
NASA Technical Memorandum 100565

THE SIZING AND OPTIMIZATION LANGUAGE, SOL -
A COMPUTER LANGUAGE FOR DESIGN PROBLEMS

STEPHEN H, LUCAS
STEPHEN J. SCOTT1

April 1988

National Aeronautics and
Space Administration

langley Research Center
Hampton, Virginia 23665-5225

https://ntrs.nasa.gov/search.jsp?R=19880015806 2020-03-20T06:45:48+00:00Z

Abstract
This paper presents the Siring and Optimkation Language, SOL, a new high-level, special-p-ose

computer language developed to expedite application of numerical opthisation methods to design problems
and to make the procees lees error-prone. SOL provides a clear, conck syntax for describing an optimixation
problem, the OPTIMIZE description, which cloaely paralleb the mathematical description of the problem. SOL
offers language statements which can be wed to model a design mathematically, with subroutines or code
logic, and with existing FORTRAN routinea In addition, SOL provides error-checking and clear output of the
optimization results. Because of these language features, SOL is best-suited to model and optimie a design
concept when the model consists of mathematical expressions written in SOL. For such cases, SOL’S unique
syntax and error checking can be hlly utilked. SOL Is currently available for DEC VAX/VMS systems. An
evaluation copy of SOL is available from the Thermal Structures Branch, NASA Langley Research Center,
which includes the SOL compiler, runtime library routines, and a SOL reference manual.

9

Introduction

The nonlinear mathematical programming method (formal optimization) has had many

applications in engineering design (refs 1 and 2). Optimization software containing math-

ematical optimization algorithm ia available in computer programs such as CONMIN,

ADS, and NPSOL (refs 3, 4, and 5). Users must develop or obtain analysis software con-

taining a mathematical model of the object being optimized, and then build an interface

between the optimization software and the analysis software.

Three approaches to the problem implementation task have been identified in recent

research. The traditional approach has been to write programs in a conventional language,

such as FORTRAN. This approach is referred to as the procedural method, as optimization

and analysia software are explicitly coupled with program statements, such as subroutine

calIs, logic statements, and loops. Second, the query method is exemplified by OPTDES . B W ,
a system which provides for interactive selection of problem formulations, and also sup-

ports interfaces to standard analysis packages (ref. 6). In 0PTDES.BW design variables

and constraints are interactively manipulated in a manner similar to the querying of a

database, OPTDES . BW also provides the capability for graphical output of design informa,-

1

tion. The constraint ing constraints

as a programming tool within a declarative language such aa PROLOG. Constraint logic

programming allows goals to be defined in terms of satisfying a set of constraints (ref. 7).

This technique has found some electrical engineering applications (ref. 8), but at present

only linear constraints can be used.

programming method is a scheme for inco

Problem implementation can be tedious and error-prone. A lucid commentary on the

difficulties of developing interfaces between optimization and analysis software appears in

reference 9. Also, the majority of available implementations are only intended for specific

types of problems. For example, the PASCO code, (ref. IO), only optimizes the design

of stiffened plate structures. Often engineering users must create their own codes and

can become overly involved in the details of computer implementation at the expense of

focusing on proper formulation of the optimization problem. A need exists for tools which

aid the user in developing analysis software and creating the required interface between

optimization and analysis software.

This paper presents the Sizing and Optimization Language, SOL, a new high-level,

special-purpose computer language to simplify implementation of optimization problems.

SOL represents a procedural method, but differs from the traditional approach because

SOL is a spccial-purpose language which provides statements with a clear, concise syntax

for describing an optimization problem. A SOL compiler converts SOL statements into

equivalent FORTRAN code. For example, SOL utilizes the ADS optimization software (ref.

4), so the compiler converts SOL’S description of an optimization problem into equivalent

FORTRAN subroutine calls to ADS. The task of building an interface between optimization

software and modeling software is greatly simplifed using the language constructs avail-

2

able in SOL. Further, SOL provides error checking capabilities tailored to optimization

problems.

The paper presents an overview of SOL, followed by a discussion on the description of

an optimization problem in SOL. Details such as the choice of optimization algorithm, and

the output of intermediate/final results are presented. The incorporation of existing FOR-

TRAN codes into a SOL program and the error checking capabilities are also discussed. The

paper concludes with general observations and assessments. Three examples illustrating

the use of SOL appear in the appendices. The design of a twebar, tubular truss appears

in appendix A; the stress analysis of a cooling jacket is posed a8 an optimization problem

in appendix B; and a complex SOL application to scramjet engine cooling jacket design

appeam in appendix C.

An Overview of SOL

Using SOL as a tool for engineering design involves writing a sequence of SOL state-

ments that apply numerical optimization methods to a design problem. The process of

solving a problem using SOL is shown in Figure 1. A program composed of SOL statements,

which describes the design problem as an optimization problem subject to constraints, is

passed as input to the SOL compiler. The SOL compiler translates the SOL program

into an equivalent FORTRAN program, and does error-checking on the SOL program. The

resulting FORTRAN program executes to solve the design problem. The SOL compiler is

a program written in Pascal and was created with the MYSTRO compiler development

system, a tool that simplifies compiler development (ref. 11).

SOL is a simple but powerful 1 age. A brief overview of the language elements of

SOL is offered here, and a detailed description appears in reference 12.. A summary of

3

SOL statements appears in tables 1, 2, and 3. Table 1 shows the arithmetic, relational,

and logical operators available in SOL; table 2 shows the built-in math functions; and

table 3 offers a representative list of SOL statements with a description of their use. SOL

offers many features found in "conventional" languages , e.g. FORTRAN or Pascal, such as

variables; math operators; built-in math functions; loops; logic statements; subroutines;

and some PRINT statements to allow the output of values. Presently SOL only allows

INTEGER, REAL, and LOGICAL (true/false) types, and does not provide user-defined types

or arrays.

SOL has unique language features as well, such as an OPTIMIZE description. Describing

an optimization problem using SOL's OPTIMIZE description closely parallels the mathemat-

ical description of the problem. The next section discusses SOL's OPTIMIZE description in

detail. SOL also includes a COMPONENT structure to facilitate the hierarchical modeling of

a system, and a MACRO feature that allows the definition and use of abbreviations within

a SOL program. The macro feature can be used to make SOL programs easier to write

and more readable; macros are used in the example of appendix C. Additionally, FORTRAN

code can be included directly inside a SOL program with a SOL FORTRAN BLOCK feature,

as described subsequently.

SOL is quite simple aside from its unique features, but powerful when these elements

are combined to address a design problem. SOL modeling and analysis of a design is

accomplished by combining math-models, code logic, loops, external FORTRAN routines via

FORTRAN BLOCKS, macros, and so forth, just as a FORTRAN or Pascal program would be

written. SOL'S OPTIMIZE description can then be used to describe the optimization of the

design, and PRINT statements output the optimization results.

