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Abstract 
This paper presents the Siring and Optimkation Language, SOL, a new high-level, special-p-ose 

computer language developed to expedite application of numerical opthisation methods to design problems 
and to make the procees lees error-prone. SOL provides a clear, conck syntax for describing an optimixation 
problem, the OPTIMIZE description, which cloaely paralleb the mathematical description of the problem. SOL 
offers language statements which can be wed to model a design mathematically, with subroutines or code 
logic, and with existing FORTRAN routinea In addition, SOL provides error-checking and clear output of the 
optimization results. Because of these language features, SOL is best-suited to model and optimie a design 
concept when the model consists of mathematical expressions written in SOL. For such cases, SOL’S unique 
syntax and error checking can be hlly utilked. SOL Is currently available for DEC VAX/VMS systems. An 
evaluation copy of SOL is available from the Thermal Structures Branch, NASA Langley Research Center, 
which includes the SOL compiler, runtime library routines, and a SOL reference manual. 
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Introduction 

The nonlinear mathematical programming method (formal optimization) has had many 

applications in engineering design (refs 1 and 2). Optimization software containing math- 

ematical optimization algorithm ia available in computer programs such as CONMIN, 

ADS, and NPSOL (refs 3, 4, and 5). Users must develop or obtain analysis software con- 

taining a mathematical model of the object being optimized, and then build an interface 

between the optimization software and the analysis software. 

Three approaches to the problem implementation task have been identified in recent 

research. The traditional approach has been to write programs in a conventional language, 

such as FORTRAN. This approach is referred to as the procedural method, as optimization 

and analysia software are explicitly coupled with program statements, such as subroutine 

calIs, logic statements, and loops. Second, the query method is exemplified by OPTDES . B W ,  
a system which provides for interactive selection of problem formulations, and also sup- 

ports interfaces to standard analysis packages (ref. 6). In 0PTDES.BW design variables 

and constraints are interactively manipulated in a manner similar to the querying of a 

database, OPTDES . BW also provides the capability for graphical output of design informa,- 
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tion. The constraint ing constraints 

as a programming tool within a declarative language such aa PROLOG. Constraint logic 

programming allows goals to be defined in terms of satisfying a set of constraints (ref. 7). 

This technique has found some electrical engineering applications (ref. 8), but at present 

only linear constraints can be used. 

programming method is a scheme for inco 

Problem implementation can be tedious and error-prone. A lucid commentary on the 

difficulties of developing interfaces between optimization and analysis software appears in 

reference 9. Also, the majority of available implementations are only intended for specific 

types of problems. For example, the PASCO code, (ref. IO), only optimizes the design 

of stiffened plate structures. Often engineering users must create their own codes and 

can become overly involved in the details of computer implementation at the expense of 

focusing on proper formulation of the optimization problem. A need exists for tools which 

aid the user in developing analysis software and creating the required interface between 

optimization and analysis software. 

This paper presents the Sizing and Optimization Language, SOL, a new high-level, 

special-purpose computer language to simplify implementation of optimization problems. 

SOL represents a procedural method, but differs from the traditional approach because 

SOL is a spccial-purpose language which provides statements with a clear, concise syntax 

for describing an optimization problem. A SOL compiler converts SOL statements into 

equivalent FORTRAN code. For example, SOL utilizes the ADS optimization software (ref. 

4), so the compiler converts SOL’S description of an optimization problem into equivalent 

FORTRAN subroutine calls to ADS. The task of building an interface between optimization 

software and modeling software is greatly simplifed using the language constructs avail- 
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able in SOL. Further, SOL provides error checking capabilities tailored to optimization 

problems. 

The paper presents an overview of SOL, followed by a discussion on the description of 

an optimization problem in SOL. Details such as the choice of optimization algorithm, and 

the output of intermediate/final results are presented. The incorporation of existing FOR- 

TRAN codes into a SOL program and the error checking capabilities are also discussed. The 

paper concludes with general observations and assessments. Three examples illustrating 

the use of SOL appear in the appendices. The design of a twebar, tubular truss appears 

in appendix A; the stress analysis of a cooling jacket is posed a8 an optimization problem 

in appendix B; and a complex SOL application to scramjet engine cooling jacket design 

appeam in appendix C. 

An Overview of SOL 

Using SOL as a tool for engineering design involves writing a sequence of SOL state- 

ments that apply numerical optimization methods to a design problem. The process of 

solving a problem using SOL is shown in Figure 1. A program composed of SOL statements, 

which describes the design problem as an optimization problem subject to constraints, is 

passed as input to the SOL compiler. The SOL compiler translates the SOL program 

into an equivalent FORTRAN program, and does error-checking on the SOL program. The 

resulting FORTRAN program executes to solve the design problem. The SOL compiler is 

a program written in Pascal and was created with the MYSTRO compiler development 

system, a tool that simplifies compiler development (ref. 11). 

SOL is a simple but powerful 1 age. A brief overview of the language elements of 

SOL is offered here, and a detailed description appears in reference 12.. A summary of 
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SOL statements appears in tables 1, 2, and 3. Table 1 shows the arithmetic, relational, 

and logical operators available in SOL; table 2 shows the built-in math functions; and 

table 3 offers a representative list of SOL statements with a description of their use. SOL 

offers many features found in "conventional" languages , e.g. FORTRAN or Pascal, such as 

variables; math operators; built-in math functions; loops; logic statements; subroutines; 

and some PRINT statements to allow the output of values. Presently SOL only allows 

INTEGER, REAL, and LOGICAL (true/false) types, and does not provide user-defined types 

or arrays. 

SOL has unique language features as well, such as an OPTIMIZE description. Describing 

an optimization problem using SOL's OPTIMIZE description closely parallels the mathemat- 

ical description of the problem. The next section discusses SOL's OPTIMIZE description in 

detail. SOL also includes a COMPONENT structure to facilitate the hierarchical modeling of 

a system, and a MACRO feature that allows the definition and use of abbreviations within 

a SOL program. The macro feature can be used to make SOL programs easier to write 

and more readable; macros are used in the example of appendix C. Additionally, FORTRAN 

code can be included directly inside a SOL program with a SOL FORTRAN BLOCK feature, 

as described subsequently. 

