
/It A A

AN IMPROVED SIMULATED ANNEALING ALGORITHM FOR

STANDARD CFT.T. PLACEMENT

Mark Jones and Prithviraj Bonerjee \

Computer Systems Group
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
1101 W. Springfield Av.

Urbana. IL-€1801
(217) 333-6564

—. L....V m
iNj •:".-*<

E°3>m
2 £' <=>
rsi _<
K.

((Kf lSl -CB-182952) flN J K P E O V I C SIEULAZED NS8-25163
A K K E A 1 I N G i lGGEJlf iU FC£ S3f lKEi£ I CELL
PLf lCEKENl (JJlincis DD!V.) S p CSCI 0.9B

Dnclas
63/61 0146720

Acknowledgment: This research wu supported in part by the National Aeronautics and Space Administration under
Contract NASA NAO 1-613.

tXckiWUtM -*&> JvJe^vuStoOv^C ^^JL^Cv ĵL. Ov^ LG>wJyu&/

/

https://ntrs.nasa.gov/search.jsp?R=19880015799 2020-03-20T06:45:17+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42832109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Simulated annealing is a general purpose Monte Carlo optimization technique that has been

applied extensively in recent years [l. 2. 3.4]. In VLSI design, this technique has been applied to

the problem of placing standard logic cells in a VLSI chip so that the total interconnection wire

length is Tn'"'""*ed [5.6. 7]. Recently, many researchers have started to investigate techniques for

speeding up simulated annealing algorithms by running them on parallel processor systems

[8.9.10.11.12.13]. Many of these parallel algorithms have been reported to be considerably fas-

ter, and to converge to a final placement which is more optimal than similar uniprocessor simulated

annealing algorithms. The better performance of these parallel algorithms appears to be caused by

the constraints that they place on the distances over which moves can occur, and the use of slightly

outdated cell placement information caused by multiple interacting moves being accepted at each

parallel iteration.

In this paper..we present an improved standard cell placement algorithm that takes advantage

of the performance enhancements that appear to come from parallelizing the uniprocessor simu-

lated annealing algorithm. An outline of this new algorithm is given in Figure 1. Two important

differences between this algorithm and previously reported uniprocessor algorithms are in Steps 6

and 9. First, a modified generate function is proposed in Step 6 to allow for nonuniformly distri-

buted distances over which exchange and displacement moves can take place: this technique will be

called multi-windowing. Secondly, multiple cell movements are considered before updating cell

placement data in Step 9. hence the cost calculations are based on slightly outdated placement data.

This technique is referred to as pseudo-parallel moves.

2. Use of Multi-windowing ,

In the parallel versions of the simulated annealing placement algorithm, it appears that the

average distance a cell moves in the course of the algorithm has a profound effect on the final place-

ment. Specifically, it appears that movement of cells should be biased so that they are restricted

more to their local vicinity. Also, parallel simulated annealing algorithms running on architectures

such as the Hypercube are constrained to certain probability distributions because of the way the

cells are mapped to the individual processors, i.e.. the movement of cells from one section to certain

other sections in the physical circuit space is not possible in a single move because processing nodes

controlling those sections of the circuit space are not directly connected. A uniprocessor version of

the simulated annealing algorithm is not constrained in this manner and can therefore incorporate

rather complex windowing techniques and distance probability distributions. For example, in Fig-

ure 2. if cell M was picked to perform a displacement, a simple triple windowing scheme could be

used to determine where the cell will be displaced to. In Figure 2, the outermost window (Wl) is

always equal to the physical work space of the circuit. The inner windows. W2 and W3, have sizes

proportional to 2/3 and 1/3 of the physical work space and are centered about cell M. In order to

favor local movement, the probability of being in the innermost window (W3) is made greater than

being in the outer windows. In Figure 2. cell M has a 50% probability that its proposed new posi-

tion will be within the innermost window W3. a 25% probability of being within window W2 but

not window W3, and a 25% probability of being in the physical work space but not within win-

dows W2 or W3.

3. Use of Psendoparallel Moves

In Figure 1. a conditional data update statement has been added which allows multiple

number of accepted moves to accumulate before new cell locations are updated. This amounts to

allowing all moves after the first successful move determine the cost function on the basis of out-

dated placement information. For example, in Figure 3(a). if module Ml is successful in perform-

ing a displacement from (x i. y i) to (x2. y 2) during the first iteration of the inner loop, then the cir-

cuit should be as shown in Figure 3(b). but because Mi's position is not updated, the remainder of

the cells still calculate cost functions which involve Ml as though it were still at position (x i. y t).

