino Orea soft	592,000	K:1.054	A C-t-a	(muise)	4.7089
Ning Soan ft	A4. 300	k10, 682) ((ann)	A. 7794
Winn MGC #t	7. 450	A:0.7141	r 66-6	, ddae	
Ocnect Patio	12 000	8.0,114	•		
Landing Edge Sugar and	0.965				•
Somichand Curee and	0.104				•
Callan	0.134				
	-0.054				
Conting (homesch)	-0.045				
C - U wing (approach)	-0.043				
Horizontal Tail:		Horizo	ontal Tail Lift C	Urves:	
Total H.T. Area soft	120.000	K:1.0625	9 C-L-s	(cruise)	3.8395
H.T. Area (each) soft	120.000	k:0.6820) C-L-e	(app)	3.9610
H.T. Span ft	26.569	8:0.71		••	•
H.T. Root Chord	6.022				
H.T. MSC ft	4.684				
H.T. Aspect Ratio	5.883				
H.T. LE Sweep rad	0.436				
H.T. c/2 Sweep rad	0.314				
H.T. Taper Ratio	0.500				
I-bar ac-h	6.040				
1 - domusch	0.745				
H.T. amban comm (atamb)	1 000				
Signation officiationner on	0.540				
CTEAROL ELLECTIAGUESP IS	v. 340		6		
Vertical Tail:		Vertic	al Tail Lift Cur	ves:	
iotal V.T. Area soft	170.000	K:1.0366	5 C-L-4	(cruise)	2.0802
V.I. Area (each) soft	170.000	k10.68	C-L-#	(app)	2.2314
V.T. Span ft	15.400	A :0.71			
V.T. MGC ft	12.000				
V.T. Aspect Ratio	1.40				
V.T. Effective Asp. Ratio	1.960				

V.T. LE Sweep rad	0.785
V.T. c/2 Sweep rad	0.687
V.T. Taper Ratio	0.330
V.T. Moment Arm 1-v	32.342
Approach Alpha s (rad)	0.1745
Approach 1-v	33, 66
1+(dø/dŵ)	1.477
Engine Mounting Bar:	

. . . .

: j.,

· . . .

Bar Area soft 112.000 Bar Span ft 11.000 Bar MGC ft 10.200 Bar Aspect Ratio 1.080 Bar LE Sweep rad 0.436 Bar c/2 Sweep rad 0.281 Bar Taper Ratio 0.880 X-bar ac-h 2.148 1 - downwash 1.000 1.000 Bar q-bar corr. (eta-h)

Total Take-off Thrust lbs18,929Total Cruise Thrust (lbs)4,0472-T (vertical mom. arm)1.920Y-T (horizontal mom. arm)10.000

Engine Bar	Lift Curve	51	
K:1.0202	C-L-e	(cruise)	1.5320
k:0.68	C-L-e	(app)	1.5399
8:0.71			

• 1

•

		Cruise-fwd	Cruise-aft	Min Cntrl-fwd	Min Cntrl-aft
C-L-e	Airplane	5. 579	5, 579	5.670	5.670
C-#-8	Airplane	-0. 749	-0. 341	-0. 808	-0.395
	C-L-e-dot	2.178	2, 150	2.247	2.218
	C -s e -dot	-12.003	-11.687	-12. 383	-12.057
	C-∎-q·	-53,652	-52, 137	-55. 306	-53.747
	C-y-₽	-1.168	-1.168	-1.232	-1.232
	C-n-8	0, 197	0. 197	0.237	0.237
	C -y-r	0.677	0.677	0.756	0.756
	<u>C-n-r</u>	-0.250	-0.260	-0. 302	-0.302

	Cruise-fwd	Cruise-aft	Min Cntrl-fwd	Min Cntrl-aft
2-e:	-531.022	-881.855	-128.073	-212. 688
Z-e-dot:	-1.109	-1.618	-0.911	-1.493
M-01	-1.529	-0.794	-0.392	-0.218
H-e-dot:	-0. 131	-0.145	-0.108	-0.120
X- 0:	-0.586	-0.649	-0.481	-0.533

		•						
	Y - 8∶	-111.161	-184.602	-27.832	-46. 220	•		
	Y-r:	3.900	6. 477	3.468	5.759			
:	N-8 :	3.663	4.649	1.043	1.323			
	N-r:	-0.292	-0. 370	-0.270	-0.342			
	Short Period:							
	Frequency	1.406	1.271	0.830	0.874			
	Damping Ratio	0.526	0.811	0.727	0.959			
	N-a	16. 507	27.412	3.918	6.506			
	Dutch Rolls						•	
	Frequency	1.921	2.169	1.030	1.167	•		
	Damping Ratio	0.117	0.146	0.196	0.242			
	Omega + Zeta	0.226	0.318	0.202	0.283			=
	Verify Class I Handling Qu	alities:				· · · · ·		
	Short Period;							
	Below Max Treq.	yes	yes	yes	yes			
	NDOVE III Ireq.	yes	THU MILE	yes				
	bashing	yes	yes	yes	<i>JC</i> ²			
	Dutch Roll:							
	Frequency	yes	yes	yes	yes			
	Damping Ratio	yes	yes	yes	yes			
	umega * <i>Leta</i>	yes	yes	yes	yes			
	Engine-Out Calculations:							
	C-y-6-r	-0.324				•		
	C-n-é-r	0.129						
	Required 6-r (rad)	0.359			:		÷	
	Mequired 6-r (deg)	20.542						
	Lift and Pitching Moment (Calculations	:					
· · ·	Airplane X-ac (cruise)	0.664						
	Airplane X-ac (approach)	0.673						
	Airplane C-L-s (cruise)	5.579			-			
	Airplane C-L-s' (approach)	5.670		•		* • ·		
	Airplane C-H-e (cruise)					·		
	Forward C.G.	-0.749						
	Aft C.6.	-0.341	•					

• • ÷

Airplane C-	H-s (approach)								
	Forward C. 6.	-0.80							
	Aft C.6,	-0.39							
C-1-i-H	(cruise)	0.77							
للتركي أتتاح	(annoach)	0.80							
	C-L-6-e	(cruise) (annnach	0.420				,		
-------	---------------------	-------------------------	-----------------	---------------	------------------	---------	-----------------	-------------	---------
(6-2-8-2	(approach)	V. 7.39						
•	C-H-i-h	(cruise)	4 665	bar 1	values				
• • •		Forward L.v. Aft C.6	-4.231		84 (84				
			******		רי <i>ב</i> י				
	C-H-i-h	(approach)	-4 424	-4.7	MA .				
		Aft C.6	- 1.36 5	-4.3	310				
	· · _	· (20)							
	C-M-0-8	(cruise) Forward C.G	-2.316	-2.?	*59				
		Aft C.S.	2.285	-2.2	.59				
	C-H-6-2	(approach	.1						
	¥ 9 ¥ ±	Forward C. 6	2. 389	-2.3	£1				
		Aft C.6.	2.337	-2.3	<i>,</i> 27		x		7
	Af C-m-ac	(cruise)	-0.057				• •		
	•	(approach)) -0.056						
	C-m-ac-wb	(cruise)	-0. 111						
	*	(approach)) -0.101						
	C-s-o (a-ht)	\ (cruise)							
	₩₩₩	Forward C.S.	0.006	0.01	7 .				
		Aft C.G.	. 0.007	0.01	.7				
	C-m-o (a-ht)) (approach'	;)						
		Forward C.G.	. 0.004	0.02/	.8				
		HTT Low	. V.VI/	· • • • • •	8				
	C -y-6-r	(cruise)	-0.302						
		(approach)	/ -0.324						
•	C-n-6-r	(cruise)	0.116						
		(approacn/	, 0.129						
	Lift Curve E	Equations:	Condition	C-1-0	•	i-h	. 6-e	á-flaps	
			Cruise	0.170	0 . 0 97	0.014	0.007	0.027	
			• · · · ·	^ 17 0	A 400	A A14	1 008	^ no7	
			Арргоаст	V. 17V	V. V35	0.014	V. VV0	VIUEI	
	Pitching Nom	ent Eqns:	Condition	C-8-0	C-L	i-h	6 -2	C-m-é-flaps	Thrust
			Cruise-fud	0.017	-0.134	-0.073	-0. 039		-0.008
	•		Cruise-aft	0.017	-0.061	-0. 073	-0.039		-0.008
			Approach-fwd	0.028	-0. 143	-0. 075	-0.041	-0. 390	-0, 161
			Approach-aft	0.028	-0.070	-0. 075	-0.041	-0. 390	-0, 161
		4C-#-0 H. J	Forward C.S.	0, 190					
			Aft C.S.	0. 187					ļ
									•
									,

.

Take-off Rotation Calculations: Take-off Thrust T 18, 928. 80 Thrust Moment Arm z-t 1.92 Drag at T-D D 2,000.00 Drag Noment Arm z-d 2.00 Lift at T-O 5,000.00 Take-off Weight 43, 141.00 X-eg 5.00 X-cg 3.92 **Z-m**g 7.67 X-ac-wb 1.19 X-ac-h 45.00 Wheel-ground friction p 0.02 q-bar T.O.R. 50.00 C-1-0-h 0.17 C-m-ac-wb -0.10 H.T. incidence for rotat. 0.06 rad 3.32 deg Elevator Deflection 6.15 deg

· · · . . .

51 J

ORIGINAL PAGE IS OE POOR QUALITY

75 Passenger Twin-body:

. ...

		Note: All Results :	in RADIANS
Cruise Mach Number	0.700		
Section Lift Curve Slope	6.000	Forward C. 6.	0.602
Wing-Body ac shift	-0.140	Aft C.G.	0.769
X-bar C.G.	0.769		
Nin Cntrl Dynamic Pres.	51.170	Cruise A.C.	0.821
Cruise Dynamic Pressure	215.600	Approach A.C.	0.813
Min Cntrl Speed fps	207.500		
Cruise Speed fps	696.290	Static Margin	-0.052
1/rad to 1/deg conversion	0.017	-	
Moments of Inertia:	Forward	Aft	
І-жк	1,355,496	761,328	
I-уу *	505, 928	441,252	
1-22	1,779,110	1, 125, 135	
Weights	71,419	44,804	÷
Fuselage:			
Fuselage Height	8.050		
Fuselage Width	16.100		
Fuselage Length	79.000		
C -n-O-bod y	-0.121		
Wing:		Wing	Lift Curv
Wing Area soft	1,182.000	K:1.04	93
Wing Span ft	132.500	k:0.66	20
Wing MGC ft	8.970	£:0.7 1	41
Aspect Ratio	14,853		
Leading Edge Sweep rad	0.201		
Semichord Sweep rad	0.169		
C-1-0	0.170		
C-m-o-wing (cruise)	-0.059		
C-m-o-wing (approach)	-0.049		
Horizontal Tail:		Hor	izontal Tai
Total H.T. Area sqft	410.000	K11.05	519
H.T. Area (each) sqft	410.000	k:0.66	20
H.T. Span ft	74.770	6:0.7	
H.T. NGC ft	5.629		
H.T. Aspect Ratio	13.600		
H.T. LE Sweep rad	0.070		
H.T. c/2 Sweep rad	0.052		
H.T. Taper Ratio	0.500		
X-bar ac-h	4.283		
1 - downwash	0.786		
H.T. q-bar corr. (eta-h)	1.000		
Elevator effectiveness re	0.540		
Vertical Tail:		• · · · · · · · · · · · · · · · · · · ·	ical Tail
Total V.T. Area sqft	340.000	K:1.03	66
V.T. Area (each) sqft	170.000	k:0.66	1
V.T. Span ft	15.400	8:0.71	
V.T. MGC ft	12.000		
V.T. Aspect Ratio	1.40		
V.T. Effective Asp. Ratio	1.960		
V.T. LE Sweep rad	0.785		

8 2 5 4			·
		,	
Wing Lift C	urves:		
K:1.0493	C-L-s	(cruise)	4
k:0.6820	C-L-e	(app)	4

-0.219

wing Litte Ci			
K:1.0493	C-L-s	(cruise)	4.9102
k:0.6820	C-L-e	(app)	4.9678
£:0.7141			

Horizontal	Tail Lift	Curves:	
K11.0519	C-1-e	(cruise)	4.9475
k:0.6820	C-L-8	(app)	4.9530
A:0.71			

Vertical Ta	il Lift Cu	rves:	
K:1.0366	C-L-e	(cruíse)	2.0802
k:0.68	C-L-s	(app)	2,2314
8:0.71			

F. 18.51

	2-s-dot :	-1.999	-3.
	2-e:	-750.072	-1, 19
•	Dimensional Derivatives:	Cruise-fud	Onu
	C- n-r	-0.054	
	C -y-r	0.309	
	C -n-8	0.034	
	C-y-8	-1.027	
, ha	C-m-q	-51.250	-
	L-18-8-001	-3.205	
		E. /V7	
	Cut usuality	2 704	
	C-s-e Airplane	~1.430	
5 5 7	C-L-s Airplane	6. 534	
	Non-dim. Derivatives:	Cruise-fud	Cru
	Y-T (horizontal mom. arm)	10.000	
	2-T (vertical mom. arm)	5. 170	
H-1%	Total Take-off Thrust 1bs Total Cruise Thrust (1bs)	37,891	
	per q-per corr. (ets-n)	1.000	
	1 - downwash Ran onhan onne (at a th	1.000	
	X-bar ac-h	0.994	
	Bar Taper Ratio	0.814	*
	Bar c/2 Sweep rad	0.314	
a 3	Bar LE Sueen rad	1,46/ 0.435	
	Bar Mol Tt Bay General Datia	10.620	
· ·	Bar Span ft	15.700	
	Bar Area sqft	165.800	
	Engine Hounting Bar:		
· ·	1+(d#/dß)	1.477	
	Approach 1-v	24.64	
	Approach Alpha # (rad)	0.1745	
· •	V.T. Moment Arm 1-v	23. 185	
	V.T. Taper Ratio	0.330	
· •	V.T. c/2 Sweep rad	0.687	

Engine Bar I	lift Curve	51	
K:1.0278	C-L-#	(cruise)	1.9622
k:0.68	C-L-#	(app)	1.9824
B:0.71			

, <u>*</u> * *

; ..<u>.</u> .

orizontal mom. arm)	10.000			
m. Derivatives:	Cruise-fud	Cruise-aft	Nin Entri-fwd	Nin Cntrl-aft
C-L-s Airplane	6. 534	6. 534	6. 596	6.596
C-m-s Airplane	-1.430	-0.339	-1.394	~0.292
C-L-e-dot	2.704	2.581	2. 707	2, 584
C-m-e-dot	-9.952	-9 .070	-9.964	-9.080
C-∎-q	-51.250	-46.651	-51.308	-46. 704
C-y-8	-1.027	-1.027	-1, 091	-1.091
C-n-8	0. 034	0. 034	0 . 05 5	0.055
C-y-r	0. 309	0.309	0.353	0.353
C-n-r	-0.054	-0.054	-0.066	-0.066

Dimensional Derivatives:	Cruise-fwd	Cruise-aft	Min Ontrl-fwd	Min Cntrl-aft
Z-e:	-750.072	-1, 195. 639	-179. 708	-286. 461
2-s-dot:	-1.999	-3. 042	-1.594	-2. 425
H-81	-6. 460	-1.754	-1.495	-0.359
N-s-dot :	-0, 290	-0, 303	-0.231	-0.241
N- q:	-1,492	-1.557	-1.189	-1.241
~				

•

ORIGINAL PAGE IS OF POOR QUALITY

Υ− β:	-117.871	-187, 890	-29.726	-47.385
У -г:	3. 378	5. 385	3.067	4.889
N 8 :	0.639	1.010	0.249	0.394
N-r:	-0.098	-0.155	-0.094	-0. 149
Short Period:				
Frequency	2.840	2. 104	1.589	1.440
Damping Ratio	0.503	0.850	0.719	0.994
N-a	23.316	37.166	5. 534	8.821
Dutch Roll:	•			
Frequency	0.807	1.022	0.509	0.647
Damping Ratio	0.165	0.208	0.233	0.292
Quega + Zeta	0.134	0.212	0.119	0. 189
Verify Class 1 Handling Qu	alities:			
Short Period:				
Below max freq.	yes	yes	yes	yes
Above min freq.	Ves	ves .	yes	yes
Damping	yes	yes	yes	yes
Dutch Roll:				
Frequency	yes	yes	yes	yes.
Damping Ratio	yes	yes	yes	yes
Omega + Zeta	no	yes	no	yes
Engine-Out Calculations:				
C-y-6-r	-0.324			
C-n-6-r	0.060			
Required 6-r (rad)	0.490			
Required 6-r (deg)	28.084			

Lift and Pitching Moment Calculations:

ſ

Ų,

Ĺ

•

.

Airplane)	(-ac (cruise)	0.821
Airplane)	(-ac (approach)	0.813
Airplane C	-L-e (cruise)	6.534
Airplane C	C-L-e (approach)	6.596
Airplane C	-H-s (cruise)	
	Forward C.G.	-1.430
	Aft C.G.	-0.339
Airplane C	-H-s (approach)	
•	Forward C.G.	-1.394
	Aft C.G.	-0.292
C-L-i-H	(cruise)	1.716
C-L-i-H	(approach)	1.718
£-4å₽	(cruise)	0,927

	ch) 0.928				
C-H-i-h (cruise))	bar	values		
Forward C.	66.317	-5, 9	12		
Aft C.	66. 031	-5, 9	12		
C-H-i-h (approar	ch)				
Forward C.	66.324	-5.9	51		
Aft C.	.66.037	-5.9	51		
C-H-6-e (cruise))				
Forward C.	. 63. 411	-3.2	08		
Aft C.	. 63. 256	-3-5	08		
C-M-é-e (approar	ch)				
Forward C.	. 63, 415	-3.2	19		
Aft C.	.63.260	-3.2	19		
Af C-m-ac (cruîse)	-0.023				
(approa	ch) -0.023				• •
C-s-ac-wb (cruise)) -0.082				
(approa	ch) -0.072				
C-s-o (a-ht) (cruise))				^
Forward C.	. 6. 0.044	0,08	1		
Aft C.	. 6. 0. 072	0.08	1		
C-m-o (a-ht) (approa	ch)				
Forward C	. 6. 0,054	0.09	0		
Aft C	. 6. 0. 063	0.09	0		•
C-y-6-r (cruise) -0.302				
(approa	ch) -0.324				
C-n-6-r (cruise) 0.053		×		
(approa	ch) 0.06 0				
Lift Curve Equations:	Condition	C-1-0	•	i−h	6- 2
	Cruise	0.170	0.114	0.030	0.016
	Approach	0.170	0. 115	0.030	0.016
Pitching Moment Eqns:	Condition	C -s- o	C-L	i-h	é-e
	Cruise-fwd	0.081	-0.219	-0.104	-0.056
	Cruise-aft	0.081	-0.052	-0. 104	-0. 056
	Approach-fud	0. 09 0	-0.211	-0.104	-0.056

0.064 0.061

AC-m-o H.T. Forward C.G. Aft C.G. ó-flaps 0.027

0.027

6-flaps

-0.390

-0.390

Thrust

-0.008

-0.008

-0.361

-0.361

æ

. .

•

Take-off Rotation Calculat	ions:
Take-off Thrust T	37, 890. 60
Thrust Noment Arm z-t	5,17
Drag at T-O D	3, 500. 00
Drag Howent Arm z-d	2.00
Lift at T-0	10,000.00
Take-off Weight W-to	71, 419. 00
X-mg	5.00
X-cg	5.40
Z-mg	7.70
X-ac-wb	0.99
X-ac-h	38.42
Wheel-ground friction	0.02
q-bar T.G.R.	50.00
C-1-o-h	0.17
C-m-ac-wb	-0.07
H.T. incidence for rotat.	0.02 rad
	1.09 deg
Elevator Deflection	2.02 deg

v

-

/

• ,

•

. ..

Î

ŋ

•

100 Passenger Twin-body:

· 7, 2

. . . .

.,

Γ

ſ,

Ą

.

a

٠,٠

.... . . .

÷ .,

.

Course Mark Number	0 700
Section lift Curve Slope	6.000
Line-Body as shift	-0.140
Yebay C 6	0 802
Min Cotyl Dunamic Dros	50 286
Cautas Deserves Deserves	30.200
Cruise Dynamic Pressure	213,500
Min Untri Speed rps	207.300
Lruise speed tps	030.230
The to the Conversion	0.017
Moments of Inentia:	Ennuard
Town	TURMERU
1-44	1,040,075
2-yy	705,000
1-22 Unishte	C, 300, 130
merance	- 60, 044
Filestano	
Futalana Haisht	A 050
Fuselage neight	16 100
	10.100
ruselage Length	
C-n-s-body	-0.123
Hips.	
Winy: Wing Ones caft	1 182 000
Wing Files Sqit	172 500
Wing Span it	136, 300
Wing MCL Ft Ormant Patie	0. 3/0
HSPECT Natio	14.043
Centificand Super Load	0.201
Senichord Sweep Fau	0.103
	-0.050
	-0.039
c-a-o-wing (approach)	-0.043
Horizontal Tail:	
Total H.T. Grea soft	A10.000
HT Over (each) soft	A10.000
H.T. Snam ft	74 770
HT NGC FF	5 629
H.T. Genert Patio	13 600
H.T. IF Super rad	0.070
H.T. c/2 Support rad	0.052
H T Tanon Patio	0.500
Yahan anah	× 942
	9. 79 5 0. 705
I - Gowiniashi	1.000
Elauston affantisment ra	0.540
Elevator silectiveness le	0. 540
Vertical Tail:	
Total V.T. Amas eaft	340 000
U.T. Grea (asch) enft	170 000
V.T. Snan ft	15.400
V.T. HGC FE	12.000
V.T. Aspert Ratio	1.40
U.T. Fffartius Den Datio	1 950
V.T. IF Cupper ward	1. JOU 1 705
THE LE ONCE PIEU	V. 70J

MOTE: HII REPUITS	JU NHUTHNO
Forward C. G.	0.659
Aft C.6.	0.802
Cruise A.C.	0.991
Min Cntrl A.C.	0.982
Static Margin	-0. 189

Aft 888, 448 653, 359 1, 455, 491 50, 666

Wing Lift C	arves:		
K:1.0493	C-L-4	(cruise)	4.9090
k:0.6820	C-L-8	(app)	4.9669
8:0.7141			

-0.332

Horizontal	Tail Lift	Curves:	
K:1.0519	C-L-+	(cruise)	4.9475
k:0.6820	C-L-#	(app)	4, 9530
8:0.7 1			· · ·

Vertical Ta	il Lift Cu	TVES!	
K:1.0366	C-L-s	(cruise)	2.0802
k:0.68	C-L-s	(app)	2. 2314
8:0.71			

11 5

V.T. c/2 Sweep rad	0.687	
V.T. Taper Ratio	0.330	
V.T. Howent Ars 1-v	30.060	
Approach Alpha e (rad)	0.1745	
Approach l-v	31.41	
1+(dv/d8)	1.477	
Engine Mounting Bar:		
Bar Area soft	165.800	
Bar Span ft	15,700	
Bar MGC ft	10.620	
Bar Aspect Ratio	1.487	
Bar LE Sweep rad	0.436	
Bar c/2 Sweep rad	0.314	
Bar Taper Ratio	0.814	
X-bar ac-h	1.794	
1 - downwash	1,000	
Bar q-bar corr. (eta-h)	1.000	
Total Take-off Thrust lbs	37.891	
Total Cruise Thrust (1bs)	4, 414	
Z-T (vertical mom. arm)	5, 330	
Y-T (horizontal sos. ars)	10.000	
Non-dim. Derivatives:	Cruise-fwd	Cruise-
C-L-s Airplane	6.53 3	6.5
C-m-s Airplane	-2.167	-1.2
C-L-s-dot	3.146	3.0
C-m-e-dot	-13.474	-12.5
C- -q	-70.038	-65.3
C-y-B	-1.027	-1.0
C-n-8	0. 071	0.0
C -y-r	0.401	0.4
C- n-r	-0.09 i	-0.0
Dimensional Derivatives:	Cruise-fud	Cruise-
· · ·		
2-6:	-623. /8/	-1,10/,11
Z-s-dot :	-1.953	-3, 169

Engine Bar	Lift Curve	5:	
K:1.0278	C-L-s	(cruise)	1.9622
k:0.68	C-1-8	(app)	1.9824
£:0.71		•••	

. . .

E.	Derivatives	:	Cruise-fwd	Cruise-aft	Min Catrl-fwd	Nin Entrl-aft
	C-L-e Air	plane	6. 53 3	6. 533	6. 595	6.595
	C-m-s Air	plane	-2.167	-1.233	-2.131	-1, 188
	6-1-	s-dot	3.146	3. 041	3. 149	3, 044
	C-s-	e-dot	-13.474	-12, 589	-13.489	-12,603
		C- q	-70. 038	-65. 306	-70. 124	-65, 385
	1	C-y-₽	-1.027	-1.027	-1.091	-1, 091
		C-n-8	0. 071	0.071	0.096	0, 096
		C -y-r	0.401	0,401	0. 449	0.449
	1	C- n-r	-0.091	-0.091	-0. 107	-0. 107

aft Hin Ontrtl-fud Hin Ontrl-aft

2-a:	-629. 787	-1, 057, 111	-148. 290	-248. 908
Z -s-dot :	-1.953	-3. 169	-1.531	-2. 483
M-a z	-6, 436	-4.314	-1.476	-0 . 96 9
H-s-dot :	-0.258	-0.284	-0.202	-0.222
₩-q:	-1.340	-1.472	-1.050	-1.153

M

, , ,

۲۳۳ اور ا

C

•

Y-8:	-98. 987	-166. 151	-24.532	-41. 178
Y-r:	3.678	6.174	3.227	5.416
N-8 :	1.038	1.659	0.324	0.518
N-r:	-0. 126	-0.201	-0.115	-0. 184
Shart Period:				
Frequency	2.765	2,559	1.492	1.534
Damping Ratio	0.452	0.640	0.659	0.839
N-e	19.577	32.850	4.566	7.664
Dutch Roll:				
Frequency	1.025	1.301	0.577	0.736
Damping Ratio	0.131	0.169	0.202	0.260
Quega + Zeta	0.134	0.220	0.117	0. 191
Verify Class I Handling Qu Short Period:	alities:			
Below max freq.	yes	yes	yes	yes
Above min freq.	yes	yes	yes	yes
Damping	yes	yes	yes	yes
Dutch Roll:				
Frequency	yes	yes .	yes	yes
Damping Ratio	yes	yes	yes	yes
Owega + Zeta	no	yes	no	yes
Engine-Out Calculations:				
C-y-6-r	-0.324			
C-n-ő-r	0.077	-		
Required 6-r (rad)	0. 391			
Required 6-r (deg)	22.418			
Lift and Pitching Moment C	alculations:			
Airplane X-ac (cruise)	0 . 99 1			

Airplane X-	-ac (cruise)	0. 991
Airplane X	-ac (approach)	0.982
Airplane C	L-s (cruise)	6.533
Airplane C	-L-e (approach)	6. 595
Airplane C	He (cruise)	
-	Forward C. G.	-2.167
	Aft C. 6.	-1.233
Airplane C	H-s (approach)	
•	Forward C. 6.	-2.131
	Aft C. S.	-1.188
C-L-i-H	(cruise)	1.716
C-L-i-#	(approach)	1.718
C-L-6-e	(cruise)	0.927

•

• •

ſ

÷

ан на на т.