SOL is quite simple aside from its unique features, but powerful when these elements 

are combined to address a design problem. SOL modeling and analysis of a design is 

accomplished by combining math-models, code logic, loops, external FORTRAN routines via 

FORTRAN BLOCKS, macros, and so forth, just as a FORTRAN or Pascal program would be 

written. SOL'S OPTIMIZE description can then be used to describe the optimization of the 

design, and PRINT statements output the optimization results. 
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Optimization in SOL 

SOL allows the description of an optimiiation problem with a high-level language 

feature, the OPTIMIZE description. Figure 2 shows a simple optimization problem posed 

mathematically, and in SOL. The mathematical formulation of the problem, shown in 

Figure 2(a), is to minimize some objective function of two bounded design variables x and 

y, subject to a single constraint relation. Mathematically, the problem is expressed as 

minimize funct (2, y), where x and y are the design variables. The bounds on the design 

variables and the constraint relations are given under the heading, "Subject to." The 

single constraint relation ia stated in the form of a general, nonlinear constraint function 

relation with the statement, "construint(z,y) = 5." Although an equality constraint is 

depicted, SOL also allows inequality constraints. Finally the actual equations are given 

that define the objective and constraint functions in terms of the design variables. 

SOL expresses the optimization problem in much the same way, as shown in Figure 

2(b). The program begins with the word PROGRAM followed by the name of the program. 

The optimization problem is initiated by the word OPTIMIZE and terminated by the words 

END OPTIMIZE; the statements between are referred to as the "optimiization description" 

or "OPTIMIZE description." A single variable given after the word OPTIMIZE states the ob- 

jective function. Next, design variables and constraint relations appear between the words 

USE and END USE. The lower and upper bounds on the design variables appear enclosed 

by brackets. In addition, an initial value is required for each design variable to give the 

optimization software a "starting point." A single variable, constraint, in a constraint 

relation represents the constraint function. Any variable name can be used for design 

Variables or the objective and constraint functions. Finally, between the words END USE 
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and END OPTIMIZE, equations are given which describe the objective and constraints as 

functions of the design variables. Although this example shows mathematical equations 

for the objective and constraint functions, SOL’s optimization description is not limited 

to using single equations; a sequence of statements, such as subroutine calls and IF state- 

ments, could be used to define the objective and constraint functions. All that is needed 

for optimization is an algorithm (be it equation, subroutine, or other code) that will return 

the values for the objective and constraint functions given values for the design variables. 

The OPTIMIZE statement ends with the words END OPTIMIZE and then the SOL program 

ends with the word END followed by the program name. 

SOL incorporates the methods of numerical optimization implemented in the ADS 

optimization routine for use within SOL programs. The ADS optimization routine contains 

a wide variety of algorithms. Although ADS supports SOL’s optimization capabilty, the 

use of ADS is usually transparent to the author of SOL programs as shown by Figure 

2(b). Also, only the objective and constraint function values are required in SOL, since all 

gradients are calculated using finite difference methods. 

Aspects of using optimization software, such as the choice of available optimization 

algorithms, are specific to the actual optimization software in use. SOL contains an OP- 

TIONS section as part of its OPTIMIZE description which gives user access to the optimiza- 

tion software dependent features, as shown in Figure 3. Since this discussion centers on 

the OPTIONS section, the actual design variable and constraint relation statements have 

been deleted for clarity. The OPTIONS section begins with the word OPTIONS. Between 

the word OPTIONS and the END USE, the SOL user can select any strategy, optimizer, or 

onedimensional search available in ADS. Some recent research into tools for option selec- 
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tion exists. Specifically, an expert system tool for choosing among optimization methods 

available in ADS is described in reference 13. In this example, the statement “optimizer 

= Modified Feasible Directions” indicates that the method of modified feasible direc- 

tions is desired. A “golden section” method of one-dimensional search is also specified. 

Additionally, the other options of ADS are all accessible through OPTIONS statements, The 

PRINT statement shown in the example of Figure 3 is discussed in the-next section of this 

paper. The OPTIONS section ends with the words, END USE. At this point, code modeling 

the optimization problem would appear as in the example of Figure 2(b), but haa been 

ommited here. Although SOL automatically supplies default option values for the new 

user, a knowledgable user can take full advantage of the more arcane options offered by 

the ADS software with the OPTIONS section. 

The clarity of SOL’S syntax, shown in Figure 2(b), becomes apparent when compared 

with the problem as originally coded in FORTRAN, shown in Figure 4. Variable declarations 

and initialiiationa appear, along with subroutine calls invoking the ADS software. Upon 

further perusal of this code, the dim outline of the optimization problem can be seen. The 

REAL*8 DESIGN, DESIGN-LOW, and DESIGN-UP arrays represent the design variables, the 

design variables’ lower bounds, and upper bounds respectively; the equations describing 

the objective and constraint functions appear after the call to the ADS software. In 

contrast, SOL offers a clear expressive way to describe an optimization problem which 

focuses attention on the optimization problem itself. 

SOL Output of Optimization Results 

SOL provides statements to request printing the values of the objective function, design 

variables, constraint functions, and termination criteria at user-selected points during the 
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optimization process. These output statements are placed in the OPTIONS section of an 

OPTIMIZE description. For example in Figure 3, the line PRINT design variables EVERY 

ITERATION requests output of design variable values at every iteration of the optimizer. 

The choice exists to print values at the initial design condition, at the one-dimensional 

search level, at the optimizer or strategy level, and at the end of the optimization. The 

user can request that only active or violated constraints be printed, PRINT everything or 

PRINT nothing. 

Although an output capability already exists within ADS, the output produced by 

SOL PRINT statements is integrated with SOL’S language statements. A sample of SOL’s 

output for the final results of an optimizatiQn is given in Figure 5. A title header appears, 

followed by the final values for the objective function, design variables and constraint 

functions. The actual name of the design variable or variable representing the objective 

or constraint function from the SOL pro a m  is printed. In the case of design variables, 

the bounds of the variable are also printed. a design variable is at a bound, an asterix 

appears at the far right, as in the case of inletqressure. In the case of constraints, the 

values, types and the final status of the constraint relations axe printed. 

Incorporating Existing Codes in SOL 

Existing FORTRAN subroutines for analysis and computation can be called from a SOL 

program, with communication via subroutine parameters. Further, FORTRAN code can be 

included directly inside a SOL program via a SOL feature called a FORTRAN BLOCK. This 

-kea incorporating existing ~ O R T ~ N  subroutines and code fragments quite simple, when 

variables can be easily passed back and forth via subroutine parameters. For the cooling 

jackets designed with SOL as describe ppendix 6, existing FORTRAN subroutines 

8 



were used to calculate temperatures, temperature dependent material stresses, and other 

constraint functions. Since the subroutines were already written in FORTRAN, rewriting 

them as SOL statements was not warranted. 