Because of this, if module M2. which is connected to Ml via a net connection, is chosen for an

attempted move during iteration two. then the half-perimeter wiring cost associated with the net

will be computed using the old position of Ml.

After each move acceptance, a counter is incremented to keep track of the number of success-

ful moves, since the last cell position update and the new positions of the cells are placed in tem-

porary storage for use later in updating the cell positions. Random cell selection for movement in

subsequent iterations is not able to select cells which have made successful moves, but whose posi-

tions have not yet been updated. This amounts to freezing the cells' positions until the required

number of moves has been accepted. After a specified number of successful moves, the conditional

if statement criterion will be satisfied, and all cell positions will be updated using the information

saved in temporary storage.

The effect of using slightly outdated information appears to give a higher probability of get-

ting out of local minima, since this technique will accept a higher percentage of moves with uphill

changes in the cost function. The accept function limits the magnitude of uphill moves but does

not affect the total number. The number of uphill moves is affected by the random cell selection

and the "observed" placement. By having the observed placement slightly different from the actual

placement, it appears more uphill moves are accepted. By having greater numbers of uphill moves

which are all limited in magnitude by the accept function, the probability of getting out of local

minima is increased.

4. Placement Results

The advantage of this algorithm over conventional, uniprocessor simulated annealing algo-

rithms such as Timber Wolf is that it converges to a better final placement in a given amount of

time. We have implemented the algorithm in the C programming language on a Gould 9050 com-

puter system, running under UNIX 4.2.

We first report the performance of this algorithm using a small 64-standard cell circuit,

which was randomly generated and has several known clusters of cells with high connectivity. At

each temperature, approximately 100 new state moves were attempted per cell. The first set of

tests was concerned with determining the optimal number of moves that should be accepted before

cell updating is performed without any windowing. Table 1 shows final placement costs generally

decreasing as the number of multiple moves is increased. The optimal solution occurs when 16

moves have to be accepted before placement update will occur.

Simple testing of a few windowing schemes using 16 multiple moves showed consistent

decreases in final placement cost over using windowing alone as seen in Table 2. Because of this,

the remainder of the windowing scheme testing was performed using 16 multiple moves. A few of

the more promising windowing schemes were applied to two larger industry standard circuits of

sizes 183 and 286 cells with promising results, as shown in Table 3.

A variety of windowing schemes and size of windows have been extensively tested, results of

which will be reported in the full paper. Several generalized results can be deduced from these

studies. For example, if the inner windows are not significantly smaller than the physical work

space, the final placements tend to be decidedly inferior. This is in agreement with an earlier obser-

vation that the movement of cells should be localized to the area immediately surrounding the cell.

This statement is reinforced by noting that in all the windowing schemes, better performance is

generally obtained as the percentage of localized moves is increased.

5. Conclusions

This paper proposed an improved uniprocessor simulated annealing placement algorithm

which is based on the results obtained from parallelization of the sirnvlatffd annealing algorithm

proposed earlier by us and other researchers. Two new techniques were incorporated: multi-

windowing and pseudo-parallel moves. The algorithm has already been implemented and detailed

results on the performance of the algorithm on various industry example circuits will be reported

in the full paper. The results show that the algorithm is faster and better (in terms of final place-

ment quality for a fixed number of moves) than conventional algorithms.

[I] S. Kirkpatrick. C. D. Gelatt. and M. P. Vecchi, "Optimization by Simulated Ambling," Sci-
ence, voL 220. pp. 671-680, May 1983.

[2] S. Nahar, S. Sahni. and E. Shragowitz. "Experiments with Simulated Annealing." Proc. 22nd
Design. Automation Con/., pp. 748-752. June 1985.

[3] S. R. White. "Concepts of Scale in Simulated Annealing." Proc. Int. Con/. Computer Design
(ICCDS4). pp. 646-650. Oct. 1984.

[4] J. W. Greene and K. J. Supowit. "Simulated Annealing without Rejected Moves." Proc. Int.
Con/. Computer Design (ICCD84). pp. 658-663. Oct. 1984.

[5] C. Sechen and A. S. Vincentelli. "The TimberWolf Placement and Routing Package." Proc.
Custom Integrated Circuits Con/., pp. 522-527. May 1984.

[6] C. Sechen and A. S. Vincentelli. "TimberWolf3.2: A New Standard Cell Placement and Glo-
bal Routing Package." Proc. 23rd Design Automation Con/., pp. 432-439. Jun. 1986.