8

ise) 0.92

C-1-6-€	(approach)	0.928					
C-H-i-h	(cruise)		bar	values			
	Forward C. 6.	-7.350	<u> </u>	81			
	Aft C.G.	-7.105	-6.7	81			
C-H-i-h	(approach)	I					
	Forward C. 6.	-7.358	-6.8	03			
	Aft C.6.	-7.113	-6.6	03			
C-#-6-e	(cruise)						
	Forward C. G.	-3.969	-3.6	62			
	Aft C.G.	-3. 837	-3.6	62			
C-H-6-e	(approach))					
	Forward C. 6.	-3. 974	-3.6	74			
	Aft C.S.	-3.841	-3.6	574			• •
óf C -s -ac	(cruise)	-0.034					
	(approach)	-0.033		-			
C-u-ac-wb	(cruise)	-0. 093	-			· .	
	(approach)	-0.082					
C-m-o (a-ht)	(cruise)		·				
	Forward C. 6.	0.043	0.10	0			
	Aft C.G.	0.068	0.10	0			
C-=-o (a-ht)	(approach))					
	Forward C. 6.	0.054	0. 10	9			
	Aft C.G.	0.078	0.10	9			
C-y-6-r	(cruise)	-0, 302					
	(approach)	-0, 324					,
C-n-6-r	(cruise)	0.069					
	(approach)	0.077					
Lift Curve E	iquations:	Condition	C-1-0		i-h	6-e	å-flaps
		Cruise	0.170	0.114	0.030	0.016	0.027
		Approach	0. 170	0. 115	0.030	0.016	0.027
Pitching Mon	ent Eqns:	Condition	C-#-0	C-L	i-h	б-е	C-m-ô-flaps
		Cruise-fed	0. 100	-0.332	-0.118	-0.064	
		Cruise-aft	0. 100	-0. 189	-0.118	-0.064	
		Approach-fud	0. 109	-0.323	-0.119	-0.064	-0.390
		Approach-aft	0. 109	-0. 180	-0.119	-0.064	-0.390
	4C-18-0 H.T.	Forward C. S.	0.074				
		Aft C.G.	0.071				

Thrust

-**0.** 010

-0.010 -0.379

-0.379

الله المراجع ال معرفة المراجع ال

AT AFF

Dynamic Pres. (psf) 51.17 Speed (fps) 207.5

٩.

		25	36	50	75	100
쪵	Wing area Wing span	592 84.3	592 84.3	592 84.3	1182 132.5	1182 132.5
	I-xx-fwd I-xx-aft	67265 102964	70773 124022	141865 73363	1355496 761328	1646875 888448
~	C-l-p	-0.5818	-0.5818	-0.5818	-0.6323	-0.6318
Ĵ	C-1-Delta-A	0.455	0.455	0.455	0.443	0.443
	L-p-fwd L-p-aft	-4.4867 -2.9311	-4.2643 -2.4334	-2.1274 -4.1138	-1.1936 -2.1250	-0.9816 -1.8196
*	T-R-fwd T-R-aft	0.2229 0.3412	0.2345 0.4109	0.4701 0.2431	0.8378 0.4706	1.0187 0.5496
2	Handling Level	1	1	ĩ	1	1
	L-Delta-A-fwd L-Delta-A-aft	17.2738 11.2847	16.4176 9.3687	8.1903 15.8380	2.6191 4.6632	2.1557 3.9960
••	Delta-A (deg)	10	10	10	20	20
	Time (sec)	1.9	1.9	1.9	1.9	1.9
* } *	Phi-fwd (deg) Phi-aft (deg)	64.570 60.065	64.124 57.484	55.370 63.795	50.423 63.098	45.638 60.074
•	Handling Level	1	1	1	1	1

•

.

AT AFF

a and a second second	Dynamic Fres. (psf) Speed (fps)	51.17 207.5		•		
ß	· · ·	25	36	50	75	100
1 日 一	Wing area Wing span	592 84.3	592 84.3	592 84.3	1182 132.5	1182 132 . 5
	I-xx-fwd I-xx-aft	67265 102964	70773 124022	141865 73363	1355496 761328	1646875 888448
· · · · · · · · · · · · · · · · · · ·	С-1-р	-0.5818	-0.5818	-0.5818	-0.6323	-0.6318
.	C-l-Delta-A	0.455	0.455	0.455	0.443	0.443
	L-p-fwd L-p-aft	-4.4867 -2.9311	-4.2643 -2.4334	-2.1274 -4.1138	-1.1936 -2.1250	-0.9816 -1.8196
	T-R-fwd T-R-aft	0.2229 0.3412	0.2345 0.4109	0.4701 0.2431	0.8378 0.4706	1.0187 0.5496
10 AN	Handling Level	1	1	1	1	1
4true .	L-Delta-A-fwd L-Delta-A-aft	17.2738 11.2847	16.4176 9.3687	8.1903 15.8380	2.6191 4.6632	2.1557 3.9960
١			•			
	Delta-A (deg)	10	10	10	10	10
Vinte	Time (sec)	1.5	1.5	1.5	1.5	1.5
an and a second se	Phi-fwd (deg) Phi-aft (deg)	49.179 44.777	48.736 42.340	40.397 48.410	17.599 23.016	15.701 21.660
	Handling Level	1	1	1	1	1

APPENDIX E

ARAMID ALUMINUM DATA SUMMARY

*

.

•

~ ;

•

ļ

> . .

[]

E-1

Table of Contents

•

....

E.1	Properties	E.3
E.2	Strengths	E.3
E.3	Machinability	E.3
E.4	Areas of Concern	E.4
E.5	Most Likely Structural Component Uses	E.4
	· ·	

E-2

September 4, 1986

Preliminary Overview of Feasibility of using ARALL

as a Primary Component of Aircraft Structures

ARALL - Aramid Aluminum Laminate. based upon an August 1983 report.

E.1 PROPERTIES:

	<u>2024T3</u>	<u>7075T6</u>	_ARALL [*] _
.2% Yield Stress (KSI)	52	70	77
Ultimate Tensile Stress (KSI)	68	81	114
Proportional Limit Comp. (KSI)	39	70	47
Youngs Modulus (KSI)	10440	10440	9135
Failure Strain 🖇	17	11	3.5
Specific Weight	2.8	2.8	2.45
Density lb/ft ³	174.8	174.8	152.95

*ARALL 7075-T6 sheets with intermediate modulus fibers and pre-strained.

E.2 STRENGTHS:

High static strength particularly in tensile yield stress. High fatigue resistance, in fact it is almost fatigue insensitive, with a life cycle of a factore of ten(10) times more testing cycles. Better corrosion resistance, including the bondline when pretreated. Delamination under heavy loads and corrosive environment is no problem. Quality control by C-scan and Fokker bond tester easily detected delamination and voids.

E.3 MACHINABILITY:

Easily cut, drilled. sawn and milled by normal workshop procedures. Countersinking is possible with conventional rivets. Briles rivets are ideal for thin skin installation. Adhesive bonding with pretreatment and high temperature curing is allowable. This material can also be bolted.

Plastic sheet bending is possible, including fabrication of stiffeners and limited double curvature bending.

E.4 AREAS OF CONCERN:

Prestressing of fibers. a technique to obtain better compressive properties. is "rather expensive".

Strength decreases with moisture absorption. Stiffness is not significantly affected.

Notched fracture toughness is comparable or worse than Al alloy: (Intermediate modulus fibers had best properties when notched)

Low fracture toughness when through the thickness damage(cut fibers) occurred. Although it had far superior fracture toughness with the fibers intact. This is offset by whether such accidental damage will ever occur.

Avoid peel forces higher than 0.146 psf.

E.5 MOST LIKELY STRUCTURAL COMPONENT USES:

Where panelloading is above 6.27 psf, probably in lower skin of wing

cylindrical part of pressure cabin

Lower Wing: Changes from fatigue critical to mainly critical in compression(negative gust case).

Fuselage has two critical areas:

Bottom: Fatigue critical in tangential; compression critical in axial. Crown: Fatigue critical.

Dverall, where used yielded about 30 percent decrease in structural weight.

Appendix F

Calculations of stick forces and stick force gradients.

Purpose: This appendix, using the methods of Reference 10:

- a) Longitudinal stick forces
- b) Rudder pedal forces
- c) Aileron wheel force
- d) Stick force speed gradient
- e) Stick force per 6 gradient
- f) Rudder pedal force per sideslip gradient

F-1

g) Control surface hinge moments

e	AE 700		11 Black black	- Lip
	REFER TO SPR	EASHEET :	<u>MIRUSSELL</u>	5/10
	$R = \frac{St}{SE}$			
<u>.</u>	$C_{h_{SE}}(t+E) =$	Chse + ChstR		•
do surer 3 source	COTRIM Equi	· 5, 134 5 · 135		
	$\frac{\partial \alpha}{\partial C_{L}} = \frac{Cm_{s}}{CL_{s}Cm_{s}}$ $\frac{\partial \delta_{E}}{\partial C_{L}} = Eqn,$	$E = C_{ma}C_{LSE}$ 5.46		
· · · · · · · · · · · · · · · · · · ·	X _{TRIM} E9 S _{ETRIM}	n. 5./32 5./33		
· · · · · · · · · · · · · · · · · · ·	$C_h = C_{h_x} \alpha_{\mu} + S_M F_{EEE}$ $\frac{\partial F}{\partial h}$	$E_{qn} + C_{h_{\delta E}} = E_{qn} + 5.154$ $E_{qn} + 5.163$	(c _{no} = 0)	
	<u> 2</u> 2 V	5./38	•	
	FS = G. HM			

د • • •

8

1 me 2

B C	D	E	۶	G	н
25 Pax Stic	k Force	Calculatio			
· · ·		F.C. 1	F.C. 2	F.C. 3	F.C. 4
		Fwd c.g. Cruise	Fwd c.g. Vmc	Aft c.g. Cruise	Aft c.g. Vmc
h (ft) density (slugs/ft3) V (fps) q-bar (psf) X-bar-AC X-bar-cg		30000 8.893 2- 4 696.3 215.58 .369 .145	0 2.377 e- 3 207.5 51.17 .376 .145	30000 8.893 c- 4 696.3 215.58 .369 .280	0 2.377 e- 3 207.5 51.17 .376 .280
Geometries, Inertia	s				
S (ft2) b (ft) c-bar (ft) W (lb) Ixx (slug-ft2) Iyy (slug-ft2) Izz (slug-ft2) Ixz (slug-ft2)		592 84.30 7.45 24739 67265 130433 177066 224	592 84.30 7.45 24739 67265 130433 177066 224	592 84.30 7.45 23381 102964 122535 180634 208	592 84.30 7.45 23381 102964 122535 180634 208
Steady State Coeff	icients				
CL CD		. 194 . 014	.817 .145	.183 .014	.772 .143
Longitudinal Deriv	atives				
C-L-a-A (rad-1) C-m-dE (rad-1) C-L-o C-m-o C-L-dE (rad-1) C-L-i-H (rad-1) C-m-i-H (rad-1) C-m-alpha (rad-1) C-m-q (rad-1) Lateral-Directiona	1 Deriva	5.58 -1.68 .170 014 .420 .778 -3.117 -1.251 -27.470 FC 1 atives	5.67 -1.74 .170 004 .434 .803 -3.216 -1.308 -28.340 FC 2	5.58 -1.63 .170 014 .420 .778 -3.012 498 -25.640 FC 3	5.67 -1.68 .170 004 .434 .803 -3.107 543 -26.460 FC 4
C-n-Beta (rad-1) C-1-p C-1-dA (rad-1) C-n-dR (rad-1)		.045 715 .553 .085	.078 582 .455 .079	.045 715 .553 .085	.078 582 .455 .079

A

*

in we we are

123456789111234567890123456789012345678901234444444444455 M * 1 ì," .

...**s**

.

.

s.P.4

- 4	52 53		Longitudinal Stick Force	Calculations				
- 4	54		P . 11					
;	55	· >>		1.00	1.00	1.00	1.00	
	56	>>	Gearing Ratio (rad/ft)	.72	.72	.72	.72	
	57	>>	S-Elev. (ft2)	42.00	42.00	42.00	42.00	
	58	>>	C-Elev. (ft)	1.640	1.640	1.640	1.640	
	59	>>	C-h-dE (rad-1)	469	323	469	323	
	- 68		dt (deg)				2.00	
_	61	>>	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033	
	02		<u> </u>	2,000	7 000	7 000		
3	03	>>	S-tab (ft2)	7.000	570	7.000	7.000	
	04 65	>>	C-tab (Tt) Cubuslaba (and-1)	.070	. 570	.570	. 370	
į	00	>>	C-reatpria (red-1)	203	20.94	203	177	
1	60 67	>>		29.04	29.04	20.03	20.03	
	60	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	(du-c	. 540	. 540	.540	.540	
6	00 60	~ ~ ~ ~		.014	254	254	.014	
	09 70	~ ~ ~	ac/da n/nlohn (g/nnd)	· 204 20 70	.234	20 46	. 204	
. 1	70	~~~~	n/aipina (g/iau)	20.75	2 50	2 50	7.23	
- 5	75			2.00	2.50	2.00	2.50	
*	73	~ ~ ~	R (d-tab (d-alay)	00	00	00	00	
	7.0		(u = cab / u = iev.)	- 4690	- 3230	- 4690	- 3230	
	75			.4000		:4000		
• • •	76		aloba-o-trim (rad)	032	032	031	~.031	
я ;	77		delta-o-trim (rad)	011	004	025	018	
	78							
1	79		d-alpha/dCL	. 190	. 187	. 183	. 181	
	80		d-dE/dC	-: 141	141	056	059	
:	81							
1	82		alpha-trim (rad)	.005	. 121	.003	. 109	-
	83		del-E-trim (rad)	038	120	035	064	
	84		•				· .	
	85	_ >>	Load Factor (g's)	1.00	1.00	1.00	1.00	
	86		d-delE/dV (rad/fps)	7.86e-5	1.11e-3	2.96 e- 5	4.353e-4	
march	87		d-delE/dn (rad/g)	036	212	018	135	
	88							
	89		c-h	.0165	.0172	.0158	.0012	
. \$	90 91		S.M.(FREE)	.098	. 106	033	025	
	92 93 94		dF/dn (1bs/g)	69.31	64.66	-6.20	13.63	
ha e nel	94 Q5			23 33	23 33	23 33	23 33	
62600	95		dE/dn MAY	80.00	80.00	80.00	80.00	
۰.	97			00.00	50.00	00.00		
	98 99	۹.	Passes MIL-F-8785C	yes	yes	no	no	
	100		dF/dV (lbs/knot)	.232	.076	.434	. 184	
. í 1	102	-	F-S (lbs)	176.48	43.56	169.27	3.15	

Α	B C D	E	F	G	H:
>>	R (d-tab / d-elev.)	1.00	1.00	1.00	1.00
	C-h-dE (tab + elev.)	-1.4910	-1.3560	-1.4910	-1.3560
	alpha-o-trim (rad)	032	032	031	031
	delta-o-trim (rad)	011	004	025	018
	d-alpha/dCL	. 190	. 187	. 183	. 181
	d-dE/dCL	141	141	056	059
	alpha-trim (rad)	.005	. 121	.003	. 109
	del-E-trim (rad)	038	120	035	-:064
>>	Load Factor (g's)	1.00	1.00	1.00	1.00
	d-delE/dV (rad/fps)	7.86 e- 5	1.11e-3	2.96e-5	4.353 e- 4
	d-delE/dn (rad/g)	036	212	018	135
•	c-h	.0554	. 1407	.0521	.0669
	S.M. (FREE)	. 184	.201	.051	.067
	dF/dn (1bs/g)	391.32	457.87	142.11	234.05
	dF/dn MIN	23.33	23.33	23.33	23.33
	dr̃/dn MAX	80.00	80.00	80.00	80.00
	Passes MIL-F-8785C	no	no	no	no
	dF/dV (1bs/knot)	.570	. 188	1.224	. 649
	F-S (1bs)	592.84	357.02	557.05	169.84

•

÷

£ .

•

: : : شرب :

I.

A	B C D	Ε	F	G	H
>>	R (d-tab / d-elev.)	.50	.50	.50	.50
		9800	0355	3800	
	alpha-o-trim (rad)	032	032	031	031
	delta-o-trim (rad)	011	004	025	018
	d-alpha/dCL	. 190	. 187	. 183	. 181
	d-dE/dCL	141	141	056	059
	alpha-trim (rad)	.005	. 121	.003	.109
	del-E-trim (rad)	~.038	120	035	064
>>	Load Factor (g's)	1.00	1.00	1.00	1.00
	d-delE/dV (rad/fps)	7.86e-5	1.11e-3	2.96e-5	4.353e-4
	d-delE/dn (rad/g)	036	212	018	135
	c-h	.0360	.0789	.0340	.0341
	S.M. (FREE)	. 164	. 183	.031	.049
	dF/dn (1bs/g)	230.32	261.27	67.95	123.84
	dF/dn MIN	23.33	23.33	23.33	23.33
	dF/dn MAX	80.00	80.00	80.00	80.00
	Passes MIL-F-8785C	no	no	yes	no
	dF/dV (1bs/knot)	.401	. 132	.829	.416
	F-S (1bs)	384.66	200.29	363.16	86.50
	F-S (IDS)	384.66	200.29	303.10	86.50

*

- <u>-</u>

. بر روس

*

•

.

81 82 83

3

.

\$ >	R (a-tab / a-elev.)	E50	F ~.50	G - 50	ا ب 1
	C-h-dE (tab + elev.)	.0420	. 1935	.0420	. 1935
	alpha-o-trim (rad)	032	032	031	031
,	delta-o-trim (rad)	011	004	025	018
	d-alpha/dCL	. 190	. 187	.183	. 181
	d-dE/dCL	141	141	056	059
	alpha-trim (rad)	.005	. 121	.003	. 109
	del-E-trim (rad)	038	120	035	064
->>	Load Factor (g's)	1.00	1.00	1.00	1.00
	d-delE/dV (rad/fps)	7.86e-5	1.11 e- 3	2.96e-5	4.353e-4
	d-delE/dn (rad/g)	036	212	018	135
	c-h	0030	0446	0023	0316
	S.M. (FREE)	1.633	.440	1.450	. 298
	dF/dn (1bs/g)	-91.69	-131.94	-80.36	-96.59
·	dF/dn MIN	23.33	23.33	23.33	23.33
	dF/dn MAX	80.00	80.00	80.00	. 80.00
	Passes MIL-F-8785C	no	no	no	no
	dF/dV (lbs/knot)	. 064	.021	.038	049
	F-S (1bs)	-31.70	-113.16	-24.61	-80.20

9

.

91

ţ

.....

•

÷.,

ŧ.

2**9** } -----

•

.

÷

A	B C D	E	F	G	E È
>>	R (d-tab / d-elev.)	-1.00	-1.00	-1.00	-1.00
	C-h-dE (tab + elev.)	.5530	.7100	.5530	.7100
	aloba-o-trim (rad)	- 032	032	031	031
	delta-o-trim (rad)	011	004	025	018
	d-a]pha/dCL	. 190	. 187	. 183	. 181
	d-dE/dCL	141	141	056	059
	alpha-trim (rad)	.005	.121	.003	.109
	del-E-trim (rad)	038	120	035	064
>>	Load Factor (g's)	1.00	1.00	1.00	1.00
	d-delE/dV (rad/fps)	7.86e-5	1.11e-3	2.96e-5	4.353e-4
÷	d-delE/dn (rad/g)	036	212	018	135
	c-h	0224	1063	0204	0644
	S.M. (FREE)	.331	.288	. 192	. 151
	dF/dn (1bs/g)	-252.69	-328.55	-154.52	-206.80
	dF/dn MIN	23.33	23.33	23.33	23.33
	dF/dn MAX	80.00	80.00	80.00	80.00
	Passes MIL-F-8785C	no	no	no	no
	dF/dV (lbs/knot)	105	035	357	282
	F-S (lbs)	-239.88	-269.89	-218.50	-163.54

•

#

•

Į.≁.i

÷.....

•

•

.

91⁴

A .

.4

.15

.]9

?9

 .

С

в

F

н

G

36 Pax Stick Force Calculations

ε

=======================================	=================	**==*=		
	F.C. 1	F.C. 2	F.C. 3	F.C. 4
	Fwd c.g.	Fwd c.g.	Aft c.g.	Aft c.g.
	Cruise	Vmc	Cruise	Vinc
h (ft)	30000	0	30000	0
density (slugs/ft3)	8.893e-4	2.377 e- 3	8.893e-4	2.377e-3
V (fps)	696.3	207.5	696.3	207.5
q-bar (psf)	215.58	51.17	215.58	51.17
(-bar-AC	. 454	. 454	. 454	. 454
X-bar-cg	.267	.267	. 385	. 385
Geometries, Inertias				
5 (ft2)	592	592	592	592
b (ft)	84.30	84.30	84.30	84.30
e-bar (ft)	7.45	7.45	7.45	7.45
W (1b)	30334	30334	28574	28574
Ixx (slug-ft2)	70773	70773	124022	124022
lyy (slug-ft2)	235569	235569	209114	109114
Izz (slug-ft2)	284424	284424	310361	310361
CL CD	 .238 .0177	1.001	. 224	. 9 43 - 1690
Longitudinal Derivativ	25	. 1650	.0175	. 1050
 C-L-a-A (rad-1)	 5.58	5.67	5.58	5.67
C-m-dE (rad-1)	-1.85	-1.91	-1.80	-1.86
C-L-0	.170	.170	.170	. 170
C-m-o	006	.005	006	.005
C-L-dE (rad-1)	. 420	. 434	. 420	. 434
C-L-i-H (rad-1)	.778	.803	.778	. 803
C-m-i-H (rad-1)	-3.431	-3.540	-3.340	-3.445
C-m-alpha (rad-1)	-1.041	-1.098	383	-, 429
C-m-o (rad-1)	-33, 485	-34.540	-31.650	-32.650
	FC 1	FC 2	FC 3	FC 4
Lateral-Directional Dem	rivatives			
Beta (rad-1)	.118	. 153	.118	. 153
С-1-р	715	582	715	582
C-l-dA (rad-1)	. 553	. 455	. 553	. 455
C-n-dR (rad-1)	. 088	. 100	.088	. 100

ہیں ہے، سے سے دینے سے جو سے بینے سے دینے میں کی جو کی جو کہ بینے کہ جو کر جو ہے ہیں ہے۔				
Eta-H	1.00	1.00	1.00	1,00
Gearing Ratic (rad/ft)	.72	.72	.72	.72
S-Elev. (ft2)	42.00	42.00	42.00	42.00
C-Elev. (ft)	1.640	1.640	1.640	1.640
C-h-dE (rad-1)	469	323	469	323
C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
S-tab (ft2)	7.000	7.000	7.000	7.000
C-tab (ft)	.570	.570	.570	.570
C-h-alpha (rad-1)	263	177	263	177
1-H (ft)	32.85	32.85	31.97	32.85
Tau-E	. 54	. 54	. 54	. 54
i-H (deg)	.00	.00	.00	.00
dE/da	.254	. 254	.254	. 254
n/alpha (g/rad)	23.48	5.57	24.92	5.92
n-Limit	2.50	2.50	2.50	2.50
R (d-tab / d-elev.)	.00	.00	.00	.00
C-h-dE (tab + elev.)	4690	3230	4690	3230
alpha-o-trim (rad)	-,032	032	031	-,031
delta-c-trim (rad)	.014	. 021	.003	.010
d-alpha/dCL	. 187	. 184	.182	. 180
d-dE/dCL	105	106	039	041
alpha-trim (rad)	.013	. 153	.010	. 139
del-E-trim (rad)	010	085	005	029
Load Factor (g's)	1.00	1.00	1.00	1.00
d-delE/dV (rad/fps)	7.18e-5	1.0224e-3	2.49e-5	3.765e-4
d-delE/dn (rad/g)	034	211	017	139
c-h	.0015	.0005	0001	0151
S.M. (FREE)	. 048	.049	066	~.065
dF/dn (lbs/g)	45.03	47.36	-27.47	81
dF/dn MIN	23.33	23. 33	23, 33	23.33
dF/dn MAX	80.00	89.77	80.00	84.53
Passes MIL-F-8785C	yes	yes	no	no
		_		
dF/dV (lbs/knot)	019	~.062	.139	. 022

.