The task of modifying a major existing analysis routine into a parameter-passing sub- 

routine can be a difficult. SOL provides no support for this task. Furthermore, SOL does 

not provide the error-checking features outlined subsequently for the incorporated FORTRAN 

routines and/or FORTRAN BLOCK code fragments. SOL’S error-checking is limited to SOL 

statements only. Because of these limitations, SOL is best suited for the development of 

models created entirely with SOL statements. 

Error Checking by SOL 

A key feature in the SOL compiler is the capability to check a SOL program for a variety 

of errors. For example, the SOL compiler gives an error message when an uninitialiied 

variable is used in an equation , or when a LOGICAL variable is assigned an INTEGER value, 

or when the design variables of an optimization problem are altered by statements inside an 

OPTIMIZE description. The compiler does not check the correctness of the design problem 

formulation, but does catch a variety of errors automatically to expedite the successful 

implementation of an optimization problem. Additionally, the SOL compiler can produce 

a Zisting that is useful when debugging SOL programs. The listing includes the program 

indexed by reference line numbers, an optimization summary for each optimization which 

lists the objective, design variables, and constraints, a uuriublc ~ r o s ~ - t e ~ e r c n ~ c  that liits 

each variable and the lines on which the variable was used, and a listing of all the errors 

with the line numbers where the error occured. 

An intentionally erroneous SOL program is given in Figure 6. The function of the 
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program is unimportant to this discussion, which focuses on the types of error-catching 

available with SOL. Line numbers appear to the left of the program statements, as they 

would appear in the listing. Figure 7 shows the error messages issued by the SOL compiler 

that accompany the program shown in Figure 6. The error messages liist both the line 

number and the line where the error occured, a short message indicating the error, and a 

pointer to the approximate location of the error in the line. 

The first error occurs on lime 18, where the word everything is mispelled. The SOL 

compiler can usually correct the spelling of reserved words when the word is mispelled by 

only one character. The next error occurs on l i e  20 where the variable, ar2, is referenced 

before it has been initialized. Since ar2 has never been assigned a value, the compiler 

issues an error message as seen in Figure 7. Yet another error occurs on l i e  21 where a 

design variable is illegally altered; the compiler gives an appropriate message. The final 

error message occurs inside subroutine GetStresses, called to return values for stress1 

and stress2. The subroutine never assigns a value to stressi, so the compiler issues 

an error message. This example, although not exhaustive, illustrates the general type of 

error caught by the compiler. In all, the SOL compiler has nearly ninety different possible 

error messages. By discovering these errors when the program is compiled, it is hoped 

that the time spent tediously tracing through a large program (for example to find which 

of twenty-four variables was left undefined) will be reduced. 

Computer Implementat ion 

Numerical precision or accuracy is a concern in computer applications of numerical 

optimization techniques (especially for finite difference derivatives). For this reason, all 

SOL REAL variables are double-precision (64 bit precision, REAL*8) in the FORTRAN code 
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produced by the SOL compiler. The FORTRAN code output by the compiler is VAX FORTRAN 

rather than standard FORTRAN. In addition, the SOL compiler is written in non-standard 

VAX Pascal. For these reasons, SOL is presently available only for DEC VAX/VMS 

systems. Converting the SOL compiler to emit standard FORTRAN would be a relatively 

minor change, but rewriting the compiler in standard Pascal is a major effort. 

General Observations 

There are several advantages to the use of a special-purpose language as a means 

to easing optimization problem implementation. First, the language itself can offer a 

clean, expressive method of describing an optimization problem. The language can also 

evolve to incorporate useful new ways to describe optimization problems, just as natural 

languages adapt to usage by incorporating new words. Second, the compiler allows the clear 

optimization descriptions to be translated automatically into a computer implementation. 

In this way, the compiler acts as intermediary between the user and the machine. The 

compiler offers advantages beyond its primary function of translation, because the compiler 

provides a vehicle for error-checking. Finally, the language description of an optimization 

problem is separated from the code that implements the problem. Thus, the compiler 

can be modified to utilize better optimization software and newer algorithms as they 

became available, without affecting existing programs (except for the optimizer specific 

options). Although altering the compiler is a non-trivial task, one can take advantage of 

better optimization methods by substantial modifications to a single piece of software (the 

compiler) rather than by modifications to every existing program. 

s u  

A high-level, special-purpose programming language, SOL, has been developed to ex- 
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pedite implementation of optimization problems and to make the process less error-prone. 

SOL uses a procedural method to apply optimization. and integrates optimization and 

modeling within a single OPTIMIZE description. AB a language, SOL provides language 

statements which can be used to model a design mathematically or to model a design with 

aubroutines and other code. SOL also permits the bser to incorporate existing analysis 

tools written in FORTRAN via subroutine calIs and parameter-passing. SOL provides error 

checking geared to optimization and clear output of the optimization results. However, 

SOL% error-checking does not apply to external routines incorporated with the FORTRAN 

BLOCK feature. Because of its language features and error-checking, SOL is best-suited to 

model and optimize a design concept when the mo el consists of mathematical expressions 

written in SOL. Finally, SOL has the potential to evolve in several ways. First, the SOL 

compiler can be modified to utilize better optimization software when available, without 

affecting existing SOL programs (except for the optimizer specific options). Second, SOL 

itself can evolve, as useful features are reco ized and incorporated within the language. 

Currently SOL is only available for 

is available from the Thermal Structures 

EC V A ~ / V ~ S  systems. An evaluation copy of SOL 

h, NASA Langley Research Center, which 

includes the SOL compiler, runtime library routines, and a SOL reference manual. 

Nasa Langley Research Center 
Hampton, Va. 23665-5225 
February 1988 
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Table 1: SOL Operators 

Arit hmet ic Operat ors Description 

+ 
* 
/ - 
** 

addition 
multiplication 
division 
subtraction 
exponentiation 

Relational Operators Description 

.eq. 

.ne. 

.gt. 

.ge. 

.It. 

.le. 

equal to 
not equal to 
greater than 
greater than or equal to 
less than 
less than or equal to 

Logical Operators Description 

. and. 

.or. 