4

Y

Optimization in SOL

SOL allows the description of an optimiiation problem with a high-level language

feature, the OPTIMIZE description. Figure 2 shows a simple optimization problem posed

mathematically, and in SOL. The mathematical formulation of the problem, shown in

Figure 2(a), is to minimize some objective function of two bounded design variables x and

y, subject to a single constraint relation. Mathematically, the problem is expressed as

minimize funct (2, y), where x and y are the design variables. The bounds on the design

variables and the constraint relations are given under the heading, "Subject to." The

single constraint relation ia stated in the form of a general, nonlinear constraint function

relation with the statement, "construint(z,y) = 5." Although an equality constraint is

depicted, SOL also allows inequality constraints. Finally the actual equations are given

that define the objective and constraint functions in terms of the design variables.

SOL expresses the optimization problem in much the same way, as shown in Figure

2(b). The program begins with the word PROGRAM followed by the name of the program.

The optimization problem is initiated by the word OPTIMIZE and terminated by the words

END OPTIMIZE; the statements between are referred to as the "optimiization description"

or "OPTIMIZE description." A single variable given after the word OPTIMIZE states the ob-

jective function. Next, design variables and constraint relations appear between the words

USE and END USE. The lower and upper bounds on the design variables appear enclosed

by brackets. In addition, an initial value is required for each design variable to give the

optimization software a "starting point." A single variable, constraint, in a constraint

relation represents the constraint function. Any variable name can be used for design

Variables or the objective and constraint functions. Finally, between the words END USE

5

and END OPTIMIZE, equations are given which describe the objective and constraints as

functions of the design variables. Although this example shows mathematical equations

for the objective and constraint functions, SOL’s optimization description is not limited

to using single equations; a sequence of statements, such as subroutine calls and IF state-

ments, could be used to define the objective and constraint functions. All that is needed

for optimization is an algorithm (be it equation, subroutine, or other code) that will return

the values for the objective and constraint functions given values for the design variables.

The OPTIMIZE statement ends with the words END OPTIMIZE and then the SOL program

ends with the word END followed by the program name.

SOL incorporates the methods of numerical optimization implemented in the ADS

optimization routine for use within SOL programs. The ADS optimization routine contains

a wide variety of algorithms. Although ADS supports SOL’s optimization capabilty, the

use of ADS is usually transparent to the author of SOL programs as shown by Figure

2(b). Also, only the objective and constraint function values are required in SOL, since all

gradients are calculated using finite difference methods.

Aspects of using optimization software, such as the choice of available optimization

algorithms, are specific to the actual optimization software in use. SOL contains an OP-

TIONS section as part of its OPTIMIZE description which gives user access to the optimiza-

tion software dependent features, as shown in Figure 3. Since this discussion centers on

the OPTIONS section, the actual design variable and constraint relation statements have

been deleted for clarity. The OPTIONS section begins with the word OPTIONS. Between

the word OPTIONS and the END USE, the SOL user can select any strategy, optimizer, or

onedimensional search available in ADS. Some recent research into tools for option selec-

6

I

tion exists. Specifically, an expert system tool for choosing among optimization methods

available in ADS is described in reference 13. In this example, the statement “optimizer

= Modified Feasible Directions” indicates that the method of modified feasible direc-

tions is desired. A “golden section” method of one-dimensional search is also specified.

Additionally, the other options of ADS are all accessible through OPTIONS statements, The

PRINT statement shown in the example of Figure 3 is discussed in the-next section of this

paper. The OPTIONS section ends with the words, END USE. At this point, code modeling

the optimization problem would appear as in the example of Figure 2(b), but haa been

ommited here. Although SOL automatically supplies default option values for the new

user, a knowledgable user can take full advantage of the more arcane options offered by

the ADS software with the OPTIONS section.

The clarity of SOL’S syntax, shown in Figure 2(b), becomes apparent when compared

with the problem as originally coded in FORTRAN, shown in Figure 4. Variable declarations

and initialiiationa appear, along with subroutine calls invoking the ADS software. Upon

further perusal of this code, the dim outline of the optimization problem can be seen. The

REAL*8 DESIGN, DESIGN-LOW, and DESIGN-UP arrays represent the design variables, the

design variables’ lower bounds, and upper bounds respectively; the equations describing

the objective and constraint functions appear after the call to the ADS software. In

contrast, SOL offers a clear expressive way to describe an optimization problem which

focuses attention on the optimization problem itself.

SOL Output of Optimization Results

SOL provides statements to request printing the values of the objective function, design

variables, constraint functions, and termination criteria at user-selected points during the

7

optimization process. These output statements are placed in the OPTIONS section of an

OPTIMIZE description. For example in Figure 3, the line PRINT design variables EVERY

ITERATION requests output of design variable values at every iteration of the optimizer.

The choice exists to print values at the initial design condition, at the one-dimensional

search level, at the optimizer or strategy level, and at the end of the optimization. The

user can request that only active or violated constraints be printed, PRINT everything or

PRINT nothing.

Although an output capability already exists within ADS, the output produced by

SOL PRINT statements is integrated with SOL’S language statements. A sample of SOL’s

output for the final results of an optimizatiQn is given in Figure 5. A title header appears,

followed by the final values for the objective function, design variables and constraint

functions. The actual name of the design variable or variable representing the objective

or constraint function from the SOL pro a m is printed. In the case of design variables,

the bounds of the variable are also printed. a design variable is at a bound, an asterix

appears at the far right, as in the case of inletqressure. In the case of constraints, the

values, types and the final status of the constraint relations axe printed.

Incorporating Existing Codes in SOL

Existing FORTRAN subroutines for analysis and computation can be called from a SOL

program, with communication via subroutine parameters. Further, FORTRAN code can be

included directly inside a SOL program via a SOL feature called a FORTRAN BLOCK. This

-kea incorporating existing ~ O R T ~ N subroutines and code fragments quite simple, when

variables can be easily passed back and forth via subroutine parameters. For the cooling

jackets designed with SOL as describe ppendix 6, existing FORTRAN subroutines

8

were used to calculate temperatures, temperature dependent material stresses, and other

constraint functions. Since the subroutines were already written in FORTRAN, rewriting

them as SOL statements was not warranted.

The task of modifying a major existing analysis routine into a parameter-passing sub-

routine can be a difficult. SOL provides no support for this task. Furthermore, SOL does

not provide the error-checking features outlined subsequently for the incorporated FORTRAN

routines and/or FORTRAN BLOCK code fragments. SOL’S error-checking is limited to SOL

statements only. Because of these limitations, SOL is best suited for the development of

models created entirely with SOL statements.

Error Checking by SOL

A key feature in the SOL compiler is the capability to check a SOL program for a variety

of errors. For example, the SOL compiler gives an error message when an uninitialiied

variable is used in an equation , or when a LOGICAL variable is assigned an INTEGER value,

or when the design variables of an optimization problem are altered by statements inside an

OPTIMIZE description. The compiler does not check the correctness of the design problem

formulation, but does catch a variety of errors automatically to expedite the successful

implementation of an optimization problem. Additionally, the SOL compiler can produce

a Zisting that is useful when debugging SOL programs. The listing includes the program

indexed by reference line numbers, an optimization summary for each optimization which

lists the objective, design variables, and constraints, a uuriublc ~ r o s ~ - t e ~ e r c n ~ c that liits

each variable and the lines on which the variable was used, and a listing of all the errors

with the line numbers where the error occured.