>)Eta-H1.001.001.001.00>)Gearing Ratic (rad/ft).72.72.72.72>)S-Elev. (ft2)42.0042.0042.0042.00>)C-Elev. (ft)1.6401.6401.6401.640>)C-h-dE (rad-1) 469 323 469 323 >)C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033 >)S-tab (ft2)7.0007.0007.0007.000>)C-h-alpha (rad-1) 263 177 263 177 >)I-H (ft)32.8532.8531.9732.85>)Tau-E.54.54.54.54>)i-H (deg).00.00.00.00dE/da.254.254.254.254.254>n/alpha (g/rad)23.485.5724.925.92n-Limit2.502.502.502.502.50	>>	R (d-tab / d-elev.)	1.00	1.00	1.00	1.00
>)Eta-H1.001.001.001.00>)Gearing Ratic (rad/ft).72.72.72.72>)S-Elev. (ft2)42.0042.0042.0042.00>)C-Elev. (ft)1.6401.6401.6401.640>)C-h-dE (rad-1) 469 323 469 323 >)C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033 >)S-tab (ft2)7.0007.0007.0007.000>)C-h-alpha (rad-1) 263 177 263 177 >)I-H (ft)32.8532.8531.9732.85>)Tau-E.54.54.54.54>)i-H (deg).00.00.00.00dE/da.254.254.254.254.254>)n/alpha (g/rad)23.485.5724.925.92n-Limit2.502.502.502.502.50	,,	C-h-dE (tab + elev.)	-1.4910	-1.3560	-1.4910	-1.3560
>)Eta-H1.001.001.001.00>)Gearing Ratic (rad/ft).72.72.72.72>)S-Elev. (ft2)42.0042.0042.0042.00>)C-Elev. (ft)1.6401.6401.6401.640>)C-h-dE (rad-1) 469 323 469 323 >)C-h-dt (rad-1) -1.022 -1.033 -1.022 -1.033 >)S-tab (ft2)7.0007.0007.0007.000>)C-h-dt (rad-1) -1.263 177 263 177 >)C-h-alpha (rad-1) 263 177 263 177 >)C-h-alpha (rad-1) 263 177 263 177 >)Tau-£.54.54.54.54>)Tau-£.54.254.254.254>)n/alpha (g/rad)23.485.5724.925.92n-Limit2.502.502.502.50>)R (d-tab / d-elev.)1.001.001.001.00C-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560		alpha-o-trim (rad) delta-o-trim (rad)	032 .014	032 .021	031 .003	031 .010
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratic (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .570)) C-h-alpha (rad-1)263177263177)) C-h-alpha (rad-1)263177263177)) I-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) Tau-E .54 .54 .54 .54)) Tau-E .54 .54 .54 .54)) I-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)) Aralpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50)) R (d-tab / d-elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad)032032031031 delta-o-trim (rad) .014 .021 .003 .010		d-alpha/dCL	. 187	. 184	. 182	. 180
))Eta-H1.001.001.001.00))Gearing Ratic (rad/ft).72.72.72.72))S-Elev. (ft2)42.0042.0042.0042.00(ft2)1.6401.6401.6401.640(ft1)1.6401.6401.6401.640(ft2)469323469323))C-h-dtab(rad-1)-1.022-1.033-1.022(ft2)7.0007.0007.0007.000))C-had (ft2)7.0007.0007.000))C-halpha(rad-1)263177))C-h-alpha(rad-1)263177))C-h-alpha(rad-1)263177))Tau-E.54.54.54))i-H(deg).00.00.00dE/da.254.254.254.254))i-H(deg)23.485.5724.92))R(d-tab / d-elev.)1.001.001.00(c-h-dE(tab + elev.)-1.4910-1.3560-1.4910))R(d-tab / d-elev.)1.003.010.003(c-h-dE(tab + elev.)-1.4910-1.3560-1.4910(rad).014.021.003.010(delta-o-trim.014.021.003.010(delta-o-trim.167.184.182.180		d-dE/dCL	105	106	039	041
$\begin{array}{llllllllllllllllllllllllllllllllllll$		alpha-trim (rad)	.013	. 153	.010	. 139
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		del-E-trim (rad)	010	085	005	02:
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1) -1.022 -1.033 -1.022 -1.033)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .570)) C-h-alpha (rad-1)263177263177)) C-h-alpha (rad-1)263177263177)) 1-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)> n/alpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 alpha-o-trim (rad) .014 .021 .003 .010 d-alpha/dCL .167 .184 .182 .180 d-dE/dL .167 .184 .182 .180 d-dE/dCL .187 .184 .182 .180 d-dE/dCL .187 .010 .033 .010 .133 del-e-trim (rad) .013 .153 .010 .135 del-e-trim (rad) .013 .153 .010	>>	Load Factor (g's) d-delE/dV (rad/fps)	1.00 7.18e-5	1.00 1.0224e-3	1.00 2.49e-5	1.00 3.765e-4
)) Eta-H 1.00 1.00 1.00 1.00 7.00)) Gearing Ratio (rad/ft) 72 72 72 72 72 72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .570 .570)) C-h-alpha (rad-1)263177263177)) 1-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54 .54)) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254 .254)) n/alpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50 c.50 2.50 2.50 2.50 alpha-o-trim (rad) .014 .021 .003 .010 d-alpha/dCL .187 .184 .182 .180 d-dE/dCL105106039041 alpha-trim (rad) .013 .153 .010 .135 del-E-trim (rad) .014 .021 .005 .025)) Load Factor (g's) 1.00 1.00 1.00 1.00 1.00		d-delE/dn (rad/g)	034	211	017	139
)) Eta-H 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1) -1.022 -1.033 -1.022 -1.033)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-halpha (rad-1) -263 -177 -263 -177)) C-halpha (rad-1) -263 -177 -263 -177)) C-halpha (rad-1) -263 -177 -263 -177)) Tau-E .54 .54 .54 .54 .54)) Tau-E .54 .54 .54 .54 .54)) Tau-E .54 .54 .54 .54 .54)) Tau-E .54 .254 .254 .254 .254)) Tau-E .54 .254 .254 .254 .254)) n/alpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50 2.50 c-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad) .014 .021 .003 .010 d-alpha/dCL .167 .184 .182 .180 d-dE/dCL .187 .184 .182 .190 d-dE/dCL .190 .100 .100 .100 d-dE/dCL		c-h	.0123	.0886	.0055	.0158
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00 (rad-1) 7.469 7.323 7.469 7.323)) C-h-d-tab (rad-1) 7.022 7.033 7.022 7.033)) C-h-d-tab (rad-1) 7.022 7.000 7.000 7.000)) C-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft1) .570 .570 .570 .570)) C-h-alpha (rad-1) 7.263 7.177 7.263 7.177)) 1-H (ft1) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54 .54)) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254 .254)) n/alpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 alpha-0-trim (rad) 7.032 7.032 7.031 7.031 delta-0-trim (rad) 7.014 .021 .003 .010 d-alpha/dCL .187 .184 .182 .180 d-dE/dCL -105 7.106 7.039 7.041 alpha-trim (rad) .013 .153 .010 .135 delta-c-trim (rad) .0123 .0886 .0055 .0152		S.M. (FREE)	. 143	. 154	.026	.037
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00 (rad-1) 7.469 7.323 7.469 7.323)) C-h-d-tab (rad-1) 7.022 7.033 7.000 7.000)) C-h-d-tab (rad-1) 7.022 7.000 7.000 7.000)) C-h-d-tab (rad-1) 7.263 7.177 7.263 7.177)) C-h-alpha (rad-1) 7.263 7.177 7.263 7.177)) Tau-E 5.4 .54 .54 .54 .54)) rau-E 5.5 32.85 31.97 32.85)) Tau-E 5.5 2.4 .254 .254 .254)) rau-E 5.5 2.50 2.50 2.50 2.50 c-h de (tab + elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab + elev.) 7.14910 7.13560 7.14910 7.13560 alpha-0-trim (rad) 7.032 7.032 7.031 7.031 delta-0-trim (rad) 7.014 .021 7.003 0.002 d-alpha/dCL 1.167 1.184 1.182 1.180 d-alpha/dCL 1.167 1.184 1.182 1.180 d-alpha-dCL 1.167 1.184 1.182 1.180 d-del/dCL 1.167 1.184 1.182 1.180 d-delE/dV (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 3.765e-4 d-delE/dV (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 3.765e-4 d-delE/dV (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 3.765e-4 d-delE/dN (rad/g) 7.034 7.211 7.017 7.135 c-h 0.0123 0.0886 0.0055 0.0152 S.M. (FREE) 1.143 1.154 0.026 0.037		df/dm (lbc/a)		497 76	109 11	210 19
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-dtb (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .570)) C-h-alpha (rad-1)263177263177)) Tau-E .54 .54 .54 .54 .54 .54)) Tau-E .54 .557 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50)) R (d-tab / d-elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad) .013 .153 .010 .135 delta-o-trim (rad) .013 .153 .010 .135 delta-otrim (rad) .013 .153 .010 .135 del-E-trim (rad) .014 .021 .005 .0055 .0152 S.M. (FREE) .143 .154 .026 .037 		dF/dn (lbs/g)	351.27	423.35	109.11	210.19
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1) -1.022 -1.033 -1.022 -1.033)) C-h-dtab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000 C-tab (ft) .570 .570 .570 .570 C-halpha (rad-1) -263177 -263177) C-halpha (rad-1) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54 .54)) I-H (ft) 32.85 32.85 .31.97 32.85)) Tau-E .54 .54 .54 .54 .54)) I-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .255 .259 n-Limit 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50)) R (d-tab / d-elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-0-trim (rad) .014 .021 .003 .010 d-alpha/dCL .167 .184 .182 .180 d-dE/dCL .167 .184 .182 .180 d-dE/dCL .167 .184 .182 .180 d-dE/dCL .167 .184 .182 .180 d-dE/dCL .167 .184 .162 .180 d-dE/dCL .105 .005 .0055 .0152)) Load Factor (g's) 1.00 1.00 1.00 1.00 d-delE/dV (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 3.765e-4 d-delE/dV (rad/fps) 7.18e-5 1.0224e-3 2.49e-5		dF/dn MIN	23.33	23.33	23.33	23.33
)) Eta-H 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1) -1.629 -1.033 -1.022 -1.033)) C-h-dtab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .570)) C-h-alpha (rad-1) -263177) 1-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) 1-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) 1-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) 1-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) 1-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) 1-H (deg) .00 .00 .00 .00 C-h-dE(tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad)032032031031 delta-o-trim (rad) .014 .021 .003 .010 d-alpha/dCL .187 .184 .182 .180 d-dE/dCL105106039041 alpha-trim (rad) .013 .153 .010 .135 del-E-trim (rad) .013 .153 .010 .135 del-E-trim (rad)012 .003 .010 d-delE/dCL105106039041 alpha-trim (rad) .013 .153 .010 .135 del-E-trim (rad) .013 .153 .010 .135 del-E-trim (rad) .013 .153 .010 .135 del-delE/dV (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 3.765e-4 d-delE/dn (rad/g)034211017135 c-h .0123 .0886 .0055 .0156 S.M. (FREE) .143 .154 .026 .037 dF/dn MIN 23.33 23.33 23.33 23.33 23.33 23.33		dF/dn MAX	80.00	89.77	80.00	84.53
)) Eta-H 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1) -1.022 -1.033 -1.022 -1.033)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .577)) C-h-alpha (rad-1) -265 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54 .54)) i+H (ft) 32.85 32.85 31.97 32.85)) i-H (ft) .254 .254 .254 .254)) i-H (ftg) .00 .00 .00 .00 dE/da .254 .254 .254 .254 .254)) n'alpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50 2.50 R (d-tab / d-elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad) .014 .021 .003 .010 delta-o-trim (rad) .013 .153 .010 .135 delta-o-trim (rad) .013 .153 .010 .135 delta-trim (rad) .013 .153 .010 .135 delta-trim (rad) .013 .153 .010 .135 c-h .0123 .0886 .0055 .0156 S.M. (FREE) .102 .143 .154 .026 .037 -034 -211 -017 -1356 d-delE/dV (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 .3.765e-4 d-delE/dV (rad/fps) 7.18e-5		Passes MIL-F-8785C	no	, no	no	nc
)) Eta-H 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) C-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Hode (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .570)) C-tab (ft) .570 .570 .570 .570)) C-tab (ft) .32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54 .54)) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254 .254)) r-Limit 2.50 2.50 2.50)) R (d-tab / d-elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad) .013 .153 .010 .031 delta-o-trim (rad) .013 .153 .010 .031 delta-o-trim (rad) .013 .153 .010 .031 delta-o-trim (rad) .013 .153 .010 .031 delte-te-trim (rad) .013 .153 .010 .001 d-delE/dCL .003 .005 .0055 .0156)) Load Factor (g's) 1.00 1.00 1.00 1.00 1.00 d-delE/dn (rad/g) .013 .153 .010 .133 c-h .0123 .0886 .0055 .0156 S.M. (FREE) .143 .154 .026 .037 dF/dn MIN 23.33 23.33 23.33 23.33 23.33 dF/dn MAX 80.00 89.77 80.00 84.53		Passes MIL-F-8785C	no	no	no	nc
)) Eta-H 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72 .72)) Gearing Ratio (rad/ft) .72 .72 .72 .72 .72)) C-Elev. (ft2) 42.00 42.00 42.00 42.00 42.00)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-halpha (rad-1)263177263177)) 1-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)) i-H (deg) 2.300 .00 .00 .00 dE/da .254 .254 .254 .254)) n-Limit 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50)) R (d-tab / d-elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 delta-o-trim (rad) .014 .021 .003 .014 delta-o-trim (rad) .013 .153 .010 .133 delta-o-trim (rad) .013 .153 .010 .133 delta-otrim (rad) .013 .153 .010 .133 del-E-trim (rad) .013 .153 .010 .133 del-GelE/dV (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 3.765e-4 d-delE/dN (rad/g) .033 .23.33 23.33 23.33 23.33 dF/dn (lbs/g) 351.27 423.36 109.11 210.15 dF/dn MIN 23.33 23.33 23.33 23.33 23.33 dF/dn MAX 80.00 89.77 80.00 84.53		Passes MIL-F-8785C	no 	no	no 	nc
)) Eta-H 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) C-Elev. (ft2) 42.00 42.00 42.00 42.00 (c-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-h-alpha (rad-1)263177263177)) 1-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54 .54)) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)) i-H (deg) 23.48 .57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50)) R (d-tab / d-elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 delta-o-trim (rad) .014 .021 .003 .012 delta-o-trim (rad) .013 .153 .010 .133 delta-o-trim (rad) .013 .153 .010 .133 del-E-trim (rad) .013 .154 .026 .037 d-delE/dV (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 3.765e-4 d-delE/dN (rad/g) .351.27 423.36 109.11 210.15 dF/dn (1bs/g) 351.27 423.36 109.11 210.15 dF/dn MNN 23.33 23.33 23.33 23.33 23.33 dF/dn MAX 80.00 89.77 80.00 84.53		Passes MIL-F-8785C	no 	no 	no	nc
)) Eta-H 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) C-Elev. (ft2) 42.00 42.00 42.00 42.00 (c-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-halpha (rad-1)263177263177)) C-h-alpha (rad-1)263177263177)) C-halpha (rad-1)263177263177)) Tau-E .54 .54 .54 .54 .54 .54)) Tau-E .54 .54 .54 .54 .54)) Tau-E .55 .57 24.92 5.92 n-Limit 2.50 2.50 2.55)) R (d-tab / d-elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab + elev.) -14.910 -1.3560 -1.4910 -1.3560 delta-o-trim (rad) .014 .021 .003 .010 delta-o-trim (rad) .013 .153 .010 .103 delta-o-trim (rad) .013 .153 .010 .103 delta-d-telE/dV (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 3.765e-4 d-delE/dV (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 3.765e-4 d-delE/dN (rad/g) .033 .015 S.M. (FREE) .143 .154 .026 .037 dF/dm MIN 23.33 23.33 23.33 23.33 23.33 23.33 dF/dm MAX 80.00 89.77 80.00 84.55		Passes MIL-F-8785C	no	no	no	nc
)) Eta-H 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .577)) C-h-alpha (rad-1)263177263177)) 1-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)) i-H (deg) .00 .00 .00 dE/da .254 .254 .254 .254)) rau-E .58 .57 24.92 5.95 n-Limit 2.50 2.50 2.50 2.50 2.50 C-h-dE (tab / d-elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab / d-elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad) .014 .021 .003 .010 d-alpha/dCL .187 .184 .182 .180 d-alpha/dCL .187 .184 .182 .180 d-delfdU .013 .153 .010 .133 delta-o-trim (rad) .013 .153 .010 .133 delta-trim (rad) .013 .153 .010 .133 delta-trim (rad) .013 .153 .010 .133 del-E-trim (rad) .013 .153 .010 .135 del-G-delE/dV (rad/fps) 7.18e-5 1.0224e-3 2.49E-5 3.765E-4 d-delE/dM (rad/fps) 7.18E-5 1.0224e-7 2.49E-5 3.765E-4 d-delE/dM		Passes MIL-F-8785C	no	no	no	nc
)) Eta-H 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .77)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-dtab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .577)) C-h-alpha (rad-1)263177 .563177)) I-H (ft) 32.85 32.85 31.97 32.86)) Tau-E .54 .54 .54 .54)) I-H (ftg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)) rau-Limit 2.50 2.50 2.50 2.50 c-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad) .013 .153 .010 .133 delta-o-trim (rad) .013 .153 .010 .133 delta-o-trim (rad) .013 .153 .010 .133 delta-c-trim (rad) .013 .153 .010 .133 delta-delE/dCL .187 .184 .182 .1860 d-dE/dCL .187 .184 .182 .1860 d-delE/dCL .187 .184 .182 .1860 del-delE/dCL .187 .184 .182 .1860 delele/dr (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 3.765e-4 d-delE/dn (rad/g) .033 .153 .010 .100 1.00 1.00 d-delE/dN (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 3.765e-4 d-delE/dn (rad/g) .034 .211 .017 .135 c-h .0123 .0886 .0055 .0156 <u>5.M. (FREE) .143 .154 .026 .035</u> <u>dF/dm MIN 23.33</u>		dF/dn MAX	80.00	89.77	80.00	84.53
)) Eta-H 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .77)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1) -1.022 -1.033 -1.022 -1.033)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .577 .570)) C-h-alpha (rad-1)263 .177263177)) 1-H (ft) 32.85 32.85 31.97 32.86)) Tau-E .54 .54 .54 .54 .54)) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)) i-H (deg) 2.3.48 5.57 24.92 5.95 n-Limit 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2		dF/dn MIN	23.33	23.33	23.33	జితం తర దిగ్రా
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72 .73)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1) -1.022 -1.033 -1.022 -1.033)) C-h-dtab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .570)) C-h-alpha (rad-1) -263 -1.177 -263 -1.17) I+H (ft) 32.85 32.85 31.97 32.86)) Tau-E .54 .54 .54 .54)) I+H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)) rau-E .54 .54 .54 .54)) rau-E .54 .55 .57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50 2.50 c-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad) .014 .021 .003 .010 d-alpha/dCL .187 .184 .182 .186 d-deldCL105106039041 alpha-trim (rad) .013 .153 .010 .133 delta-o-trim (rad) .013 .153 .010 .133 delta-o-trim (rad) .013 .153 .010 .133 delte-E-trim (rad) .013 .153 .010 .133 delte-E-trim (rad) .013 .153 .010 .133 delte-C-trim (rad) .013 .153 .010 .133 delte-E-trim (rad) .014 .021 .026 .035 .0156 .0156 .0156 .0156 .0156 .0156 .0156 .0156 .0156 .0156 .0156 .0156 .0156 .0156		dE/do MIN	22 22	23.33	23. 33	23. 33
)) Eta-H 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1) -1.022 -1.033 -1.022 -1.033)) C-h-dtab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .570)) C-h-alpha (rad-1) -263177 -263177) 1-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)) raupe .50 2.50 2.50 2.50 2.50)) R (d-tab / d-elev.) 1.00 1.00 1.00 C-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad) .013 .153 .010 .135 delta-o-trim (rad) .013 .153 .010 .135 delta-o-trim (rad) .013 .153 .010 .135 delta-c-trim (rad) .013 .153 .010 .135 delta-c-trim (rad) .013 .153 .010 .135 delta-c-trim (rad) .013 .153 .010 .135 delta-d-delE/dCL .187 .184 .182 .180 d-dE/dCL .187 .184 .182 .180 d-delte/dCL .100 1.00 1.00 1.00 1.00 d-delte/dCL .187 .184 .182 .180 d-delte/dCL .195 .005 .0055 .0156 S.M. (FREE) .1023 .0886 .0055 .0156		dF/dn (lbs/g)	351.27	423.36	109.11	210.19
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00 (rad-1) 7.469 7.323 7.469 7.323)) C-h-d-tab (rad-1) 7.022 7.033 7.022 7.033)) C-h-d-tab (rad-1) 7.022 7.000 7.000 7.000)) C-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft1) .570 .570 .570 .570)) C-h-alpha (rad-1) 7.263 7.177 7.263 7.177)) C-h-alpha (rad-1) 7.263 7.177 7.263 7.177)) Tau-E 54 .54 .54 .54 .54)) Tau-E 54 .54 .54 .54 .54)) Tau-E 54 .254 .254 .254 .254)) Tau-E 550 2.50 2.50 2.50 2.50 c-h-dE (tab / d-elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab / d-elev.) 7.14910 7.13560 7.14910 7.13560 alpha-0-trim (rad) 7.032 7.032 7.031 7.031 delta-0-trim (rad) 7.014 .021 .003 0.010 d-alpha/dCL 1.167 1.164 1.182 1.160 d-alpha/dCL 1.167 1.164 1.182 1.160 d-alpha/dCL 1.167 1.164 1.182 1.160 d-deL/dU (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 3.765e-4 d-deL/dV (r		df/dm (lbc/s)		 427 76	109.11	210.19
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .570 .570)) C-h-alpha (rad-1)263177263177)) C-h-alpha (rad-1)263177263177)) I-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54 .54)) Tau-E .54 .54 .254 .254 .254)) Tau-E .54 .54 .254 .254 .254)) Tau-E .54 .57 24.92 5.92 m-Limit 2.50 2.50 2.50 2.50 2.50)) R (d-tab / d-elev.) 1.00 1.00 1.00 C-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad) .013 .153 .010 .135 delta-o-trim (rad) .013 .153 .010 .135 delta-o-trim (rad) .013 .153 .010 .135 del-E-trim (rad) .0123 .0886 .0055 .0152		S.M. (FREE)	.143	.154	.026	.037
)) Eta-H 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-halpha (rad-1)263177263177)) C-h-alpha (rad-1)263177263177)) I-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) Tau-E .54 .54 .54 .54)) Tau-E .54 .254 .254 .254)) Tau-E .54 .254 .254 .254)) Tau-E .54 .254 .254 .254)) N/alpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 alpha-o-trim (rad)032032031031 delta-o-trim (rad) .014 .021 .003 .010 d-alpha/dCL .187 .184 .182 .180 d-dE/dCL105106039041 alpha-trim (rad)013 .153 .010 .135 del-E-trim (rad)013 .153 .010 .100 d-alpha/dCL .187 .184 .182 .180 d-dE/dCL105005005025)) Load Factor (g's) 1.00 1.00 1.00 1.00 d-delE/dV (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 3.765e-4 d-delE/dV (rad/fps) 7.18e-5 1.0224e-3 2.49e-5 3.765e-4		c-h	.0123	.0886	.0055	.0153
)) Eta-H 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-h-d-tab (rad-1)263177263177)) C-h-alpha (rad-1)263177263177)) C-h-alpha (rad-1)263177263177)] I-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) Tau-E .54 .54 .54 .54)) rau-E .54 .54 .54 .54)) n/alpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 alpha-o-trim (rad)032032031031 delta-o-trim (rad) .014 .021 .003 .010 d-alpha/dCL .187 .184 .182 .180 d-dE/dCL105106039041 alpha-trim (rad)013 .153 .010 .139 del-E-trim (rad)013 .153 .010 .100 d-dE E/dV (rad/fps) 7.188-5 1.02248-3 2.498-5 3.7658-4 d-delE/dV (rad/fps)034211017017			0123	0885	0055	- 0158
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .570)) C-h-alpha (rad-1)263177263177) 1-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)) n/alpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50 alpha-o-trim (rad) .014 .021 .003 .010 delta-o-trim (rad) .014 .021 .003 .010 delta-o-trim (rad) .013 .153 .010 .135 del-e-trim (rad) .014 .024 .005 .005025)) Load Factor (g's) 1.00 1.00 1.00 1.00 1.00		d-delE/dv (rad/tps) d-delE/dn (rad/g)	7.18e-5 034	211	017	139
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratio (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-halpha (rad-1)263177263177)) C-h-alpha (rad-1)263177263177)) C-h-alpha (rad-1)263177263177)) I-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)) n/alpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 alpha-o-trim (rad) .014 .021 .003 .010 d-alpha/dCL .187 .184 .182 .180 d-dE/dCL .187 .194 .182 .180 d-dE/dCL .187 .194 .182 .180 d-dE/dCL .187 .194 .182 .180 d-dE/dCL .187 .194 .182 .180 d-dE/dCL .190 .100 .003 .010 d-190 .003 .010 d-190 .003 .010 d-190 .003 .010 .135 del-E-trim (rad) .013 .153 .010 .135	,,	d-delF/dV (red/fos)	7.18e-5	1.02248-3	2.49e-5	3.765e-4
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratic (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-hab (ft) .570 .570 .570 .570)) C-h-alpha (rad-1)263177263177)) I-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) Tau-E .54 .54 .54 .54)) Tau-E .54 .254 .254 .254)) rau-E .54 .254 .254 .254)) rau-E .550 2.50 2.50 2.50 c-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad) .014 .021 .003 .010 delta-o-trim (rad) .013 .153 .010 .135 del-E-trim (rad) .013 .153 .010 .135 del-E-trim (rad)025025	>>	Load Factor (p's)	1.00	1.00	1.00	- 1.00
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratic (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .570)) C-h-alpha (rad-1)263177263177)) 1-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)) r/alpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50 c-h-dE (tab + elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad) .014 .021 .003 .010 d-alpha/dCL .187 .184 .182 .180 d-dE/dCL105106039041 alpha-trim (rad) .013 .153 .010 .135		del-E-trim (rad)	010	085	005	029
$\begin{array}{llllllllllllllllllllllllllllllllllll$		alpha-trim (rad)	.013	. 153	.010	.139
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratic (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-h-alpha (rad-1)263177263177)) C-h-alpha (rad-1)263177263177)) C-h-alpha (rad-1)263177263177)) Tau-E .54 .54 .54 .54)) Tau-E .54 .54 .54 .54)) Tau-E .54 .54 .54 .54)) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254 .254)) n/alpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50)) R (d-tab / d-elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad)032032031031 delta-o-trim (rad) .014 .021 .003 .010 d-alpha/dCL .187 .184 .182 .180 d-alpha/dCL .187 .184 .182 .180						
))Eta-H1.001.001.001.00))Gearing Ratio (rad/ft).72.72.72.72))S-Elev. (ft2)42.0042.0042.0042.00(ft)1.6401.6401.6401.640(ft)1.6401.6401.6401.640(ft)1.649323469323(rad-1)-1.022-1.033-1.022-1.033(rad-1)-1.022-1.033-1.022-1.033(ft2)7.0007.0007.0007.000(ft3)S-tab (ft2)7.0007.0007.000(rad-1)-263177-263177(ft4)32.8532.8531.9732.85(ft4).00.00.00.00(ft4)32.8532.8531.9732.85(ft4).254.254.254.254(ft4).254.254.254.254(ft4).00.00.00.00(ft4).23.485.5724.925.92(rad-tab / d-elev.)1.001.001.001.00(c-h-dE (tab + elev.))-1.4910-1.3560-1.4910-1.3560(rad-tab / d-elev.).014.021.003.010		d-alpha/dCL d-dE/dCL	.187 105	.184 106	.182 039	.180 041
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratic (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00 (c-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .570)) C-h-alpha (rad-1)263177263177)) C-h-alpha (rad-1)263177263177)) I-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)) n/alpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50)) R (d-tab / d-elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad)032032031031 delta-o-trim (rad) .014 .021 .003 .010			107	104	180	1.0/
)) Eta-H 1.00 1.00 1.00 1.00 1.00)) Gearing Ratic (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .570)) C-h-alpha (rad-1)263177263177)) C-h-alpha (rad-1)263177263177)) I-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) i-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)) n/alpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50)) R (d-tab / d-elev.) 1.00 1.00 1.00 1.00 C-h-dE (tab + elev.) -1.4910 -1.3560 -1.4910 -1.3560 alpha-o-trim (rad)032032031031		delta-o-trim (rad)	.014	.021	.003	.010
))Eta-H1.001.001.001.00))Gearing Ratic (rad/ft).72.72.72.72))S-Elev. (ft2)42.0042.0042.0042.00))C-Elev. (ft)1.6401.6401.6401.640))C-h-dE (rad-1)469323469323))C-h-dtab (rad-1)-1.022-1.033-1.022-1.033))S-tab (ft2)7.0007.0007.0007.000))S-tab (ft2)7.0007.0007.0007.000))C-h-alpha (rad-1)263177263177))I-H (ft)32.8532.8531.9732.85))Tau-E.54.54.54.54))i-H (deg).00.00.00.00dE/da.254.254.254.254.254))n/alpha (g/rad)23.485.5724.925.92))R (d-tab / d-elev.)1.001.001.001.00(tab + elev.)-1.4910-1.3560-1.4910-1.3560		alpha-o-trim (rad)	032	032	031	031
)) Eta-H 1.00 1.00 1.00 1.00)) Gearing Ratic (rad/ft) .72 .72 .72 .72)) S-Elev. (ft2) 42.00 42.00 42.00 42.00)) C-Elev. (ft) 1.640 1.640 1.640 1.640)) C-h-dE (rad-1)469323469323)) C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033)) S-tab (ft2) 7.000 7.000 7.000 7.000)) C-tab (ft) .570 .570 .570 .570)) C-h-alpha (rad-1)263177263177)) I-H (ft) 32.85 32.85 31.97 32.85)) Tau-E .54 .54 .54 .54)) Tau-E .54 .54 .54 .54)) I-H (deg) .00 .00 .00 .00 dE/da .254 .254 .254 .254)) n/alpha (g/rad) 23.48 5.57 24.92 5.92 n-Limit 2.50 2.50 2.50 2.50		C-h-dE (tab + elev.)	-1.4910	-1.3560	-1.4910	-1.3560
))Eta-H1.001.001.001.00))Gearing Ratio (rad/ft).72.72.72.72))S-Elev. (ft2)42.0042.0042.0042.00))C-Elev. (ft)1.6401.6401.6401.640))C-h-dE (rad-1) 469 323 469 323))C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033))S-tab (ft2)7.0007.0007.0007.000))C-tab (ft1).570.570.570))C-h-alpha (rad-1) 263 177 263))Tau-E.54.54.54))Tau-E.54.54.54))Tau-E.00.00.00dE/da.254.254.254.254))n/alpha (g/rad)23.485.5724.925.92n-Limit2.502.502.502.50	>>	R (d-tab / d-elev.)	1,00	1.00	1.00	1.00
>)Eta-H1.001.001.001.00>)Gearing Ratio (rad/ft).72.72.72.72>)S-Elev. (ft2)42.0042.0042.0042.00>)C-Elev. (ft)1.6401.6401.6401.640>)C-h-dE (rad-1) 469 323 469 323 >)C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033 >)S-tab (ft2)7.0007.0007.0007.000>)C-tab (ft).570.570.570>)C-h-alpha (rad-1) 263 177 263 >)Tau-E.54.54.54>)i-H (deg).00.00.00dE/da.254.254.254.254>)n/alpha (g/rad)23.485.5724.925.96		n-Limit	2.50	2.50	2.50	2.50
>)Eta-H1.001.001.001.00>)Gearing Ratic (rad/ft).72.72.72.72>)S-Elev. (ft2)42.0042.0042.0042.00>)C-Elev. (ft)1.6401.6401.6401.640>)C-h-dE (rad-1)469323469323>)C-h-d-tab (rad-1)-1.022-1.033-1.022-1.033>)S-tab (ft2)7.0007.0007.0007.000>)C-tab (ft).570.570.570>)C-h-alpha (rad-1)263177263>)Tau-E.54.54.54.54>)i-H (deg).00.00.00.00dE/da.254.254.254.254.254	<i>}}</i>	n/alpha (g/rad)	23.48	5.57	24.92	J. 70
))Eta-H1.001.001.001.00))Gearing Ratio (rad/ft).72.72.72.72))S-Elev. (ft2)42.0042.0042.0042.00))C-Elev. (ft)1.6401.6401.6401.640))C-h-dE (rad-1)469323469323))C-h-dtab (rad-1)-1.022-1.033-1.022-1.033))S-tab (ft2)7.0007.0007.0007.000))C-tab (ft).570.570.570))C-h-alpha (rad-1)263177263))I-H (ft)32.8532.8531.97))I-H (ft).54.54.54))I-H (deg).00.00.00	• •	or/oa m (n) sto (n (mad)	.234	· 204 5 57	• 204 34 83	· 204
$\rangle\rangle$ Eta-H1.001.001.001.00 $\rangle\rangle$ Gearing Ratio (rad/ft).72.72.72.72 $\rangle\rangle$ S-Elev. (ft2)42.0042.0042.0042.00 $\rangle\rangle$ C-Elev. (ft)1.6401.6401.6401.640 $\rangle\rangle$ C-h-dE (rad-1)469323469323 $\rangle\rangle$ C-h-d-tab (rad-1)-1.022-1.033-1.022-1.033 $\rangle\rangle$ S-tab (ft2)7.0007.0007.0007.000 $\rangle\rangle$ C-tab (ft1).570.570.570 $\rangle\rangle$ C-h-alpha (rad-1)263177263 $\rangle\rangle$ I-H (ft1)32.8532.8531.97 $\rangle\rangle$ Tau-E.54.54.54.54	//	1-8 (GER) 1-8	.00	. VV		. V.
>)Eta-H1.001.001.001.00>)Gearing Ratic (rad/ft).72.72.72.72>)S-Elev. (ft2)42.0042.0042.0042.00>)C-Elev. (ft)1.6401.6401.6401.640>)C-h-dE (rad-1) 469 323 469 323 >)C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033 >)S-tab (ft2)7.0007.0007.0007.000>)C-halpha (rad-1) 263 177 263 177 >)I-H (ft)32.8532.8531.9732.85>)Tau-F -54 .54.54.54	· · ·	iew (dep)	.04	. 00	.00	-01
>)Eta-H1.001.001.001.00>)Gearing Ratic (rad/ft).72.72.72.72>)S-Elev. (ft2)42.0042.0042.0042.00>)C-Elev. (ft)1.6401.6401.6401.640>)C-h-dE (rad-1)469323469323>)C-h-d-tab (rad-1)-1.022-1.033-1.022-1.033>)S-tab (ft2)7.0007.0007.0007.000>)C-h-alpha (rad-1)263177263177>)1-H (ft).32.85.32.85.31.97.32.85	5	Tau-F	. 54	. 54	. 54	. 54
>>Eta-H1.001.001.001.00>>Gearing Ratio (rad/ft).72.72.72.72>>S-Elev. (ft2)42.0042.0042.0042.00>>C-Elev. (ft)1.6401.6401.6401.640>>C-h-dE (rad-1)469323469323>>C-h-d-tab (rad-1)-1.022-1.033-1.022-1.033>>S-tab (ft2)7.0007.0007.0007.000>>C-h-alpha (rad-1)263177263177	}	1-H (ft)	32.85	32.85	31.97	32.8
$\rangle\rangle$ Eta-H1.001.001.001.00 $\rangle\rangle$ Gearing Ratio (rad/ft).72.72.72.72 $\rangle\rangle$ S-Elev. (ft2)42.0042.0042.0042.00 $\rangle\rangle$ C-Elev. (ft)1.6401.6401.6401.640 $\rangle\rangle$ C-h-dE (rad-1)469323469323 $\rangle\rangle$ C-h-d-tab (rad-1)-1.022-1.033-1.022-1.033 $\rangle\rangle$ S-tab (ft2)7.0007.0007.0007.000 $\rangle\rangle$ C-tab (ft1).570.570.570.570	>>	C-h-alpha (rad-1)	263	1//	263	17
$\rangle\rangle$ Eta-H1.001.001.001.00 $\rangle\rangle$ Gearing Ratio (rad/ft).72.72.72.72 $\rangle\rangle$ S-Elev. (ft2)42.0042.0042.0042.00 $\rangle\rangle$ C-Elev. (ft)1.6401.6401.6401.640 $\rangle\rangle$ C-h-dE (rad-1)469323469323 $\rangle\rangle$ C-h-d-tab (rad-1)-1.022-1.033-1.022-1.033 $\rangle\rangle$ S-tab (ft2)7.0007.0007.0007.000)) 		.570	. 370	.5/0	. 3/(
$\rangle\rangle$ Eta-H1.001.001.001.00 $\rangle\rangle$ Gearing Ratio (rad/ft).72.72.72.72 $\rangle\rangle$ S-Elev. (ft2)42.0042.0042.0042.00 $\rangle\rangle$ C-Elev. (ft)1.6401.6401.6401.640 $\rangle\rangle$ C-h-dE (rad-1)469323469323 $\rangle\rangle$ C-h-d-tab (rad-1)-1.022-1.033-1.022-1.033	>>	S-tab (ft2)	7.000	7.000	7.000	7.000
>>Eta-H1.001.001.001.00>>Gearing Ratio (rad/ft).72.72.72.72>>S-Elev. (ft2)42.0042.0042.0042.00>>C-Elev. (ft)1.6401.6401.6401.640>>C-h-dE (rad-1)469323469323			-1.025	-1,033		
>> Eta-H 1.00	• •	C-b-d-tab (mad-1)	-1 022	-1 073	-1 022	-1.033
>> Eta-H 1.00 1.00 1.00 1.00 1.00 >> Gearing Ratio (rad/ft) .72 .72 .72 .72 >> S-Elev. (ft2) 42.00 42.00 42.00 42.00 >> C-Elev. (ft) 1.640 1.640 1.640	>>	C-h-dE (rad-1)	469	323	469	323
<pre>>> Eta-H 1.00 1.00 1.00 1.00 >> Gearing Ratio (rad/ft) .72 .72 .72 .72 >> S-Elev. (ft2) 42.00 42.00 42.00 42.00</pre>	>>	C-Elev. (ft)	1.640	1.640	1.640	1.640
<pre>>> Eta-H 1.00 1.00 1.00 1.00 >> Gearing Ratio (rad/ft) .72 .72 .72 .72 .72</pre>	>>	S-Elev. (ft2)	42.00	42.00	42.00	42.00
<pre>>> Eta-H 1.00 1.00 1.00 1.00 1.00 >> Gapping Patie (mad/ft) 72 72 72 72 72 72 72 72 72 72 72 72 72</pre>	<i></i>	Bearing Ratio (rad/ft)	· / E	. 72	• / E	
)) Eta-H 1.00 1.00 1.00 1.00	~~~	Geoning Patio (nad/ft)	70	72	72	7:
	>>	Fta-H	1.00	1 00	1.00	1.00