.not. 

logical conjunction 
logical disjunction 
logical negation 

Table 2: SOL Built-in Functions 

Function Function Description 

ABS 
ATAN 
cos 
EXP 
LOG 
INT 
SIN 
SQRT 
TAN 

Absolute d u e  
Arc Tangent 
Cosine 
e raised to some value 
The natural log of a value 
Truncates a value to integer 
Sine 
squareroot 
Tangent 
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Table 3: SOL Statements 

Calculation Statements Description 

Assignment 
Expression 

Assigns a value to a variable 
Combines variables, operators, and/or functions to give values * 

Control Statements Description 

Conditional DO loop 
IF/THEN/ELSE 
Iterative DO loop 
Subroutine call 

Repeats statements until a logical condition is true 
Branches based on a logical condition 
Repeats statements a specified number of times 
Calls a SOL subroutine 

Declaration Statements Description 

Subroutine declaration 
Variable declaration 

Declares a subroutine and its parameters 
Declares a variable’s type 

Description Statements Description 

COMPONENT 
OPTIMIZE 

Describes a hierarchical modeling construct 
Describes an optimization problem 

Miscellaneous Statements Description 

FORTRAN block 
?INCLUDE 
Macro call 
Macro definition 

Incorporates ~ORTRAN code into the program 
Includes an existing file into the program 
Use a macro abbreviation 
Defines a macro abbreviation 

Output Statements Description 

PRINT Output a value or optimization result 
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Detailed Code 

Figure 1: Schematic of SOL'S use to solve an optimization problem 
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Minimize: funct (x,y) 

Subject to: 

O L y 5 1 0  
-20 5 x 5 50 

CCW&&tUint(X, ly) = 5 

Where: 

funct(2,y) = 10 x (y - 2 ) 2  + (1 - 2)2 
constraint(2,y) = 2 x y 

2(a) Mathematical description: 

PROGRAM easy 
OPTIMIZE funct 
USE 

x -1.2 IN [-20. 601 
y = 1 IN [O, 101 
constraint .eq. 6 

END USE 

unct = lO*(y - x**2)**2 + (1 - x)**2 
constraint = x * y 

END OPTIMIZE 
END easy 

2(b) SOL program 

FIGURE 2 - DESCRIPTION OF AN OPTIMIZATION PROBLEM 

OPTIMIZE weight 
USE 

OPTIONS 
! Optimizer-specific settings 
! 

optimizer = MODIFIED FEASIBLE DI 
search = GOLDEN SECTION 
PRINT design variables EVERY ITERATION 

END USE 

END OPTIMIZE 

FIGURE 3 - THE OPTIONS SECTION OF SOL’S OPTIMIZE DESCRIPTION 
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PROGRAN EASY 
C Main P r o g r a m  declaratioaa 

I M P L I C I T  W * 8  (A-Z) 
INTEGER INFO,  ISTRAT, I O P T ,  IONED, I P R I N T ,  IGRAD, 

& NDV, NCON, NGT, NRA. NCOLA, NRWC, NRIWK, IDG(1) .  
& I C ( l ) ,  IWK(210) 

& A ( 3 , 3 ) ,  CONSnZ(1) , UK(667) 
REILL.8 DESIGN(3) ,  DESIGNJ.W(3), DESIGN,UP(S), DF(3), 

C Initializationa for O p t i m i z a t i o n  
I S T R A T  - 0 
I O P T  - 6 
IONED - 7 
I P R I N I  = loo0 
IGRAD = 0 
I N F O  - -2 
NRIWK - 210 
NRA - 3 
NCOLA = 3 
NRWK - 667 
N W  - 2 
NCON - 1 

D E s I G N l O W  (1) -20 
D E s I G N ( 1 )  -1.2 
DESIGN-UP(1) - SO 
D E s I G N Z O W ( 2 )  = 0 
DEsIGN(2)  - 1 
D E S I G N J P ( 2 )  = 10 

C D e s i g n  variable, constraint declaration and init ialization 

I D G ( 1 )  - -1 
C C a l l s  t o  o p t i m i z a t i o n  a o f t w a r e  
1 CONTINUE 

CALL ADS(INP0,  IEITRAT, I O P T ,  IONED, I P R I N T ,  IGRAD, 
& NDV, NCON, DESIGN, DESIGNJOY, DESIGN-UP, OBJ, 
& CONSTR. IDG,  NOT, I C ,  D F ,  A, NRA, NCOW, UK, 
& NRWK, IWK, NRIWK) 

C Modeling, malymia code 
X - DESIGN(1)  
Y = DESIGN(2)  
FUNCT lO*(Y-X**2)**2+(l-X)**2 
CONSTR(1) - X*Y 
OBJ - FUNCT 
IF  (INFO .NE. 0 )  GO TO 1 
END 

FIGURE 4 - FORTRAN CODE EQUIVALENT TO THE SOL PROGRAM OF FIGURE 2 ( B ) .  
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* OPTIMIZATION FINAL RESULTS * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

OB JJLQVRATE I 2.68346 

*** DESIGN VARIABLES OUWUT *** 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DESIGN VARIABLE 

PANELJUIVRATE 
INLET-PRESSURE 
PIN-HN,O-DJ)SANELl 

CURRENT VALWE BOUNDS 

- 2.6836 I N  [ 2.600 , 10.00 J - 4500 IN I 1200. , 4600. I *  - 1.0972 IN [0.2000 , 6.000 J 

*** CONSTRAINTS OUTPUT *** 
.......................... 

CONSTRAINT NAME VAUlE TYPE LIMIT STATUS 

PINSTRESS -PANEL1 
MICRoWIDTHJ’ANELl 
GAB-P,OUT 

O.ii436H-01 < 1 . m o  SATISFIED 
0.54096E-02 > 0. 60000E-02 ACTIVE 

> 800.00 VIQLATED 

FIGURE 5 - SAMPLE SOL OUTPUT OF PTIMIZATION RE§ULTS 
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1 
2 
3 
4 
6 
6 
7 
8 
9 
10 
11 
12 
13 
14 
16 
16 
17 
18 
19 
20 
21 
22 
23 
24 
26 
26 
27 
28 
29 
30 

: PROGRAM ThreeBarTruss 
: !  
: I Classical Three-Bar T x ~ m s  problem; formulated by Vanderplaats in 
: I Nasa Contractor Report 177986 
: I  
: DECLARE 
: 
: END DECLARE 

: OPTINIZE truss 
: USE 
: areal-3 = .6 IN 1.01, 200001 
: area2 - .6 IN 1-01, 2oooO1 
: stress1 .It. 0 
: .tress2 .It. 0 
: OPTIONS 
: optimizer - feasible directions 
: print everthing every iteration 
: END USE 
: 
: areal-3 = 2*areal,3 
: 
: END OPTIMIZE 
: END ThreeBarTrusm 

