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ABSTRACT. We studied the regulation of glutamine synthetase by

glucocorticoids in rat skeletal muscles. Administration of

dexamethasone strikingly enhanced glutamine synthetase activity in

plantaris and soleus muscles. The dexamethasone-mediated

induction of glutamine synthetase activity was blocked to a

significant extent by orally administered RU38486, a

glucocorticoid antagonist, indicating the involvement of

intracellular glucocorticoid receptors in the induction. Northern

blot analysis revealed that dexamethasone-mediated enhancement of

glutamine synthetase activity involves dramatically increased

levels of glutamine synthetase mRNA. The induction of glutamine

synthetase was selective in that glutaminase activity of soleus

and plantaris muscles was not increased by dexamethasone.

Furthermore, dexamethasone treatment resulted in only a small

(15%) increase in glutamine synthetase activity in heart.

Accordingly, there was only a slight (if any) change in glutamine

synthetase mRNA level in this tissue. Thus, glucocorticoids

regulate glutamine synthetase gene expression in rat muscles at

the transcriptional level via interaction with intracellular

receptors. Such regulation may be relevant to control of

glutamine production by muscle and to mechanisms underlying

glucocorticoid-induced muscle atrophy.



Glucocorticoids cause marked atrophy of skeletal muscle (1-

4). This atrophy, which appears to involve intracellular

glucocorticoid receptors (4), involves alterations in protein

synthesis (2, 5-10) and, possibly, protein degradation (11-16).

However, the molecular basis of glucocorticoid-mediated muscle

atrophy is not understood. An important step toward understanding

how glucocorticoids cause muscle atrophy is the study of genes

that may be regulated to produce the catabolic response. Such a

gene may be that for glutamine synthetase, the activity of which

is enhanced in L6 muscle cells in vitro and in rat muscles in vivo

following dexamethasone treatment (17-19). Skeletal muscle

synthesizes and releases glutamine, which is a substrate for

energy metabolism in a number of other tissues, including

intestine, fibroblasts, and, possibly, brain (20 - review). Amino

acids derived from degradation of muscle proteins (21) are the

primary source of muscle glutamine; glutamine synthetase is the

synthetic enzyme.

Recently, we demonstrated that dexamethasone caused a

striking increase in the level of glutamine synthetase mRNA in L6

muscle cells in culture (19). However, an in vitro system is

valuable only insofar as it reflects events in the intact

organism. Therefore, we examined the effects of dexamethasone on

rat skeletal muscles in vivo. A major objective was to evaluate

the hypothesis that increased glutamine synthetase is involved in

the catabolic actions of glucocorticoids on muscle (19).

In this report, we provide evidence that glutamine synthetase

activity in rat muscles in vivo is increased by dexamethasone;



that the increase results from enhanced production of glutamine

synthetase mRNA; and, that induct ion of glutamine synthetase is

mediated via intracellular glucocorticoid receptors. By contrast,

dexamethasone exerted min ima l effects on glutamine synthetase

act ivi ty and mRNA level in heart.

Materials and Methods

Mate rials

Male rats (c r l :CD(SO)BR strain, Charles River Breeding Labs,

W i l m i n g t o n , Mass.) weigh ing 200-225 g were used. They were

mainta ined on a schedule of 12 h l igh t and 12 h darkness, and they

were fed Purina Rodent Laboratory Chow (no. 5001, Ralston Pur ina ,

St. Louis, MO) and water ad l i b i t u m . Dexamethasone was

administered s.c. at a doses of 5 mg/kg; RU38486 [lie -(4-

dimethyl ami nophenyl) (17e-hydroxy-17a-(prop;-l-ynyl estra-4,9-dien-

3-one)] was administered p.o. at 50 mg/kg. The dexamethasone dose

was selected because it is effective in elicit ing muscle atrophy

(e.g., 4). The dose of RU38486 was selected because of its

abi l i ty to block muscle glucocorticoid receptors and

glucocorticoid-mediated muscle atrophy in vivo (4). RU38486 was a

gif t of Roussel-UCLAF (Paris, France). L-glutamic acid-Cu-14c],

specific activity 200-250 mCi /mmol , and L-glutamine-[U-1 4C],

specif ic activity 200-250 m C i / m m o l , were purchased from Research

Products International (Mount Prospect, I N ) . The RNA probe vector

pGEM-2, and the in vitro transcription system, Ribo probe, were

from Promega Biotec (Madison, W I ) . All other chemicals were

obtained from Sigma Chemical Co. (St. Louis, MI) .



Inzyme Assays

Glutamine synthetase and glutaminase activities were assayed

using the method of Rowe (22) as described by Smith et al. (17),

except that the glutamate concentration was 5 mM in our glutamine

synthetase assays. These assays separate product from substrate

by ion-exchange chromatography. The substrates were glutamic acid

[U-14C] and glutamine-Cu-^4C], for glutamine synthetase and

glutaminase, respectively. Glutamine synthetase activity in rat

muscles was completely inhibited by 10 yM L-methionine

sulfoximine, a specific inhibitor of this enzyme (22).