. . . .:

A	B C D	E. Calculation	F	G	н
>>	Eta-H	1.00	1.00	1.00	1.00
>>	Gearing Ratio (rad/ft)	. 72	.72	.72	.72
>>	5-Elev. (ft2)	42.00	42.00	42.00	42.00
>>	C-Elev. (ft)	1.640	1.640	1.640	1.640
>>	U-h-dE (rad-1)	469	323	-, 469	323
>>	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
>>	S-tab (ft2)	7.000	7.000	7.000	7.000
>>	C-tab (ft)	.570	. 570	.570	.570
>>	C-h-alpha (rad-1)	263	177	263	177
>>	1-H (ft)	32.85	32.85	31.97	32.85
>>	Tau-E	. 54	. 54	. 54	. 54
>>	i-H (deg)	.00	.00	.00	.00
	dE/da	. 254	. 254	. 254	. 254
>>	n/alpha (g/rad)	23.48	5.57	24.92	5.92
	n-Limit	2.50	2.50	2.50	2.50
>>	R (d-tab / d-elev.)	- 50	. 50	. 50	. 50
	C-h-dE (tab + elev.)	9800	8395	9800	8395
	alpha-o-trim (rad)	032	-,032	031	-, 031
	delta-o-trim (rad)	.014	.021	.003	.010
	· · · · · · · · · · · · · · · · · · ·			-	
	d-alpha/dCL	. 187	. 184	. 182	. 180
		105	106	039	041
	· · · · · · · · · · · · · · · · · · ·				
	alpha-trim (rad)	.013	.153	.010	.139
	del-E-trim (rad)	010	085	005	029
>>	Load Factor (g's)	1.00	1.00	1.00	1.00
	d-delE/dV (rad/fps)	7.18e-5	1.0224e-3	2.49e-5	3.765e-4
	d-delE/dn (rad/g)	034	211	017	139
	c-h	.0069	.0445	.0027	. 0000
	S.M. (FREE)	. 121	. 134	.004	.017
	dF/dn (lbs/g)	198.15	235.36	40,82	104.69
	dF/dn MIN	23. 33	23, 33	23.33	23. 33
	dF/dn MAX	80.00	89.77	80.00	84.53
		30,00			
	Passes MIL-F-8785C	no	no	yes	no
	dF/dV (lbs/knot)	246	- . 324	.089	101
,	F-5 (1bs)	73.65	113.01	28.96	.12

e i

ļ

	A	B C D Longitudinal Stick Fo	E E E E E E E E E E E E E E E E E E E E	F	G	н
	•		1 00		1 00	1 00
	>>	Gearing Ratic (rad/ft	1.00	72	70	1.00
	>>	S-Flow (f+2)	42.00	42 00	42.00	42 00
	>>	C-Flev (ft)	1 640	1 640	1 640	1 640
	>>	C-h-dE (rad-1)	469	323	469	323
	>>	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
	>>	S-tab (ft2)	7.000	7.000	7.000	7.000
	>>	C-tab (ft)	. 570	.570	.570	. 570
	>>	C-h-alpha (rad-1)	263	177	263	177
	>>	1-H (ft)	32.85	32,85	31.97	32.85
	>>	Tau-E	.54	. 54	. 54	. 54
	>>	i-H (deg)	.00	.00	.00	.00
		dE/da	. 254	. 254	. 254	. 254
	>>	n/alpha (g/rad)	23.48	5.57	24.92	5.92
		n-Limit	2.50	2.50	2.50	2.50
	> >	R (d-tab / d-elev.)	50	-, 50	-, 50	50
•		C-h-dE (tab + elev.)	. 0420	.1935	.0420	.1935
		alpha-o-trim (rad)	032	032	031	031
		delta-o-trim (rad)	.014	.021	.003	.010
		d-alpha/dCL	. 187	.184	. 182	. 180
		d-dE/dCL	105	106	~.039	041
		alpha-trim (rad)	.013	.153	.010	. 139
		del-E-trim (rad)	010	085	005	029
	>>	Load Factor (g's)	1.00	1.00	1.00	1.00
		d-delE/dV (rad/fps)	7.18e-5	1.0224e-3	2.49e-5	3.765e-4
		d-delE/dn (rad/g)	034	211	017	139
		c-h	0038	0436	0029	0302
		S.M. (FREE)	1.739	. 417	1.579	.293
		dF/dn (1bs/g)	-108.09	-140.65	-95.76	-106.30
		dF/dn MIN	23. 33	23.33	23.33	23.33
		dF/dn MAX	80.00	89.77	80.00	84.53
		Passes MIL-F-8785C	no	no	no	no
		dF/dV (lbs/knot)	. 209	.200	. 189	. 146
		F-S (1bs)	-41.05	-110.70	-30.77	-75.64

ξ...

A	B C D	E	F	G	н
	Longitudinal Stick Force	Calculation			
>>	Eta-H	1.00	1.00	1.00	1.
>>	Gearing Ratic (rad/ft)	.72	. 72 '	.72	
>>	S-Elev. (ft2)	42.00	42.00	42.00	42.
>>	C-Elev. (ft)	1.640	1.640	1.640	1.6
>>	C-h-dE (rad-1)	`	323	469	3
>>	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.0
>>	S-tab (ft2)	7.000	7.000	7.000	7.0
>>	C-tab (ft)	. 570	. 570	. 570	
>>	C-h-alpha (rad-1)	-, 263	177	263	1
>>	1-H (ft)	32.85	32, 85	31.97	32.
>>	Tau-F	. 54	. 54	54	02.
>>	jew (den)	.04	.00	00	•
,,	dE/da	254	254	254	•
• • •	uc/ua m/slabs (m/msd)	27 49	5 57	.26 02	
,,	nvatpina (gvied)	2 50	2.57	27.55	ວ. ວ
	ri-Limit	e. Jv	. 2. 30	2.30	٤.
>>	R (d-tab / d-elev.)	-1.00	-1.00	-1.00	-1.
*	C-h-dE (tab + elev.)	. 5530	.7100	.5530	. 71
	alpha-o-trim (rad)	032	032	031	(
	delta-o-trim (rad)	.014	.021	.003	. (
	d-alpha/dCL	. 187	.184	.182	• :
	d-dE/dCL	105	106	039	(
	alpha-trim (rad)	.013	. 153	.010	• 1
	del-E-trim (rad)	010	085	005	(
>>	Load Factor (g's)	1.00	1.00	1.00	1.
	d-delE/dV (rad/fps)	7.18e-5	1.0224e-3	2.49e-5	3.765€
	d-delE/dn (rad/g)	034	211	017	:
	c-h	0092	-, 0877	0057	04
	S.M. (FREE)	. 305	. 250	.184	• 1
	dF/dn (lbs/g)	-261.20	-328.65	-164.06	-211.
	dF/dn MIN	23.33	23, 33	23.33	23,
	dF/dn MAX	80.00	89.77	80.00	84.
	Passes MIL-F-8785C	no	no	no	,
	dF/dV (1bs/knot)	. 436	. 462	. 239	 . ć

Α

h

в

D

Ε

F

н

G

50 Pax Stick Force Calculations

	F.C. 1	F.C. 2	F.C. 3	F.C. 4
	Fwd c.g.	Fwd c.g.	Aft c.g.	Aft c.g.
	Cruise	Vmc	Cruise	Vmc
h (ft)	30000	0	30000	o
density (slugs/ft3)	8.893e-4	2.377e-3	8.893e-4	2.377e-3
V (fps)	696.3	207.5	696, 3	207.5
q-bar (psf)	215.58	51.17	215.58	51.17
X-bar-AC	. 664	.673	.664	.673
X-bar-cg	. 530	. 530	.603	. 603
Geometries, Inertias	· .			
S (ft2)	592	592	592	592
b (ft)	84.30	84.30	84.30	84.30
c-bar (ft)	7.45	7.45	7.45	7.45
W (1b)	43141	43141	25978	25978
Ixx (slug-ft2)	141865	141865	73363	73363
Iyy (slug-ft2)	465510	465510	408670	408670
Izz (slug-ft2)	580046	580046	457113	457113
CL CD	 . 338 . 0191	1.424	. 204	.858
	.0151	. 2025	.0105	
Longitudinal Derivative	25			
C-L-a-A (rad-1)	5.58	5.67	5.58	5.67
C-m-dE (rad-1)	-2.32	-2.39	-2.29	-2.36
	. 170	.170	. 170	.170
	.017	.028	.017	.028
C-L-dE (rad-1)	. 420	. 434	. 420	.434
C-L-i-H (rad-1)	.778	.803	.778	.803
C-m-1-H (rad-1)	-4.288	-4.424	-4.231	-4.365
C-m-alpha (rad-1)	749	808	~.341	393
C-m-q (rad-1)	-53.652	-55.310	-52.137	-53.747
Lateral-Directional Der	rivatives	FL 2	FL 3	FL 4
Bata (wed-1)		770	107	577
C-1-5 C-1-5	• 17/ _ 7+E	. <u>5</u> 3/	. JJ/	. 6 87
C-1-p C-1-d() (mod-1)	/13	-, Joc /sr	-,/13 EE?	Joc /ee
C-1-CH (780-1)	. 333	, 400 190		.433
L-N-OK (rao-1)	-116	.153	*110	•153

•	Longitudinal Stick Force	Calculations	_		-
>>	 Eta-H	1.00	1.00	1.00	1.00
>>	Gearing Ratio (rad/ft)	.72	.72	.72	.72
>>	S-Elev. (ft2)	42.00	42.00	42.00	42.00
>>	C-Elev. (ft)	1.640	1.640	1.640	1.640
>>	C-h-dE (rad-1)	469	323	469	323
>>	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
>>	S-tab (ft2)	7.000	7.000	7.000	7.000
>>	C-tab (ft)	.570	.570	.570	.570
>>	C-h-alpha (rad-1) ·	263	177	~.263	177
>>	1-H (ft)	41.05	41.05	40.50	41.05
>>	Tau-E	. 54	. 54	.54	. 54
>>	i-H (deg)	.00	.00	.00	.00
	dE/da	. 254	. 254	.254	. 254
>>	n/alpha (g/rad)	16.51	3.92	27.41	6.51
	n-Limit	2.50	2.50	2.50	2.50
>>	R (d-tab / d-elev.)	.00	.00	.00	.00
	C-h-dE (tab + elev.)	4690	3230	4690	3230
	alpha-o-trim (rad)	032	032	031	031
	delta-o-trim (rad)	.018	.022	.012	.017
	d-alpha/dCL	.184	. 181	. 181	. 179
	d-dE/dCL	059	061	027	030
	alpha-trim (rad)	. 030	. 226	.006	. 122
	del-E-trim (rad)	002	065	.007	009
>>	Load Factor (g's)	1.00	1.00	1.00	1.00
	d-delE/dV (rad/fps)	5.77e-5	8.405e-4	1.58e-5	2.475e-4
	d-delE/dn (rad/g)	032	220	017	154
	c-h	0068	0191	0046	0188
	S.M. (FREE)	040	-, 029	110	100
	dF/dn (lbs/g)	-11.38	18.52	-31.87	3.01
	dF/dn MIN	23.33	23.33	23. 33	23.33
	dF/dn MAX	80.00	120.00	80.00	80.00
	Passes MIL~F-8785C	no	no	no	no
0	dF/dV (lbs/knot)	062	075	.014	034
5	F-S (lbs)	-72.87	-48.49	~48.69	-47.75

÷

° A ∕	B C D	ε	F	G	н
	Longitudinal Stick Force	Calculations	5		
• •					
· · · ·	Eta-A Gooming Potio (mod/ft)	1.00	1.00	1.00	1.00
>>	Searing Ratio (rau/it/	42.00	42.00	42.00	42 00
>>	$\Gamma = F = P \cdot (f + F)$	1 540	1.640	1.640	1.540
>>	C-b-dE (rad-1)	469	323	469	323
		. 105			
>>	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
>>	S-tab (ft2)	7.000	7.000	7.000	7.000
>>	C-tab (ft)	.570	. 570	. 570	.570
>>	C-h-alpha (rad-1)	263	177	263	177
>>	1-H (ft)	41.05	41.05	40.50	41.05
>>	Tau-E	. 54	. 54	. 54	. 54
>>	i-H (deg)	.00	. 00	.00	.00
	dE/da	. 254	. 254	. 254	. 254
>>	n/alpha (g/rad)	16.51	3.92	27.41	6.51
	n-Limit	2.50	2.50	2.50	2.50
>>	R (d-tab / d-elev.)	1,00	1,00	1.00	1.00
	C-h-dE (tab + elev.)	-1.4910	-1,3560	-1.4910	-1.3560
	alpha-o-trim (rad)	032	032	031	031
	delta-o-trim (rad)	.018	.022	.012	.017
	d-alpha/dCL	. 184	. 181	. 181	.179
	d-dE/dCL	059	-,061	027	030
	alpha-trim (rad)	. 030	. 226	. 006	. 122
	del-E-trim (rad)	002	065	.007	009
>>	Load Factor (g's)	1.00	1.00	1.00	1.00
	d-delE/dV (rad/fps)	5.77e-5	8.405e-4	1,58e-5	2 <i>.</i> 475e-4
	d-delE/dn (rad/g)	032	220	017	154
	c-h	0043	.0478	0113	0100
	S.M. (FREE)	.079	.102	. 007	. 030
	dF/dn (lbs/g)	257.49	391.03	81.93	218.81
	dF/dn MIN	23.33	23. 33	23.33	23. 33
	dF/dn MAX	80.00	120.00	80.00	80.00
	Passes MIL-F-8785C	no	no	no	no
	dF/dV (lbs/knot)	-,615	642	-, 366	-, 467
	F-S (lbs)	-45.99	121.29	-120.99	-25.33
	A >>> >>> >>> >>> >>> >>> >>> >>> >>> >	A B C D Longitudinal Stick Force 	A B C D E Longitudinal Stick Force Calculations J) Eta-H 1.00 J) Gearing Ratio (rad/ft) .72 J) S-Elev. (ft2) 42.00 J) C-Elev. (ft1) 1.640 J) C-h-dE (rad-1) 469 J) C-h-d-tab (rad-1) 1022 J) S-tab (ft2) 7.000 J) C-h-d-tab (rad-1) 263 J) C-h-alpha (rad-1) 263 J) Tau-E .54 J) Tau-E .54	A B C D E F Longitudinal Stick Force Calculations	A B C D E F 6 Longitudinal Stick Force Calculations

*

	Γ Α	BC.D	E	F	G	н
-53		Longitudinal Stick Force	e Calculations	5		
5	>>	Eta-H	1.00	1.00	1.00	1.00
ተና	>>	Gearing Ratic (rad/ft)	.72	.72	.72	.72
	>>	S-Elev. (ft2)	42.00	42.00	42.00	42.00
8	>>	C-Elev. (ft)	1.640	1.640	1.640	1.640
39 50	>>	C-h-dE (rad-1)	469	323	469	323
	>>	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
63	>>	S-tab (ft2)	7.000	7.000	7.000	7.000
4	>>	C-tab (ft)	. 570	. 570	. 570	. 570
^{r_1} 5	>>	C-h-alpha (rad-1)	263	177	263	177
66	>>	1-H (ft)	41.05	41.05	40.50	41.05
-57	>>	Tau-E	. 54	. 54	. 54	. 54
8	>>	i-H (deg)	.00	.00	.00	. 00
69		dE/da	.254	. 254	. 254	.254
70	>>	n/alpha (g/rad)	16.51	3.92	27.41	6. 51
• 1		n-Limit	2.50	2.50	2.50	2.50
73	>>	R (d-tab / d-elev.)	. 50	. 50	. 50	. 50
74	, ,	C-h-dE (tab + elev.)	9800	8395	9800	8395
- 5 76		alpha-o-trim (rad)	032	032	031	031
77		delta-o-trim (rad)	.018	.022	.012	.017
• /9		d-alpha/dCL	. 184	. 181	. 181	.179
80		d-dE/dCL	059	061	027	030
_ ! *▲ ?		alpha-trim (rad)	. 030	. 226	.005	. 122
ر ۵۸		del-E-trim (rad)	002	065	.007	009
15	>>	Load Factor (g's)	1.00	1.00	1.00	1.00
-86		d-delE/dV (rad/fps)	5.77e-5	8.405e-4	1.58e-5	2.475e-4
87 116		d-delE/dn (rad/g)	032	220	017	 154 ·
39		c-h	0056	.0143	0079	0144
90		S.M. (FREE)	.051	.077	021	.005
93		dF/dn (lbs/g)	123.06	204.78	25.03	110.91
*14		ac /au. MTN			37 77	92 22
73		drigh May	C3.33	· 23.33	E3.33 BA AA	<u> </u>
<u>9</u> Б 97		OF/ON MHX	80.00	120.00	80.00	80.00
)B 39		Passes MIL-F-8785C	no 	no 	yes	no
100		dF/dV (lbs/knot)	339	358	176	251
01		F-S (1bs)	-59.43	36.40	-84.84	~36.54
1964) ·						

A	B C D	E Calculations	F	G	н
					•
>>	Eta-H	1.00	1.00	1.00	1.00
>>	Gearing Ratio (rad/ft)	. 72	.72	.72	.72
>>	S-Elev. (ft2)	42.00	42.00	42.00	42.00
}	C-Elev. (ft)	1.640	1.640	1.640	1.640
>>	C-h-dE (rad-1)	469	323	~,469	323
>>	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
>>	S-tab (ft2)	7.000	7.000	7.000	7.000
>>	C-tab (ft)	. 570	.570	.570	.570
}	C-h-alpha (rad-1)	263	177	~.263	177
>>	l-H (ft)	41.05	41.05	40.50	41.05
>>	Tau-E	. 54	. 54	. 54	. 54
>>	i-H (deg)	.00	.00	.00	.00
	dE/da	. 254	. 254	. 254	.254
>>	n/alpha (p/rad)	16.51	3.92	27.41	6.51
	n-Limit	2.50	2.50	2.50	2.50
> >	R (d-tab / d-elev.)	50	-, 50	50	50
	C-h-dE (tab + elev.)	.0420	. 1935	.0420	. 1935
	alpha-o-trim (rad)	032	032	031	031
	delta-o-trim (rad)	.018	. 022	.012	.017
	d-alpha/dCL	. 184	. 181	. 181	. 179
	d-dE/dCL	059	061	027	030
	alpha-trim (rad)	. 030	.226	. 006	. 122
	del-E-trim (rad)	002	065	.007	009
>	Load Factor (g's)	1.00	1.00	1.00	· 1.00
	d-delE/dV (rad/fps)	5.77e-5	8.405e-4	1.58e-5	2.475e-4
	d-delE/dn (rad/g)	032	220	017	154
	c-h	0081	0526	0012	0232
	S.M. (FREE)	2.073	. 431	1.974	. 354
	dF/dn (lbs/g)	-145.81	-167.73	-88.77	-104.89
•	dF/dn MIN	23.33	23. 33	23.33	23.33
	dF/dn MAX	80.00	120.00	80.00	80.00
	Passes MIL-F-8785C	no	no	no	no
	dF/dV (lbs/knot)	.214	. 209	.205	. 182
	F-S (lbs)	-86.31	-133.38	-12.54	-58.96
·					
·					

. **.**
•					
° A		E	F	6.	н
. 33 4	Longitudinal Stick Force	Calculation	5		
5 >	> Eta-H	1.00	1.00	1.00	1.00
··· 5,)) Gearing Ratio (rad/ft)	.72	.72	.72	.72
· ; >	> S-Elev. (ft2)	42.00	42.00	42.00	42.00
8 >	> C-Elev. (ft)	1.640	1.640	1.640	1.640
ປ່ງ) ເດ	> C-h-dE (rad-1)	469	323	469	323
$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	> C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
63 >	> S-tab (ft2)	7.000	7.000	7.000	7.000
[] ¹ 4 >	<pre>> C-tab (ft) .</pre>	. 570	.570	. 570	.570
°,5 >	> C-h-alpha (rad-1)	263	-, 177	263	177
66 >	> 1-H (ft)	41.05	41.05	40.50	41.05
"Ģ7)	> Tau-E	. 54	. 54	.54	.54
·8 >	} i−H (deg)	.00	.00	.00	.00
<u>.</u> 9	dE/da	.254	.254	.254	.254
70 >	> n/alpha (g/rad)	16.51	3.92	27.41	6.51
1	n-Limit	2.50	2.50	2.50	2.50
73)	<pre>> R (d-tab / d-elev.)</pre>	-1.00	-1.00	-1.00	-1.00
74	C-h-dE (tat + elev.)	. 5530	.7100	. 5530	.7100
. 15 76	alpha-o-trim (rad)	032	032	031	031
77	delta-o-trim (rad)	.018	.022	.012	.017
°8 . '9		184	- 181	. 181	. 179
80	d-dE/dCL	059	061 ·	027	030
31	alpha-twig (mad)	030	225	005	. 199
1 •	del_E_twim (vad)	~ 002	- 065	.008	- 009
5-3- 5-4	Gel-E-trim (rad)	002	083		-,003
35 >	> Load Factor (g's)	1.00	1.00	1.00	1.00
36	d-delE/dV (rad/fps)	5.77e-5	8.405e-4	1.58e-5	2.475e-4
87	d-delE/dn (rad/g)	032	220	017	154
39	c-h	~. 0093	0860	.0022	0276
90 91	S.M. (FREE)	.281	.221	. 206	. 147
93 93	dF/dn (lbs/g)	-280.25	-353.98	-145.67	-212.80
94 •35	dF/dn MIN	23.33	23.33	23.33	23.33
96	dF/dn MAX	80.00	120.00	80.00	80.00
97 38	Passes MIL-F-8785C	no	no	no	no
100	dF/dV (lbs/knot)	. 491	. 492	. 395	. 398
105	F-S (1bs)	-99.75	-218.27	23.61	-70.17
3					

.