: SUBROUTINE (stremil 8trers2) Get,8tresses(al a21 

SUBROUTINE (stress1 , atress2) = Get,Btresse8 (mal-3, uea2) 

truss - 2*SQRT(2.0)*areal-3 + u 2  

(streesi, mtress2) = Get,stresses(uea1,3, uea2) 

: 
: 
: END Get,Stresees 

sti - (2*ai + .qrt(2.O)*a2)/(2*.1*(.1 + mqrt(2.O)*a2)) -1 
.trees2 - l/(al + mqrt(2.0)*.2) - 1 

FIGURE 6 - AN INTENTIONALLY ERRONEOUS SOL PROGRAM 

18 : print everthing every iteration 

20 : truss = 2*8QR1(2.0)*areal,S + u 2  

21 : .real-3 = 2*area1,3 

26 : SUBROUTINE (stressl. atre.02) = Cet,strerses(al. a2) 

*** ERROR .. HISSPELLED W!ERYTIIING" CORRECTED. 

*** ERROR WINITULIZED IDENTIFIER. 

*** ERROR ILLEGAL USE OF AN OPTMIZATION DESIGN VARIABLB 

*** ERRolz PARAWBTEB HAS NOT BEEN DEFINED IN SUBROUTINE 

FIGURE 7 - THE ERROR MESSAGES ISSUED FOR THE PROGRAM IN FIGURE 6. 
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Append= A: Symmetric Ikro-Bar Tubular Truss Example 

The symmetric two-bar tubular truss is a classic enginnering design application of 

numerical optimization methods (refs. 1 and 14). A truss schematic ap in Figure 

Al.  The truss consists of two members of tubular steel, where the truss is to support the 

load, 2P. The height of the truss is denoted by h, and the span of the truss is fixed at 

2B. A crow- sectional view of a tubular member is also shown, where d represents the 

tube diameter. The design problem is to select d and h such that the weight of the truss 

is minimized, and the members neither yield compressively nor buckle. The load ( P )  is 

assumed as 33 kips; the half-span (B) as 30 in.; and the tube wall thickness ( t ,  not shown) 

as 0.1 in. In addition, the compressive strength of the material (a"") is taken as 100,000 

psi., the modulus (E) as 30 x lo0 psi., and the density (p )  as 0.3 lb/in3. 

The truss can be modeled with mathematical equations. When L is the length of a 

member, L = d m ,  the equations (Al),  (A2) and (A3) model the weight of the truss, 

the member stress, and the Euler bucklin stress respectively: 

P L  
nt hd 

Q = -- 

The design problem can be posed as an optimization problem, in which truss weight is the 

objective function to be minimized with d and h as design variables. Compressive stress 

and Euler buckling constraints insure that the truss neither yields nor buckles. 
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A mathematical formulation of the problem is shown in Figure A2. The design vari- 

ables and constraint relations appear under the heading "Subject to:," followed by the 

equations for the objective and constraint functions under the heading "Where:? The 

design variables are bounded, and the compressive s s and Euler stress constraints are 

expressed as inequality constraint function relations. 

A complete SOL program for the two-bar truss appears in Figure A3, with line numbers 

displayed to facilitate discussion. Lines 2 through 8 initialize the constants required for 

calculations, and the optimization description appears on l ies  10 through 22. Design 

variables and constraint function relations appear between the words USE and END USE, 

with the analysis equations appearing between the words END USE and END OPTIMIZE. 

The optimization description in SOL parallels the mathematical description of Figure A2, 

except that a single SOL variable represents the Euler buckling constraint, and member 

length is explicitly calculated on line 17. This program was passed a8 input to the SOL 

compiler to produce an equivalent FORTRAN program which was executed. The optimization 

results produced by SOL appear in Figure A4, showing the minimum truss weight was 12.8 

lb., with both constraints active. 
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I 

FIGURE A I :  Two-Bar, Tubular Tr ss Schematic 
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Minimize: weight (d,h) 
Subject to: 

l i d 5 3  
10 5 h 5 30 

Where: 

weight = 2plrdtL 

FIGURE A 2  - MATHEMATICAL FORMULATION OF TWO-BAR TRUSS OPTIMIZATION 
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23 

ia 

PROGRAM TwoBar 
t = 0.1 ! 
P = 33000 I 
B = 30 ! 
E = 3000oooo ! 
Pi = 3.141692664 
rho = 0.3 ! 
MaxStress = 100000 ! 

Wall thickness 
Load 
Half -span of truss 
Modulus 

Material Density 
Maximum allowable stress 

OPTIMIZE weight 
USE 
d = 1 IN [I. 31 
h = 16 IN [lO,SOI 
stress .It. MaxStress 
buckle .It. 0 

L = SQRT(B**2 + h**2) 
weight = 3*rho*pi*d*t*L 
stress = (P/(pi*t))*L/(h*d) 
e-stress = ((pi**a*E)/8)*((d**2 + t**2)/L**2) 
buckle = stress - e-stress 

END USE 

END OPTIMIZE 
END Twobar 

FIGURE A 3  - SOL PROGRAM FOR TWO-BAR TRUSS OPTIMIZATION 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* OPTIMIZATION FINAL RESULTS * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

WEIGHT = 12.8120 

*** DESIGN VARIABLES OUTPUT *** 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DESIGN VARIABLE CURRENT VALUE BOUNDS 

D 
H 

= 1.8704 IN I 1.000 * 3.00 3 
= 20.233 IN I 10.00 , 30.00 3 

*** CONSTRAINTS OUTPUT *** 
.......................... 

CONSTRAINT NAME VALUE TYPE LIMIT STATUS 

STRESS 
BUCKLE 

0.10001E+06 < 0.1ooOOE+6 ACTIVE 
-2.0921 0.ooOOE-00 ACTIVE 

FIGURE A 4  - SOL OUTPUT OF TWO-BAR OPTIMIZATION RESULTS 
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Appendix B: A Simple Cooling Jacket Example 

SOL has been applied to the design of cooling jackets. Cooling jackets are used in high 

temperature environments to maintain structures at survivable temperatures. A cross 

section of a typical cooling jacket installed on a structure bearing the primary structural 

loads (the primary structure) is shown in Figure B1. The jacket is a sandwich structure 

which consists of an outer wall which is heated by the high environmental heat flux, 

an inner wall which is attached to the primary structure, and a system of webs which 

connects the outer and inner walls. A coolant, flowing between the outer and inner walls 

inside channels formed by the webs, removes the heat incident on the outer wall of the 

cooling jacket. There are two loads that the cooling jacket must withstand, the load from 

the coolant pressure, p, and the thermal load due to the temperature difference between 

the cooling jacket outer and inner walls. The pressure load will cause the outer wall to be 

loaded in bending. A high thermal load will typically cause the outer wall of the cooling 

jacket to yield and deform plastically in compression. The question which arose is "how can 

the outer wall withstand the pressure load when it is already yielded due to the thermal 

load?" Ordinarily, such questiom would be m e r e d  with a non-linear, finite element 

analysis. However, lacking such tools, the question was posed as an optimization problem 

to minimize strain energy, and a simple SOL program was written to do the optimization. 