An intentionally erroneous SOL program is given in Figure 6. The function of the

9

program is unimportant to this discussion, which focuses on the types of error-catching

available with SOL. Line numbers appear to the left of the program statements, as they

would appear in the listing. Figure 7 shows the error messages issued by the SOL compiler

that accompany the program shown in Figure 6. The error messages liist both the line

number and the line where the error occured, a short message indicating the error, and a

pointer to the approximate location of the error in the line.

The first error occurs on lime 18, where the word everything is mispelled. The SOL

compiler can usually correct the spelling of reserved words when the word is mispelled by

only one character. The next error occurs on l i e 20 where the variable, ar2, is referenced

before it has been initialized. Since ar2 has never been assigned a value, the compiler

issues an error message as seen in Figure 7. Yet another error occurs on l i e 21 where a

design variable is illegally altered; the compiler gives an appropriate message. The final

error message occurs inside subroutine GetStresses, called to return values for stress1

and stress2. The subroutine never assigns a value to stressi, so the compiler issues

an error message. This example, although not exhaustive, illustrates the general type of

error caught by the compiler. In all, the SOL compiler has nearly ninety different possible

error messages. By discovering these errors when the program is compiled, it is hoped

that the time spent tediously tracing through a large program (for example to find which

of twenty-four variables was left undefined) will be reduced.

Computer Implementat ion

Numerical precision or accuracy is a concern in computer applications of numerical

optimization techniques (especially for finite difference derivatives). For this reason, all

SOL REAL variables are double-precision (64 bit precision, REAL*8) in the FORTRAN code

10

produced by the SOL compiler. The FORTRAN code output by the compiler is VAX FORTRAN

rather than standard FORTRAN. In addition, the SOL compiler is written in non-standard

VAX Pascal. For these reasons, SOL is presently available only for DEC VAX/VMS

systems. Converting the SOL compiler to emit standard FORTRAN would be a relatively

minor change, but rewriting the compiler in standard Pascal is a major effort.

General Observations

There are several advantages to the use of a special-purpose language as a means

to easing optimization problem implementation. First, the language itself can offer a

clean, expressive method of describing an optimization problem. The language can also

evolve to incorporate useful new ways to describe optimization problems, just as natural

languages adapt to usage by incorporating new words. Second, the compiler allows the clear

optimization descriptions to be translated automatically into a computer implementation.

In this way, the compiler acts as intermediary between the user and the machine. The

compiler offers advantages beyond its primary function of translation, because the compiler

provides a vehicle for error-checking. Finally, the language description of an optimization

problem is separated from the code that implements the problem. Thus, the compiler

can be modified to utilize better optimization software and newer algorithms as they

became available, without affecting existing programs (except for the optimizer specific

options). Although altering the compiler is a non-trivial task, one can take advantage of

better optimization methods by substantial modifications to a single piece of software (the

compiler) rather than by modifications to every existing program.

s u

A high-level, special-purpose programming language, SOL, has been developed to ex-

11

pedite implementation of optimization problems and to make the process less error-prone.

SOL uses a procedural method to apply optimization. and integrates optimization and

modeling within a single OPTIMIZE description. AB a language, SOL provides language

statements which can be used to model a design mathematically or to model a design with

aubroutines and other code. SOL also permits the bser to incorporate existing analysis

tools written in FORTRAN via subroutine calIs and parameter-passing. SOL provides error

checking geared to optimization and clear output of the optimization results. However,

SOL% error-checking does not apply to external routines incorporated with the FORTRAN

BLOCK feature. Because of its language features and error-checking, SOL is best-suited to

model and optimize a design concept when the mo el consists of mathematical expressions

written in SOL. Finally, SOL has the potential to evolve in several ways. First, the SOL

compiler can be modified to utilize better optimization software when available, without

affecting existing SOL programs (except for the optimizer specific options). Second, SOL

itself can evolve, as useful features are reco ized and incorporated within the language.

Currently SOL is only available for

is available from the Thermal Structures

EC V A ~ / V ~ S systems. An evaluation copy of SOL

h, NASA Langley Research Center, which

includes the SOL compiler, runtime library routines, and a SOL reference manual.

Nasa Langley Research Center
Hampton, Va. 23665-5225
February 1988

12

Table 1: SOL Operators

Arit hmet ic Operat ors Description

+
*
/ -
**

addition
multiplication
division
subtraction
exponentiation

Relational Operators Description

.eq.

.ne.

.gt.

.ge.

.It.

.le.

equal to
not equal to
greater than
greater than or equal to
less than
less than or equal to

Logical Operators Description

. and.

.or.

.not.

logical conjunction
logical disjunction
logical negation

Table 2: SOL Built-in Functions

Function Function Description

ABS
ATAN
cos
EXP
LOG
INT
SIN
SQRT
TAN

Absolute d u e
Arc Tangent
Cosine
e raised to some value
The natural log of a value
Truncates a value to integer
Sine
squareroot
Tangent

13

Table 3: SOL Statements

Calculation Statements Description

Assignment
Expression

Assigns a value to a variable
Combines variables, operators, and/or functions to give values *

Control Statements Description

Conditional DO loop
IF/THEN/ELSE
Iterative DO loop
Subroutine call

Repeats statements until a logical condition is true
Branches based on a logical condition
Repeats statements a specified number of times
Calls a SOL subroutine

Declaration Statements Description

Subroutine declaration
Variable declaration

Declares a subroutine and its parameters
Declares a variable’s type

Description Statements Description

COMPONENT
OPTIMIZE

Describes a hierarchical modeling construct
Describes an optimization problem

Miscellaneous Statements Description

FORTRAN block
?INCLUDE
Macro call
Macro definition

Incorporates ~ORTRAN code into the program
Includes an existing file into the program
Use a macro abbreviation
Defines a macro abbreviation

Output Statements Description

PRINT Output a value or optimization result

14

Detailed Code

Figure 1: Schematic of SOL'S use to solve an optimization problem

15

Minimize: funct (x,y)

Subject to:

O L y 5 1 0
-20 5 x 5 50

CCW&&tUint(X, ly) = 5

Where:

funct(2,y) = 10 x (y - 2) 2 + (1 - 2)2
constraint(2,y) = 2 x y

2(a) Mathematical description:

PROGRAM easy
OPTIMIZE funct
USE

x -1.2 IN [-20. 601
y = 1 IN [O, 101
constraint .eq. 6

END USE

unct = lO*(y - x**2)**2 + (1 - x)**2
constraint = x * y

END OPTIMIZE
END easy

2(b) SOL program

FIGURE 2 - DESCRIPTION OF AN OPTIMIZATION PROBLEM

OPTIMIZE weight
USE

OPTIONS
! Optimizer-specific settings
!