•

A

С

D

G 5/21/1987

75 Pax Baseline Stick Force Calculations

ε

	F.C. 1	F.C. 2	F.C. 3	F.C. 4
	Fwd c.g.	Fwd c.g.	Aft c.q.	Aft c.g.
、	Cruise	Vmc	Cruise	Vmc
h (ft)	30000	0	30000	o
density (slugs/ft3)	8.893e-4	2.377e-3	8.893e-4	2.377e-3
V (fps)	696.3	207.5	696.3	207.5
q-bar (psf)	215.58	51.17	215.58	51.17
X-bar-AC	.821	.813	.821	.813
X-bar-cg	.602	.602	.769	.769
Geometries, Inertias				
S (ft2)	1182	1182	1182	1182
b (ft)	132.50	132.50	132.50	132.50
c-bar (ft)	8.97	8.97	8.97	8.97
W (16)	71419	71419	44804	44804
Ixx (slug-ft2)	1355496	1355496	761328	761328
Iyy (slug-ft2)	505928	505928	441252	441252
Izz (slug-ft2)	1779110	1779110	1125135	1125135
Steady State Coefficien	ts			
CL ·	. 280	. 1. 181	.176	.741
CD	.016	.224	.015	. 223
Longitudinal Derivative	5	. · · ·	-	
C-L-a-A (rad-1)	6. 53	6. 60	6. 53	6.60
C-m-dE (rad-1)	-3.41	-3.42	-3.26	-3.26
C-L-o	. 170	. 170	.170	. 170
C-m-0	. 081	.090	.081	.090
C-L-dE (rad-1)	. 927	. 928	.927	. 928
C-L-i-H (rad-1)	1.716	1.718	1.716	1.718
C-m-i-H (rad-1)	-6.317	-6.324	-6.031	-6.037
C-m-alpha (rad-1)	-1.430	-1.394	339	292
C-m-q (rad-1)	-51.250	-51.308	-46.651	-46.704
	FC 1	FC 2	FC 3	FC 4
Lateral-Directional Der	ivatives			
C-n-Beta (rad-1)	. 034	.055	.034	.055
С-1-р	792	632	792	632
E-l-dA (rad-1)	. 608	. 443	.608	. 443
C-n-dR (nad-1)	057	060	057	050

32 33 34

35

₩101 *02		F-S (1bs)	-568.73	-170.35	-2675.70	-569.12
- 00		dF/dV (lbs/knot)	-1.420	-1.087	-7.807	-5.249
98 98	,	Passes MIL-F-8785C	yes	no	no	no
95 * 6		dF/dn MIN dF/dn MAX	23.33 80.00	23.33 90.42	23.33 80.00	23.33 80.00
3		dF/dn (lbs/g)	27.95	152.44	426.22	817.98
91 72		S. M. (FREE)	018	.008	. 006	. 003
9		c-h	0156	0196	0732	0656
- J7 88		d-delE/dn (rad/g)	029	184	012	108
6		d-delE/dV (rad/fps)	5.49e-5	7.472e-4	8.2e~6	9.82e-5
95	> >	Load Factor (g's)	1.00	1.00	1.00	1.00
-		del-E-trim (rad)	.018	038	. 025	.020
81 `2		alpha-trim (rad)	. 014	. 159	003	- 084
. 0		d-dE/dCL	068	066	016	014
78			167	101	155	154
7		delta-o-trim (rad)	.037	.039	. 028	. 030
-75 - 5	,	alpha-o-trim (rad)	031	031	-, 030	-, 030
74		C-h-dE (tab + elev.)	5980	4840	-2.9486	-2.2607
.2	>>	R (d-tab / d-elev.)	. 00	.05	2 30	1 78
71		n-Limit	2.50	2.50	2.50	2.50
. b	>>	n/alpha (g/rad)	23.32	5.53	37.17	8.82
Э		dE/da	.214	.214	.214	.214
68	>>	i-H (dec)	. 00	.00	.00	.00
ь7	>>	Tau - F	. 54	. 54	.54	. 54
ſΫ́	>>	C-N-alpha (Fab-1)	77 02	7. 541	7,340	71 59
	~ ~ ~ ~	C-tab (ft) C-b-slobs (pad-1)	.570	. 370	.370	. 570
U 3	>>	S-tab (ft2)	7.000	7.000	7.000	7.000
6 <u>1</u>	>>	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
) 	>>	C-h-dE (rad-1)	598	422	598	422
	>>	C-Elev. (ft)	1.640	1.640	1.640	1.640
- 7	>>	S-Elev, (ft2)	143.50	143.50	143.50	143.50
6	>>	Gearing Ratic (rad/ft)	.72	.72	.72	.72
5	>>	Eta-H	1.00	1.00	1.00	1.00
54			م هوه هي هيه هاه دانه ميك ¹ مله هي هي ماه مي م			
3		Longitudinal Stick Force	Calculations	5		

.

°. A	B C D	E	F	G	н
53	Longitudinal Stick Force	Calculations	5		
5 .>>	> Eta-H	1.00	1.00	1.00	1.00
~ぃ >>	Gearing Ratio (rad/ft)	.72	.72	. 72	.72
)))	S-Elev. (ft2)	143.50	143.50	143.50	143.50
(د د	C-Elev. (ft)	1.640	1.640	1.640	1.640
_∃ >) 50) C-h-dE (rad-1)	598	422	-,598	422
	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
63)	S-tab (ft2)	7.000	7.000	7.000	7.000
(¹ 4))	C-tab (ft)	. 570	.570	. 570	. 570
5 >>	C-h-alpha (rad-1)	346	241	346	241
66 >>) 1-H (ft)	33.02	33.02	31.52	31.52
67 >>	Tau-E	. 54	. 54	. 54	. 54
3 >>) i-H (deg)	. 00	.00	. 00	. 00
	dE/da	.214	.214	. 214	.214
70 >>) n/almha (n/rad)	23.32	5.53	37-17	8.82
1	n-limit	2.50	2.50	2.50	2.50
			2.00	2.00	E.,00
73 >>	<pre>R (d-tab / d-elev.)</pre>	.00	.00	.00	.00
.74	C-h-dE (tab + elev.)	5980	4220	5980	4220
,6	alpha-o-trim (rad)	031	031	030	030
77	delta-o-trim (rad)	.037	. 039	.028	.030
. 9	d-alpha/dCL	. 163	. 161	. 155	.154
80 31	d-dE/dCL·	068	066	016	014
-	alpha-trim (rad)	.014	.159	003	. 084
(04	del-E-trim (rad)	.018	038	.025	.020
5)	> Load Factor (g's)	1.00	1.00	1.00	1.00
,6	d-delE/dV (rad/fps)	5.49e-5	7.472e-4	8, 2e-6	9.82e-5
87 0 8	d-delE/dn (rad/g)	029	184	012	108
.9	c-h	0156	0220	0141	0287
-71 -1	S.M. (FREE)	018	~.021	175	178
	dF/dn (lbs/g)	27.95	88.65	-147.76	-37.40
-94 -95	dF/dn MIN	23.33	23.33	23.33	23. 33
16	dF/dn MAX	80.00	90.42	80.00	80.00
	Passes MIL-F-8785C	yes	yes	no	no
	dF/dV (lbs/knot)	-1.420	885	901	593
02	F-S (1bs)	-568.73	-190.99	-515.68	-248.49
			•		

A	B C D	ε	F	6	н
	Longitudinal Stick Force	Calculation	5		-
>>	Eta-H	1.00	1.00	1.00	1.00
>>	Gearing Ratio (rad/ft)	.72	.72	.72	. 73
>>	S-Elev. (ft2)	143.50	143.50	143.50	143.50
>>	C-Elev. (ft)	1.640	1.640	1.640	1.640
>>	C-h-dE (rad-1)	598	422	598	423
>>	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
>>	S-tab (ft2)	7.000	7.000	7.000	7.000
>>	C-tab (ft)	.570	.570	. 570	.570
>>	C-h-alpha (rad-1)	346	241	346	241
>>	1-H (ft)	33.02	33.02	31.52	31.58
>>	Tau-E	. 54	. 54	.54	. 54
>>	i-H (deg)	.00	.00	.00	. 00
	dE/da	.214	.214	.214	.214
>>	n/alpha (g/rad)	23.32	5.53	37.17	8.83
	n-Limit	2.50	2.50	2.50	2.50
> >	R (d-tab / d-elev.)	1.00	1,00	1.00	1, 00
,	C-h-dE (tab + elev.)	-1.6200	-1.4550	-1.6200	-1.4550
	alpha-o-trim (rad)	031	031	030	030
	delta-o-trim (rad)	. 037	.039	.028	. 030
	d-alpha/dCL	. 163	. 161	. 155	. 154
	d-dE/dCL	068	066	016	014
	alpha-trim (rad)	.014	. 159	003	.084
	del-E-trim (rad)	.018	038	.025	.020
> >	Load Factor (g's)	1.00	1.00	1.00	1.00
	d-delE/dV (rad/fps)	5.49e-5	7.472e-4	8, 2e-6	9. 82e-5
	d-delE/dn (rad/g)	029	184	012	108
	c-h	0337	.0176	0398	0494
·	S.M. (FREE)	. 131	. 144	032	020
	dF/dn (lbs/g)	851.36	1151.72	101.79	443.15
	dF/dn MIN	23.33	23.33	23.33	23.33
	dF/dn MAX	80.00	90.42	80.00	80.00
	Passes MIL-F-8785C	no	no	no	nc
	dF/dV (1bs/knot)	-5. 371	-4.262	-3.904	-3.209
	F-S (lbs)	-1230.47	152.99	-1454.82	-428.62
	•				· ·
		•			
	ς				

•

		•					
f	A	B C D	E	F	G	н	
		Longitudinal Stick Force	Calculations	5			
	• •				1 00	1.00	,
	// \\	Eta-n Geaning Ratio (mad/ft)	1.00	72	1.00	1.00	
, ,	> >	S-Flev. (ft2)	143.50	143.50	143.50	143.50	
, ,	>>	C-Elev. (ft)	1.540	1.640	1.640	1.640	
,	>>	C-h-dE (rad-1)	598	422	598	422	
)	> >	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033	
)	>>	S-tab (ft2)	7.000	7.000	7.000	7.000	
)	>>	C-tab (ft)	.570	. 570	.570	. 570	•
·)	}	C-h-alpha (rad-1)	346	241	346	241	
)	>>	1-H (ft)	33.02	33.02	31.52	31.52	
<u>`</u> }	>>	Tau-E	. 54	. 54	.54	. 54	
)	>>	i-H (deg)	.00	.00	.00	. 00	
		dE/da	.214	.214	.214	.214	
)	>>	n/alpha (g/rad)	23.32	5.53	37.17	8.82	
		n-Limit	2.50	2.50	2.50	2.50	
)	>>	R (d-tab / d-elev.)	. 50	. 50	.50	. 50	
		C-h-dE (tab + elev.)	-1.1090	9385	-1.1090	~.9385	
		alpha-o-trim (rad)	031	031	030	030	
		delta-o-trim (rad)	.037	.039	.028	.030	
			4.5 7		165	154	
		d-alpha/dul	- 163	- 066	- 015	.134	
		8-0E/OCL	060	066	016	014	
		alphantwim (wad)	014	169	- 003	004	.*
		dol-E-twim (mad)	019	- 039	003	.084	
		del-e-crim (rau)	.018	030	.VEJ	.020	
3	>>	Load Factor (n's)	1.00	1,00	1.00	1,00	
•	••	d-delE/dV (rad/fps)	5.49e-5	7.472e-4	8. 2e-6	9.82e-5	
	•	d-delE/dn (rad/p)	029	184	012	108	
		- .					
		e-h.	0246	0022	0270	0390	
				•	. .		
		S. M. (FREE)	.091	. 107	070	056	
		dF/dn (lbs/g)	439.65	620.19	-22, 99	202.88	
		alt / day MTNI				43 33	
		or/on min	E3.33	C3, 33	دی. نخ ۵۸ ۵۵	23. 33	
·		GEZON PIMA	60.00	JV, 4C	BU. UU	60.00	
		Passes MIL-F-8785C	no	no	no	no	
0		dF/dV (lbs/knot)	-3. 396	-2.573	-2.402	-1.901	
2		F-S (1bs)	-899.60	-19.00	-985.25	-338.55	
					· ·		
							2
							. •
						•	
		•					
				•			
				•		• •	

•

A	B C D	Ε	F	6	Ĥ
	Longitudinal Stick Force	Calculations	5		
>>	Eta-H	1.00	1.00	1.00	1.00
>>	Gearing Ratio (rad/ft)	.72	.72	.72	.72
>>	S-Elev. (ft2)	143.50	143.50	143.50	143.50
>>	C-Elev. (ft)	1.640	1.640	1.640	1.640
>>	C-h-dE (rad-1)	598	422	598	422
>>	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
>>	S-tab (ft2)	7.000	7.000	7.000	7.000
>>	C-tab (ft)	.570	.570	.570	.570
}	C-h-alpha (rad-1)	346	241	346	241
>>	1-H (ft)	33.02	33.02	31.52	31.52
>>	Tau-E	, 54	. 54	.54	. 54
>>	i-H (deg)	.00	.00	.00	.00
	dE/da	.214	.214	.214	.214
>>	n/alpha (g/rad)	23.32	5.53	37.17	8,82
	n-Limit	2.50	2.50	2.50	2.50
> >	R (d-tab / d-elev.)	50	50	~.50	50
•••	C-h-dE (tab + elev.)	0870	.0945	-, 0870	.0945
	alpha-o-trim (rad)	031	031	030	030
	delta-o-trim (rad)	. 037	.039	.028	.030
	d-alpha/dCL	. 163	. 161	. 155	. 154
•	d-dE/dCL	068	066	016	014
	alpha-trim (rad)	.014	.159	003	.084
	del-E-trim (rad)	.018	038	.025	. 020
>>	Load Factor (g's)	1.00	1.00	1,00	1.00
	d-delE/dV (rad/fps)	5. 49e-5	7.472e-4	8.2e-6	9.82e-5
	d-delE/dn (rad/g)	029	184	012	108
	c-h	0065	0419	0013	0183
	S.M. (FREE)	-1.413	1.249	-1.506	1.035
	dF/dn (lbs/g)	-383.75	-442.88	-272.54	-277.67
	dF/dn MIN	23.33	23.33	23. 33	23.33
	dF/dn MAX	80.00	90.42	80.00	80.00
	Passes MIL-F-8785C	no	no	no	no
	dF/dV (lbs/knot)	. 555	. 804	. 600	.715
	E-8 (1bs)	-937 86	-762 88	-45 11	-150 42

ł

53	A	B C D	E Calculations	F .	G .	н
ě						
~5	>>	Eta-H	1.00	1.00	1.00	1.00
~5	· >>	Gearing Ratio (rad/ft)	.72	.72	.72	.72
	>>	S-Elev. (ft2)	143.50	143.50	143.50	143.50
E	>>	C-Elev. (ft)	1.640	1.640	1.640	1.640
-9 -9	>>	C-h-dE (rad-1)	598	422	598	422
1	>>	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
63	>>	S-tab (ft2)	7.000	7.000	7.000	7.000
4	>>	C-tab (ft)	.570	,570	.570	. 570
5	>>	C-h-alpha (rad-1)	346	241	346	241
66	<u>}</u> }	1-H (ft)	33.02	33.02	31.52	31.52
7	}>	Tau-E	. 54	. 54	. 54	. 54
Å	>>	j-H (den)	- 00	. 00	. 00	. 00
Ā			214	. 214	214	214
70	>>	n/aloba (n/nad)	22 22	5.57	37.17	8.82
	,,	maipha (y) aux	2 50	2 50	2 50	2 50
			E. J0	2.30	2.50	E, 30
<u>د</u> ح			-1 00	-1.00	-1.00	-1 00
/ 3		R (d-tab / d-elev.)	-1.00	-1.00	-1.00	-1.00
· 5	•	L-n-DE (tab + elev.)	. 4240	. 6110	. 4240	.9110
76		alpha-o-trim (rad)	031	031	030	030
.77 8		delta-o-trim (rad)	.037	.039	. 028	. 030
:/9		d-alpha/dCL	. 163	. 161	. 155	.154
80		d-dE/dCL	068	066	016	014
11		· ·				
1		alpha-trim (rad)	. 014	.159	003	.084
(¹		del-E-trim (rad)	.018	038	. 025	.020
94						
45	>>	Load Factor (0's)	1.00	1.00	1.00	1.00
- 65		d-delE/dV (rad/fps)	5.498-5	7.4728-4	8.2P-6	9.82e-5
87		d-delE/dn (rad/n)	029	- 184	012	-, 108
)A						
3a		c-h	.0025	0617	.0116	0079
90 }1		S.M. (FREE)	. 554	.372	.372	. 197
93 94		dF/dn (lbs/g)	-795.46	-974.41	-397.32	-517.95
• 95		dF/dn MIN	23.33	23.33	23.33	23.33
36 97		df/dn MAX	80.00	90.42	80.00	80.00
98 199		Passes MIL-F-8785C	no	no 	no	no
100		dF/dV (1bs/knot)	2. 531	2.493	2.101	2.023
101		F-S (lbs)	93.01	-534.96	423. 46	-68, 36

, t

......

А

B

11 12 3

14

15 6 7

18

90123456789

С

D

в

E

F

G

5/21/1987

100 Pax Baseline Stick Force Calculations ---------------

	F.C. 1	F.C. 2	F.C. 3	F.C. 4
	Fwd c.g.	 Fwd c.g.	Aft c.g.	Aft c.g.
	Cruise	Vmc	Cruise	. Vinc
h (ft)	30000	0	30000	c
density (slugs/ft3)	8.893e~4	2.377e-3	8.893e-4	2.377e-3
V (fps)	696.3	207.5	696.3	207.5
q-bar (psf)	215.58	51.17	215.58	51.17
X-bar-AC	. 991	.982	. 991	. 988
X-bar-cg	- 659	. 659	.802	. 802
Geometries, Inertias				
5 (ft2)	1182	1182	1182	1182
b (ft)	132.50	132.50	132.50	132.50
c-bar (ft)	8.97	8.97	8.97	8.97
W (1b)	85044	85044	50666	50666
Ixx (slug-ft2)	1646875	1646875	888448	888448
Iyy (slug-ft2)	769820	769820	653359	653359
Izz (slug-ft2)	2326135	2326135	1455491	1455491
Steady State Coefficier	nts 			
CD	• 334 • 017	.254	.199	.838 .253
Longitudinal Derivative	:5			
C-L-a-A (rad-1)	6.53	6.60	6. 53	6.60
C-m-dE (rad-1)	-3.97	-3.97	-3.84	-3.84
C-L-o	.170	. 170	.170	.170
C-m-c	.100	.109	.100	. 109
C-L-dE (rad-1)	. 927	. 928	. 927	. 928
C-L-i-H (rad-1)	1.716	1.718	1.716	1.718
C-m-i-H (rad-1)	-7.350	-7.358	-7.105	-7.113
C-m-alpha (rad-1)	-2.167	-2.131	-1.233	-1.188
C-m-q (rad-1)	-70.038	-70.124	-65.306	-65.385
	FC 1	FC 2	FC 3	FC 4
Lateral-Directional Der	vivatives			
C-n-Beta (rad-1)	.071	. 096	.071	. 096
С-1-р	792	632	792	-,632
C-l-dA (rad-1)	.608	. 443	.608	. 443
C-n-dR (nad-1)	- 069	. 077	. 069	

32 33

; ;}3

	congitudinal Stick Force	Laiculation	5	.*	
> >	 Eta-H	1.00	1.00	1.00	1.00
>>	Gearing Ratio (rad/ft)	.72	.72	.72	.72
} }	S-Elev. (ft2)	143.50	143.50	143.50	143.50
>>	C-Elev. (ft)	1.640	1.640	1.640	1.640
>>	C-h-dE (rad-1)	598	422	598	422
>>	C-h-d-tab (rad-1)	-1,022	-1.033	-1.022	-1.033
>>	S-tab (ft2)	7.000	7.000	7.000	7.000
>>	C-tab (ft)	.570	.570	.570	.570
>>	C-h-alpha (rad-1)	346	241	 346 [·]	241
>>	1-H (ft)	38.42	38.42	37.14	37.14
}	Tau-E	.54	. 54	.54	.54
>>	i-H (deg)	.00	.00	.00	.00
	dE/da	.214	.214	.214	.214
>>	n/alpha (g/rad)	23.32	5.53	37.17	8.82
	n-Limit	2.50	2.50	2.50	2.50
>>	R (d-tab / d-elev.) ~	.00	.00	.00	.00
	C-h-dE (tab + elev.)	5980	4220	5980	~.4220
	alpha-o-trim (rad)	032	032	031	031
	delta-o-trim (rad)	.043	.045	.036	.038
	d-alpha/dCL	.166	.164	. 160	. 159
	d-dE/dCL	091	088	052	049
	alpha-trim (rad)	. 023	.199	.001	.102
	del-E-trim (rad)	.012	079	. 026	003
>>	Load Factor (g's)	1.00	1.00	1.00	1.00
	d-delE/dV (rad/fps)	8.68e~5	1.1916e-3	2.94e-5	3.958e-4
	d-delE/dn (rad/g)	042	252	021	160
	c-h	0155	0145	0157	0232
	S.M. (FREE)	. 056	.053	-,078	081
	dF/dn (lbs/g)	173.38	202.70	-19, 76	 65 <i>.</i> 22
	dF/dn MIN	23. 33	23.33	23.33	23.33
	dF/dn MAX	80.00	90.42	80.00	80.00
	Passes MIL-F-8785C	no	no	no	yes
	dF/dV (lbs/knot)	-1.764	-1.066	-1.375	848

34557 901234567890123456789012°

, A	B C D	E	F	G	H
	Longitudinal Stick Force	Calculation	5		
>>	Eta-H	1.00	1.00	1.00	1.00
>>	Gearing Ratio (rad/ft)	.72	.72	.72	.72
>>	S-Elev. (ft2)	143.50	143.50	143.50	143.50
>>	C-Elev. (ft)	1.640	1.640	1.640	1.640
>>	C-h-dE (rad-1)	598	422	598	422
>>	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
>>	S-tab (ft2)	7.000	7.000	7.000	7.000
>>	C-tab (ft)	. 570	. 570	.570	.570
>>	C-h-alpha (rad-1)	346	241	346	241
>>	1-H (ft)	38.42	38.42	37.14	37.14
>>	Tau-E	. 54	. 54	. 54	. 54
>>	i-H (deg)	.00	.00	.00	.00
	dE/da	.214	.214	.214	.214
>>	n/alpha (g/rad)	23.32	5.53	37.17	8.82
	n-Limit	2.50	2.50	2.50	2.50
>>	R (d-tab / d-elev.)	1.00	1.00	1.00	1.00
	C-h-dE (tab + elev.)	-1.6200	-1.4550	-1.6200	-1.4550
	alpha-o-trim (rad)	032	032	031	031
	delta-c-trim (rad)	.043	.045	.036	.038
	d-alpha/dCL	. 166	. 164	.160	.159
	d-dE/dCL	091	088	052	049
	alpha-trim (rad)	:023	. 199	.001	.102
	del-E-trim (rad)	.012	079	.026	003
>>	Load Factor (g's)	1.00	1.00	1.00	1.00
	d-delE/dV (rad/fps)	8.68e-5	1.1916e-3	2.94e-5	3.958e-4
	d-delE/dn (rad/g)	042	252	021	160
	c-h	0283	.0671	0421	0200
	S.M. (FREE)	. 230	. 245	.090	. 104
	dF/dn (lbs/g)	1392.01	1702.89	516.41	877.54
	dF/dn MIN	23. 33	23. 33	23. 33	23.33
	dF/dn MAX	80.00	90.42	80.00	80.00
	Passes MIL-F-8785C	no	no	no	no
	dF/dV (lbs/knot)	-6.344	-4. 918	-5.242	-4.129
	-				

۰.