The elastic-perfectly plastic stress-strain curve in Figure B2 was assumed for the outer 

wall material. The stress-strain state of the outer wall with only thermal loading is shown in 

the Figure. Also it was assumed that the stress through the thickness of the cooling jacket 

outer wall will have the form in Figure B3 with the pressure induced bending moment 

locally relieving the compressive thermal stress over a portion of the thickness. With 
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this model, there are two unknowns, the surface stress (Qsdae)  and the elastic thickness 

(tenter). To solve for these quantities, the jacket’s outer wall was assumed t 

beam composed of two materials, an outer material with a finite el modulus (E > 0) 

and an inner material with a zero modulus (E = 0)  modeling the yielded part of the 

outer cooling jacket wall. With the applied pressure inducing the moment Mp, the beam 

equations to be satisfied are: 

uyield 4-  surface 
2 Qave = 

Equation (B2) is actually the beam stress equation transposed to solve for applied mo- 

ment, (Mp). These equations do not completely solve the problem because the additional 

unknown Cave has been introduced. An additional criteria was assumed. The solution 

would minimize the elastic strain energy of the outer (unyielded) part of the beam. The 

strain energy (V) of the outer part of the beam is found from the relation: 

U a  a2dt = ( 3 (B3) 

The problem is posed as an optimization problem; minimize the elastic strain energy of 

the outer part of the beam subject to the design variables, touter and osdXe. Further, 

the pressure induced moment expressed by equation (B2) can be used as an equality 

constraint to force the governing beam equations to hold. Since the actual moment is a 

known quantity, the moment calculated by equation (B2) must equal the actual moment. 

A SOL program for the problem is shown in Figure B4. The yield stress (Q+ld), total 

thickness of the jacket’s outer wall, and pressure induced moment (Mp) are known quan- 

tities initialized on lines 5-7. The minimization of the strain energy begins on line 9 with 
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an OPTIMIZE description, with the design variables and constraint relation stated between 

lines 10 and 14. The beam equations are stated on lines 18 and 19, followed by the objective 

function of minimizing strain energy on line 20. There were two subtleties involved in the 

implementation. First, the lower bound on the design variable sur faces t ress  is slightly 

larger than yield stress to insure that division by zero does not occur in equation 3 on 

line 20. Second, the normalization option chosen on lines 15-16 scales the design variables 

to the same order of magnitude. The OPTIMIZE description ends on line 22, followed by 

a calculation and a PRINT statement to output how far through the thickness the elastic 

portion of the beam starts. 

A feasible solution was found with the outer, elastic portion of the beam starting 

approximately half-way through the thickness of the outer wall. The thermally yielded 

outer wall can support a pressure load and in fact does so elastically. 

This example shows the SOL’s capability to solve an optimization problem with a 

minimum of effort. SOL does not formulate the problem, however, the speed with which a 

problem can be modeled using SOL can help to get a quick solution. SOL’s capability for 

quick modeling and optimization encouraged the use of an optimization method for the 

jacket design. 
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Figure B1: Schematic of Cooling Jacket Model fl 
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1 :  
2 :  
3 :  
4 :  
6 :  
6 :  
7 :  

9 :  
10 : 
11 : 
12 : 
13 : 
14 : 
16 : 
16 : 
17 : 
18 : 
19 : 
20 : 
21 : 
22 : 
23 : 
24 : 
26 : 

a :  

PROGRAM cool-jacket 
I test to find if cooling jacket wall under mechanical (moment) load 
! and thermal (into yield) load is determinate 
1 
yield-stress = -30000 ! psi 
Total-thickness = .020 1 inches 
m-input E .4 ! in-lb/in 

OPTIMIZE strain-energy 
USE 
surface-stress = 0.0 IN [yield,stress+0.0001, abs(yield,stress)l 
t-outer = 0.006 IN [O.O. total-thickness] 
m-calculated .eq. m-input 

OPTIONS 

END USE 
\normalize 

ave-stress = (surface-stress + yield-stress) /2 ! equation 1 
m-calculated = (surface-stress - ave,stress)*((t,outer**2)/6) 
at rain-ene rgy = (t,outer/ (surf ace-stress - yield-stress)) * 

& (surf ace,stress**3 - yield,stress**3) /3. 
END OPTIMIZE 

g = t,outer/total,thickness 
PRINT 'Yielded part starts: '. y 
END cool-jacket 

FIGURE B4 - SOL PROGRAM FOR COOLING JACKET EXAMPLE 
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Appendix C: Scramjet Engine Cooling Jacket Design Example 

The SOL program for the design of the cooling jackets on an actively cooled str 

panel is described in this appendix. This example is characterized by the use of S 

macro feature to abbreviate sections of program text. Cooling jackets are required for 

environments so severe that passive insulation cannot keep a structure at a survivable 

temperature. As seen in Figure C1, a cooling jacket is a sandwich formed by two metal 

walls separated by webs which act as both spacers and cooling fins. One side of the 

sandwich is attached to the structural panel, and the heat flux is incident on the opposite 

side. A coolant is circulated in the channels between the fins to remove the incident heat 

flux. In the design of cooling jackets, the important constraints on the design are maximum 

metal temperature, maximum stress due to coolant pressure, and thermal fatigue of the 

jackets. Additionally, the coolant must satisfy pressure drop and Mach number constraints. 

The methods of analysis used to model these operating constraints of cooling jackets are 

described in reference 15. In this appendix, only the SOL program for the design of a 

single cooling jacket panel is described. 

The SOL program which describes this cooling jacket design problem is given in Figure 

C2. The program has been annotated with numbers in parenthesis to facilitate the discus- 

sion. In overview, subroutine, macro and variable declarations are made in sections (3) - 

(5), key variables are initialized in (8), and the panel optimization occurs during steps (9) 

- (21). 