Protein

This was determined according to Lowry et a!. (23), using

crystalline bovine serum albumin as standard.

mRNA (Northern Blot) Analysis

Soleus and plantaris muscles and heart were frozen and

pulverized in liquid nitrogen in a mortar and pestle that had been

treated with diethyl pyrocarbonate (24). The powders were stored

at -70°C. Total cellular RNA was isolated from frozen powders of

soleus, plantaris and heart muscles using the guanidine

isothiocyanate procedure of Chirgwin et al_. (25). RNA was

fractionated by electrophoresis through agarose gels containing

formaldehyde (26), transferred to nitrocellulose filters, and

hybridized with a radioactive RNA probe by the method of Southern

(27). The RNA probe was prepared by in vitro transcription (28)

from an EcoRI/Hindlll fragment of the Chinese hamster glutamine

synthetase gene (29) subcloned into pGEM-2, a pUC-12-derived

plasmid containing both SP6 and T7 promoters (28).



Statistical Analysis

This was performed using analysis of variance and Dunnett's

multiple comparisons test (30) or Student's t-test (Table 1).

Results and Discussion

Dexamethasone caused a striking increase in glutamine

synthetase activity in rat soleus and plantaris muscles. The

time-course of the effect of dexamethasone on glutamine synthetase

activity in rat soleus and plantaris muscles is shown in Fig. 1.

Glutamine synthetase activity in both muscles was 2 times the

control values 24 h after dexamethasone administration and

increased to about 6-fold greater than control after 7 daily

injections of the steroid hormone.

Enhancement of glutamine synthetase activity by dexamethasone

probably is mediated via interaction of the steroid hormone with

intracell ular glucocorticoid receptors, which are present in rat

muscles (4, 31). This conclusion is based upon the data of Fig.

2, in which it is seen that RU38486, a potent and selective

glucocorticoid antagonist in a number of tissues (32) including

muscle (4), significantly reduced the dexamethasone-mediated

increase in enzyme activity. Lack of complete inhibition of the

dexamethasone effect by this large dose of RU38486, compared with

complete blockade in vitro (19), may be due to a higher level of

non-specific binding of RU38486 to plasma proteins (34).

Administration of RU38486 by itself was without effect on

glutamine synthetase activity (33). That the induction of

glutamine synthetase is selective for glucocorticoids is shown

further by the data of Fig. 4. Dexamethasone and triamcinolone



acetonide caused major increases in glutamine synthetase.

Progesterone caused a 50% increase in enzyme activity. Muscle is

considered to be devoid of progestin receptors (35,36). The

effect of this steroid hormone on glutamine synthetase, which we

also observed in vitro (19), may be due to direct agonist action

on glucocorticoid receptors in muscle. Such agonist action has

been demonstrated in certain hepatoma cells (37). Estradiol was

effective, albeit less so, than progesterone. Possibly, estrogen

acted directly via estrogen receptors, which are known to exist in

muscle (38). Testosterone was without effect.

Heart muscle glutamine synthetase increased by only 15% (p<

0.05) after 7 days of daily s.c. injections of dexamethasone at 5

mg/kg, in striking contrast to the large increases (+500%) in

enzyme activity in plantaris and soleus muscles (Fig. 4).

The dexamethasone-mediated increase in glutamine synthetase

activity is at least partly a result of an increased level of

glutamine synthetase mRNA. Northern blot analysis (Fig. 5)

demonstrates that glutamine synthetase mRNA (a major band of 3 kb)

was increased dramatically in plantaris muscles from

dexamethasone-treated rats compared with control animals. By

contrast, there was a small, if any, change in glutamine

synthetase mRNA level in heart. Thus, there is good correlation
\

between enhanced glutamine synthetase activity and increased

levels of glutamine synthetase mRNA (Figs. 5 and 6).

Exposure of autoradiograms for prolonged periods revealed a

second smaller (ca. 1.5 Kb) glutamine synthetase mRNA species, in

agreement with Kumar et al_. (39) and Bhandari et al_. (40).



Further work is needed to evaluate whether this smaller species

also is regulated by dexamethasone and to confirm that it codes

for glutamine synthetase.

Induction of glutamine synthetase precedes muscle atrophy and

appears to be a common denominator in atrophy of a number of

causes (18, 33, 42). Therefore, we have hypothesized that

glutamine synthetase may be involved in a fundamental manner in

the process of atrophy.