· ,

•

.

.

ø		,				
	A	B C D	E	F	G	н
53		Longitudinal Stick Force	Calculation	5		
, , ,	>>				1,00	1.00
5.6	>>	Gearing Ratio (rad/ft)	. 72	. 72	. 72	. 72
1	· · ·	C=Elev (f+2)	147 50	147 50	147 50	147 50
5	~ ~ ~	$C_{-} = C_{+} + C_{+$	1 240	1 240	143-30	1 240
p FO			1.640	1.640	1.640	1.640
29	>>	C-h-dE (rad-1)	598	-, 422	~. 598	422
É P						
L.	>>	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
72						
63	>>	S-tab (ft2)	7.000	7.000	7.000	7.000
(i)	>>	C-tab (ft)	. 570	. 570	.570	. 570
5	>>	C-h-alpha (rad-1)	346	241	~. 346	241
66	} •}	1-H (ft)	38.42	38.42	37.14	37.14
57	>>	Tau-E	. 54	. 54	. 54	. 54
Ъ	>>	i-H (dep)	. 00	.00	.00	. 00
69		dE/da	. 214	.214	.214	.214
70	>>	n/aloha (n/rad)	23.32	5.53	37.17	8.82
. 1		n-limit	2.50	2.50	2.50	2 50
5			2,00	2.00	L:00	2.00
77	× .	P (datab / daplow)	50	50	50	ÉA
~~~	11	$\mathbf{R} = (\mathbf{U} - (\mathbf{U} - \mathbf{U} - \mathbf{U} - \mathbf{U})$	1 1000		1 1000	
.5	*	C-n-dE (tab + elev.)	-1.1090	3365	-1.1090	7363
76		alpha-o-trim (rad)	- 032	~ 032	031	031
77		delta-o-thim (had)	047	045	075	078
6		Derta-D-trim (rad/	. 043	.040	.030	. 036
9			166	164		150
9.75			. 100	- 000	. 160	.139
- 1			091	086	052	049
•		alpha-trim (rad)	. 023	. 199	. 001	. 102
- (***) j		del-E-trim (rad)	.012	079	. 026	003
4						
5	>>	Load Factor (n's)	1.00	1.00	1.00	1,00
		d = de 1E/dV (mad/fps)	A 680-5	1.19160-3	2.940-5	3.9580-4
37		d-delE/dv (rad/rps/		- 252	- 021	- 160
A					• • • • •	. 100
9		c-b	- 0219	0263	~ 0289	0216
90						
		S.M. (FREE)	. 183	.201	.045	.062
2		ا حق هم جار الله عنه الله على الله بران على بالله عنه عام الله بران على بينا على الله عنه على الله علم الله عل				
-93		dF/dn (lbs/g)	782.70	952.79	248.33	471.38
74		-				
° 15		dF/dn MIN	23.33	23.33	23.33	23.33
.)6		dF/dn MAX	80.00	90.42	80.00	80.00
a7			,			
		Passes MIL-F-8785C	no	no	no	no
* 99		ر شدهم یک هم یک مند برای هو هم من این من کو برای می این می این می می هم ورد افاد هم باده		۔ ان منہ جب اللہ سے نقاد سے بھا ہے جہ سے بھ	و است هی رانند هی زیانه رخبه بروه همه هیه است جز	۔ بھے جہ کا جہ کا خو جہ طار بھ م
100		dF/dV (lbs/knot)	-4.054	-2, 992	-3.308	-2.488
01		· · · · · · · · · · · · · · · · · · ·				
02		F-S (1bs)	-799.91	228.20	-1055.51	-187.50
(a)						

<b>A</b> -	B C D	E	F	G	H
	Longitudinal Stick Force	Calculation	5 		
` <b>}</b> }	Eta-H	1.00	1.00	1,00	1.
>>	Gearing Ratio (rad/ft)	.72	.72	.72	
<b>&gt;&gt;</b>	S-Elev. (ft2)	143.50	[*] 143.50	143, 50	143.
>>	C-Elev. (ft)	1.640	1.640	1.640	1.6
<b>&gt;&gt;</b>	C-h-dE (rad-1)	~.598	422	598	4
<b>&gt;</b> >	C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.0
>>	S-tab (ft2)	7.000	7.000	7.000	7.0
<b>&gt;&gt;</b>	C-tab (ft)	.570	. 570	.570	.5
>>	C-h-alpha (rad-1)	346	241	346	2
>>	1-H (ft)	38.42	38.42	37.14	37.
<b>&gt;&gt;</b>	Tau-E	. 54	. 54	. 54	•
<b>&gt;&gt;</b>	i-H. (dep)	. 00	.00	.00	
	dE/da	. 214	.214	.214	.2
<b>&gt;</b> >	n/alpha (n/rad)	23.32	5, 53	37.17	8.
	n-Limit	2.50	2.50	2,50	2.
>>	R (d-tab / d~elev.)	50	50	50	
	C-h-dE (tab + elev.)	0870	.0945	0870	. 09
	alpha-o-trim (rad)	032	032	031	(
	delta-o-trim (rad)	. 043	.045	.036	. (
	d-alpha/dCL	.166	.164	. 160	. 1
	d-dE/dCL	091	088	052	0
	alpha-trim (rad)	.023	.199	.001	. 1
	del-E-trim (rad)	.012	079	.026	(
<b>&gt;&gt;</b>	Load Factor (g's)	1.00	1.00	1.00	1.
	d-delE/dV (rad/fps)	8.68e-5	1.1916e-3	2.94e-5	3.958
	d-delE/dn (rad/g)	042	252	021	<b>-</b> . 1
	c-h	0091	0553	0025	02
	S.M. (FREE)	-1.567	1.531	-1.647	1.3
	dF/dr. (1bs/g)	-435.94	-547.40	-287, 84	-340.
	dF/dn MIN	23.33	23. 33	23.33	23.
	dF/dn MAX	80.00	90.42	80.00	80.
	Passes MIL-F-8785C	no	. no	no	
	dF/dV (lbs/knot)	. 525	. 860	. 559	• 7

*	A	B C D	E	F	G	н
53		Longitudinal Stick Forc	e Calculation	5	-	
4				- 		
5	<b>&gt;&gt;</b>	Eta-H	1,00	1.00	1,00	1.00
•6	>>	Gearing Ratio (rad/ft)	. 72	. 72	. 72	. 72
	55	S-Elev. (ft2)	143.50	143.50	143 50	143 50
à	~ ~ ~	$\Gamma = E l p v (f + )$	1 640	1 640	1 640	1 640
0	~~~	C Liev. (10)	- 590		- 500	1.070
50		C-n-DE (Pad-1)	-, 550	-, 765	-, 550	422
	• •	C-b-d-tab (wad 1)	1 000	-1 077	1 000	-1 077
	//	C-n-0-(ab (rad-1)	-1.022	-1.033	-1.022	-1.033
			7 000	7 000	7 000	7 000
63	<i>&gt;</i> >	S-tab (ft2)	7.000	7.000	7.000	7.000
4	<b>&gt;</b> >	L-tab (ft)	.570	.570	.570	.570
5	<pre>&gt;&gt;</pre>	C-h-alpha (rad-1)	~, 346	241	-, 346	241
66	<b>&gt;&gt;</b>	1-H (ft)	38.42	38.42	37.14	37.14
<b>.</b> 67	<b>&gt;&gt;</b>	Tau-E	. 54	• 54	. 54	. 54
8	<b>&gt;&gt;</b>	i-H (deg)	.00	.00	.00	.00
ĩ9		dE/da	.214	.214	.214	.214
70	>>	n/alpha (g/rad)	23.32	5.53	37.17	8.82
ີ 1		n-Limit	2.50	2.50	2.50	2.50
2						
73	>>	R (d-tab / d~elev.)	-1.00	-1.00	-1.00	-1.00
		C-h-dE (tab + elev.)	. 4240	.6110	. 4240	.6110
15						
. 6		alpha-o-trim (rad)	-, 032	032	031	031
77		delta-o-trim (rad)	. 043	.045	. 035	. 038
8						
·9		d-aloha/dCl	. 166	. 164	. 160	. 159
80			~. 091	088	- 052	049
31		0 02,002				
		alpha-tnim (nad)	027	1.99	001	102
		dol-E-thim (had)	.010	- 079	.001	- 007
BA		Der-E-CPIM (Pad)	.016	• / 5		003
97 )E	• •	Lond Enstein (sta)	• •	1 00	1 00	1 00
30	//	Load ractor (g's)		1.1016- 3		
20		d-dele/dv (rad/tps)	<b>8.686-</b> 3	1.13108-3	2.942-3	3. 7382-4
8/		o-dele/on (rad/g)	042	202	021	160
8					· · · · · ·	
33		c-h	0028	0961	.0107	0264
90						
71		S.M. (FREE)	.722	.510	. 566	.361
)2		*? <u>`</u>	دی ہے جہ سے ہے نک خت میں بہ کا کا کن کا :	، سن سب ہے گا کہ کہ دیا کہ کہ ان اور ا	، جه که خدر هم چند جه چه هه دره ب	
		dF/dn (lbs/g)	-1045.26	-1297.49	-555,92	-747.10
94						
. 95		dF/dn MIN	23.33	23.33	23, 33	23. 33
96		dF/dn MAX	<b>80.0</b> 0	90.42	80.00	80.00
97						
		Passes MIL-F-8785C	no	no	no	no
ē 99						
00		dF/dV (lbs/knot)	2.815	2.786	2.493	2.433
101						
102		F-S (1bs)	-101.08	-833.44	390.46	-228.64
			· · · · · ·			
		·				
:						
· ·			v			
, ·						
• •					·	
ł						

•

•

C. (SECTION) 5-4-87 Cre Gron 1 tan \$12 = tan \$1/2 = ton \$70/2 = .231 t/c = .11  $C_{E}/C = .35$ 4/C VER TAIL - 11 Cp/C = .35  $L_{CAIL} = .13$  $C_A/C = .3$ HT V-T AIL 888 Ch & Ch & THGOR Y 22-142 .9 .9 .9 -.57 -.57 -.54 Conference .955 .955 .955 C, -.513 -.513 -.486 -.445 -.445 -.429  $C_{h\alpha}''$ tc Cf .27 Cb .08 .08 .27 .08 .27 .06 , z 2 .08 .୦ଟି P BAL. RATIO .26 .26 .39 Char BAL .68 .68 .30 Ch & BALANCE -.303 -.303 -.129 VMC M=.19 Chr. - 424 - 181 CRUISE M=.7

Ch8 (SECTION) 5-4-87 CRCGHTON ک Ché/Chénner AIC V-T H-T .95 .95 .95 Ch S 3 H EEFT -.90 - 90 -. 65  $C_{h_{\epsilon}'}$ -.855 -.855 -.608 50 SHEETS 100 SHEETS 200 SHEETS Cle Cle treer 59. .92 .92 22-141 22-142 22-144 CL & THEORY 6 4.8 4.8 4.5 C " -778 -,778 -,736 Ch& BALANCE Ch " .4 .6 .2 Ch& DALASCE -.467 -.467 -.147 M=.19 Cho BALANCE -.654 -.654 -.206 M=.7 4

CREGENTEN 5-4-87 SECTION HINGE MOMENT SUMMARY H-T AIL V - T  $C_{h_{\alpha}}$ -.30 -.13 M=.19 -.30 Cha -.42 -,42 -.18 M=.7 HEETS HEETS 22-141 22-142 22-144 Chs M=.19 47 -.15 .47 Cns -.65 -.21 -.65 H =.7

. ______

· · ·



1 DCna MEGGATON £ 5-7-87  $C_{h_{\alpha}} = \frac{A\cos\Lambda_{c/4}}{A + 2\cos\Lambda_{c/4}} C_{h_{\alpha}} + AC_{h_{\alpha}}$ 7-2 T- B H-TH - T AIC · AIL **V**-T 1.4 A 5.88 13.6 14.5.4 12 400 100 20.80 4.3° 12° Velt Ka 3.02 1.0 3.44 1.0 1.0 AChy/I ,00 if . @ 4 .007 .015 .004 B_z ,98 .98 .98 ,93 ,93 DCnx ,068 E20. .038 . 866 .076 Ch & BAL - 129 (VHC - .303 -,129 -,303 - .303 ax Dh - 424 - 181 - 124 - 424 - 181 (Chuie) Acos Acry .709 .366 .838 ,870 .869 A+Zcostery

Cha DE, CMTON 5-7-87 MODEL 25 36 50 75 100 -.177 -.177 -.241 -. 24/ (VMC) Chr. -. 263 -. 263 -. 346 -. 346 (CR) Char -,043 -.043 -.043 -.086 -.086 (VMC) -.087 -.087 -174 -.174 (eR) 6 - .087 Ch *A -.042 -.042 -.036 -.036 (VMC) -.086 -.086 -.086 -.081 -haA -. 281 (CR/ . .

Ľ

<b>9</b>	Elevator, Chse	<	<hs< th=""><th>ODAD</th><th>5/6/87</th><th>7</th></hs<>		ODAD	5/6/87	7
· •	$\alpha_{g} = -\frac{(Ce_{g})}{(Ce_{\alpha})}$	<u>a</u> S		· · ·	-	,	
	<i>د</i> ر	$\frac{1}{2} = .35$			C _{6/CE} =	.296 2.3	
	Fig. 6.1.1.1 - 42 Ce	2 = ·077	deg ⁻¹ = 4	412 md	-1		
	Ce	a = 6.0	rad-1				
SQUARE SQUARE	×	s = 7	35		I		
33466 38466 30 3.382 200 SHEFIS 3	$\Delta C_{hs} = -$	DChs Ces B1 K3 C	200 N 44 CO	Ces B2 KS	25rh gy co h	.H.L.)	
		25 Pax	<u>36 Pax</u>	50 Pax		100 Pax	
	A _H	5.883	5.883	5.883	13.60	13.60 -	
÷	Fig 6.1.6.21 <u>5 ΔChs</u> ( I )	-011	.011	.011	.004	.00 4	
	$F_{ij}(L_{1}, G_{1}, I_{-}, I_{-}) = B_{2} = (I_{-})$	.93   Ks)n:(I-m;).	_(Ks)n_(1-m_)		<b>2</b>		
3 	~s ¶; ≥ 0	۳۵ ۲ م	m; = 1	_   			
	Fig. 6.1.6.2-15 (b) (Ks) =	1.0 ,	$(k_{s})_{m_{o}} = 4$	4			
* ••• • •	Ks=	1.0					
		,364 т.	.36 4	. 36 4	.076	.076	Grad
	(~ H.L)H	,349 T	.349	.349	.065	.065	(rad
ł	τ {	3.603 .063	3.603	3,603 .063	4,083 .071	4.083 .071	(rad (de
,	DChoj	. 000693 . 0396	.000693 .0396	. <i>0</i> 00 <i>6</i> 93 . 0396	.000284 .0163	,0002 <b>94</b> .0163	(deg (rad
ی بر ه	$C_{hSE} = Cos \Lambda$	e/4 Cos A H.L	$\left[\left(C_{h}\right)_{bol}+\alpha$	s( ^{Chax} )bal <u>2</u> c 	ολ 44 200 λ 4/4 ] +	- Schs	
	Chse,	323	-, 323	823	422	422	frad
	Ch _{se}	469 tuite	_,469	_,469	598	_,598	(~8
•				· · · · · · · · · · · · · ·			

tion and the second sec

ŀ

	Rudden, Chsr	<	Chs R. HADDAD		Chs R. HADDAD		5/7/87	B
-	· · · ·	$c_{R/2} = .35$		^C b/CR	<b>≈</b> ∵ , ઽ			
	Fig. 6.1.1.1-42	$C_{l_{s}} = .077$	leg ⁻¹ = 4,412	rad-1	-			
		$C_{lac} = 6.0$	rad-1			, ,		
		az= -73	5 .					
						· · ·		
		25 Pax	36 Pax	50 Pax	75 Par	100 Pax'		
	А _{у.т.}	1.4	14	1.4	1.4	1.4		
	Fig6.1.6 2-15 DCns	.025	.025	. 025	.02 5	.025		
	$F_{ig}6.1.6.1-19(c) B_2 =$	,98		2	· ·		÷	
	K _é =	1.0						
	A- c/4 v.T	= .70 md.						
	1 HL	= .436 nd						
	Í	3.059	3.059	3.059	3.059	3.059	(rad-'	

• 50 51 • 500 5HE • 50 5H • 50 5H • 500 5H • 500

•

(rad

Aileron, Choa

A BO 200 SHEETS 3 SQUARE

a

R. HADDAD

## 5/7/87

9

c_{b/c_A}≈.3  $C_{A/c} = .30$  $Ce_{g} = .072 deg^{-1} = 4.125 mad^{-1}$ Fig. 6.1.1.1 -42  $Cl_{q} = 6.0$  rad⁻¹ as = -.686

Chs

	-	25 Pax	36 Pax 1	50 Pax	75 Pax	100 Pax	
	Aw	12.0	12.0	12.0	14.843	14.843	
Rig 6.1.6.2-15	ACho (T)	.005	,005	.005	0.003	.003	
Fig 6.1.6.1-196)	$B_z = .93$	3					
	$\gamma_{i}$	. 850	.950	. 850	. 906	.906	
	η	. 968	.968	.968	· 981	.981	
fig 6.1.6.2-15(	4)(Ks) _m .	3.25	3.25	3. <i>25</i>	3,6	3.6	
	((KS) 7.	4.1	4.1	4.1	4.25	4.25	
	KS	3.02	3.02	3.02	3,44	3.44	
	~~ e/4	.228	. 228	- 228	.177	,177	
•	AHL	.175	זרן,	,175	.128	,128	
	I	<i>]1. 11</i>	[],[]	[1. ]]	12.88	12.88	(rad-
	AChs	.056	.056	.056	.ଘ୨	. 039	(rod.
	ChSAVMC	073	_,073	073	094	<b></b> 094	(rad-
	Ch SA cruire	125	_,125	_,125	148	_ , 148	(nd-
				,			1

CREIGNITON * SECTION Ch = 13-87 St RETERENCE DATION SECTION 6.1.3.3  $C_{f}/c = .35$  $\left|\left(\frac{\partial C_{h_f}}{\partial S_t}\right)_{C_L,S_f} = A\right|$ = -.015 ,  $C_{4}/c_{f}$  =.35  $\left(\frac{\partial C_{h_{f}}}{\partial S_{\ell}}\right)_{S_{\ell},S_{f}} = B$ -.067  $\left(\frac{\partial C_{R}}{\partial x}\right)_{S_{t},S_{f}} = C^{*} = .105 = C_{l_{x}}$  $\left(\frac{\partial \sigma}{\partial \delta_{\chi}}\right)_{c_{g},\delta_{f}} = D = -.730$  $C_{h_{S_t}} = \left(\frac{\partial C_{h_f}}{\partial S_t}\right)_{\kappa, S_f}$  $C_{h_{S_{+}}} = A - BCD$ . Ch St - :020 DEG-1  $C_{hs_t}$ = -1.154 RAD -1

5-17-87 SECTIONAL Ch_ FOR TRIM TAR Chill = -. 445 RAD' (NO DALANCE EFFECTS) AT M=.7Ch'' = -. 623 240-1

C⁴

22-14

6

•

) 5-13-87  $C_{h} = (cos \Lambda c_{14} cos \Lambda_{HL})(H.M) + A C_{hs}$ + KE Cha Zeis Acry A + Zeos Acry H.M = Chse 50 SHEETS 100 SHEETS 200 SHEETS 22-141 22-142 22-142 H.T V:T 4Chs/X C. Strange ,03 ,01 Br 1.1 1.0 Ks. 27 . .75  $\lambda_i = .4$  $\lambda_0 = .8$ Cos A c14 Cos AHL .60 . B3 Ceb 4.4 4.4 .54 ,54 ×\$ ACh5 ,014 . 003 Acre .364 .70 Ą 5.88 1.4

5-13-07

4

Chiet BASED ON St Ct H.T V.T VMC -1.003 -.754 CR -1.022 -.784

 $n_{i} = .4$  $n_{o} = .8$  $C_{t/Ce} = .35$ 

-

SO SHEETS 100 SHEETS 200 SHEETS

22-141

- Con

•

.

St Ct

## <u>Appendix G</u>

57

.

*

8 m

ŧ.

á....

.

l

. Component Drag Calculations

Purpose: This appendix contains drag calculations following methods in Reference 13.

G-1

$\begin{aligned} & C_{D,wing} = C_{D,w} + C_{D,w} - (NLF \ Consideration!) \\ & + C_{D,w} = (K_{wp})(K_{v,s})[1+L'(\frac{t}{2}) + 100(\frac{t}{2})^{W}][(C_{F,w_{larr}} - C_{F,w_{larr}})^{Swet_{W_{larr}}} + \\ & + C_{F,w} \ Swet_{W}]\frac{1}{5} \\ & M_{CHLW} = 4.7 \\ C_{CLIK} : p_{2} \ SP15 \ A10^{3} \ slipt(^{3}, \mu = 3.06 \ A10^{7} \\ e_{2.373710^{57}} \\ & M_{ethlw} = 4.7 \\ M_{ethl$	.00	Wing	Affentik Drag Polk	E D IR	R. 44)	DAD		/
$\begin{array}{cccc} & + & C_{fw} & Swet_{w} \end{bmatrix} \frac{1}{5} & M_{crwive} & = a7 \\ M_{crwive} & = a7 \\ M_{aff} & = b.15 \\ M_{$	office environments	$C_{\rm D}$ + $C_{\rm D_{\rm OW}} = (R_{\rm N})$	wing = $C_{\text{Low}}$ wp)( $K_{\text{LS}}$ )[1+L'( $\frac{t}{2}$ ) +	+ ⊂υ _{Lw} ι∞( <u>*</u> )4][(	(NLF	Consider	relione) +	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Cruite : approsch :	+ $C_{fw} = wet_{v}$ fw = $wet_{v}$ $\rho = .8875 \times 10^{-3} slyft^{3}$ , $\rho = 2.377 \times 10^{-3}$	y ] [ y = 3,06 x 10 y = 3,737 y 10	-7 0 ⁻⁷	Maria = a Marp =	0.15	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SHEET =		lg (corr) 71.33	36 Pax 79.0	507ax 96.33	75Par 79.0	100 Pax 96.33	fe
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			R _{Npus} cruise 138 x 10 ⁶ R _{Ni} e 7.6 x 10 ⁷	156 x 10	187 x 106 1.07 108	156x105 8.4 x 107	157×104	
$\frac{1}{100} \frac{1}{100} \frac{1}$		Fig 4.1	R _{wo} rcruin R 932	1.015	1.015 1978	1.015	1.015 .928	
Fig 4.2 In LS cruix = 1.2 Fig 4.2 RLS app = 1.07 $\Xi_{We} = 11 \text{ ft}$ RN _{Wernix} = 2.2×10 ⁷ , RN _{Napp} = 1.2×10 ⁷ Fig 4.3 Cf _{Wernix} = -00255, Cf _{Wapp} = .00294 L' = 1.2 US ROOR QUALITY DE ROOR QUALITY Swetw 1164 1164 2224 2224 (ft S 592 592 592 1182 1182 (ft Cwlam = 5.5 ft (50%) RN _{Wlam arxin} = .0004, Cf _{Wlamapp} = .0005		<b>F</b> 2 4 2	$Con - L_{(e)} = -981$					
$ \begin{aligned}                                    $	and a second sec	Fiz 4,2	$R_{LSapp} = 1.07$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	terrent and terren		$w_e = 17 + 1$ $R_{N_{Wcruise}} = 2.2 \times 10^7$	, R _{NW}	= 1.2 ×10	7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Fig413	L' = 1.2	, ^c f _u	=,00217 /app			
$S = 592 = 592 = 1182 = 1182 = 1182 = 1182 = 5.5 \text{ ft} = (50\%)$ $R_{N_{Wlam}} = 1.1 \times 10^7 , R_{N_{Wlam}} = .6 \times 10^7 = .0005$ $C_{Wlam} = .0004 , C_{Wlam} = .0005 = .0005$	•	ORIGINAL PAGE IS DE POOR QUALITY	$\frac{t}{c} = .13$ $S_{wetw}   1164$	1164	1164	2224	2224	(fi ¹
$R_{N_{Wlam armine}} = 1.1 \times 10^7 , R_{N_{Wlam}} = .6 \times 10^7$ $C_{p} = .0004 , C_{p} = .0005$ $F_{Wlam eruise} = .0005$	r		S = 592 $C_{w_{lam}} = 5.5 \text{ f}^+$	(50 %)	592	1182	1182	(++*
	• 		R _{Nwlamornise} Cp = .000c Fwlameruise	07, R., H., G.,	= .6 x 1 app = .000	יס 5		

	WING	Ď	RAG POL	A ƙ	R. HADD	AD		2
Street and Street			25 Fax	36Pak	-sorax	75 Rek	100 Pak	
an in the second se		Swetum	582	582	582	1112	1112	(:{+ ²
		CD. Wcruit	.0042	.0042	.0042	.0040	.0040	
	>	C app	.0040	.0040	.0040	. 0038	. 0038	
13 39 300 SHEETS 3 SOUND	$\neq C_{0_{LW}} = (C_{L})$	$w)^{2}/\pi Ae$ $C_{L_{w}} = 1.0$	L + QU 05 C _L =	$\sum_{lw} \mathcal{E}_{t} \vee +$ 1.05 $\left(\frac{w}{\frac{q}{5}}\right)$	4π² (ε _ξ )	² w	•	
		W	28,506	35,954	43,141	71,419	85,044	(16:
ی ( بر ا		5	592	592	592	1182	1182	(ft²
$\mathbf{v}^{\dagger}$ .		Formire	215.6	215.6	215.6	215.6	215,6	
		q app.	3 <i>2.</i> 1	39.4	39,8	40.24	40.24	
4 2		CL Wernin	.235	. 296	.355	_294	.350	
		CLW app	1.47	. 1.54	1. <b>8</b> 3	1.50	1.79	
; 		e = 1.1	$\left(\frac{C_{LX,w}}{A}\right)$	$R\left(\frac{\zeta_{Law}}{A}\right)$	+ (I-R)T	-]		
₩ 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		CLAW	4.7089	4.7089	4.7089	 4.9097	4.9097	(rð
•		CLAWAPP	4.7794	4,77 <del>9</del> 4	4.7794	4.9673	4.9673	(nd
		her = .	eft;	λ= .4				
<b>.</b>	Fig 4.7	Rolercruis	e pu, leer	= .397 x 10	, Rilera	ו = ./00 ג PP	106	
} •		~Lit	. 262	.262	.262	.201	-201	
		A	12.0	12.0	12.0	14.84	14.84	
÷	Fig 4.7 (b)	R	.960	.960	.960	.965	- 96 5	
				l <b>í</b>				

	Wing		1	DRAG PO	AR	₽. H <b>X</b>	CA GJ	
•			ł	25 Bax	36Pax	50tox	75Pax	100 Pax
			А	12.0	12.0	12.0	14.84	14.84
• <b>1</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ecruix	. 859	. 859	-859	- 848	-248
4.10 1.1 A			e opp,	.862	. 862	. 862	. 894	. 894
			TAeciuk	32.38	32,38	32,38	39.53	37.53
			Theopp.	32.50	32.50	32.50	41.68	41.68
			It is	assumed	that the	twist an	εt=	1°=.01
nnci) an	Fic	f 4.9(a)	V	. 0007	.0009	. 0009	.0008	.000
	Fig	4.10(a)	W	,0003	.0003	. 0003	.0003	. 000
			- Colutini	.0017 <u>*</u>	.0027	.0039	.0022	.003/
		en	- DLWap			10 22	10,11	
		,	CDwinga	.0059 nive	.0069	20081	.0062	.0071
			CDwingap	• 0706 p.	.0770	. 1072	.0579	2808

FUSELAGE



. DEAG FOLAR FUSELAGE R. HALDAD 5 2x²S_{kgus}/5 + mCde³Spef_{fus}/5 C D L fu:= ¥ .  $\alpha = \left[\frac{W}{95} - C_{L_0}\right] \frac{1}{C_{L_0}}$ 0 Choconise = Choopproseh = 0.17 η 25 Pak 36 Pax 50 Pax 75 Pax 100 Fax CLacenis 5,479 5.479 6.424 6.249 5.422 5.565 5.565 5.507 6.416 6.311 La apreada .0097 .0204 .0172 .0309 .0262 acruise .0096 .0201 .0305 .0/70 .0259 app. Fig 4.17 Specs = 0.5 ft2 de = 96.6" = 8.05 fr Fig4.17 (et) 94.6 94.6 69.4 78.1 If. 781 Fig 4.19 η .705 .685 .670 .685 .705 Fig 4.20 Cdc 1.2 1.2 1.2 1.2 1.2 Spectrus 2(698) (ft²) 2(553) 490 553 698 Fig 4.17 DLEUS (cruited) .0001 .0000 0.0001 .0000 .0000 - Grefus (app).0000 0.0001 .0000 .0001 .0000 Copus .0019 .0015 then 0.0020 .0015 .0020 Windshield drag is negligable and is accounted for in the fuselogic drag. 

EMPENNITGE HORIEDIJTAL THIL

MANDANA SHEEPS 3 SOUNCE

م. مربع

Ø

TERAS FOLKS

$$\begin{split} & C_{D_{HT}} = C_{D_{0,HT}} + C_{D_{L,HT}} \\ \star & C_{D_{0,HT}} = (R_{LS}) \left[ 1 + L' \left( \frac{L}{L} \right) + 100 \left( \frac{L}{L} \right)^{4} \right] \left[ (2q_{1-\tau_{LW}} - q_{1-\tau_{W}}) S_{W} c_{WT} + \\ & + c_{p,w} S_{W} c_{HT} \right] \frac{1}{5} \\ & H_{COLUSE} : , 7 \\ H_{def} = +15 \\ \end{split} \\ \hline & Fig 4.2 \\ R_{LS \ Colore} / / 2 \\ R_{LS \ Colore} / / 2 \\ R_{HT} = P (1, \frac{1}{2} + \frac{1}{12}) \\ (12 \\ R_{HT} + \frac{1}{2}) (12 \\ R_{H$$

HOF 
$$\frac{1}{2} \times 1^{5} / 1 - \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$$

$$C_{Lh} = C_{Lah} + C_{Lah} + C_{Lah} = 3.6488$$

$$C_{Lah} = 3.7568$$

•

.

----

~ §				•		×.	
• -	HORIZONTAL TAIL	LEIS F	0111	R. HALL	<u>kl</u>	-	
		25 Pax	36 Fax	- Jofan	75 Par	100 fax	
		Cruix . 0077	. 0204	. 0309	. 0/72	- 0263	(r
		app0096	- 020!	.0305	. 0170	.0259	į.
		a han . 0074	.0156	.0236	.0/31	. 0200	ire
******	ć	happ . 0073	.0154	. 0233	.0130	.0198	
505 505 505 505 505 505 505 505 505 505	ł	CLhorning . 0270	.0569	.0861	. 0478	.0729	
	C	. 0274	.0579	.0875	.0488	.0744	
		Ah 5.0	5.0	5.0	12.78	12.78	
and	•	5 _h 102	102	102	392	392	(f+
ل کړ		5 592	592	592	1182	1182	
N para	$\longrightarrow C_{D_{i}}$	HT cruze	. 00004	.000//	. 00003	-0000B	
	$\longrightarrow G_{\nu_{2}}$	.00001 НТарр	.00005	.000/1	. 000 03	. 00008	
ayum r ⁴	then C.	0008	.0008	.0009	. 0016	.0016	
P P P P P P P P P P		ŧТ. Г					
			· · ·				
х х 2 х							
	· ,					• .	
			• •		••		
VERTICAL TAIL

. Ú

# DRAG FOLAR

# R. HALLAD

バ

		25 Pax	36 Fox	* 50 fa x	75 Pax	100 Pex
·····	CDOVIT Cruik	.0012	.0012	.0012	.0012	.00/2
	CD. V.T app	. 0011	.001i	. 00//	.0011	.0011
	But Cy	$= C_{\rm D_v}$	л			
then	C _{D_{V.T}}	.0012	.0012	. 0012	.0012	.0012