The program begins with the word PROCRAM followed by the program name coolchan, 

as seen in (1). The DECLARE section at begins (2), ends at (6), and consists of subroutine, 

macro, and variable type declarations; a discussion of each declaration follows. The cool- 
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ing jacket analysis subroutine is declared in (3). After the word SUBROUTINE, the output 

parameters of the subroutine (it's "dependent variables") are listed, followed by an equals 

aign, followed by the subroutine's name, followed by the input parameters (it's "indepen- 

dent variables"). A property of SOL subroutines is that the subroutine cannot modify 

it's input parameters and must initialize its output parameters. This property is insured 

by SOL'S error checking on the we of the subroutine. The Variables defined as output 

variables represent: temperature of the hydrogen coolant exiting the panel, pressure of 

the hydrogen coolant exiting the panel, Mach number of the coolant exiting the panel, 

temperature of the outer wall of the cooling jacket at the panel exit, temperature of the 

inner wall of the cooling jacket at the panel exit, cooling jacket unit weight (not including 

the inner wall weight), worst value for normalized stress of the cooling jacket webs in the 

panel (stress greater than 1 is failed), worst value €or normalized stress of coolii  jacket 

outer face, worst value for thermal fatigue cycle life due to plastic strain, and worst value 

for thermal fatigue cycle liie due to plastic strain including estimate of creep damage. 

The subroutine input parameters which follow the subroutine name channelfin-sub 

are: the number of segments into which the panel will be divided for analysis, the height of 

the channel webs, the spacing between webs, the thickness of the webs, the sandwich inner 

wall thickness, the sandwich outer wall thickness, the axial (i.e. in the flow direction) 

distance from an arbitrary fixed point at which the analysis begins, the corresponding 

heat flux, the axial distance at which the analysis ends, the corresponding heat flux (heat 

fluxes between the beginning and ending locations are linearly interpolated), the axial dis- 

tance which corresponds to the inlet manifold location, the hydrogen coolant temperature 

corresponding to the axial position where the analysis begins, the corresponding coolant 
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pressure, and the coolant flowrate per unit panel width (i.e. in the cross flow direction). 

After the subroutine declaration, a macro definition is given. Macros are text replace- 

ment procedures that execute at compile time. With a macro, a short word can stand 

for a longer sequence of text which is called, its replacement tezt. The replacement text 

can have multiple lines which could include other macro calls. When a macro appears 

in the text of the program, the SOL compiler replaces the macro name with its defined 

replacement text. This step is called macro expansion. Thus, macros can be thought of as 

abbreviations which are replaced with their definition at compile time. In their most com- 

plex form, macros can be defined to have replaceable parameters, which are analogous to 

subroutine parameters. Macros can be defined and expanded at any place in the program. 

For this example, the macro definition is placed in the declaration section for clarity and 

to facilitate discussion. 

The macro, Iparallelxhannels, is used to abbreviate the analysis required for cool- 

ing jacket design. It has 5 parameters and additional parameter tezt to separate the 

parameters and make the meaning of the parameters clear (4). The parameter #1 names 

the panel section being designed, #2 and #4 identify the axial locations where the panel 

analysis begins and ends, and #3 and #5 are the corresponding heat flux values. The 

replacement text for the macro defines input variables for the cooling jacket analysis sub- 

routine call, and calls this analysis routine. The output variables returned by the analysis 

subroutine have a suffix (given by parameter #1) appended to them in the macro re- 

placement text. The input and output variable naming convention allows for analysis 

of arbitrary combinations of panels with liiear heat flux variations by using a series of 

Iparallelxhannels calls. However, in this example, only a single macro call for analy5 
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ing one panel with constant heat flu is used. 

The declaration section of the SOL program continues with the declaration of variable 

types. Since REAL (64 bit precision) variables are the default type, only integer or logical 

variable types need be declared. The one type declaration here is an INTEGER type dec- 

laration for the number of sub-segments each panel is divided in the analysis subroutine 

(5).  The declaration section ends with an END DECLARE statement (6). 

A FORTRAN block (7) follows in which variables required by the external FORTRAN 

subroutines are given types and placed in a FORTRAN common block. Since SOL does not 

offer the common blocks or 32 bit precision REAL variables required by the subroutines, a 

FORTRAN block was necessary. 

At (8), several variables used in the cooling jacket panel analysis are initialized: the 

crossflow dimension of the cooling jacket panel (panel-width), the thickness and den- 

sity of the inner wall (wallthickin and innerdens), the coolant Mach number limit 

(max-coolantAach), and the heat flux incident on the panel (heatrate). 

The OPTIMIZE description begins with total-panelflowrate declared aa the objec- 

tive function in (9). The design variables of flow rate and inlet pressure are given with 

initial values and the limiting values at (10). The design variables for the channel fin 

geometry of panel1 follow (11). The constraints in the optimization (12) are in the fol- 

lowing order: peak outer wall temperature, peak normalized web stress, peak normalized 

outer wall stress, maximum coolant Mach number, minimum creep influenced fatigue life, 

and minimum coolant pressure drop of panell. The OPTIONS section for the optimization 

follows with optimization print intervals declared (13), ADS strategy and one dimensional 

search options reset (14), the default ADS optimizer iteration limits increased (15), and 
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normalization of the design variables by the side constraints specified (16). The declaration 

of the design variables, constraints, and options ends with the END USE statement. 

Analysis begins with setting the gas temperature and pressure entering the panel, and 

initializing the total-weight to zero (17). The panel location of the inlet manifold is set 

in panelstart (18). The analysis of the cooling jacket named "panell" which is 75 inches 

long having a constant incident heat flux is performed by the macro call at (19). Most of 

the constraint functions declared in the above USE section are automatically initialized in 

this macro and the objective function and the pressure drop constraint are initialized at 

(20). This completes the analysis of the cooling jackets. The optimization statement ends 

at (21). 

In the last lines of the SOL program, a print statement outputs the cooling jacket 

weight, the line END coolchan ends the main program, and the SOL subroutine declared 

at (3) (channeldinsub, which contains the interface to the FORTRAN analysis routines) 

is added to the source with the ?include macro (22). 

This example shows that macros enable a concise and understandable description of 

the cooling jacket design problem. Once the macro is defined in step (4), its usage in steps 

(17) through (20) is fairly clear; and is easily generaliied to handle multiple panels. Note 

that in this appendix, only the SOL code which models the design problem is given; a 

detailed description of the models used to determine the constraint functions is given in 

reference 15. 
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(1) PROGRAM coolchan 
I 
! 

(E) DECLARE 
! ****+ subroutines declaration begin8 
! 