optimizer = MODIFIED FEASIBLE DI
search = GOLDEN SECTION
PRINT design variables EVERY ITERATION

END USE

END OPTIMIZE

FIGURE 3 - THE OPTIONS SECTION OF SOL’S OPTIMIZE DESCRIPTION

16

PROGRAN EASY
C Main P r o g r a m declaratioaa

I M P L I C I T W * 8 (A-Z)
INTEGER INFO, ISTRAT, I O P T , IONED, I P R I N T , IGRAD,

& NDV, NCON, NGT, NRA. NCOLA, NRWC, NRIWK, IDG(1) .
& I C (l) , IWK(210)

& A (3 , 3) , CONSnZ(1) , UK(667)
REILL.8 DESIGN(3) , DESIGNJ.W(3), DESIGN,UP(S), DF(3),

C Initializationa for O p t i m i z a t i o n
I S T R A T - 0
I O P T - 6
IONED - 7
I P R I N I = loo0
IGRAD = 0
I N F O - -2
NRIWK - 210
NRA - 3
NCOLA = 3
NRWK - 667
N W - 2
NCON - 1

D E s I G N l O W (1) -20
D E s I G N (1) -1.2
DESIGN-UP(1) - SO
D E s I G N Z O W (2) = 0
DEsIGN(2) - 1
D E S I G N J P (2) = 10

C D e s i g n variable, constraint declaration and init ialization

I D G (1) - -1
C C a l l s t o o p t i m i z a t i o n a o f t w a r e
1 CONTINUE

CALL ADS(INP0, IEITRAT, I O P T , IONED, I P R I N T , IGRAD,
& NDV, NCON, DESIGN, DESIGNJOY, DESIGN-UP, OBJ,
& CONSTR. IDG, NOT, I C , D F , A, NRA, NCOW, UK,
& NRWK, IWK, NRIWK)

C Modeling, malymia code
X - DESIGN(1)
Y = DESIGN(2)
FUNCT lO*(Y-X**2)**2+(l-X)**2
CONSTR(1) - X*Y
OBJ - FUNCT
IF (INFO .NE. 0) GO TO 1
END

FIGURE 4 - FORTRAN CODE EQUIVALENT TO THE SOL PROGRAM OF FIGURE 2 (B) .

17

.
* OPTIMIZATION FINAL RESULTS *
.

OB JJLQVRATE I 2.68346

*** DESIGN VARIABLES OUWUT ***
.

DESIGN VARIABLE

PANELJUIVRATE
INLET-PRESSURE
PIN-HN,O-DJ)SANELl

CURRENT VALWE BOUNDS

- 2.6836 I N [2.600 , 10.00 J - 4500 IN I 1200. , 4600. I * - 1.0972 IN [0.2000 , 6.000 J

*** CONSTRAINTS OUTPUT ***
..........................

CONSTRAINT NAME VAUlE TYPE LIMIT STATUS

PINSTRESS -PANEL1
MICRoWIDTHJ’ANELl
GAB-P,OUT

O.ii436H-01 < 1 . m o SATISFIED
0.54096E-02 > 0. 60000E-02 ACTIVE

> 800.00 VIQLATED

FIGURE 5 - SAMPLE SOL OUTPUT OF PTIMIZATION RE§ULTS

18

1
2
3
4
6
6
7
8
9
10
11
12
13
14
16
16
17
18
19
20
21
22
23
24
26
26
27
28
29
30

: PROGRAM ThreeBarTruss
: !
: I Classical Three-Bar T x ~ m s problem; formulated by Vanderplaats in
: I Nasa Contractor Report 177986
: I
: DECLARE
:
: END DECLARE

: OPTINIZE truss
: USE
: areal-3 = .6 IN 1.01, 200001
: area2 - .6 IN 1-01, 2oooO1
: stress1 .It. 0
: .tress2 .It. 0
: OPTIONS
: optimizer - feasible directions
: print everthing every iteration
: END USE
:
: areal-3 = 2*areal,3
:
: END OPTIMIZE
: END ThreeBarTrusm

: SUBROUTINE (stremil 8trers2) Get,8tresses(al a21

SUBROUTINE (stress1 , atress2) = Get,Btresse8 (mal-3, uea2)

truss - 2*SQRT(2.0)*areal-3 + u 2

(streesi, mtress2) = Get,stresses(uea1,3, uea2)

:
:
: END Get,Stresees

sti - (2*ai + .qrt(2.O)*a2)/(2*.1*(.1 + mqrt(2.O)*a2)) -1
.trees2 - l/(al + mqrt(2.0)*.2) - 1

FIGURE 6 - AN INTENTIONALLY ERRONEOUS SOL PROGRAM

18 : print everthing every iteration

20 : truss = 2*8QR1(2.0)*areal,S + u 2

21 : .real-3 = 2*area1,3

26 : SUBROUTINE (stressl. atre.02) = Cet,strerses(al. a2)

*** ERROR .. HISSPELLED W!ERYTIIING" CORRECTED.

*** ERROR WINITULIZED IDENTIFIER.

*** ERROR ILLEGAL USE OF AN OPTMIZATION DESIGN VARIABLB

*** ERRolz PARAWBTEB HAS NOT BEEN DEFINED IN SUBROUTINE

FIGURE 7 - THE ERROR MESSAGES ISSUED FOR THE PROGRAM IN FIGURE 6.

19

Append= A: Symmetric Ikro-Bar Tubular Truss Example

The symmetric two-bar tubular truss is a classic enginnering design application of

numerical optimization methods (refs. 1 and 14). A truss schematic ap in Figure

Al. The truss consists of two members of tubular steel, where the truss is to support the

load, 2P. The height of the truss is denoted by h, and the span of the truss is fixed at

2B. A crow- sectional view of a tubular member is also shown, where d represents the

tube diameter. The design problem is to select d and h such that the weight of the truss

is minimized, and the members neither yield compressively nor buckle. The load (P) is

assumed as 33 kips; the half-span (B) as 30 in.; and the tube wall thickness (t , not shown)

as 0.1 in. In addition, the compressive strength of the material (a"") is taken as 100,000

psi., the modulus (E) as 30 x lo0 psi., and the density (p) as 0.3 lb/in3.

The truss can be modeled with mathematical equations. When L is the length of a

member, L = d m , the equations (Al), (A2) and (A3) model the weight of the truss,

the member stress, and the Euler bucklin stress respectively:

P L
nt hd

Q = --

The design problem can be posed as an optimization problem, in which truss weight is the

objective function to be minimized with d and h as design variables. Compressive stress

and Euler buckling constraints insure that the truss neither yields nor buckles.

20

A mathematical formulation of the problem is shown in Figure A2. The design vari-

ables and constraint relations appear under the heading "Subject to:," followed by the

equations for the objective and constraint functions under the heading "Where:? The

design variables are bounded, and the compressive s s and Euler stress constraints are

expressed as inequality constraint function relations.