$$\begin{aligned} \begin{array}{c} \text{NACELIZ} \ / \text{FYLOIJ} & DRAS FOLAR. \\ \hline \\ & C_{D_{R,P}} = C_{D_{R}} + C_{D_{P}} + C_{U_{n,iet}} + LC_{U_{WM,pup}} \\ & C_{D_{R}} = (C_{P_{R}}) = 2C_{D_{R}} & (C_{D_{L_{R}}} & \text{refletics}, 20) \\ C_{D_{R}} = C_{P_{R}} \begin{bmatrix} 1 + \frac{60}{(R_{C}/M_{R})^{2}} + .0025\left(\frac{4\pi}{6\pi}\right) \end{bmatrix} 5_{WCT_{R}} / 5 + C_{D_{R}} \\ & \frac{25 \text{ Res}}{R_{R}} & \frac{36 \text{ Res}}{17.5} & \frac{50 \text{ Res}}{17.5} & \frac{75 \text{ Res}}{122.9} & \frac{100 \text{ Res}}{122.7} \text{ Ge} \\ & \frac{4\pi}{R_{R}} & \frac{17.5}{17.5} & \frac{17.5}{17.5} & \frac{72.9}{122.9} & \frac{122.7}{22.7} \text{ Ge} \\ & \frac{8\pi}{R_{R}} & \frac{10.67}{1.65 \times 6^{7}} & \frac{10027}{1.65 \times 6^{7}} & \frac{10027}{1.65 \times 6^{7}} & \frac{10026}{1.65 \times 6^{7}} & \frac{10026}{1.6026} & \frac{10026}{1.0026} & \frac{10026}{1.0026} & \frac{10026}{1.0026} & \frac{10006}{1.0006} & \frac{10003}{1.0006} & \frac{$$

PYLON

.

R. HALLAL

		27.55	<u>Is Pax</u>	· Sofax	75 Fax	100 fox
Fig 4.5	Cp aff.	.0029	.0227	.00.27	.00287	.00287
Fig 4. 24	L' = 1.2					
•	t/c = .12					
	2(Swetc)	<del>4</del> 4 8	448	448	663	663
	S	592	592	592	1182	1182
	→ C _{Dop}	.0025	.0025	.0025	• 0019	.0019
. C _{D_{Lp}}	$= 2 \left[ (C_{L_p}) \right]$	² / TAp	+] <u>5p</u> 5	•		

C _L =	CLKP X	P			
CLap	1.5320	1.5320	1,5320	1.9622	1.9622
ap=a(	$1 - \frac{de}{de}$	; I-de da	= 1.0		
× _F =α	.0096	.9291	.0305	.0170	.0259
CLP	.0147	. 0308	. 0467	. 0334	.0508
Ap	1.080	1.080	1.080	1.487	1.487
e _p = .	5		,		
Sp	112	112	//2	165.8	165.8
$\longrightarrow C_{D_{L_p}}$	.0001	.0002	,0005 ⁻	.0001	.0003
(	$\hat{\boldsymbol{\mathcal{L}}}_{\mathcal{D}_{\mathcal{P}}} = \boldsymbol{\mathcal{C}}_{\mathcal{D}_{\mathcal{P}}}$	$D_{op} + C_{D_{LP}}$			
$\longrightarrow C_{PP}$	.0026	.0026	.0030	.0020	.@22

· Werharding Frof. DEFS POLAL R. HADDAL · Juselage/norelle interforme 13 is repliquencic because of the large CDnint * distance between the nacelle and the fuicloge. Actually, that interference has been accounted for in the con colculations. 42-301 10 - 101 5 42-302 102 50 SHEETS 5 SQUARE +  $\Delta C_{D_{WMPROP}} = 2 \left[ 33 \left( \frac{1}{\overline{q} \, \overline{s}} \right) S + P_{nkd} \left( \frac{1}{U_{i}} \right) \right]$ (2 expines) 25 Po.x 50 Pax 36 Pax 75Pax 100 Pay 572 592 59z ft 1182 1182 S 5500 5500 11000 (HP 11000 SHP Foicd (per engine) 5500  $\overline{P}_{\text{cruin}} = & 15.6 \quad \frac{\text{slug}}{\text{flus}}$ U, = 696.29 ft/s ACDwm .0041 .0041 .0041 .0041 .0041 then, .0075 .0075 .0079 .0067 .0069 Conp

.

6. Martinessing	LANDUSG	Girl.f.	D	AG POLA	( <i>ـ</i>	r. Hall	AD	
с.		the co	ilcu (al in	-= Frece	uted here	.arc a	fflical or	, lu
		at low	speed	(which	to zi	071020	h Medt	)
		C _{uq}	$= i f_{i}$	noz gear	+ $C_{b_{n,2}}$	- q:4r		
		For lan	ding ge	ors with	more th	on one c	wheel pr	r
		bogen :		Cimgar =	bfgcar /	5 (mo	in gear)	
17.114 2001 5		Cong	$g = (C_{\underline{h},g})$	+ P CL=0	CL) Sqeer	where	P=4	EDneccz=0
	1. 1		a = 1	14 ft	•	•		
			b _t =	1.9 ft				
(			$\mathcal{P}_t = 1$	1.5 ft	s			
	•		e = 9	4.2 ft		•		
t brivera		Fig. 4. 58	C _D ng _{Cu} =	= 0.°C =>	p=32			
			د _∟ ≕	W Q				
		·	Sgear	pfx Df	= 2.85 ft ⁻			
	·.		· · ·	25 Pax	36 Pax	50Pax	75 Pax	100 Pax
			W	28,506	35,954	43,141	71,419	85,044
			S	592	592	592	// 82	1182
			Farr	32.9	39.4	37.8	40. 24	40,24
(2203)			CL app.	1.47	1.54	1.83	1.50	1.79
		Fig. 4.60	Dfgeor	24	25	27	N.A.	N.A.
						<b>.</b> .		

* j	LANLING	GEFES	DRAG FOL	462	R. HALL	AD		/5
	-	> <u>C</u> L	25 Pax .0016	<u>36 Far</u> .0015	50Fax .0010	75Bx .0030	100fox .0020	
	_		ngeer .0405	.0422	.0456	.0844	.0912	
Sources Sources	then,	$C_{\rm D}$	2007 .0421	.0437	. 0466	.0874	.0932	

NATIO

à

## <u>Appendix H</u>

•

Mission performance verification.

Purpose: Presentation of methods in Reference 10 detailing the calculations for mission performance. This appendix contains calculations for:

- a) Take-off field length
- b) Landing field length
- c) FAR 25 climb requirements

The work was done using a spreadsheet so all five airplanes could be checked simultaneously.

H-1

2. 73 30

AE 790

8

F

G

F.

Performance Validation for the Family of Commuter Airplanes

D

ε

Take-off Distance Calculations

С

	Ground Distance	25	36	50	75	100
>>	W-TO = W-L (lbs)	28506	35954	43141	71419	85044
>>	Thrust-TO (1bs)	14283	17330	21461	34224	41727
>>	Friction Coeff.	.025	.025	.025	.025	.025
>>	Phi Angle (rad)	0	0	0	0	0
	T/W - T.O.	.501	.482	.497	.479	.491
۶	F-s (1bs)	13570	16431	20382	32439	39601
>>	Wing Area	592	592	592	1182	1182
>>	Density	.002377	.002377	.002377	.002377	.002377
	C-L-max-TO	.97	1.22	1.47	1.22	1.45
	V-s-TO (fps)	204.4	204.4	204.4	204.4	204.4
>>	V-LOF (fps)	224.8	224.8	224.8	224.8	224.8
	q-bar-LOF (psf)	60.1	60.1	60.1	60.1	60.1
	C-L-TO	.802	1.011	1.213	1.006	1.198
>>	C-D-TO	. 144	. 163	.211	.181	.220
	D-LOF (1bs)	5120.0	5809.6	7507.4	12827.5	15628.3
	L-LOF (1bs)	34492.3	43504.3	52200.6	86417.0	102903.2
•	F-LOF (1bs)	9312.7	11709.1	14180.1	21771.4	26545.2
	F-m (1bs)	11308.3	13937.1	17094.2	26751.5	32639.0
	S-G (ft)	1979.9	2026.2	1982.2	2096.9	2046.5
	Rotation Distance					
	S-R (ft)	674.4	674.4	674.4	674.4	674.4
	Transition Distance					
	Delta C-L	. 140	. 156	.171	.155	.170
	Radius, R (ft)	8989	10192	11142	10165	11076
	Theta-CL (rad)	.321	.320	.323	.300	.307
•	S-TR (ft)	670	714	746	713	744
	Climb Distance					
	h-TR (ft)	460.4	518.7	577.8	452.8	517.5
	S-CL (ft)	0	0	0	0	0

	S-1.0. (ft)	3325	3414	3403	3484	3465
	Landing Distance Cal	culation:	s 			
	C-L-max-L	1.35	1.71	2.05	1.70	2.02
	V-S-L (fps)	172.9	172.9	172.9	172.9	172.9
>>	V-A (fps)	224.8	224.8	224.8	224.8	224.8
	V-TD (fps)	198.9	198.9	198.9	198.9	198.9
	C-L-Approach	.80	1.01	1.21	1.01	1.20
	q-bar-A (psf)	60.06	60.06	60.06	60.06	60.06
>>	C-D-Approach	.181	.200	.248	.247	.286
	D-A (1bs)	6436	7111	8818	17535	20304
	Gamma (rad)	.052	.052	.052	.052	.052
	Thrust- A	4943.2	5228.8	6559.2	13795.8	15851.1
	S-A (ft)	955.0	955.0	955.0	955.0	955.0
	S-FR (ft)	596.6	596.6	596.6	596.6	596.6
>>	Braking Coeff.	.45	.45	.45	.45	.45
	F-S (1bs)	12828	16179	19413	32139	38270
	C-L-T(OGE)	.80	1.01	1.21	1.01	1.20
>>	wing ht., h (ft)	8.00	8.00	8.00	8.00	8.00
>>	span, b	84.30	84.30	84.30	84.30	84.30
>>	m.g.c. (ft)	7.45	7.45	7.45	7.45	7.45
>>	Aspect Ratio (wing)	12.00	12.00	12.00	12.00	12.00
>>	Oswald's e-landing	.750	.750	.750	.750	.750
>>	wing t/c	.130	.130	. 130	.130	. 130
>>	Lamda c/2 wing (rad)	.194	. 194	. 194	.194	. 194
	2h/b	.190	. 190	. 190	.190	.190
	h/b	.095	.095	.095	.095	.095
	h/c-bar	1.07	1.07	1.07	1.07	1.07
>>	A/Aeff (Fig. 10.8)	.43	.43	.43	.43	.43
	Aeff	27.9	27.9	27.9	27.9	27.9
	sigma'	.499	.499	.499	.499	.499
	C-L-a(OGE)	5.24	5.24	5.24	5.24	5.24
	C-L-a(IGE)	5.75	5.75	5.75	5.75	5.75
	deita-aipha-o (deg)	.418	.418	.418	.418	.418
		.84	1.07	1.29	1.06	1.27
		011	018	026	018	025
		. 170	.182	.222	.229	.261
		7062	1818	9451	18328	20948
		. 153	.713	.713	.765	.751
	$F \rightarrow m$ (IDS)	9000	11535	13840	24590	28/44
	5-B (TC)	1814	1310	1910	1785	18,19
	Land. Dist. S-L (ft)	3365	3467	3468	3337	3370
					· .	
	¢					

Climb Requirements

#	FAR Req.	Flap Set	Gear Set	V ×Vs	Thrust Set	Wt.
1	25.111 OEI initial	то	up	1.2	то	то
2	25.121 OEI transition	то	down	1.15	то	TO
3	25.121 OEI 2nd segment	ТО	up	1.2	ТО	TO
4	25.121 OEI en route	clean	up	1.25	MC	TO
5	25.119 AEO landing	landing	down	1.3	TO	L
6	25.121 OEI landing	approach	down	1.1 <v &lt;1.5</v 	то	L

Actual Climb Gradients

Case 1 - Initial

		25	36	50	75	100
	Weight (lbs)	28506	35954	43141	71419	85044
	Thrust (1bs)	7142	8665	10731	17112	20864
	Density (slug/ft3)	.002377	.002377	.002377	.002377	.002377
	Wing Area (ft2)	592	592	592	1182	1182
	Velocity (fps)	245	245	245	245	245
	C-L	.674	.850	1.020	.845	1.007
>>	C-D	.096	.110	. 151	.086	.117
	R.C. (fps)	26.5	27.2	24.6	33.8	31.7
	Climb Grad. %	10.79	11.10	10.04	13.77	12.93
	Req'd. Grad. %	1.20	1.20	1.20	1.20	1.20
	Passed Reqmt.	yes	yes	yes	yes	yes
			· .			
	Case 2 — Transitio	<b>n</b>				
		25	36	50	75	100
	Velocity (fps)	235	235	235	235	235
	C-L	.734	.925	1.110	.920	1.096

.

8| פטר

,

โมช

>>	C-D	. 14 1	. 158	.204	.177	.215			
	R.C. (fps)	13.78	16.44	15.32	11.18	11.66	•		
	Climb Grad. %	5,86	6.99	6.52	4.76	4.96			
	Req'd. Grad. %	0	0	0	0	0			
	Passed Reqmt.	yes	yes	yes	yes	yes			
	Case 3 - Second S	eoment	x					-	
		25	36	50	75	100			
							-		
	Velocity (Tps)	245	245	245	245	245			
<b>&gt;&gt;</b>	0D	014 096	. 110	.151	.045	.117			
•	R.C. (fps)	26.46	27.23	24.62	33.77	31.70	· .		
	Climb Grad. %	10.79	11.10	10.04	13.77	12.93			
	Req'd. Grad. %	2.400	2.400	2.400	2.400	2.400			
	Passed Reqmt.	yes	yes	yes	yes	yes			
	Case 4 En Route								
	Case 4 En Route	25	36	50	75	100	• •	•	
	Case 4 En Route	25	36	50	75	100			
	Velocity (fps)	25 255	36	50 255	255	100 255	- · ·		
	Case 4 En Route Velocity (fps) C-L	25 255 . 621	36 255 .783	50 255 . 940	75 255 .779 101	100 255 .928			
>>	Case 4 En Route Velocity (fps) C-L C-D R.C. (fps)	25 255 .621 .094 25.33	36 255 .783 .101 28.62	50 255 .940 .109 33.83	75 255 .779 .101 28.16	100 255 .928 .109 32.76	-		
>>	Case 4 En Route Velocity (fps) C-L C-D R.C. (fps) Climb Grad. %	25 255 .621 .094 25.33 9.92	36 255 .783 .101 28.62 11.20	50 255 .940 .109 33.83 13.24	75 255 .779 .101 28.16 11.02	100 255 .928 .109 32.76 12.83			
>>	Case 4 En Route Velocity (fps) C-L C-D R.C. (fps) Climb Grad. % Req'd. Grad. %	25 255 .621 .094 25.33 9.92 2.40	36 255 .783 .101 28.62 11.20 2.4	50 255 .940 .109 33.83 13.24 2.4	75 255 .779 .101 28.16 11.02 2.4	100 255 .928 .109 32.76 12.83 2.4	- · ·		
>>	Case 4 En Route Velocity (fps) C-L C-D R.C. (fps) Climb Grad. % Req'd. Grad. % Passed Reqmt.	25 255 .621 .094 25.33 9.92 2.40	36 255 .783 .101 28.62 11.20 2.4 yes	50 255 .940 .109 33.83 13.24 2.4 yes	75 255 .779 .101 28.16 11.02 2.4 yes	100 255 .928 .109 32.76 12.83 2.4 yes	- - -		
•	Case 4 En Route Velocity (fps) C-L C-D R.C. (fps) Climb Grad. % Req'd. Grad. % Passed Reqmt. Case 5 Landing	25 255 .621 .094 25.33 9.92 2.40	36 255 .783 .101 28.62 11.20 2.4 yes	50 255 .940 .109 33.83 13.24 2.4 yes	75 255 .779 .101 28.16 11.02 2.4 yes	100 255 .928 .109 32.76 12.83 2.4 yes			
<b>&gt;&gt;</b>	Case 4 En Route Velocity (fps) C-L C-D R.C. (fps) Climb Grad. % Req'd. Grad. % Passed Reqmt. Case 5 Landing	25 255 .621 .094 25.33 9.92 2.40 yes	36 255 .783 .101 28.62 11.20 2.4 yes 36	50 255 .940 .109 33.83 13.24 2.4 yes	75 255 .779 .101 28.16 11.02 2.4 yes 75	100 255 .928 .109 32.76 12.83 2.4 yes	- - -		
<b>&gt;&gt;</b>	Case 4 En Route Velocity (fps) C-L C-D R.C. (fps) Climb Grad. % Req'd. Grad. % Passed Reqmt. Case 5 Landing	25 255 .621 .094 25.33 9.92 2.40 yes 25	36 255 .783 .101 28.62 11.20 2.4 yes 36	50 255 .940 .109 33.83 13.24 2.4 yes 50 21461	75 255 .779 .101 28.16 11.02 2.4 yes 75 75	100 255 .928 .109 32.76 12.83 2.4 yes 100	- - - - -		
<b>&gt;&gt;</b>	Case 4 En Route Velocity (fps) C-L C-D R.C. (fps) Climb Grad. % Req'd. Grad. % Passed Reqmt. Case 5 Landing Thrust Velocity (fps)	25 255 .621 .094 25.33 9.92 2.40 yes 25 25 14283 266	36 255 .783 .101 28.62 11.20 2.4 yes 36 17330 266	50 255 .940 .109 33.83 13.24 2.4 yes 50 21461 266	75 255 .779 .101 28.16 11.02 2.4 yes 75 34224 266	100 255 .928 .109 32.76 12.83 2.4 yes 100 41727 266	-		
<b>&gt;&gt;</b>	Case 4 En Route Velocity (fps) C-L C-D R.C. (fps) Climb Grad. % Req'd. Grad. % Passed Reqmt. Case 5 Landing Thrust Velocity (fps) C-L	25 255 .621 .094 25.33 9.92 2.40 yes 25 14283 266 .574	36 255 .783 .101 28.62 11.20 2.4 yes 36 17330 266 .724	50 255 .940 .109 33.83 13.24 2.4 yes 50 21461 266 .869	75 255 .779 .101 28.16 11.02 2.4 yes 75 34224 266 .720	100 255 .928 .109 32.76 12.83 2.4 yes 100 41727 266 .858	- - -		
<b>&gt;&gt;</b>	Case 4 En Route Velocity (fps) C-L C-D R.C. (fps) Climb Grad. % Req'd. Grad. % Passed Reqmt. Case 5 Landing Thrust Velocity (fps) C-L C-D	25 255 .621 .094 25.33 9.92 2.40 y== 25 14283 266 .574 .134	36 255 .783 .101 28.62 11.20 2.4 yes 36 17330 266 .724 .156	50 255 .940 .109 33.83 13.24 2.4 yes 50 21461 266 .869 .226	75 255 .779 .101 28.16 11.02 2.4 yes 75 34224 266 .720 .177	100 255 .928 .109 32.76 12.83 2.4 yes 100 41727 266 .858 .232	- - - -		
<b>&gt;&gt;</b>	Case 4 En Route Velocity (fps) C-L C-D R.C. (fps) Climb Grad. % Req'd. Grad. % Passed Reqmt. Case 5 Landing Thrust Velocity (fps) C-L C-D R.C. (fps)	25 255 .621 .094 25.33 9.92 2.40 yes 25 14283 266 .574 .134 70.93	36 255 .783 .101 28.62 11.20 2.4 yes 36 17330 266 .724 .156 70.79	50 255 .940 .109 33.83 13.24 2.4 yes 50 21461 266 .869 .226 63.00	75 255 .779 .101 28.16 11.02 2.4 yes 75 34224 266 .720 .177 61.90	100 255 .928 .109 32.76 12.83 2.4 yes 100 41727 266 .858 .232 58.47	- · · ·		
<b>&gt;&gt;</b>	Case 4 En Route Velocity (fps) C-L C-D R.C. (fps) Climb Grad. % Req'd. Grad. % Passed Reqmt. Case 5 Landing Thrust Velocity (fps) C-L C-D R.C. (fps) Climb Grad. %	25 255 .621 .094 25.33 9.92 2.40 yes 25 14283 266 .574 .134 70.93 26.70	36 255 .783 .101 28.62 11.20 2.4 yes 36 17330 266 .724 .156 70.79 26.65	50 255 .940 .109 33.83 13.24 2.4 yes 50 21461 266 .869 .226 63.00 23.71	75 255 .779 .101 28.16 11.02 2.4 yes 75 34224 266 .720 .177 61.90 23.30	100 255 .928 .109 32.76 12.83 2.4 yes 100 41727 266 .858 .232 58.47 22.01	-		

*

ן י ריר

 yes

yes

yes

yes

yes

Case 6 --- Landing Approach

	25	36	50	75	100
Thrust	7142	8665	10731	17112	20864
Velocity (fps)	307	307	307	307	307
C-L	.802	1.011	1.213	1.006	1.198
C-D	.144	.171	.248	.189	.249
R.C. (fps)	15.94	16.07	9.92	11.59	8.45
Climb Grad. %	5.20	5.24	3.24	3.78	2.76
Req'd. Grad. %	2.10	2.10	2.10	2.10	2.10
Passed Reqmt.	yes	yes	yes	yes	yes

Actual Climb Gradients for the Commuter Family

			*		
Climb Reqmt. #	25	36	50	75	100
1	10.79	11.10	10.04	13.77	12.93
2	5.86	6.99	6.52	4.76	4.96
3	10.79	11.10	10.04	13.77	12.93
4	9.92	11.20	13.24	11.02	12.83
5	26.70	26.65	23.71	23.30	22.01
6	5.20	5.24	3.24	3.78	2.76

Performance Verification

	25	36	Mode 1 50	75	100
R.C T.O. (fpm) R.C CR. (fpm)	3138 984	3053 573	3064 1224	3753 2150	2584 1568
TOFL (ft) LFL (ft)	3325 3365	3414 3467	3403 3468	3484 3337	3465 3370
CMAX	1.41	1.41	1.47	1.41	1.45
CLMAX,	1.41	1.71	2.05	2.7	2.02

54							
-5	V-TO	224.8	224.8	224.8	224.8	224.8	
3 /	V-A	224.8	224.8	224.8	224.8	224.8	
57	V-MC	207.5	207.5	207.5	207.5	207.5	
ι. ž							

•

· . , •

 $\square$ 

4

•

a and a second s

5 5 6

•

· •

•

· e

.

## <u>Appendix I</u>

[

•

.

Airport Dimensions

Purpose: This appendix checks taxiway widths to determine what airports the twinbody configurations can operate from.

I-1

Arcraft Chardeveriatics Related to Airport Dealgh 8

mur 3.1 Characteristics of Principal Transport Aircraft

Aircraß	Manufacturer	Wingspan	Length	Wheel	When
DC-9-12	McDonnell-Douglas	-MJ.06	119'04'	20.03	16'03
DC-9-50	McDonnell-Douglas	-10.06	100.201	-11.09	<b>90.9</b>
DC-9-80	McDonnell-Douglas	JU.101	-90.501	12.06	80,91
DC-8-61	McDonnell-Donglas	148.05	.90,181	-90.11	20'10
DC-8-61	McDonnell-Douglas	-50.971	-20-781	-90.14	20'10
DC-10-10	McDonnell-Douglas	-H0.SSI	182.00	-50.24	00.50
DC-10-30	McDonnell-Douglas	-MJ. 191	10.[8]	50.24	90.SE
8-737-200	Boeing	<b>J</b> 0.06	100.001	-10.02	11.02
8-727-200	Boring	-00.801	-20.051	10.03	60.81
8-7205	Boring	130'10'	-60.9Ct	<b>1</b> 80.08	11.13
8-707-1208	Boeing	130'10'	145.01	52'0H"	0.52
8-707-3208	Boeing	-50.211	152'11"	.00.6S	10.56
B-757-200	Boeing	124'06"	115310	-00.09	00.175
8-767-200	Boeing	156.04	10.931	10.19	90,00
B-747B	Boeing	<b>1</b> 60.961	229.02	-DO. 19	10.9C
B-7475P	Boeing	JAD. 561	176.07	.HO.19	(0.9C
L101-100	Lockheed	-HO.SSI	177.08	10.00	90.90
1-1011-500	Lockherd	-M-221	20.991	_90.19	8.90
Caravelle-B	Aerospatiale	-90.211	<b>10.901</b>	100.11	00.11
Trident 2E	Hawker-Siddeley	<b>JO.86</b>	-60.111	44.00	10.61
BACH11-200	British Aintraft	-90.98	30.76	-10.00	10.M
Super VC-10	British Ainwall	140.00	171'08"	_20.31	90.13
A-300	Airbus Industrie	147.01	-11.521	-10.19	90.IE
0124	Airbus Industrie	144.007	10.031	-11.05	30.16
Concorde	British Aircraß-	JI.03	202.00	88	9.53
	Aerospatial				
Mercare	Dussault	.20.001	30.111	-10.8P	0.04
Ihrushine-82	U.S.S.R.	-60.IM	10.121	<b>10,08</b>	00.23
Tupokev-154	U.S.S.R.	-20.021	157.02	-10.29	37.09
Ilvushine M	U.S.S.R.	187.08	-90.161	100.01	10.96

* Approximate only: depends npon scaling configuratio * As see ferel, standard day, no wind, fer el mawar.

source: Manufacturers' data

provided in Tables 3-1 and 3-2 are only approximate. For more precise also dictates the widths of nunways and taxiways and the distances between these trafficways, and it affects the required turning radius on pavement curves. The passenger capacity has an important bearing on facilities within and adjacent to the terminal buildings. The runway length influences to a large part the land area required at an airport. The fengths values the appropriate references, such as those listed in this chapter should be consulted.

An examination of Tables 3-1 and 3-2 reveals some interesting information. The maximum takeoff weight of principal airline aircraft varies from

Aircraft Characteriation Related to Airport Dealor

61

A

ľ.

TABLE 3-1	Continued					
Maximum				Number		
structural	Maximum	Operating		puq	Maximum	•
takeoff	landing	emply	Zero fuel	Type of	payload.	Runway
weight, lb	weight, lh	weight,* Ib	weight, lb	engines	passengers	length' A
108,000	000'08	56,855	(A)U'U	2 TF	115-127	1,500
120,000	110,000	63,328	000'88	2 T F	UC1	7,100
140,000	128,000	107,11	118,000	2 TF	155-172	7,190
325,000	240,000	152,101	224,IX00	4.TF	196-259	00011
355,000	258,000	158,738	230,000	4 TF	196-250	11,944
430,000	363,500	234,664	335,000	3 T F	270-345	000'6
SSS,000	103,000	261,094	364,000	3 T F	270-345	(11,008)
100,500	99,000	59,858	85,000	2 T F	86-125	S,GUD
169,000	150,000	97.4(x)	CUAL/PC1	3 TF	134-163	8,6441
224,300	175,000	115,000	156.00)	4 TF	131-149	6,100
257,340	190,001	127,500	170,000	4 T.F	137-174	7,500
331,600	215,000	148,400	1955,000	4 TF	141-189	11,500
220,000	198,000	1:30,700	184,000	<u>2</u> TF	178-196	6,940
300,000	270,000	178,210	248,1775	2 TF	211-230	6,700
775,000	564,000	365.800	526,000	115	362-490	900 [,] 11
650,000	450,000	306,400	410,000	4 T.F	H9C-865	8,000
466,000	243,133	243,133	320,000	3 T F	256-400	10,800
406,000	240,139	940,139	339,000	3 T F	246-400	000016
123,460	100,1.30	66,260	090,78	2 TF	86-10H	6,900
143,500	113,000	10,200	100,000	3 T F	82-115	005'1
719,000	69,000	46,405	64,000	2 TF	61-19	006'9
335,000	237,000	147,000	215,000	4 T F	100-163	8,200
302,000	261,000	186,810	256,830	2 T F	225-345	6,500
291,000	261,250	169,910	279,200	2 TF	205-265	6,100
389,000	240,000	175,000	200,000	11)	106-125	000'11
114 640	108 0.00	57.022	005 68	9 T F	124-134	6.500
357.000	232,000	153,000	205,000	175	169-186	10.700
198,416	185,188	05,900	139,954	315	125-158	6,900
454,150	385,000			4 T F	950	B, GUO

ORIGINAL PAGE IS POOR QUALITY

OF

79,000 to 775,000 lb. Small general aviation aircraft weights range from 2000 to 8000 lb, while commuter and corporate aircraft vary from 15,000 to weight and, hence, the required runway length. Therefore, in the analysis 74,600 lb. The maximum number of passengers carried by airline aircraft varies from 65 to nearly 500. On the other hand, small general aviation sirplanes seat from 2 to 6 people, and short-haul and corporate aircraft from less than 10 to about 80 persons, depending on the configuration of the interior. Runway lengths for typical airline aircraft vary from 6000 to 12,000 ft, but it is important to note that it is not valid to assume that the larger the aircraft especially, the trip length has a profound influence on takeoff of runway length requirements, an estimate of trip length is very important weight of an aircraft, the longer the mmway length required. For