[7] L. K. Grover. "A New Simulated Annealing Algorithm for Standard Cell Placement." Proc.
Int. Con/, on Computer-Aided Design, pp. 378-380. Nov. 1986.

[8] E. H. L. Aarts. F. M. J. de Bont. E. H. A. Habers. and P. J. M. van Laarhoven. "Parallel Im-
plementations of the Statistical Cooling Algorithm." Integration, the VLSI Journal, vol. 4.
pp. 209-238.1986.

[9] M. J. Chung and K. K. Rao. "Parallel Simulated Annealing for Partitioning and Routing."
Proc. IEEE Int. Con/, on Computer Design (ICCD-86). pp. 238-242. Oct. 1986.

[10] S. A. Kravitz and R. A. Rutenbar. "Multiprocesssor-Based Placement by Simulated Anneal-
ing." Proc. 23rd Design Automation Con/., pp. 567-573. Jun. 1986.

[II] R. A. Rutenbar and S. A. Kravitz. "Layout by Annealing in a Parallel Environment." Proc.
IEEE Int. Con/, on Computer Design (ICCD-86). pp. 434-437. Oct. 1986.

[12] P. Banerjee and M. Jones. "A Parallel Simulated Annealing for Standard Cell Placement on a
Hypercube Computer." Proc. IEEE Int. Con/. Computer-Aided Design (ICCAD-86), Nov.
1986.

[13] M. Jones and P. Banerjee. "Performance of a Parallel Algorithm for Standard Cell Placement
on the Intel Hypercube." Proc. 24th Design Automation Con/.. June 1987.

STEP 1. Perform initial random placement of N standard cells
STEP 2. Determine initial temperature.
STEP 3. While "Stopping criteria" : temperature < 0.1 not reached
STEP 4. Generate new temperature
STEP 5. For inner_loop_count - 1 to (N X attempt_parameter)
STEP 6. Generate new move using multi-windowing technique
STEP 7. Evaluate change in cost for move
STEPS. Accept/reject move using exponential function
STEP 9. IF the number of accepted moves is equal to limit (maz_accepted)

THEN update all saved cell positions and zero number of accepted moves counter
ELSE increment accepted moves counter and save cell movements in temporary storage

STEP 10. ENDFOR:
STEP 11. ENDWHILE:

Figure 1. Improved simulated annealing algorithm.

r-
i
i
i
i

te.

iVl

Window

Wl
W2
W3

Fraction of
Max Dimension

1
2/3
1/3

Example
Size

120 X 10
72X60
36X30

Probability
Within Window

25%
25%
50%

Figure 2. Example use of windowing in determining cell movement for cell M.

M3

Ml

Figure 3(a). Original net placement.

M2

Mr J......4̂ ,

Calculated
- bounding

box

Actual
• bounding

box

Figure 3(b). Placement after initial acceptance.

Table 1. Cost vs number of multiple moves for 64-cell circuit.

Number of
Multiple Moves

1
2
4
8

12
16
24
32

Final
Placement Cost

24125
24138
24003
23984
23924
23821
24173
24829

Percentage
Change
40.0%

+0.1%
-0.5%
-O.6%
-0.8%
-13%
+0.2%
+2.9%

Table 2. Comparison of final cost for using or not using 16 multiple moves.

Number
Windows

1
2
2
2
3
4

Window Sizes
as Fraction

of max
1

1:%
l : fe
1:%

1 : 2/3 : 1/3
!:«:%:*

Distribution of
Moves in Windows

100%
20%: 80%
13% : 87%
10%: 90%

10% : 30% : 60%
6% : 12% : 24% : 58%

Final Cost
multiple moves

23821
22893
23654
23823
22148
22813

Percent
Change

-1.3%
-4.1%
-2.7%
-1.7%
-7.3%
-3.1%

Table 3. Comparison of cost vs windowing scheme for industry standard circuits.

Number
Cells

183
183
183
183
286
286
286
286

Number
Windows

1
2
3
4
1
2
3
4

Window Sizes
as Fraction

of max
1

1 : 1/3
1 : 2/3 : 1/3
1 :%:%:*

1
1:1/3

1:2/3: 1/3
1 :•%:%: %

Distribution
of moves

in windows
100%

20%: 80%
8% : 24% : 68%

5%: 10%: 20%: 65%
100%

20%: 80%
8% : 24% : 68%

5% : 10% : 20% : 65%

Final
Cost

76498
67159
69010

650034
115359
102398
102478
98312

Percent
Change

+0.0%
-12.2%
-9.8%

-10%
+0.0%

-11.2%
-11.2%
-14.8%