A complete SOL program for the two-bar truss appears in Figure A3, with line numbers

displayed to facilitate discussion. Lines 2 through 8 initialize the constants required for

calculations, and the optimization description appears on l ies 10 through 22. Design

variables and constraint function relations appear between the words USE and END USE,

with the analysis equations appearing between the words END USE and END OPTIMIZE.

The optimization description in SOL parallels the mathematical description of Figure A2,

except that a single SOL variable represents the Euler buckling constraint, and member

length is explicitly calculated on line 17. This program was passed a8 input to the SOL

compiler to produce an equivalent FORTRAN program which was executed. The optimization

results produced by SOL appear in Figure A4, showing the minimum truss weight was 12.8

lb., with both constraints active.

21

I

FIGURE A I : Two-Bar, Tubular Tr ss Schematic

22

Minimize: weight (d,h)
Subject to:

l i d 5 3
10 5 h 5 30

Where:

weight = 2plrdtL

FIGURE A 2 - MATHEMATICAL FORMULATION OF TWO-BAR TRUSS OPTIMIZATION

1
2
3
4
6
6
7
8
9
10
11
12
13
14
16
16
17

19
20
21
22
23

ia

PROGRAM TwoBar
t = 0.1 !
P = 33000 I
B = 30 !
E = 3000oooo !
Pi = 3.141692664
rho = 0.3 !
MaxStress = 100000 !

Wall thickness
Load
Half -span of truss
Modulus

Material Density
Maximum allowable stress

OPTIMIZE weight
USE
d = 1 IN [I. 31
h = 16 IN [lO,SOI
stress .It. MaxStress
buckle .It. 0

L = SQRT(B**2 + h**2)
weight = 3*rho*pi*d*t*L
stress = (P/(pi*t))*L/(h*d)
e-stress = ((pi**a*E)/8)*((d**2 + t**2)/L**2)
buckle = stress - e-stress

END USE

END OPTIMIZE
END Twobar

FIGURE A 3 - SOL PROGRAM FOR TWO-BAR TRUSS OPTIMIZATION

23

.

.
* OPTIMIZATION FINAL RESULTS *
.

WEIGHT = 12.8120

*** DESIGN VARIABLES OUTPUT ***
.

DESIGN VARIABLE CURRENT VALUE BOUNDS

D
H

= 1.8704 IN I 1.000 * 3.00 3
= 20.233 IN I 10.00 , 30.00 3

*** CONSTRAINTS OUTPUT ***
..........................

CONSTRAINT NAME VALUE TYPE LIMIT STATUS

STRESS
BUCKLE

0.10001E+06 < 0.1ooOOE+6 ACTIVE
-2.0921 0.ooOOE-00 ACTIVE

FIGURE A 4 - SOL OUTPUT OF TWO-BAR OPTIMIZATION RESULTS

24

Appendix B: A Simple Cooling Jacket Example

SOL has been applied to the design of cooling jackets. Cooling jackets are used in high

temperature environments to maintain structures at survivable temperatures. A cross

section of a typical cooling jacket installed on a structure bearing the primary structural

loads (the primary structure) is shown in Figure B1. The jacket is a sandwich structure

which consists of an outer wall which is heated by the high environmental heat flux,

an inner wall which is attached to the primary structure, and a system of webs which

connects the outer and inner walls. A coolant, flowing between the outer and inner walls

inside channels formed by the webs, removes the heat incident on the outer wall of the

cooling jacket. There are two loads that the cooling jacket must withstand, the load from

the coolant pressure, p, and the thermal load due to the temperature difference between

the cooling jacket outer and inner walls. The pressure load will cause the outer wall to be

loaded in bending. A high thermal load will typically cause the outer wall of the cooling

jacket to yield and deform plastically in compression. The question which arose is "how can

the outer wall withstand the pressure load when it is already yielded due to the thermal

load?" Ordinarily, such questiom would be m e r e d with a non-linear, finite element

analysis. However, lacking such tools, the question was posed as an optimization problem

to minimize strain energy, and a simple SOL program was written to do the optimization.

The elastic-perfectly plastic stress-strain curve in Figure B2 was assumed for the outer

wall material. The stress-strain state of the outer wall with only thermal loading is shown in

the Figure. Also it was assumed that the stress through the thickness of the cooling jacket

outer wall will have the form in Figure B3 with the pressure induced bending moment

locally relieving the compressive thermal stress over a portion of the thickness. With

25

this model, there are two unknowns, the surface stress (Qsdae) and the elastic thickness

(tenter). To solve for these quantities, the jacket’s outer wall was assumed t

beam composed of two materials, an outer material with a finite el modulus (E > 0)

and an inner material with a zero modulus (E = 0) modeling the yielded part of the

outer cooling jacket wall. With the applied pressure inducing the moment Mp, the beam

equations to be satisfied are:

uyield 4- surface
2 Qave =

Equation (B2) is actually the beam stress equation transposed to solve for applied mo-

ment, (Mp). These equations do not completely solve the problem because the additional

unknown Cave has been introduced. An additional criteria was assumed. The solution

would minimize the elastic strain energy of the outer (unyielded) part of the beam. The

strain energy (V) of the outer part of the beam is found from the relation:

U a a2dt = (3 (B3)

The problem is posed as an optimization problem; minimize the elastic strain energy of

the outer part of the beam subject to the design variables, touter and osdXe. Further,

the pressure induced moment expressed by equation (B2) can be used as an equality

constraint to force the governing beam equations to hold. Since the actual moment is a

known quantity, the moment calculated by equation (B2) must equal the actual moment.

A SOL program for the problem is shown in Figure B4. The yield stress (Q+ld), total

thickness of the jacket’s outer wall, and pressure induced moment (Mp) are known quan-

tities initialized on lines 5-7. The minimization of the strain energy begins on line 9 with

26

an OPTIMIZE description, with the design variables and constraint relation stated between

lines 10 and 14. The beam equations are stated on lines 18 and 19, followed by the objective

function of minimizing strain energy on line 20. There were two subtleties involved in the

implementation. First, the lower bound on the design variable sur faces t ress is slightly

larger than yield stress to insure that division by zero does not occur in equation 3 on

line 20. Second, the normalization option chosen on lines 15-16 scales the design variables

to the same order of magnitude. The OPTIMIZE description ends on line 22, followed by

a calculation and a PRINT statement to output how far through the thickness the elastic

portion of the beam starts.

A feasible solution was found with the outer, elastic portion of the beam starting

approximately half-way through the thickness of the outer wall. The thermally yielded

outer wall can support a pressure load and in fact does so elastically.

This example shows the SOL’s capability to solve an optimization problem with a

minimum of effort. SOL does not formulate the problem, however, the speed with which a

problem can be modeled using SOL can help to get a quick solution. SOL’s capability for

quick modeling and optimization encouraged the use of an optimization method for the

jacket design.