62 Ai<del>rcra</del>fi Cherec<del>teris</del>tics Related to Airport Design

TABLE 3.2 Characteristics of General Aviation and Short-Haul Passenger Aircraft

						Number	
				Mesimum	Maximum	pua	
	Wing	Fuselage	Wheel	takeoff	number	المهد و	Runwa
Alicenth	unds	kmrth	track	weight, lb	of seats*	engines	length.
Berch 23 Musheteer	-60.7C	JU.57	1.10	2,200	-	4	080.1
Beech VJS Bonanza	90.02	<b>_HU.9</b>	10.6	3,400	\$	Ā	1,320
Beech Sil-Buron	D1.10	-6U.6 <b>X</b>	-00.E	6,775	¢	2 P	2,380
Beech B&O.OneenAir	10.02	90.SE	12.09	8,800	=	6 B	1,800
Brech C30	45.10	10.11	10.01	10,900	11	8 TP	2,800
Bellanca 260C	20.10	1	00.6	3,000	4	41	000'1
Cestina 150	10.57	23'00	<u>.90.9</u>	1,600	ы	4	1,385
Cessna 172 Skyhawk	-50.SC	.11.93	1.02	2,300	-	4	1,525
Cessna 182 Skylane	35'10	28'00"	7117	2,850	*	4 1	1,350
Cesine 7310	36.11	-90.6 <b>3</b>	10.21	5,500	10	6- 6-	061.0
Cessna #12	30.11	<b>1</b> 97.92	18.00	6,850	2	2 P	2,485
Piper PA-23 Aztee	20.10	5.8	-10.11	5,200	\$	2 P	1250
Piper PA-28 Cherokee	-DU.00	_90.CZ	10.00	2,400	*	4	
Piper PA-28 Arrow	10.0C	24.(12	-90.01	2,600	-	٩.	,
Piper Twin Comanche C	JOU.9C	22.122	.60.6	3,600	9	6- 6-	1,870
Piper PAGI Navajo	-80.04	10.20	-60.CH	6,500	9	2 P	2,015
Colistream II	PI 10	71.42	13.66	17,500	얾	2 T F	4,070
Metroliner []	-00.9¥	50.6£	15:00	12,500	ដ	2 T F	3,550
Lear Jet 25	10.92	47.07	<b>1</b> 0.8	15,000	8	8 T)	5,186
Lockheed Jet Star	50.HS	50.02	12'00'	42,000	2	F	4,890
Salvelines -80	44.05	48.04	101	20,000	81	2 T J	4,875
Jet Fakcon 207	59.45	60.00	12.00	29,100	83	2 TF	4,430
dellavilland TwisOtter	65,007	<i>.6</i> 0,15	.20.21	12,500	55	9.T.P	1,200
Shorts 330-200	14.08	28.01		<b>00</b> 67 <b>8</b>	읽	2 T F	3,840
BAe 146-100	£0.58	-50.EL		74,600	z	411	3,530
deHavilland DASH 7	10.08	-90.08		44,500	22	ŧ	2,250
Fokker F2T MLS00	20.98	_CU.58		45,000	8	<b>1</b> 1 P	5,460
							-

* factoring pilot source: Neurénetrorers' debr; Joor's All the World's Atrengh [87]. Runway lengths for small general aviation aircraft seldom exceed 2000 ft, while for commuter and corporate aircraft this length is on the order of 5000

æ

In Tables 3.1 and 3.2 aircraft are referred to according to their type of propulsion and thrust-generating medium. The term piston engine applies to all propeller-driven aircraft powered by gasoline-fed reciprocating engines. Most small general aviation aircraft are powered by piston engines. The term turborpor felers to propeller-driven aircraft powered by thribine engines. A few twin-engine general aviation aircraft and a few of the earlier airline aircraft are powered in this manner. The term turbujet makes reference to those aircraft which are not dependent on propellers for thrust, but which obtain the thrust directly from a turbine engine. The early

Alrerant Churacteriales Related to Alrport Doalgn 63

4

Υ.

. 34 Januar 100 and

e

jet airline aircraft, particularly the Comet 707 and the DC-8, were powered by turbojet engines, but these were discarded in favor of turbofan engines principally because the latter are far more economical. When a fan is added in the front or rear of turbojet engine, it is referred to as a *turbofan*. Most fans are installed in front of the main engine. A fan can be thought of as a

TARE 33 Main Landing Gear Dimensions for Typical Transport Alrectafi

OFICINAL PAGE IS

OF POOR QUALITY



Contectional line pressure of 134 pail supports 18 pervent of heal weight. "Conter pow the pressure of 140 pail supports 18 pervent of bell weight, sources: Manufactureri data. Geometric Design of the Landing Area

ORIGINAL PAGE IS OF POOR QUALITY

out ai

all sr

weigl airpla antici airpo the ca small

appro takeo

the m 4. Th

those

and spec

trans

mea

airp

gen 12,:

des

cat

be

C

A

tr a c c ٦

TABLE 9-3 FAA Aircraft Approach Category Classification

292

Approach category	Approach speed, kn
A	Less than 91
В	91-120
C I	121-140
D	141-165
E	166 or greater

SOURCE: Federal Aviation Administration [22].

aircraft using the airport [9]. This classification system and the grouping of some common air-carrier aircraft into classifications are shown in Table 9-2.

### Present Airport Classification System

The FAA is changing the classification of airports for geometric design purposes so that it is based upon the approach category of aircraft. The approach category, as shown in Table 9-3, is determined by the aircraft approach speed, which is defined as 1.3 times the stall speed in the landing configuration of that aircraft at maximum gross landing weight [23]. Aircraft with maximum certified takeoff weights in excess of 12,500 lb are classified as large aircraft; the rest are small aircraft.

Geometric design specifications for all aircraft in approach categories A and B are governed by utility airport specifications. Utility airports are now classified as basic utility stage I, basic utility stage II, general utility stage I and general utility stage II. A basic utility stage I airport accommodates about 75 percent of most single-engine aircraft and some small twinengine aircraft for personal and business purposes. This airport is usually designed for aircraft in airplane design group I. A basic utility stage II airport includes a broader spectrum of small business and air taxi type twinengine aircraft. This airport is normally designed for small aircraft through-

TABLE 9-4	FAA Airplane Design Group			
	<b>Classification for Geometric</b>	Design	for	Airports

Airplane design group	Wingspan, ft	Typical aircraft
I	Less than 49	Learjet 24, Rockwell Sabre 75A
11	49 but less than 79	Gulfstream II, Rockwell Sabre 80
111	79 but less than 118 )	B-727, B-737, BAC1-11, B-757, B-767, Concorde, L-1011, DC-9
IV	118 but less than 171	A-300, A-310, B-707, DC-8
v	171 but less than 197	B-747
VI	197'but less than 262	Future

source: Federal Aviation Administration [129, 23].



Geometric Design of the Landing Area 291

# ormer Airport Classification System

For the purpose of geometric design standards, the FAA separated airport outivity into two general classes, namely, general aviation and air carrier. A urther breakdown was made within both of these categories.

executive jets. A general transport airport accommodated transport-categoment transport category airport. ry sircraft used for general aviation with maximum takeoff weights up to type of airport was planned for use by business jets, corporate jets, and transport airport was one that could accommodate propeller or turbineof the propeller aircraft not weighing more than 12,500 lb; in general this accommodated general aviation aircraft weighing more than 12,500 lb, and let aircraft [11]. The utility airports were further grouped for visual and 150,000 lb or more. There were also specifications for a precision instrupowered aircraft up to 60,000 lb maximum certified take off weight. This lated substantially all propeller aircraft not greater than 12,500 lb. A basic urcraft weighing not more than 12,500 lb; in general this meant aircraft ad the capability of accommodating about 95 percent of the propeller neant aircraft on the order of 3000 lb or less. A basic utility stage 11 airport utility stage I airport had the capability of accommodating about 75 percent alled basic utility stags I, basic utility stage II, or general utility. A basic ions. The visual and nonprecision instrument operation airports were scluding jet aircraft [22]. Transport airports were defined as those which ionprecision instrument operations and for precision instrument operaighing on the order of 8000 lb or less. A general utility airport accommoghing not more than 12,500 lb maximum certified takeoff weigh Utility airports were defined as those which were used by aincraft

Air-carrier airports had been classified for geometric design purposes according to the wingspan, undercarriage width, and wheel base of the

1942 53 Fornier PAA Taxiway Design Classification System for Air-Carrier Airports

		Airplana/Taxiwa	y Design Croup	1
	-	u	E	W
ireralt dimension, R				
Wingspan	021 el dA	Up to 167	003 es d'U	Up to J40
Undercarriage width	8 8 5	Up 11		Co e co
Wheelpase	Up to 60	Up to 87	Up == 47	Up to los
ypical alrend	8-727-100	B-707	8-147	Furn
	무겁	F-11-20		
	BAC 1-11	B-757		
	53 K)	6-767		
•	0 <u>0</u> 0			
		DC-10		
-		L1011		
source: Faderal Aviation	n Administration (91			

۴ġ

#### Table 7.5 Recommended Dimensional Standards for Airline Airports-Taxiways

		Dimensional Criteria (ft) Airplane Taxiway Design Group				
Design Item	Symbol	1	11	нį	IV	
1. Taxiway structural pavement	********					
width on tangents	WT	50	75	100	125	
2. Taxiway structural pavement						
width on curves	Wc	65	90	115	140	
3. Taxiway shoulder width	· 🕳	20	25	35	40	
4. Safety area width	-	110	150	220	310	
5. Taxiway and apron taxiway						
obstacle-free area width		210	270	360	470	
6. Terminal taxilane obstacle-free						
area width		160	210	290	390	
7. Separation distance from taxi-	`					
way $C_L$ to taxiway $C_L$	Ś.	200	300	300	400	
8. Separation distance from taxi-						
way $C_L$ to runway $C_L$	SR	400	400	600	1,000	
9. Radius of taxiway CL curves	R	100	150	150	200	



* (turboprop and piston aircraft only: 120)

** (surboprop and piston aircraft only: 30)

* Turboprop and piston airplanes only.

Source: Airport Design Standards—Airports Served by Air Carriers—Taxiways, FAA Advisory Circular AC 150/5335-1Å, October 4, 1973.

Longitudinal Grade Des

7.6 summarize thes the ICAO dimension as described in Sec defined in Table 7 ways given in Table To use this table, wingspan, underca the appropriate de mum dimensional

#### **Transverse Grades**

As shown in the t sloped away from rule, transverse ru with drainage required water on the surf however when ri slopes as small a facilitate operati runways that serv for ICAO runwa maximum grade i

Beyond the ru the removal of si to 5.0% for the point, slopes of " of shoulder sur gradients of at " mends a 1.5 in. surface. For ta gradient criteria

#### 7.7 LONGITUD:

From the stand level runway is tice. A runway tion may invol earth. The cos ment of a to smooth, comt

Table 7.6 FAA Minimum Dimensional Standards for General Aviation Airports

			Airport C	Croup			Precision - Runway for
				Basic Ti	ansport		<ul> <li>Runway for Basic Or</li> </ul>
Design Item	Basic Utility Stage I	Basic Utility Stage 11	General Utility	٨.	8*	General Transport	General Transport
Runway safety area width (ft)	100	120	150	150	300	300	500
Runway width (ft)	50	60	75	75	100	100	150
Taxiway width (ft)	20	30	40	40-60*	40-60*	40-60*	40-60
Runway centerline to:							
Taxiway Centerline (ft)	150	150	200	200	200	300	400
Airplane parking area (ft)	225	225	275	275	300	475	650
Building restriction line (ft)	200	200	250	250	300	350	250
Taxiway centerline to:							
Airplane parking area (ft)	75	75	75	75	100	175	250
Fixed or movable obstacle	50	50	50	50	75	100	200
Parallel taxiway (ft)	NA	· NA	NA	150	150	200	300
Building restriction line (ft)	100	100.	100	50	75	100	200

Sources: Utility Airports, FAA Advisory Circular AC 150/5300-48, June 24, 1975; Airport Design Standards – General Aviation Airports – Basic and General Transport, FAA Advisory Circular AC 150/5300-6 including CHC 1, April 13, 1972. * For aircraft tread widths exceeding 25 ft, use a 50 ft taxiway width; for tread widths exceeding 35 ft, use a 60 ft taxiway width.

Basic Transport Column A is to be used only at those low activity sites where an existing utility runway, having no anticipated need for an instrument approach procedure of any kind, is extended for business jets. For all other basic transport airports use Column B.

#### Table 7.7 Runway Longitudinal Grade Design Criteria for Civilian Airports

	Maximum Longitudinal Grade (%)	Maximum Grade, First and Last Quarter (%)	Maximum Effective Grade (%)	Maximum Change (%)	Distance Between Points of Inter- section, D (ft)	Length of Ver tical Curve ^b (ft/1% grade change)
FAA						
Air carrier airports	1.5	0.5	1.0	1.5	1000 (A + B)	1000
Basic and general transport						
airports	2.0	-		2.0	250 (A + 8)	300
Utility airports	2.0		-	2.0	250 (A + B)	300
ICAO				·		
Code letter A	1,25	0,8	1.0	1.5	1000 (A + B)	1000
Code letter B	1.25	0.8	1.0	1.5	1000 (A + B)	1000
Code letter C	1.5	· _	1.0	1.5	500 (A + B)	500
Code letter D	2.0	-	2.0	2.0	165 (A + B)	250
Code letter E	2.0	-	2.0	2.0	165 (A + 8)	250

Sources: Utility Airports, FAA Advisory Circular AC 150/5300-48, June 24, 1975; Airport Design Standards—Ceneral Aviation Airports—Basic and Ceneral Transport, FAA Advisory Circular AC 150/5300-6 including CHC 1, April 13, 1973; Aerodiomes Annex 14 to the International Convention on Civil Aviation, Including Amendment 31, International Civil Aviation Organization, Montreal, Oct 6, 1977.

*Runway grade changes shall also conform to sight distance criteria described in section 7.7.

* No vertical curve is required when grade change is less than 0.4%.

209

'ually about 's jet ວvilues an

nallest safety 0 ft wide Gift. The ty area 3nd 175 ft

oulders Air Force ghter and c. bers. A ii cifies a

al-, raft: or ), pability

ger's in the ivilian air-J earth s. 10 ft of elect base v I with a pped 2 · 🖬 · The

te un pavend 50 to y specify a

dequate vay's, along 5's 7.3 to

1 ... otherwise acrommodate bordering t Ea

Table 7.3 ICAO Minimum Dimensional Recommended Practices

- · · ·		, c	ode Lette	er	
Design Item	A	8	с	D	E
Width of cleared and graded area				·····	
Instrument runway (ft)	500	500	500	500	500
Noninstrument runway (ft)	500	500	400	260	200
Runway width (ft)	150	150	100	75	60
Taxiway width (ft)	75	75	50	33	25
Taxiway edge to:					
Edge of instrument runway (ft)	500	500	500		-
Edge of other runway (ft)	250	240	240	120	95
Edge of another taxiway (ft)	205	170	140	90	75
A fixed obstruction (ft)	125	100	85	60	53

Source: Aerodromes, Annex 14, to the International Convention on Civil Aviation including Amendment 31, International Civil Aviation Organization, Montreal, Oct. 6, 1977.

Table 7.4 FAA Recommended Dimensional Standards for Airline Airports-Runways

Runway safety area width (ft)	500
Runway width (ft)	150°
Runway centerline to:	
Building restriction line (ft)	750
Airplane parking area	Determined by imaginary surfaces (See FAR Part 77 and Ref. 6)
Property line	Determined by imaginary surfaces
	(See FAR Part 77 and Ref. 6)

Source: Airport Design Standards-Airports Served by Air Carriers-Runway Geometrics, FAA Advisory Circular AC 150/5335-4, including CHG 1, June 14, 1976.

*A 200 ft runway width is recommended where airplanes in Design Group III (see Table 7.5) are planned to be accommodated.

Airside

					-										
294 Geometric Design a	f the Landing /	Arres		*	7470					·				•	5
TALL as Runway Diment	sional Stand	dards.			<b>36</b> 77. 677. 4				6	cometric	Delo	iel ref b	ding An	•	667
			•		41 .				Federal Avi	tian Admi	nistration				
	-	atenational Civil	A vistics Organization 3	-			Approach cute willi	ander A. B. N			Appma	ch caren trantpr	τι Ο, D.	ш	
Width	40-75	24-100	051-001	8	· .	Visual									1
Safety anat Shoulder	8	£	8	200	12.j.: \$	_	F	-	=	-	=	Ξ	N	v	5
Gradient, %					• • •		1		1				5	51	ŝ
r qve meru, iongitadinai maxtmura	8	20	21	1.15		8 8	e <u>8</u>	r 8	<u> </u>	<u> </u>	ŝ	ļ	5	5	5
maimure effective	2	8	2:	2:						Ē	9	5	<b>s</b> .	a	Ş
marimem chango transition curve rate of	70	70	5	2											
slope change per 100 Å	0.4	0.0	. 0.5	10		20	20	9	20	1.5	1.5	1.5	5	5	2
Pa <del>vame</del> nt, transverse masinama ^e						<b>.</b>	99	2	0	22	2 1	2 2	<u>e</u> 2	<u>e</u> 2	2 2
Safety area						2	1	2	3	1	?	2		1	
masimum longitudinal masimum transvera	97	22	r:	51		<b>670</b>	ŋ	12.0	670	0.1	0.1	1.0	5	0.1	2
1 to be a second se						50	20	<b>1</b> 0	2.0	1.5	1.5	2	5	13	
* At letter that it the precising inst * Precision and nonprecision and	rument. rumeh mautros SC	00 ال المحمد ال 100	13. and 1000 B for cre	fer 3 and 4.	•••			;		:	:		:		2
Pavement and shunklers should	He at limit 200 (	A for cucles D and	-			205	1 50	2 2	2 9	18	20	10	12	2 8	22
* 3.0 for ender A and B, 1.3 for or subscue, international Civil Avi	ntei C, D, and E athin Organizatio	n [4] and Federal	Avlation Administrat	inn (12, 23).											
may he sited in accordance	e with the c	ontinuous vis	İbility requiren	nents. A	<del>-</del>	IV, an includ	d 400 ft foi e both the	r design g e mnway	roups V and the	shoulde	The wid r width	lth of th	e blast	pad sho	pund
clear line of sight to taxi-l ment may be satisfied wh means (12).	une centerli ere adequat	ines is also d te control of	esirable. This aircraft exists l	require- yy other		4. graded and st	The run I, and whi topway, if	way safet ich Inclue [ provide	y area is les the si cd. This	an area ructural area sh	a which I pavem nould b	is clei ent, shi e-capa	ured, di oulders ble of	ained, , blast ₁ suppor	and. Pid.
RUNWAYS						emerg aircral	ency and it should t	mainten. hey veer	ance equ	ipment avemer	as well at for or	as pro 1e rease	viding m or ar	support wither.	ŝł,
The runway system at an shoulders, the blast pad, at	airport cons nd the runw	sists of the st av safety are:	metural pavem L as shown in I	ent, the fig. 9-2.		runwa runwa	y safety a y for cod	e elemer 544 oct	red by the ts 3 and	e ICAO 4. and 24. bo	is 275 for all	fi beyo runway safatu	nd each s with	instrum instrum	a tra
1. The structural par	vement sup	ports the ai	rcraft with re	spect to		beyon	d the end	of the ru	nway for	small a	ircraft i	airpla	ne desi	gn grui	ē
structural load, maneuver	ability, cont	trol. stability.	and other one	rational		2002	for small	I aircrat	in des	gn grot	Н	nd bue	5	n preu	2108

I. The structural pavement supports the aircraft with respect to structural load, maneuverability, control, stability, and other operational and dimensional criteria.

2. The shoulder adjacent to the end of the structural pavement resists jet blast erosion and accommodates maintenance and emergency cquipment. 3. The blast pad is an area designed to prevent erosion of the surfaces adjacent to the ends of runways which are subjected to sustained or repeated jet hlast. The ICAO requires a 100-ft hlast pad, whereas the FAA has determined that the blast pad should be 100 ft in length for airplane lesign group 1, 150 ft for design group 11, 200 ft for design groups 11 and

Sight Distance and Longitudinal Profile

Fable 9-5.

The ICAO and FAA minway standards related to pavement and safety area widths, as well as longitudinal and transverse gradients. are given in

blast pad and its width should be 500 ft for transport category aircraft.

instrument operations with small aircraft. It also requires 10000 ft for large aircraft in all design groups. The runway safety areas should include the In addition to the information given in Table 9.5, there are other factors that must be considered when establishing the lungitudinal profile. One is

***** 

R.