SOL program that designs a channel fin cooling jacket panel 

subroutine (gas-Lout , gas-p-out ,gasmch-out , outeretr-t , inuerstr-t , 
& weight,per,mqft,normwebatres8,nwa11.tress~8t~veb8 
& 
& - channel-f in-sub (number-steps: integer ,webheight ,webspacing,webwidth, 
& wallthickin,wallthickout,comp,begin,qbegin,comp~end.qend,origin. 
& 

pp-f atigue-lif e ,pc,f atigue-lif e) 

gas-t-in , gas-p-in, gasf lowrate) 
I calculate8 channel fin heating over comp-begin -> comp-end 
! 
f ***** subroutines declaration end@ 
! 
! ***** macro declaration begins 
1 
1 macro which analyzes one channel fin cooling jacket with coolant flow 
! parallel to heating variation. 
! x in in.. q in btu/sqft-e., linear interpolation of q between begin and end 

. ?def?parallel~channels #1 begin xlw2 q 4 3  end x 4 4  q 4 6  < 
= #3 I btu/s-mqf t 

qend - WS I btu/s-sqft 
webwidth = webwidth-#l 
webspacing = chanwidth-Wl 
webheight - chan-h-o-d-ti * webspacing 
webspacing = webspac ingcwebwidth 
wallthickout = wallthout-#l 
gas-f lowrate = panel-f lovrate/panel,width ! lb/in-s 
if (gas-p-in. It . p i n )  then ! do mmooth ,non-neg , additive map of press 

endif 
flow-length - abe(%2-#4) I inches 
origin = panelstart ! inches 
comp-begin = #2 ! inches 
camp-end = #4 1 inches 

! analysis nibroutine channel-f in-sub 

& weight-per-sqft, normweb8tres8, nvallstrem,at,web, 
& pp-fatigue-life, pc-fatigue-life) 
& - channel-f in-sub(numbersteps , webheight, webepacing , webwidth, 
& wallthickin. wallthickout, comp-begin ,qbegin, comp-end, qend, 

gas-p-in =- (pmin-pmapmin) **2/ (gas-p-in-2. qnnin+pmapmin) + pmapmin 

(gam-t-out , gam-p-out , gaunach-out , outerstr-t , innerntr-t , 

- & origin, gas-t-in, gas-p-in, gasf lourate) 

FIGURE c2 - S O L  PROGRAM FOR A COOLING JACKET PANEL 
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FIGURE C2 (continued) 

weight 3 1  
total-weight 
gam-t-out 3 1  
gam-p-out J 1  
gam-mach,out-*l 
outarmtr,t,l)l 
innermtr-t -# 1 
weight ,per,mqf tfl 
normwebmtrasm,#i 

= weight-per-mqft + wallthickin * innerdanm*l44. - weight-per-sqft * flow-length * panel,width/l44. ! gth -inches - total-weight + weight-#l - gas-t-out - gam-p-out - gamsach-aut - outermtr-t 
= innermtr-t - weight-per-sqf t - normwebmtrerr 

nwallmtramm,at,web,#l = nwalh1trem8,8t~web 
pp-t at igue-lif efl 
pc-f atigue-lif e-#l 
gam-p-in = gam-p-out 
gam-t-in = gam-Lout 

= pp-f atigue-lif e - pc-f atigue-lif e 

> ! ***** macro declaration ends ***** 
! 
!***** type declaration 
1 

(5) integer numbermteps 
(6) *END DECLARE 

! FORTRAN BLOCK for common m d  mingle precimion realvuiablee 
1 for premmure mapping 
/* 

rea1*4 pmin,pmapmin 
common/realprem s/pmin ,pmapmin 

\* 
! 
I** constant8 and fixed parameter8 
! 

= 400. 
= SOO. 

I pmi. for prammure upping 
1 pmi. for premmure rapping 
I number of megmentm in a pmel mlpmim 

(7 ) [  

numbermtepm - 11 
panel-width = 42. ! inchem 
wallthickin =. 010 ! default inner wall thickncmm 
innerdens = .s ! denmity inner wall (for reight calculation) 
mix-coolantnch - .2S t conmtraint: coolant MX- Xach number 
heatrat e = 100. 1 puemeter 
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FIGURE C 2 (continued) 

I ***** panel optimization begins 
OPTIMIZE total-panel-flowrate I optimization will design to minimize flowrate 
USE 
! design variables 

I***** optimization parameter declaration begins 

PanelJlowrate = 3.00 IN 1 1. 8 4.0 1 
InletJrersure 1OOO.O IN 1 1OOO. , 1600. 1 
@an-H-0-DSanell = 0.6641 IN 10.4 0.8 1 
ChanwidthJanell - 0.09 IN [O.Oe , 0.12 1 
YallthoutJanell = 0.016 IN 10.01 , 0.018 ] [I Yebwidth-Panell 0.02 IN 10.02 0.026 1 

[r 

! behavior conetraints 
outerstr-t-panel1 .It. 2000. 
nomwebstress,panell ,It. 1. 
nwallmtrers-at-web-panel1 .It. 1. 
gae-mach,out-panell . It. max-coolant-mach 
pc-fatigue-life-panel1 .gt. 600. 
pdrop .It. 100. 
OPTIONS ! for optimization 
I** print options 
PRINT Design varaibles Initially, Every Iteration, A t  Termination 
PRINT Objective Initially, Every Iteration, At Termination 
PRINT Constraints Initially, Every Iteration. At Termination 
PRINT Termination Criteria 

I * *  Optimizer choice 
Strategy = SEQUENTIAL QUADRATIC 
Search = GOLDEN SECTION 
I** ADS options 
\itmax-80 
\ j t max-40 
I** design variable normalization 

END USE I***** optimization parameter declaration ends 
I 
!***** analysia begins 
I 
! initialize before meries of panels 
gas-p-in = inlet-pressure I initial gam pres. (psi) 
gas-t-in = 1000 I initial gam temp. (dag r) 
total-weight * 0.0 I initialize total weight 
1 
! panel 1 
I 
panelstut - 0. 

I 
iI 

bomalize 

I x di8tance for mtart of coolant film 
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! 

FIGURE C 2 (continued) 

(1 9) r ?parallel,channels panel1 
begin x=O. q= heatrate 
end x-76. q- heatrate 

total-panel-f lowrate - panelf lowrate 
*OP = inlet-pressure - gas-p-out 

I 
I****+ uulyris ends 
I 
END OPTIMIZE 
I 
I***** panel optimization ends 
1 
print 'total weight', total-weight 

END coolchan 

I malyair subroutine 
?include admchannel . sub 
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