27

HEAT FLUX

I
I
I
I
I
4
I
I

M + yield Stress
P

OUTER WALL

I

1 INNER WALL I

I
1
I

Symmetry Plane Symmitry Plane
e

Figure B1: Schematic of Cooling Jacket Model fl

28

in

Yield Stress

Figure 82: Assumed Stress-Strain Curve

Total
Thickness

Yield Stress

Figure B3: Moment unloads Compressive Thermal Stress

29

1 :
2 :
3 :
4 :
6 :
6 :
7 :

9 :
10 :
11 :
12 :
13 :
14 :
16 :
16 :
17 :
18 :
19 :
20 :
21 :
22 :
23 :
24 :
26 :

a :

PROGRAM cool-jacket
I test to find if cooling jacket wall under mechanical (moment) load
! and thermal (into yield) load is determinate
1
yield-stress = -30000 ! psi
Total-thickness = .020 1 inches
m-input E .4 ! in-lb/in

OPTIMIZE strain-energy
USE
surface-stress = 0.0 IN [yield,stress+0.0001, abs(yield,stress)l
t-outer = 0.006 IN [O.O. total-thickness]
m-calculated .eq. m-input

OPTIONS

END USE
\normalize

ave-stress = (surface-stress + yield-stress) /2 ! equation 1
m-calculated = (surface-stress - ave,stress)*((t,outer**2)/6)
at rain-ene rgy = (t,outer/ (surf ace-stress - yield-stress)) *

& (surf ace,stress**3 - yield,stress**3) /3.
END OPTIMIZE

g = t,outer/total,thickness
PRINT 'Yielded part starts: '. y
END cool-jacket

FIGURE B4 - SOL PROGRAM FOR COOLING JACKET EXAMPLE

30

Appendix C: Scramjet Engine Cooling Jacket Design Example

The SOL program for the design of the cooling jackets on an actively cooled str

panel is described in this appendix. This example is characterized by the use of S

macro feature to abbreviate sections of program text. Cooling jackets are required for

environments so severe that passive insulation cannot keep a structure at a survivable

temperature. As seen in Figure C1, a cooling jacket is a sandwich formed by two metal

walls separated by webs which act as both spacers and cooling fins. One side of the

sandwich is attached to the structural panel, and the heat flux is incident on the opposite

side. A coolant is circulated in the channels between the fins to remove the incident heat

flux. In the design of cooling jackets, the important constraints on the design are maximum

metal temperature, maximum stress due to coolant pressure, and thermal fatigue of the

jackets. Additionally, the coolant must satisfy pressure drop and Mach number constraints.

The methods of analysis used to model these operating constraints of cooling jackets are

described in reference 15. In this appendix, only the SOL program for the design of a

single cooling jacket panel is described.

The SOL program which describes this cooling jacket design problem is given in Figure

C2. The program has been annotated with numbers in parenthesis to facilitate the discus-

sion. In overview, subroutine, macro and variable declarations are made in sections (3) -

(5), key variables are initialized in (8), and the panel optimization occurs during steps (9)

- (21).

The program begins with the word PROCRAM followed by the program name coolchan,

as seen in (1). The DECLARE section at begins (2), ends at (6), and consists of subroutine,

macro, and variable type declarations; a discussion of each declaration follows. The cool-

31

ing jacket analysis subroutine is declared in (3). After the word SUBROUTINE, the output

parameters of the subroutine (it's "dependent variables") are listed, followed by an equals

aign, followed by the subroutine's name, followed by the input parameters (it's "indepen-

dent variables"). A property of SOL subroutines is that the subroutine cannot modify

it's input parameters and must initialize its output parameters. This property is insured

by SOL'S error checking on the we of the subroutine. The Variables defined as output

variables represent: temperature of the hydrogen coolant exiting the panel, pressure of

the hydrogen coolant exiting the panel, Mach number of the coolant exiting the panel,

temperature of the outer wall of the cooling jacket at the panel exit, temperature of the

inner wall of the cooling jacket at the panel exit, cooling jacket unit weight (not including

the inner wall weight), worst value for normalized stress of the cooling jacket webs in the

panel (stress greater than 1 is failed), worst value €or normalized stress of coolii jacket

outer face, worst value for thermal fatigue cycle life due to plastic strain, and worst value

for thermal fatigue cycle liie due to plastic strain including estimate of creep damage.

The subroutine input parameters which follow the subroutine name channelfin-sub

are: the number of segments into which the panel will be divided for analysis, the height of

the channel webs, the spacing between webs, the thickness of the webs, the sandwich inner

wall thickness, the sandwich outer wall thickness, the axial (i.e. in the flow direction)

distance from an arbitrary fixed point at which the analysis begins, the corresponding

heat flux, the axial distance at which the analysis ends, the corresponding heat flux (heat

fluxes between the beginning and ending locations are linearly interpolated), the axial dis-

tance which corresponds to the inlet manifold location, the hydrogen coolant temperature

corresponding to the axial position where the analysis begins, the corresponding coolant

32

pressure, and the coolant flowrate per unit panel width (i.e. in the cross flow direction).

After the subroutine declaration, a macro definition is given. Macros are text replace-

ment procedures that execute at compile time. With a macro, a short word can stand

for a longer sequence of text which is called, its replacement tezt. The replacement text

can have multiple lines which could include other macro calls. When a macro appears

in the text of the program, the SOL compiler replaces the macro name with its defined

replacement text. This step is called macro expansion. Thus, macros can be thought of as

abbreviations which are replaced with their definition at compile time. In their most com-

plex form, macros can be defined to have replaceable parameters, which are analogous to

subroutine parameters. Macros can be defined and expanded at any place in the program.

For this example, the macro definition is placed in the declaration section for clarity and

to facilitate discussion.

The macro, Iparallelxhannels, is used to abbreviate the analysis required for cool-

ing jacket design. It has 5 parameters and additional parameter tezt to separate the

parameters and make the meaning of the parameters clear (4). The parameter #1 names

the panel section being designed, #2 and #4 identify the axial locations where the panel

analysis begins and ends, and #3 and #5 are the corresponding heat flux values. The

replacement text for the macro defines input variables for the cooling jacket analysis sub-

routine call, and calls this analysis routine. The output variables returned by the analysis

subroutine have a suffix (given by parameter #1) appended to them in the macro re-

placement text. The input and output variable naming convention allows for analysis

of arbitrary combinations of panels with liiear heat flux variations by using a series of

Iparallelxhannels calls. However, in this example, only a single macro call for analy5

33

ing one panel with constant heat flu is used.

The declaration section of the SOL program continues with the declaration of variable

types. Since REAL (64 bit precision) variables are the default type, only integer or logical

variable types need be declared. The one type declaration here is an INTEGER type dec-

laration for the number of sub-segments each panel is divided in the analysis subroutine

(5). The declaration section ends with an END DECLARE statement (6).

A FORTRAN block (7) follows in which variables required by the external FORTRAN

subroutines are given types and placed in a FORTRAN common block. Since SOL does not

offer the common blocks or 32 bit precision REAL variables required by the subroutines, a

FORTRAN block was necessary.

At (8), several variables used in the cooling jacket panel analysis are initialized: the

crossflow dimension of the cooling jacket panel (panel-width), the thickness and den-

sity of the inner wall (wallthickin and innerdens), the coolant Mach number limit

(max-coolantAach), and the heat flux incident on the panel (heatrate).