It has been demonstrated that glucocorticoid hormones are

anabolic in heart muscle, actually causing an increase in protein

synthesis (41). The lack of induction of glutamine synthetase by

dexamethasone in this tissue supports our hypothesis of a role for

glutamine synthetase in glucocorticoid-mediated muscle atrophy

(19). However, our hypothesis is not supported by the observation

that glutamine synthetase activity is enhanced in soleus muscles

from dexamethasone-treated rats (Figs. 2, 3). Soleus muscle is

notoriously resistant to glucocorticoid-mediated muscle atrophy

(e.g., 4). Paradoxically, soleus muscle contains a high level of

cytosolic glucocorticoid receptors (43). The difference in

response to glucocorticoids may reflect the activity patterns of

these muscles. Plantaris is a fast-twitch, fatiguable muscle that

fires phasically; soleus is a slow-twitch, fatigue-resistant

muscle that fires tonically (44). Perhaps the continuous activity

of the soleus muscle protects it from wasting. Indeed,

glucocorticoid-mediated muscle atrophy is reversed by physical

activity (45). It is also possible that differences in rates of

protein turnover between these muscles (46-50) may account for the



disparity in hormonal responsiveness. Further experimentation

will be necessary to evaluate these possibilities.

Glutaminase activity in rat muscles was not induced by

dexamethasone treatment (Table I), indicating that the

dexamethasone effect on glutamine synthetase is selective. In

fact, dexamethasone caused a significant 30% decrease in

glutaminase activity in soleus muscle (Table I). Whether this

decrease is biologically significant is not known.

These data demonstrate that glutamine synthetase is induced

by glucocorticoids in rat muscles; that this induction involves

the activity of intracellular glucocorticoid receptors; and that

it occurs, at least in part, at the transcriptional level. These

observations agree with our data on L6 muscle cells in vitro

(19). To our knowledge, glutamine synthetase appears to be the

first glucocorticoid-induced protein to be identified in skeletal

muscle. It should provide a valuable biochemical marker for

further studies of glucocorticoid hormone-regulated gene

expression in muscle.
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Figure Legends

Fi gure 1: Time-course of the effect of dexamethasone (5

mg/kg) on glutamine. synthetase activity in rat sol BUS and

plantaris muscles. Data are means ± SEM of 6 determinations.

Experimental procedures are described in the text. Significantly

different from control, p < 0.02, plantaris, p < 0.005,

soleus. Significantly different from day 1 control, p< 0.005,

plantaris, p< 0.01, soleus. Significantly different from day

3 control, p< 0.005, soleus and plantaris.

Fi gure 2: Effect of RU38486 on the dexamethasone-mediated

increase in glutamine synthetase activity in rat plantaris

muscle. Dexamethasone was injected s.c. at 5 mg/kg. RU38486 was

administered p.o. at 50 mg/kg. Glutamine synthetase was assayed

after 3 days of administration of dexamethasone (5 mg/kg) and

RU38486 (50 mg/kg). Data are means ± SEM of six determinations.

Experimental procedures are described in the text. Significantly

**different from control, p < 0.005. Significantly different

from the dexamethasone group, p < 0.01. CTL, control, DEX,

dexamethasone.

Figure 3: Steroid hormone specificity of glutamine

synthetase induction in rat plantaris muscles. Steroid hormones

were injected at 5 mg/kg (s.c.). TA, triamcinolone acetonide; £2

estradiol-170 ; P, progesterone; T, testosterone. Glutamine

synthetase was assayed 24 h after a single injection of steroid

hormone. Data are means ± SEM of six determinations (except

control, n = 16). Experimental procedures are described in the

text. *Significantly different from control, p < 0.001.
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Figure 4: Effect of dexamethasone (5 mg/kg, s.c.) on

glutamine synthetase activity in heart, plantaris, and soleus

muscles. Glutamine synthetase was assayed after 7 days of daily

dexamethasone injections. Significantly different from control,

p < 0.05; **Significantly different from control, p < 0.001.

Figure 5: Northern blot analysis of glutamine synthetase

induction by dexamethasone (5 mg/kg, s.c.) in plantaris muscle and

heart after 5 daily injections. Ctl, control; dex,

dexamethasone. Equal (2.5 vg) amounts of total cellular RNA were

applied to the gel in each instance. Experimental procedures are

described in the text. A section of an autoradiogram containing

cellular RNA hybridized to a radiolabeled glutamine synthetase RNA

probe (3 Kb) is shown.
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Table 1

Glu taminase Activity in Soleus and Plantar is

Muscles of Dexamethasone-Treated Rats

Treatment Soleus Plantaris

(nmols/mg protein/h)

vehicle 76.40 ± 13.39+ 83.54 ± 16.11

*dexamethasone .53.83 ± 7.36 76.67 ± 16.9

Rats were injected wi th dexamethasone da i ly for 7 days, at a dose of 5 mg/kg,

s.c. +Data are means ± SEM, n = 6. S ign i f i can t ly different from control,

p < 0.005.
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