The OPTIMIZE description begins with total-panelflowrate declared aa the objec-

tive function in (9). The design variables of flow rate and inlet pressure are given with

initial values and the limiting values at (10). The design variables for the channel fin

geometry of panel1 follow (11). The constraints in the optimization (12) are in the fol-

lowing order: peak outer wall temperature, peak normalized web stress, peak normalized

outer wall stress, maximum coolant Mach number, minimum creep influenced fatigue life,

and minimum coolant pressure drop of panell. The OPTIONS section for the optimization

follows with optimization print intervals declared (13), ADS strategy and one dimensional

search options reset (14), the default ADS optimizer iteration limits increased (15), and

34

normalization of the design variables by the side constraints specified (16). The declaration

of the design variables, constraints, and options ends with the END USE statement.

Analysis begins with setting the gas temperature and pressure entering the panel, and

initializing the total-weight to zero (17). The panel location of the inlet manifold is set

in panelstart (18). The analysis of the cooling jacket named "panell" which is 75 inches

long having a constant incident heat flux is performed by the macro call at (19). Most of

the constraint functions declared in the above USE section are automatically initialized in

this macro and the objective function and the pressure drop constraint are initialized at

(20). This completes the analysis of the cooling jackets. The optimization statement ends

at (21).

In the last lines of the SOL program, a print statement outputs the cooling jacket

weight, the line END coolchan ends the main program, and the SOL subroutine declared

at (3) (channeldinsub, which contains the interface to the FORTRAN analysis routines)

is added to the source with the ?include macro (22).

This example shows that macros enable a concise and understandable description of

the cooling jacket design problem. Once the macro is defined in step (4), its usage in steps

(17) through (20) is fairly clear; and is easily generaliied to handle multiple panels. Note

that in this appendix, only the SOL code which models the design problem is given; a

detailed description of the models used to determine the constraint functions is given in

reference 15.

35

i

HEAT FLUX

COOLING

Figure C1: Cross-Sectional view of Cooling Jacket Sandwich

36

(1) PROGRAM coolchan
I
!

(E) DECLARE
! ****+ subroutines declaration begin8
!

SOL program that designs a channel fin cooling jacket panel

subroutine (gas-Lout , gas-p-out ,gasmch-out , outeretr-t , inuerstr-t ,
& weight,per,mqft,normwebatres8,nwa11.tress~8t~veb8
&
& - channel-f in-sub (number-steps: integer ,webheight ,webspacing,webwidth,
& wallthickin,wallthickout,comp,begin,qbegin,comp~end.qend,origin.
&

pp-f atigue-lif e ,pc,f atigue-lif e)

gas-t-in , gas-p-in, gasf lowrate)
I calculate8 channel fin heating over comp-begin -> comp-end
!
f ***** subroutines declaration end@
!
! ***** macro declaration begins
1
1 macro which analyzes one channel fin cooling jacket with coolant flow
! parallel to heating variation.
! x in in.. q in btu/sqft-e., linear interpolation of q between begin and end

. ?def?parallel~channels #1 begin xlw2 q 4 3 end x 4 4 q 4 6 <
= #3 I btu/s-mqf t

qend - WS I btu/s-sqft
webwidth = webwidth-#l
webspacing = chanwidth-Wl
webheight - chan-h-o-d-ti * webspacing
webspacing = webspac ingcwebwidth
wallthickout = wallthout-#l
gas-f lowrate = panel-f lovrate/panel,width ! lb/in-s
if (gas-p-in. It . p i n) then ! do mmooth ,non-neg , additive map of press

endif
flow-length - abe(%2-#4) I inches
origin = panelstart ! inches
comp-begin = #2 ! inches
camp-end = #4 1 inches

! analysis nibroutine channel-f in-sub

& weight-per-sqft, normweb8tres8, nvallstrem,at,web,
& pp-fatigue-life, pc-fatigue-life)
& - channel-f in-sub(numbersteps , webheight, webepacing , webwidth,
& wallthickin. wallthickout, comp-begin ,qbegin, comp-end, qend,

gas-p-in =- (pmin-pmapmin) **2/ (gas-p-in-2. qnnin+pmapmin) + pmapmin

(gam-t-out , gam-p-out , gaunach-out , outerstr-t , innerntr-t ,

- & origin, gas-t-in, gas-p-in, gasf lourate)

FIGURE c2 - S O L PROGRAM FOR A COOLING JACKET PANEL

37

FIGURE C2 (continued)

weight 3 1
total-weight
gam-t-out 3 1
gam-p-out J 1
gam-mach,out-*l
outarmtr,t,l)l
innermtr-t -# 1
weight ,per,mqf tfl
normwebmtrasm,#i

= weight-per-mqft + wallthickin * innerdanm*l44. - weight-per-sqft * flow-length * panel,width/l44. ! gth -inches - total-weight + weight-#l - gas-t-out - gam-p-out - gamsach-aut - outermtr-t
= innermtr-t - weight-per-sqf t - normwebmtrerr

nwallmtramm,at,web,#l = nwalh1trem8,8t~web
pp-t at igue-lif efl
pc-f atigue-lif e-#l
gam-p-in = gam-p-out
gam-t-in = gam-Lout

= pp-f atigue-lif e - pc-f atigue-lif e

> ! ***** macro declaration ends *****
!
!***** type declaration
1

(5) integer numbermteps
(6) *END DECLARE

! FORTRAN BLOCK for common m d mingle precimion realvuiablee
1 for premmure mapping
/*

rea1*4 pmin,pmapmin
common/realprem s/pmin ,pmapmin

*
!
I** constant8 and fixed parameter8
!

= 400.
= SOO.

I pmi. for prammure upping
1 pmi. for premmure rapping
I number of megmentm in a pmel mlpmim

(7) [

numbermtepm - 11
panel-width = 42. ! inchem
wallthickin =. 010 ! default inner wall thickncmm
innerdens = .s ! denmity inner wall (for reight calculation)
mix-coolantnch - .2S t conmtraint: coolant MX- Xach number
heatrat e = 100. 1 puemeter

38

FIGURE C 2 (continued)

I ***** panel optimization begins
OPTIMIZE total-panel-flowrate I optimization will design to minimize flowrate
USE
! design variables

I***** optimization parameter declaration begins

PanelJlowrate = 3.00 IN 1 1. 8 4.0 1
InletJrersure 1OOO.O IN 1 1OOO. , 1600. 1
@an-H-0-DSanell = 0.6641 IN 10.4 0.8 1
ChanwidthJanell - 0.09 IN [O.Oe , 0.12 1
YallthoutJanell = 0.016 IN 10.01 , 0.018] [I Yebwidth-Panell 0.02 IN 10.02 0.026 1

[r

! behavior conetraints
outerstr-t-panel1 .It. 2000.
nomwebstress,panell ,It. 1.
nwallmtrers-at-web-panel1 .It. 1.
gae-mach,out-panell . It. max-coolant-mach
pc-fatigue-life-panel1 .gt. 600.
pdrop .It. 100.
OPTIONS ! for optimization
I** print options
PRINT Design varaibles Initially, Every Iteration, A t Termination
PRINT Objective Initially, Every Iteration, At Termination
PRINT Constraints Initially, Every Iteration. At Termination
PRINT Termination Criteria

I * * Optimizer choice
Strategy = SEQUENTIAL QUADRATIC
Search = GOLDEN SECTION
I** ADS options
\itmax-80
\ j t max-40
I** design variable normalization

END USE I***** optimization parameter declaration ends
I
!***** analysia begins
I
! initialize before meries of panels
gas-p-in = inlet-pressure I initial gam pres. (psi)
gas-t-in = 1000 I initial gam temp. (dag r)
total-weight * 0.0 I initialize total weight
1
! panel 1
I
panelstut - 0.

I
iI

bomalize

I x di8tance for mtart of coolant film

39

!

FIGURE C 2 (continued)

(1 9) r ?parallel,channels panel1
begin x=O. q= heatrate
end x-76. q- heatrate

total-panel-f lowrate - panelf lowrate
*OP = inlet-pressure - gas-p-out

I
I****+ uulyris ends
I
END OPTIMIZE
I
I***** panel optimization ends
1
print 'total weight', total-weight

END coolchan

I malyair subroutine
?include admchannel . sub

40

References
lSchrnit, L. A.: Structural Synthesis - Its Genesis and Development. AIAA J., vol.

19, no. 10, Oct. 1981, pp. 12441263.

2Ashley, H.: On Making Things Best - Aeronautical Uses of Optim ion. J. Aircr.,
vol. 19, no. 1, Jan. 1982, pp. 5-28.

3Vanderplaats, G.N.: CONMIN - A FORTRAN Program for Constrained Function
Minimization-user '8 Manual. NASA TM X-62282, 1973.

4Vanderplaats, G.N.: ADS - A FORTRAN Program for Automated Design Synthesis
- Version 1.10. NASA Contractor Report 177985, Grant NAG1-567, 1985.

6Gill, P.E.; Murray, W.; Saunders, M; and Wright, M.: User's Guide for NPSOL
(Version 4.0): a FORTRAN Package for Nonlinear Programming. To be used with: User's
Guide for LSSOL (Version 1.0): A FORTRAN Package for Constrained Linear Least-
Squares and Convex Quadratic Programming. Systems Optimization Laboratory, Stanford
University. January 1986. Available from the Stanford Ofice of Technology Licensing, 350
Cambridge Avenue, Suite B50, Pa10 Alto, Cal$ornia 94906, USA.

"Balling, R.J.; Par n, A.R.; and Free, J.C.: Experience with OPTDESBYU; An
Interactive Package wit timization and 2D/3D Graphics Modules. Proc. NASA Sym-
posium on Recent Experiences in Multidisciplinary Analysis and Optimization, NASA
Langley Research Center, April 24-26, 1984.

'Lassez, C.: Constraint Logic Programming - A New General Framework for Devel-
oping Languages More Powerful than Traditional Logic Programming Languages. BYTE,
v01.12, no. 9, August, 1987, pp. 171-176.

P(R) and Some Electrical Engineering Problems. Proceed-
ings of the 4th International nference on Logic Programming, Melbourne, 1987; Monash
University Technical Report no. 73, June 1986.

gBalling, R.J.; Parkinson, A. .; and Free, J.C.: Methods for Interfacing Analysis
Software to Optimization Software. Computers Structures, vol 22, no. 1, 1986, pp.

l'Anderson, M.S.; and Stroud, W.J.: A General Panel Sizing Computer Code and Its
Applications to Composite Structural Panels. AIAA J., vol. 17, no. 8, August 1979, pp.

"Collins, W.R.; and Noonan, R.E.: The MYSTRO System: A Comprehensive Ir).cms-
lator Toolkit. Final Report, NASA Langley Research Center, Grant NSG1435,1985.

12Lucas, S. H.; and Scotti, S.J. The SOL Reference Manual. NASA Technical Memo-
randum 100566,1988.

l3hgers, J.L.; and Barthelemy, J.M. An Ezpert System for Choosing the Best Combi-
nation of Options in a General-Purpose Program for Automated Design Synthesis. NASA
Technical Memorandum 86329, March 1985.

l4Fox, R.L.; Optimization Methods for Engineering Design. Addison-Wesley Publish-
ing Co., 1971.

8Heintze, N.C.; et. al.:

87-98.

892-897.

41

'%cotti, S.J.; Martin, C.J.; and Lucaa, S.H.: Active Cooling DGsign for Scramjet
Engines Using Optimitation Methods. NASA Technical Memorandum 10581, March 1988;
also appears in: Proceedings of the 2gth Structures, Structural Dynamics and Materials
Conference, Williamsburg, Va., AIAA Paper No. 88-2265, April 18-20 1988.

42

Report Documentation Page

17 Key Words (Suggested by Authorls))

Optimization, nonlinear mathematical
programming, computer languages,
design tool s.

-
1

NASA TM-100565 ________
4 Title and Subtitle

18. Distribution Statement

Unclassified - Unl imi ted

Subject Category 61

The Sizing and Optimization Language, SOL --
Computer Language for Design Problems

19 Security Classif. (of this report) 120. Security Classif (of this page) 21 No of pages

I ... - - - - - _. -
7 Authork) 8. Performing Organization Report No

22 Price

Stephen H. Lucas and Stephen J. Scotti

Unclassified

9 Performing Organization Name and Address 505-63-31-03
11 Contract or Grant No.
-

NASA Langley Research Center
Hampton, VA 23665-5225

13. Type of Report and Period Covered

Technical Memorandum 12 Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546-0001

Uncl assi f ied 43 A03

14 Sponsoring Egency Code t
I

15. Supplementary Notes Stephen H. Lucas, Vigyan Research ASSOC., Inc. Stephen J. Scotti,
hermal Structures Branch, Loads and Aeroelasticity Division, NASA Langley Research
Center, Hampton, VA.
Conference, Williamsburg, VA. 18-20 April 1988.

Presented at 29th Structures, Structural Dynamics and Material!

16 Abstract
The Sizing and Optimization Language, SOL, a new high-level, special-purpose

computer language has been developed to expedite application of numerical
optimization to design problems and to make the process less error-prone. SOL
utilizes the ADS optimization software(NASA CR 177985) and provides a clear, concise
syntax for describing an optimization problem, the OPTIMIZE description, which
closely para1 lels the mathematical description of the problem. SOL offers language
statements which can be used to model a design mathematically, with subroutines or
code logic, and with existing FORTRAN routines. In addition, SOL provides error-
checking and clear output of the optimization results. Because of these language
features, SOL is best-suited to model and optimize a design concept when the model
consists of mathematical expressions written in SOL. For such cases, SOL's unique
syntax and error-checking can be full utilized.
DEC VAX/VMS systems.
runtime library routines, and a SOL reference manual.

SOL is presently available for
A SOL package is available which includes the SOL compiler,

